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Abstract. We solve an open problem, stated in 2008, about the fea-
sibility of designing efficient algorithmic self-assembling systems which
produce 2-dimensional colored patterns. More precisely, we show that
the problem of finding the smallest tile assembly system which will self-
assemble an input pattern with 2 colors (i.e., 2-Pats) is NP-hard. One
crucial lemma makes use of a computer-assisted proof, which is a rel-
atively novel but increasingly utilized paradigm for deriving proofs for
complex mathematical problems. This tool is especially powerful for at-
tacking combinatorial problems, as exemplified by the proof for the four
color theorem and the recent important advance on the Erdős discrep-
ancy problem using computer programs. In this paper, these techniques
will be brought to a new order of magnitude, computational tasks cor-
responding to one CPU-year. We massively parallelize our program, and
provide a full proof of its correctness. Its source code is freely available
online.

1 Introduction

The traditional way for mankind to modify the physical world has been via
a top-down process of crafting things with tools, in which matter is directly
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manipulated and shaped by those tools. In this work, we are interested in another
crafting paradigm called self-assembly, a model of building structures from the
bottom up. Via self-assembly, it is possible to design molecular systems so that
their components autonomously combine to form structures with nanoscale, even
atomic, precision. At this scale, tools are no longer the easiest way to build
things, and programming the assembly of matter becomes at the same time
easier, cheaper, and more powerful.

Using this paradigm, researchers have already built a number of things, such
as logic circuits [19, 24], DNA tweezers [32], and molecular robots [16], just to
name a few. Such examples demonstrate that self-assembly can be used to man-
ufacture specialized geometrical, mechanical, and computational objects at the
nanoscale. Potential future applications of nanoscale self-assembly include the
production of new materials with specifically tailored properties (electronic, pho-
tonic, etc.) and medical technologies which are capable of diagnosing and even
treating diseases in vivo, at the cellular level. Furthermore, studying the pro-
cesses occurring in self-assembling systems yields precious insights about what
is physically, even theoretically, possible in these molecular systems. Questions
such as “what is the smallest program capable of performing a given task?” arise
naturally in these systems, either from experimental applications, or from more
fundamental research on the capabilities of natural systems.

The abstract Tile Assembly Model (aTAM) was introduced by Winfree [30]
to study the possibilities brought by molecular components built by Seeman [25]
using DNA. This model is essentially an asynchronous nondeterministic cellular
automaton, and can also be seen as a dynamical variant of Wang tiling [29].
In the aTAM, the basic components are translatable but un-rotatable square
tiles whose sides are labeled with glues, each with an integer strength. Growth
proceeds from a seed assembly, one tile at a time, and at each time step a tile
can attach to an existing assembly if the sum of the strengths of the glues on its
sides, whose types match the existing assembly, is equal to at least a parameter
of the model called the temperature.

The problem we study in this paper is the optimization of the design of tile
assembly systems in the aTAM which self-assemble to form colored input pat-
terns. DNA tiles can be equipped with proteins [31] and nanoparticles such as
gold (Au) [33]. Assemblies of normal tiles as well as tiles thus modified can be
considered a colored pattern, as a periodic placement of Au nanoparticles on a
2D nanogrid [33] can be considered a 2-colored (i.e., binary) rectangular pattern
on which the two colors specify the presence/absence of an Au nanoparticle at
the position. Various designs of pattern assemblers have been proposed theoret-
ically and experimentally, see, e.g., [4, 6, 22, 33]. The input for this problem is
a rectangular pattern consisting of k colors, and the output is a tile set in the
aTAM which self-assembles the pattern. Essentially, each type of tile is assigned
a “color”, and the goal is to design a system consisting of the minimal number
of tile types such that they deterministically self-assemble to form a rectangular
assembly in which each tile is assigned the same color as the corresponding lo-
cation in the pattern. This problem was introduced in [17], and has since then



been extensively studied [7,9,11,12,26]. The interest is both theoretical, to deter-
mine the computational complexity of designing efficient tile assembly systems,
and practical, as the goal of self-assembling patterned substrates onto which a
potentially wide variety of molecular components could be attached is a major
experimental goal. Known as k-Pats, where k is the number of unique colors
in the input pattern, previous work has steadily decreased the value of k for
which k-Pats has been shown to be NP-hard, from unbounded [7] to 11 [12].
(Additionally, in a variant of k-Pats where the number of tile types of certain
colors is restricted, is has been proven to be NP-hard for 3 colors [14].) However,
the foundational conjecture has been that for k = 2, i.e. 2-Pats, the problem is
also NP-hard. This is our main result, which is thus the terminus of this line of
research and a fundamental result in algorithmic self-assembly.

Computer-assisted proofs. In one of its parts (a portion of one direction of
the NP reduction), our proof of the 2-Pats conjecture requires the solution of
a massive combinatorial problem, meaning that one of the lemmas upon which
it relies needs a massive exploration of more than 6 · 1013 cases via a computer
program. While this is not a traditional component of mathematical proofs, and
may not provide the same level of insight into why something is true that a
standard proof may, modern hardware and software have now given us the tools
to attack combinatorially formidable problems whose proofs, if not augmented
by computer programs, would often be impossible or as lacking in their ability
to elucidate the reasons for their truth due to explosive case analyses as verifi-
cation by brute force analysis of a computer program. Indeed, computer science
has at the same time introduced combinatorial arguments indicating that most
theorems do not have simple proofs, and possible ways to produce certain facts
anyway, by heavy algorithmic processes. Moreover, the “natural proofs” line of
research [1, 5, 20, 23] suggests that understanding “why” complexity classes are
separated may be out of reach, and that therefore, the study of these kinds of
proofs, and methods to ensure their correctness, are a fundamental direction
in computer science today. Asserting the correctness of biological and chemical
programs is also an important problem, where “why” questions are really not
as important as the “whether” ones, for instance for therapeutic applications.
Computationally intensive proofs are therefore likely to become common in these
areas of science.

Historically, Appel and Haken [2,3] were the first to prove a result – the four
color theorem – with this kind of method, in 1976. This proof was later simplified
in [21]. Since then, important problems in various fields have been solved (fully
or partially) with the assistance of computers: the discovery of Mersenne primes
[28], the NP-hardness of minimum-weight triangulation [18], a special case of
Erdős’ discrepancy conjecture [15], and the ternary Goldbach conjecture [10],
among others. (Over the years, exhaustive exploration and massively parallel
programs have also been commonly used in physics, or in combinatorial problems
such as solving the Rubik’s cube.) However, none of these programs was proven
formally, and confidence in the validity of these results thus relies on our trust
in the programmers.



Proofs of computer programs. The first rigorous proof of a massive software
exploration was for the four colors theorem, recently done in the Coq proof
assistant by Gonthier et al. [8]. The order of magnitude of their proof is close
to the limits of Coq, and is not comparable with our result, which needs a
massively parallel exploration requiring about one CPU-year on very modern,
high-end machines (as a sum total over several hundred distributed cores) to
complete and verify the correctness of the lemma.

A large parallel cluster was hence employed, which poses a number of new
challenges. Indeed, in a sequential program, we often implicitly use the fact that
function calls return the output of their computations, which becomes more
complicated when using several computers: without using unrealistic hypothe-
ses on the correction of the network and of operating systems, return values
could potentially be lost, duplicated or corrupted. Since our program ran for
a long time, we cannot make such strong hypotheses, which is why we need to
assert the authenticity of messages received by the server by using cryptographic
signatures.

Another feature of our proof is the use of a functional programming language,
OCaml. The conciseness of its code and the proximity of its syntax to mathe-
matical proofs brought us a rigorous proof of the correctness of our program.

The whole framework for carrying out the programmatic part of our proof is
reusable for the same kind of tasks in the future.

1.1 Main result

Our result solves an open problem in the field of DNA self-assembly, the so-
called binary pattern tile set synthesis (2-Pats) problem [17, 26], stated first in
2008. In the general k-Pats for k ≥ 2, given a placement of k different kinds
of nanoparticles, represented in the model as a k-colored rectangular pattern,
we are asked to design an optimally small tileset and an L-shaped seed that
self-assembles the pattern (see Fig. 1 for an example).

2-Pats has been conjectured to be NP-hard since 20085. In [26], Seki proved
for the first time the NP-hardness of 60-Pats, whose input pattern is allowed to
have 60 colors, and the result has since been strengthened to that of 29-Pats [11],
and further to 11-Pats [12].

Our main theorem closes this line of research by lowering the number of
colors allowed for input patterns to only two. We state the main result of this
paper here, although some terms may not formally be defined yet:

Theorem 1. The 2-Pats optimization problem of finding, given a 2 colored
rectangular pattern P , the minimal colored tileset (together with an L-shaped
seed) that produces a single terminal assembly where the color arrangement is
exactly the same as in P , is NP-hard.

The main idea of our proof is similar to the strategies adopted by [11,12,26].
We embed the computation of a verifier of solutions for an NP-complete problem

5 This problem was claimed to be NP-hard in a subsequent paper by the authors
of [17] but what they proved was the NP-hardness of a different problem (see [27]).



(in our case, a variant of Sat, which we call M-Sat) in an assembly, which is
relatively straightforward in Winfree’s aTAM. One can indeed engineer a tile
assembly system (TAS) in this model, with colored tiles, implementing a verifier
of solutions of the variant of Sat, in which a formula F and a variable assignment
φ ∈ {0, 1}n are encoded in the seed assembly, and a tile of a special color appears
after some time if and only if F (φ) = 1. In our actual proof, reported in Sect. 3,
we design a set T of 13 tile types and a reduction of a given instance φ of M-Sat
to a rectangular pattern PF such that

Property 1. A TAS using tile types in T self-assembles PF iff F is satisfiable.

Property 2. Any TAS of at most 13 tile types that self-assembles PF is isomor-
phic to T .

Therefore, F is solvable if and only if PF can be self-assembled using at most
13 tile types. In previous works [11,12,26], significant portions of the proofs were
dedicated to ensuring their analog of Property 2, and many colors were “wasted”
to make the property “manually” checkable (for reference, 33 out of 60 colors
just served this purpose for the proof of NP-hardness of 60-Pats [26] and 2 out
of 11 did that for 11-Pats [12]). Cutting this “waste” causes a combinatorial
explosion of cases to test and motivates us to use a computer program to do the
verification instead.

Apart from the verification of Property 2 (in Lemma 1), the rest of our proof
can be verified as done in traditional mathematical proofs; our proof is in Sect. 3.
The verification of Property 2 is done by an algorithm (omitted due to space
constraints but described, along with all other proof details, in [13]), which, given
a pattern and an integer n, searches for all possible sets of n tile types that self-
assemble the pattern. The correctness of the algorithm is proven, and both the
(unproven, efficient) C++ code, and the (slower but formally proven) OCaml
code implementing the algorithm are freely available online6. Both versions were
implemented independently and neither is the conversion of the code of the
other implementation. The full statistics of the runs are available on demand,
and summarized by the Parry user interface: http://pats.lif.univ-mrs.fr.

2 Preliminaries

Let N be the set of nonnegative integers, and for n ∈ N, let [n] = {0, 1, 2, . . . , n−1}.
For k ≥ 1, a k-colored pattern is a partial function from N2 to the set of (color)
indices [k], and a k-colored rectangular pattern (of width w and height h) is a
pattern whose domain is [w]× [h].

Let Σ be a glue alphabet. A (colored) tile type t is a tuple (gN, gW, gS, gE, c),
where gN, gW, gS, gE ∈ Σ represent the respective north, west, south, and east glue
of t, and c ∈ N is a color (index) of t. For instance, the right black tile type in
Fig. 1 (Left) is (1, 1, 0, 0, black). We refer to gN, gW, gS, gE as t(N), t(W), t(S), t(E),

6 http://self-assembly.net/wiki/index.php?title=2PATS-tileset-search

(C++ version) and http://self-assembly.net/wiki/index.php?title=

2PATS-search-ocaml (OCaml version)

http://pats.lif.univ-mrs.fr
http://self-assembly.net/wiki/index.php?title=2PATS-tileset-search
http://self-assembly.net/wiki/index.php?title=2PATS-search-ocaml
http://self-assembly.net/wiki/index.php?title=2PATS-search-ocaml


Fig. 1. (Left) Four tile types implement the half-adder with two inputs A, B from the
west and south, the output S to the north, and the carryout C to the east. (Right)
Copies of the half-adder tiles turn the L-shape seed into the binary counter pattern.

respectively, and by c(t) we denote the color of t. For a set T of tile types, an
assembly α over T is a partial function from N2 to T . Its pattern, denoted by
P (α), is such that dom(P (α)) = dom(α) and P (α)(x, y) = c(α(x, y)) for any
(x, y) ∈ dom(α). Given another assembly β, we say α is a subassembly of β if
dom(α) ⊆ dom(β) and, for any (x, y) ∈ dom(α), β(x, y) = α(x, y).

A rectilinear tile assembly system (RTAS) is a pair T = (T, σL) of a set T of
tile types and an L-shape seed σL, which is an assembly over another set of tile
types disjoint from T such that dom(σ)L = {(−1,−1)}∪ ([w]×{−1})∪ ({−1}×
[h]) for some w, h ∈ N. The size of T is measured by the number of tile types
employed, that is, |T |. According to the following general rule that all RTASs
obey, it tiles the first quadrant delimited by the seed:

RTAS tiling rule: Tile t ∈ T can attach to an assembly α at position (x, y) if

1. α(x, y) is undefined,
2. both α(x−1, y) and α(x, y−1) are defined,
3. t(W) = α(x−1, y)[E] and t(S) = α(x, y−1)[N].

The attachment results in a larger assembly β whose domain is dom(α) ∪
{(x, y)} such that for any (x′, y′) ∈ dom(α), β(x′, y′) = α(x, y), and β(x, y) = t.
When this attachment takes place in the RTAS T , we write α→T1 β. Informally
speaking, the tile t can attach to the assembly α at (x, y) if on α, both (x−1, y)
and (x, y−1) are tiled while (x, y) is not yet, and the west and south glues of
t match the east glue of the tile at (x−1, y) and the north glue of the tile at
(x, y−1), respectively. This implies that, at the outset, (0, 0) is the sole position
where a tile may attach.

Example 1. See Fig. 1 for an RTAS with 4 tile types that self-assembles the
binary counter pattern. To its L-shape seed shown there, a black tile of type
(1, 1, 0, 0, black) can attach at (0, 0), while no tile of other types can due
to glue mismatches. The attachment makes the two positions (0, 1) and (1,



0) attachable. Tiling in RTASs thus proceeds from south-west to north-east
rectilinearly until no attachable position is left.

The set A[T ] of producible assemblies by T is defined recursively as follows:
(1) σL ∈ A[T ], and (2) for α ∈ A[T ], if α →T1 β, then β ∈ A[T ]. A producible
assembly α ∈ A[T ] is called terminal if there is no assembly β such that α→T1 β.
The set of terminal assemblies is denoted by A�[T ]. Note that the domain of
any producible assembly is a subset of ({−1}∪ [w])× ({−1}∪ [h]), starting from
the seed σL whose domain is {(−1,−1)} ∪ ([w]× {−1}) ∪ ({−1} × [h]).

A tile set T is directed if for any distinct tile types t1, t2 ∈ T , t1(W) 6= t2(W) or
t1(S) 6= t2(S) holds. An RTAS T = (T, σL) is directed if its tile set T is directed
(the directedness of RTAS was originally defined in a different but equivalent
way). It is clear from the RTAS tiling rule that if T is directed, then it has
exactly one terminal assembly, which we call γ. Let γ′ be the subassembly of
the terminal assembly such that dom(γ′) ⊆ N2, that is, the tiles on γ′ did not
originate from the seed σL but were tiled by the RTAS. Then we say that T
uniquely self-assembles the pattern P (γ′).

The pattern self-assembly tile set synthesis (Pats), proposed by Ma and Lom-
bardi [17], aims at computing the minimum size directed RTAS that uniquely
self-assembles a given rectangular pattern. The solution to Pats is required to
be directed here, but not originally. However, in [9], it was proved that among all
the RTASs that uniquely self-assemble the pattern, the minimum one is directed.

To study the algorithmic complexity of this problem on “real size” particle
placement problems, a first restriction that can be placed is on the number of
colors allowed for the input patterns, thereby defining the k-Pats problem:

k-colored Pats (k-Pats)
Given: a k-colored pattern P
Find: a smallest directed RTAS that uniquely self-assembles P

The NP-hardness of this optimization problem follows from that of its decision
variant, which decides, given also an integer m, if such an RTAS is implementable
using at most m tile types or not. In the rest of this paper, we use the terminology
k-Pats to refer to this decision problem, unless otherwise noted.

3 2-Pats is NP-hard
We will prove that Pats is NP-hard for binary patterns (2-colored patterns).
Our proof is a polynomial-time reduction from monotone satisfiability with few
true variables (M-Sat) to (the decision variant of) 2-Pats. In M-Sat, we con-
sider a number k and a boolean formula F in conjunctive normal form without
negations and ask whether or not F can be satisfied by only allowing k variables
to be true; the NP-hardness of M-Sat is proven in [13]. Given an instance of
M-Sat we reduce it to a binary pattern Pk,F such that a directed RTAS with
13 or less tile types self-assembles Pk,F if and only if the answer to the M-Sat
instance is yes, i.e., F can be satisfied with exactly k true variables.

We design the pattern Pk,F so as to incorporate, as a subpattern, a gadget
pattern G shown in Fig. 3. As formally stated in Lemma 1 below, the gadget
pattern G has the property that among all the tilesets of size at most 13, exactly



one (up to isomorphism) can be employed in a directed RTAS to assemble G,
and thus any pattern with G as a subpattern has the same property. Let T be
this tileset, shown in Fig. 2. Lemma 1 is verified by an exhaustive search by a
computer program whose proof of correctness is omitted due to space constraints
(all the other parts of our proof of Theorem 1 are manually checkable).

Lemma 1. If a directed RTAS whose tileset consists of 13 or less tile types
self-assembles the gadget pattern G in Fig. 3, then its tileset is isomorphic to T .

Due to this property of G, in order to decide the reduced 2-Pats instance
(Pk,F , 13), it suffices to decide whether a directed RTAS with tileset T self-
assembles Pk,F or not. This is equivalent to finding an L-shape seed σL such
that the directed RTAS (T, σL) self-assembles Pk,F . A subtlety of our proof
comes from the fact that neither F nor k influence the optimal number of tile
types that can assemble Pk,F if F is satisfiable.

The tileset T works as an M-Sat verifier, when being used by a directed
RTAS. It contains 11 white tile types and 2 black ones.

u u
◦

◦
u u u u

◦

◦

◦

◦

◦

◦

◦◦

◦

◦ ◦ ◦

◦

◦

◦

Fig. 2. The tileset T , where the background depicts the color of each tile type and the
labels and signals depict the glues (i.e. the glue on a side is equivalent to the label or
signal on that side, and the colored signals don’t actually appear on the tiles). We refer
to the tile types with a gray background as the black tile types. (For better visibility in
printouts, the red signals are dotted; blue and green signals can easily be distinguished
as blue signals run only horizontally while green signals run only vertically.)

Let us first explain how the RTAS verifies a given M-Sat instance and present
its verification visually on its resulting assembly. It does so by “propagating
signals” of three kinds (red, green, and blue) via glues from bottom-left to top-
right (as the tiles attach in that ordering) and letting them interact with each
other. An important fact, that justifies the “signal” vocabulary, is that these
signals never fork, i.e. in all the tile types of T , if a signal of type s appears on
a west or south glue of a tile t ∈ T , it appears on at most one other side, which
is either the east or the north side of t.

We interpret the glues in tile set T as follows. Ten of the white tile types (first
and second rows in Fig. 2) simulate three types of signals and their interactions.
Recall that in the RTAS, growth begins from an L-shaped seed and proceeds
strictly up and to the right. Therefore, as tiles are added by matching the signals



on their bottom and/or left sides, we can think of them as passing the signals
to their output (i.e. top and/or right) sides, as indicated by the colored lines
showing the signals across each tile. These signals can necessarily, due to the
ordering of growth of the assembly and the definitions of the tile types, move
only up, right, up and right, or terminate. The signals propagate as follows:

1. blue signals propagate left to right,
2. green signals propagate from bottom to top, and
3. red signals propagate diagonally, bottom left to top right in a wavelike line.

u ���������������������
u ���������������������
���������������������

u ���������������������
u ���������������������
◦ ���������������������
u ���������������������
u ���������������������
���������������������
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u ���������������������
u ���������������������
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���������������������
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u ���������������������
u ���������������������

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Fig. 3. Binary gadget pattern G, which can
only be self-assembled by ≤ 13 tile types by
using the tile set T (or one isomorphic to it).
To self-assemble G using T one has to use
the glues on the L-shaped seed as indicated
on the bottom and left. For performance pur-
poses, the bottom row in the pattern was not
included in the computerized search; however,
because uncovering rows appear in pairs, we
add the bottom row here for clarity.

When any two of the signals
meet, they simply cross over each
other, while the red signal is dis-
placed upwards or rightwards when
crossing a blue or green signal, re-
spectively. However when a blue
signal crosses a green signal imme-
diately before encountering a red
signal, the red signal is destroyed.
In order to recognize this configura-
tion, the blue signal is tagged when
it crosses a green signal; in Fig. 2,
the tagging is displayed by the fork
in the blue signal. Let us stress that
the signals are encoded in the glues
of the tiles, and not (at least di-
rectly) in their colors.

The other three tile types, all
with horizontal glues of type u, are
used to start rows called “uncover-
ing rows”. A major challenge of the
reduction is that we cannot force
our signals to appear directly in the
pattern, because we have only two
colors. Instead, we start these “un-
covering rows”, and make the sig-
nals appear in the pattern by their
effects on these rows. More specif-
ically, rows with horizontal u glues
are always used in pairs:

1. one black tile is above another when no signal is received from below,
2. a white tile is below a black when a green signal is received,
3. a black tile is below a white when a red signal is received.

Note that by the definition of the tile set, it’s impossible for both signals to be
received in the same column. Moreover, blue signals are not “uncovered”, since
they never reach these rows. Green (resp. red) signals switch to red (resp. green)
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Fig. 4. Subpattern of Pk,F for the formula F = (x ∨ y) ∧ (y ∨ z) with k = 1. The
position of the blue signal represents the satisfying variable assignment φ(y) = 1. Only
the subpattern which encodes F is shown, the gadget pattern and the areas needed to
initialize the gadget pattern are omitted here. The different subpatterns shown here
are explained in the proof of Theorem 1.

in the first uncover row, but they switch back to their original state in the second
uncover row. This allows the enforcement of the encoding of the three possible
values of signals (no signal, green signal, or red signal) with exactly two colors.
In our construction, uncovering rows always appear in pairs in order to ensure
that the original state of each signal is reestablished after passing through a pair
of uncovering rows. In our reduction, we’ll use this property to “initialize” a
gadget area, above the M-Sat verifier in the pattern, forcing use of tileset T .

An example subassembly which represents the formula F = (x ∨ y) ∧ (y ∨ z)
(without the gadget part) is shown in Fig. 4. A more extensive example of a tile
assembly with tileset T can be found in Appendix C of [13] which shows the
subpattern of Pk,F used for initializing and including the gadget pattern G.

The intuition of the construction of the pattern Pk,F and its assembly is that
on the vertical arm of the L-shaped seed (i.e., the east border of the upward arm
of the seed), variables x0, x1, . . . , xn−1 are encoded successively, by the presence
of a blue signal if the corresponding variable is set to 1, and a tile with no signal
else. Each clause of F is, on the other hand, encoded on the horizontal arm of the
L-shape seed as a red signal followed by precisely spaced green signals (intervals
between these signals specify which variables are in the clause).

For instance, in Fig. 5, the red signal on the left makes it through (i.e., it is
not stopped by a tagged blue signal) and appears in the top uncovering rows,
while the one on the right does not. The reason for the red signal being stopped
on the right, is that the horizontal spacing between the red and the green signal is
“compatible” with the vertical location of blue signal. This compatibility of blue,
green, and red signals corresponds to a variable in a clause, represented by the
red and green signal, which is set true in the variable assignment, represented by
the blue signal. More generally, the absence of red signals on the top uncovering
rows ct means that all the clauses have been satisfied, and the presence of a red
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Fig. 5. Example interactions of the signals in the tile set T with uncovering of the
configurations: on the left side the red signal can pass through the pattern while the
red signal on the right side is destroyed. Note that the position of the blue signal, which
is hidden in the horizontal glues, controls whether or not the red signal is destroyed.

signal means that at least one clause could not be satisfied by the assignment.
Additionally, note that the positions of blue signals, encoding which variables
are set to true in a variable assignment of the M-Sat instance, are not encoded
in the pattern, since they travel only through white tiles.

Finally, the part of Fig. 4 which is labeled the “blue signal counter” specifies
the number k of true variables in a satisfying variable assignment for F . Note that
by the horizontal movement of the red signal from rows c0 to rows ct determines
the number of blue signals that appear in the white rows in between c0 and ct;
indeed, the red signal travels one tile to the right in a row without signal, but
remains horizontally stationary when passing a row with a blue signal.
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