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Abstract

A (non-circular) de Bruijn sequenae of ordern is a word such that
every word of length appears exactly once in as a factor. In this paper,
we generalize the concept to different settings: the nahiiit de Bruijn se-
guence and the pseudo de Bruijn sequencemAshift de Bruijn sequence
of ordern is a word such that every word of lengthappears exactly once
in w as a factor that starts at a position + 1 for some integei > 0. A
pseudo de Bruijn sequence of ordewith respect to an antimorphic invo-
lution 6 is a word such that for every wordof lengthn the total number of
appearances af andf(u) as a factor is one. We show that the number of
m-shift de Bruijn sequences of ordetis a”la ™ ("~ for1 <n < m
and is(a™)*" " for 1 < m < n, wherea is the size of the alphabet.
We provide two algorithms for generating a multi-shift deijgr sequence.
The multi-shift de Bruijn sequence is important for solvithg Frobenius
problem in a free monoid. We show that the existence of psdedsruijn
sequences depends on the given alphabet and antimorpbliation, and
obtain formulas for the number of such sequences in someplart set-
tings.

1 Introduction

If a word w can be written aw = xyz, then the words:, y, andz are called the
prefix, factor, andsuffixof w, respectively. A wordv overX is called ade Bruijn
sequencef ordern if each word inX" appears exactly once il as a factor.
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For example00110 is a binary de Bruijn sequence of ordesince each binary
word of length two appears in it exactly once as a fact@110 = (00)110 =
0(01)10 = 00(11)0 = 001(10). The de Bruijn sequence can be understood by
the following game. Suppose there is an infinite supply ofsbaach of which

is labeled by a letter irt, and suppose there is a glass pipe that can hold balls
in a vertical line. On the top of that pipe is an opening, tigtouvhich one can
drop balls into that pipe, and on the bottom is a trap-dooickwhan support the
weight of at most balls. When there are more tharballs in the pipe, the trap-
door opens and those balls at the bottom drop off until enalls remain. If we
put balls with letters in the order as appeared exactly in Brdgn sequence of
ordern on the alphabekE, then everyn ball sequence will appear exactly once
in the pipe. It is easy to see that a de-Bruijn sequence ofr ardi it exists, is

of length| X |" 4+ n — 1 and its suffix of lengtlh — 1 is identical to its prefix of
lengthn — 1. So, sometimes a de-Bruijn sequence is written in a cirdatan by
omitting the lasth — 1 letters.

The de Bruijn sequence is also called the de Bruijn-Goodesgzp) named af-
ter de Bruijn [2] and Good [10] who independently studied élestence of such
words over the binary alphabet; the former also calculdteddrmula2?” for the
total number of those words of order The study of the de Bruijn sequence, how-
ever, dates back at least to 1894, when Flye Sainte-Marist{@lied the words
and provided the same formutd”. For an arbitrary alphabét, van Aardenne-
Ehrenfest and de Bruijri[1] provided the formulaz |!)! >!" for the total num-
ber of de Bruijn sequences of order Besides the total number of de Bruijn
sequences, another interesting topic is how to generateBauii@ sequence (ar-
bitrary one, lexicographically least one, lexicographyctargest one). For gen-
erating de Bruijn sequences, see the survieys [7,17]. Thed@Bequence is
some times called the full cyclél[7], and has connection$éofbllowing con-
cepts: feedback shift registets [9], normal words [10],aeyating random binary
sequences [15], primitive polynomials over a Galois fiel][1yndon words and
necklaces[[8], Euler tours and spanning trees [1]. Thereyaneralizations of
the de Bruijn sequences from various aspects, such as theuge ®rus (two-
dimensional generalization). Usually, the de Bruijn semes are represented by
their circular counterparts.

In this paper, we consider two generalizations of the de jBrseéquence,
namely the multi-shift de Bruijn sequence and the pseudo rdgrBsequence.
To understand the concept of multi-shift de Bruijn sequeteteus return to the
glass pipe game presented at the beginning. Now the trapedmosupport more
weight. When there are + m or more balls in the pipe, the trap-door opens
and the balls drop off until there are onlyballs in the pipe. Is there an arrange-
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ment of putting the balls such that evetyball sequence appears exactly once
in the pipe? The answer is “Yes” for arbitrary positive ireegym,n. The so-
lution represents a multi-shift de Bruijn sequence. We didlcuss the existence
of the multi-shift de Bruijn sequence, the total number ofitirshift de Bruijn
sequences, generating a multi-shift de Bruijn sequenakthanapplication of the
multi-shift de Bruijn sequence to the Frobenius problem frea monoid, which
is the original motivation we study the multi-shift de Brugequence. To under-
stand the concept of pseudo de Bruijn sequence, we firstdanttror image be
the chosen antimorphic involution, where the concept af@onphic involution
is of particular interest in the study of bioinformation. Wdf every n ball se-
guence either appears in the normal order or in a reversest ordhe pipe and
appears exactly once in this way, then the solution reptesepseudo de Bruijn
sequence. No pseudo de Bruijn sequence exist for certaialadips and antimor-
phic involutions. We will discuss the total number of psed@dBruijn sequences
in particular settings.

2 Multi-Shift Generalization of the de Bruijn Sequence

Let¥ C {0,1,...} be thealphabetand letw = ajas - - - a,, be a word ovel.
Thelengthof w is denoted by w | = n and thefactor a; - - - a; of w is denoted by
wli..j]. If u = wlim + 1..im + n] for some non-negative integérwe say the
factoru appears inv ata modulom position The set of all words of length is
denoted by:" and the set of all finite words is denoted By = { e JULUX2. - -,
wheree is theempty word The concatenation of two words v is denoted by:-v,
or simplyuuv.

Multi-shift de Bruijn sequences are implicitly defined argkd in the second
author’s paper[11] in solving the Frobenius problem in a frenoid. The precise
definition of the multi-shift de Bruijn sequence is givendsel

Definition 1. A wordw overX is called amulti-shift de Bruijn sequencef shift
m and ordern, if each word inX™ appears exactly once iw as a factor at a
modulom paosition.

For example, one of th-shift de Bruijn sequences of ord&iis
00010011100110110,
which can be verified as follows:

00010011100110110 = (000)10011100110110 = 00(010)011100110110
= 0001(001)1100110110 = 000100(111)00110110 = 00010011(100)110110
= 0001001110(011)0110 = 000100111001(101)10 = 00010011100110(110).
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The multi-shift de Bruijn sequence generalizes the de Bragquence in the sense
that de Bruijn sequences are exadtghift de Bruijn sequences of the same order.
It is easy to see that the length of eaehshift de Bruijn sequence of order, if

it exists, is equal ton| X |" + (n — m). By the definition of multi-shift de Bruijn
sequence, the following proposition holds.

Proposition 2. Letw be onem-shift de Bruijn sequence of ordern, n > m.
Then the suffix of length — m of w is identical to the prefix of length — m of
w.

From Propositio ]2, we know that when> m, every multi-shift de Bruijn
sequence can be written as a circular word and the discussiomulti-shift
de Bruijn sequences of the two different forms are equivtalémthis paper, we
discuss the multi-shift de Bruijn sequence in the form ofireaidy words.

A (non-strict) directed graphor digraph for short, is a tripleG = (V, A, )
consisting of a seV of vertices a setA of arcs, and anincidence function) :

A — V x V. Here we do not take the conventichC V' x V, since we allow

a digraph to contain self-loops on a single vertex and maltscs between the
same pair of vertices. Whep(a) = (u,v), we say the are joins u to v, where
vertexu = tail(a) and vertexo = head(a) are calledail andhead respectively.
The indegreey— (v) (outdegree ™t (v), respectively) of a vertex is the number

of arcs withv being the head (the tail, respectively). walk in G is a sequence
ap,asg,...,a, such thathead(a;) = tail(a;4+1) for eachl < i < k. The walk is
closed if head(ay) = tail(ag). Two closed walks are regarded as identical if one
is the circular shift of the other. ABuler touris a closed walk that traverses each
arc exactly once. Adamilton cycleis a closed walk that traverses each vertex
exactly once. Arn(spanning) arborescends a digraph with a particular vertex,
called theroot, such that it contains every vertex@f its number of arcs is exactly
one less than the number of vertices, and there is exactlyvafiefrom the root

to any other vertex. We denote the total number of Euler tddiasnilton cycles,
and arborescences @fby |G |5, |G|, and| G | 4, respectively.

An (undirected) graplis defined as a digraph such that for any pair of vertices
vy, v, there is an are, 1(a) = (v1,v2), if and only if there is a corresponding
arca’, ¢¥(a') = (vg,v1). In this case, we writd—(v) = 67 (v) = d(v) and a
spanning arborescence is jusg@anning tree

The line-graphL(G) of G = (V, A,v) is defined ag A, C, ) such that for
every pair of arcsij,as € A, head(a;) = tail(ag), there is an are € C,
¢(c) = (a1, a2) and those arcs are the only arcginEuler tours exist in a graph
G if and only if Hamilton cycles exist in the line-graghG).

We define the word grap&(m, n) by (X7, ¥t™ ), wherey(w) = (u,v)
foru = wll..n],v = wim+1..m+n|. Then by definition, the following
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lemmas are straightforward.
Lemma 3. The digraphL(G(m,n)) is the digraphG(m,n + m).

Lemma 4. Supposen < n. (1) There is g 3 |"-to-1 mapping from the set ofi-
shift de Bruijn sequences of orderonto the set of Hamilton cycles @(m,n).
(2) There is a X ["-to-1 mapping from the set ofi-shift de Bruijn sequences of
ordern onto the set of Euler tours i&(m,n —m).

Theorem 5. For any alphabet:, positive integersn, n, somem-shift de Bruijn
sequences of order over Y exist.

Proof. First we assumen > n. Letwuq,us,...,u; be any permutation of the
words inX" for [ = |X|". Then the wordu; 0™ "ug0™ ™. 0™ "y, is Oone
m-shift de Bruijn sequence of orderover..

Now we assumer < n and prove there exists an Euler touGitm, n — m).
Then by Lemmal4, the existence nfshift de Bruijn sequences of orderover
Y is ensured. To show the existence of an Euler tour, we onlg teegerify that
G(m,n —m) is connected and that (v) = §*(v) for every vertexv, both of
which are straightforward: for every vertexin G(m,n — m), v is connected to
the vertex0”~"™ in both directions and~ (v) = §+(v) = | X |™. O

2.1 Counting the Number of Multi-Shift de Bruijn Sequences

Sincem-shift de Bruijn sequences of orderexist, in this section we discuss the
total number of differentn-shift de Bruijn sequences of order and we denote
the number by#(m, n). First, we study the degenerate case.

Lemma 6. For 1 < n < m, #(m,n) = a™a™ ™" =1 whereq = | 2.

To study the casé < m < n, we need a theorem by van Aardenne-Ehrenfest
and de Bruijn[[1], which describes the relation between talmer of Euler tours
in a particular type of digraph and the number of Euler tonrisi line-graph.

Theorem 7 (van Aardenne-Ehrenfest and de Bruij)et G = (V, A, ) be a
digraph such thatt = 6 (v) = 6% (v) for everyv € V. Then|L(GQ) |, =
a~Ya)V =D G| .

The digraphG(m, n) satisfies the conditions in Theorém 7 with= | > |™.
So, by the relation between the multi-shift de Bruijn segq@snand the Euler
tours in the word graplé:(m, n), we have the following recursive expression on

#(m,n).

Lemma 8. Form > 1,n > 2m, #(m,n) = (a™)* "~ #(m, m + r), where
a=|3|,r =nmod m.
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To finish the last step of obtaining (m,n) for 1 < m < n, we again need
two theorems, the BEST theoreni[1, 19] and Kirchhoff's matee theorem [14],
which are often used in the literature to count the numbemtéBours in various
types of digraphs.

Theorem 9(BEST theorem) In a digraphG = (V, A, 1), the number of Euler
tours and arborescences sati$i§ |, = [,y (67 (v) — 1)! |G| ,.

Theorem 10 (Kirchhoff’'s matrix tree theorem)In a graphG = (V, A, ), the
number of spanning trees is equal to any cofactor of the Laalamatrix ofG,
which is the diagonal matrix of degrees minus the adjaceratyixn

Lemma 1l. For1 < m < n < 2m, #(m,n) = (a™)*" ", wherea = | 2.

Proof. Letr = n — m anda = |X|. Then0 < r < m. By definition,G =
G(m,n —m) = (X", X™ ). So from any vertex to any vertex, there afé"-
many arcs inG. We convertG into a undirected grapti”’ by omitting all self-
loops; there are™"-many of them for each vertex. Since for every pair of
verticesuvy, vo there are:™"-many arcs joing; to v, and correspondingly there
area™"-many arcs joing» to vy, the graph’ is indeed an undirected graph by
our definition. Each vertex i’ is of degreea™ — o™~ ". Then the Laplacian
matrix of G’ is

am — gm—T —agmr —gm T
—a™m-r am™ — gm—r" —agm-r

L= : : :
—a™m-r —a™m-r a™ — gm—T

By Theorem(ID, the number of arborescencés , = |G’|, is equal to the
cofactor of L, which is (a™)% ~24™~" = (a™)%" /a™. Then by Theoreri]9, the
number of Euler tours in digrap& is |G |z = ((a™ — D)) |G|, = ((a™ —
DHHe" (@™ /a™ = (a™)%" /a™. Finally, by LemmdH¥, the number oh-shift
de Bruijn sequences of orderis #(m,n) = a"| G |, = (a™)®". O

Theorem 12.For 1 < n < m, #(m,n) = a™a(™™@" =1 andforl < m < n,
#(m,n) = (a™)*" ", wherea = |2 |.

Proof. For 1 < n < m, the equality#(m,n) = a™a™ (" ~1) js shown
in Lemma[®. Now we assumé < m < n. Letr = nmodm. Fol-
lowing Lemmas[B,11, we have:(m,n) = (a™)* "~V #(m,m + r) =
(@m™1)a" "™ =a" (gm)a = (gm)et " O
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2.2 Generating Multi-Shift de Bruijn Sequences

In this section, we study the problem of generating mnshift de Bruijn sequence
of ordern for arbitrary alphabet and positive integersn. Whenl < n < m, a
m-shift de Bruijn sequence of orderis easy to construct as given in Theorem 5.
Now we consider the case < m < n. We will present two algorithms for
generating an-shift de Bruijn sequence of ordet

We claim thatm-shift de Bruijn sequences of ordérn can be generated
using the ordinary de Bruijn sequence generating algorituoh as described by
Fredricksen[[7]. To do this, we first generate a de Bruijn seqaw of order
k over the alphabel” = X™. Then we replace each letter of in I" by the
corresponding word of lengtn over X.. It is easy to see that the new word is a
m-shift de Bruijn sequence of ordém.

The first algorithm of generating multi-shift de Bruijn semge is to gener-
atem;-shift de Bruijn sequences of ordéym; for somek;, m;,i = 1,2 before
rearranging the words to obtain an arbitramyshift de Bruijn sequence of order
n. Letl < m < n be two integers, and = km + r, wherer = n mod m.
The caser = 0 is already discussed and the ca3e| = 1 is trivial. So we
assumer # 0 and|X| > 2. We definem; = r, n; = (k + 1)r and gener-
atew; = 7(my,n1)0™ such thatr(mq,n) is ams-shift de Bruijn sequence
of ordern; andwi[1..n1] = 0™; and definemy = m — r, no = k(m — r)
and generatev; = 7(mg,n2)0™2 such thatr(mse, ng) is a me-shift de Bruijn
sequence of ordet, andws[l..ny] = 0™2. Leta = | X |, Ny = a"*, Ny = a™2.
We defineu; = wl[nl + (Z — 1)m1 +1..n1+ z'ml], u; = U14(; mod (N1—1))
v; = wang + (i — 1)ma + 1..n2 + ima], v; = Vi4(i—1 mod N)- Then the fol-
lowing word

0" v10™ vy - wN, 10" UNQU/(Nl—l)Ng vy vy UEN1—1)N2—1UI(N1—1)N2—1

1)
is onem-shift de Bruijn sequence of ordes wherevy, = 0F™ andu’(Nl_l)N2 =
u1. The algorithm is illustrated in Figl 1.

Theorem 13. The algorithm in Fig[IL correctly generates am-shift de Bruijn
sequence of ordes.

Now, we will see an example. Consider generatingrshift de Bruijn se-
quence of ordeb. Thenm; = 1,n; = 3,mo = 1,no, = 2 and we can obtain
two wordsw; = 00011101000, which is7(1,3)0, andws = 001100, which is
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Input: two integersm, n with 1 < m < n and alphabet size.
Output: anm-shift de Bruijn sequence of orderover{0,...,a — 1}.
1 Letn = km + r, wherer = n mod m ;
2 if r = 0 then return anm-shift de Bruijn sequence of order;
3 generate an-shift de Bruijn sequence of ordét + 1)r ;
4 generate am — r)-shift de Bruijn sequence of ordéfm — r) ;
5 return a word as constructed by Eq.)(1

Figure 1: Generating a multi-shift de Bruijn sequence, méthne.

7(1,2)0. So one2-shift de Bruijn sequence of ordéris as follows

000001501500,5005
11151415110204021115011501021405111511150402110201150415
1,021102111504151105010204151415171021105041517115010504,

where the subscriptsand2 denote whether the letter is from the warg (words
u;, u;) or from the wordws (wordsw;, vf).

Now we present the second algorithm, which uses the sameofdgmefer
one” algorithm [16] for generating ordinary de Bruijn seqoes. Letn, n be two
positive integers. To generaterashift de Bruijn sequence of ordern, we start
the sequence with n zeros. Then we append to the end of current sequence
the lexicographically largest word of length such that the suffix of length of
new sequence has not yet appeared as factor at a modplsition. We repeat
this step until no word can be appendeditoT he algorithm is illustrated in Figl] 2.

Theorem 14. The algorithm in Fig[R correctly generates am-shift de Bruijn
sequence of ordet.

Now, we use the algorithm to generate @rghift de Bruijn sequence of order
5. Starting from00000, since00011 does not appear as a factor at a modlo
position, we append1 to the current sequen@®000. Repeating this procedure
and appending wordst, 11, 10, 11, ..., finally we obtain the word:

0000011111110111010110111011001110011001
010011000100001010100010000

If we circularly move the prefix™ to the end, the sequence generated by the
second algorithm is the lexicographically largestshift de Bruijn sequence of
ordern.
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Input: two integersm, n with 1 < m < n and alphabet size.

Output: anm-shift de Bruijn sequence of orderover{o0,...,a — 1}.

Letw := 0" ;

Mark all word of lengthn exceptw as unvisited ;

repeat
Find the lexicographically largestof lengthm such that
wl[|w|—n+m+ 1. |wlluis unvisited ;

5 | Thenletw := wu and mark wordv[|w | —n +m + 1..|w |]u visited

A W N P

6 until no such word can be found
7 return w

Figure 2: Generating a multi-shift de Bruijn sequence, oetvo.

2.3 Application to the Frobenius Problem in a Free Monoid

The study of multi-shift de Bruijn sequences is inspired lpyr@blems of words,
called the Frobenius problem in a free monoid. Gikgntegerszy, ..., xx, such
thatged(x1, ..., z,) = 1, then there are only finitely many positive integers that
cannotbe written as a non-negative integer linear combinatiomof. . , z;. The
integerFrobenius problenis to find the largest such integer, which is denoted by
g(x1,...,x). For exampleg(3,5) = 7.

If words x4, ..., 2, instead of integers, are given such that there are only
finitely many words thatannotbe written as concatenation of words from the
set{z,...,zx }, the Frobenius problem in a free monojd1] is to find the
longest such words. If altq,...,z; are of length eithefn orn, 0 < m < n,
there is an upper bound: the length of the longest word thahatabe written
as concatenation of words from the det;,...,zx } is less than or equal to
g(m,l) = ml —m — [, wherel = mX"™ 4+ n — m. [11] Furthermore, the
upper bound is tight and the construction is based on the-shift de Bruijn se-
quences. We denote the set of all words that can be writtelmeasoncatenation
of words inS, including the empty word, by*.

Theorem 15. [11] There existsS C ¥™UX", 0 < m < n, such that=*\ S* is fi-
nite and the longest words 1*\ S* constitute exactly the languageX>™)™~2r,
wherer is am-shift de Bruijn sequence of order— m.

For example, for any set of word$ C U = {0,1}° U {0,1}" such that
{0,1}"\ S*is finite, the longest words ifi0,1 }* \ S* are of length less than
or equal tog(3,3 - 2* 4+ 4) = ¢(3,52) = 101. To constructS to reach the up-
per bound, we first choose an anbitraishift de Bruijn sequence of order
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asT = 0000111111110110101101100100011011010010001001000. Then
based onr, we construct the se¥ = U \ { 0000111, 0111111, 1111110,
1110110, 0110101, 0101101, 1101100, 1100100, 0100011, 0011011,
1011010, 1010010, 0010001, 0001001, 1001000 }. We havelL = {0,1}*\
S*=7{0,1 }37 and one of the longest words Inof length exactlyl01 is given
below:

0000111111110110101101100100011011010010001001000
1110000111111110110101101100100011011010010001001000.

3 Pseudo de Bruijn Sequence Defined by Antimorphic Involutias

Here we discuss another generalization of the de Bruijnesmpu Lety C
{0,1,2,...} be the alphabet. A functiod : ¥* — X* is called aninvolu-
tionif (6(w)) = w for w € £* and called amntimorphismif 6 (uv) = 6(v)6(u)
for u,v € ¥*. We call & an antimorphic involutionif ¢ is both an involution
and an antimorphism. For example, the classic Watson-Q@ackplementarity
of DNA strands in biology is an antimorphic involution ovdretfour-letter al-
phabet of DNA nucleotide§ A, T, C, G }, whered(A) =T, 6(C) =G, and
O(ACG) =CGT. Themirror image or reverse f(ajas---a,) = an---aa;
is another antimorphic involution. Let be an antimorphic involution. We
write tr(0) = {a:a € X,0(a) # a} and thusf can be written as composi-
tion of ¢r(#) transpositions with a mirror image. The antimorphic invioo
is motivated by the particularities of DNA-encoded infotioa for the purpose
of DNA computing. Several concepts in combinatorics on wadndve natural
counterparts in this setting, e.g., pseudo-palindrorngsir@olutively bordered
words [13], Watson-Crick conjugate words, Watson-Cricknoautativity [12],
pseudo-primitive wordg [4], and pseudo-powers of words [8]the following,
we define and discuss the pseudo de Bruijn sequence.

Definition 16. A wordw overX is called apseudo de Bruijn sequencéordern
if for every wordx € X", eitherx or 6(x) appears inw as a factor and the total
number of those appearances is exactly one.

For examplep011 is a pseudo de Bruijn sequence of or8ewxith respect to
the mirror image (word reverse), by the following obsewati

0011 = (00)11 = 0(01)1 = 0A(10)1 = 00(11).

As we saw in Section 2, most properties of the multi-shift deijB sequence
are analogous to those of the usual de Bruijn sequence. Fhistitrue for the
pseudo de Bruijn sequence.
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3.1 Contrast Between the Usual de Bruijn Sequence and the Rsio
de Bruijn Sequence

The length of a de Bruijn sequence of ordemver ¥ is a™ +n — 1 (or a”

in the circular form), wherex = |X|. By contrast, the length of a pseudo
de Bruijn sequence of ordet over X is N + n — 1, whereN = |X|" —
[{u:ueX" 0(u) #u}|/2. More precisely:

Proposition 17. A pseudo de Bruijn sequence of ordeover X with respect t@
is of length(a” + (a — 2 - tr(6))" ™4 2al™/2]) /2 + (n — 1), wherea = | X |.

Obviously, for a unary alphabet, we can always write a psel@Bruijn se-
guence in a circular form, since the lasletters are identical to the firatletters.
In general, however, not all pseudo de Bruijn sequenceseamitien in a circular
form.

Proposition 18. LetY: = { 0,1 }, letd be the mirror image, and let be a binary
de Bruijn sequence of order. Then eithen™ is a prefix ofw and0™ is a suffix of
w; or 0" is a prefix ofw and0™ is a suffix ofw.

As a direct result, none of the binary de Bruijn sequence eawlitten in a
circular form.

3.2 Counting the Number of Pseudo de Bruijn Sequences for Spial Cases

For a pseudo de Bruijn sequence of ortlesayw, the wordw is just a permuta-
tion of letters inl", whereI' C ¥ consists exactly of letters with 6(a) = a and
one of the letter$, c with 8(b) = ¢ # b. We have the follow proposition.

Proposition 19. Let ¥ be an alphabet and let be an antimorphic involution.
Then the pseudo de Bruijn sequences of ordexist and the total number of
them is2!(a — t)!, wherea = | X | andt = tr(6).

Now we assumé is the mirror image. There are two binary pseudo de Bruijn
sequences)011 and1100, of order2. To discuss de Bruijn sequence over a more
general alphabet, we need the following lemma.

Lemma 20. Let X be an alphabet wittu = |X| > 3 and leté be the mirror
image. Then every pseudo de Bruijn sequence of didean be written in a
circular form and there is an@ to 1 mapping from the pseudo de Bruijn
sequences of ord&ronto the Euler tours i{?, whereK¢ is the complete graph
K, where a self-loop is added on each vertex.

In contrast to the existence of ordinary de Bruijn sequence,all pseudo
de Bruijn sequences exist. In other words, the number of saghences can be
0.
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Proposition 21. Let ¥ be an alphabet with eveln = |3 | > 4 and letd be the
mirror image. Then there is no pseudo de Bruijn sequencedsfra@r

Proof. Since there is no Euler tour i¢ for a being even andi > 4, by
Lemmd_ 20, the number of pseudo de Bruijn sequences in thisget0. O

Discussion of the total number of Euler tours (also calledeEaircuits) in
a complete graph dates back at least to the year 1859 by Rbi@st 100 years
after Euler's work on Konigsberg Bridges Problem. The feileg proposition
discloses the relation between the number of pseudo denBseijuences of order
2 over an odd alphabet with respect to the mirror image and theber of Euler
tours in a complete graph.

Proposition 22. Let X be an alphabet with odd = |X| > 3 and letd be the
mirror image. Then the pseudo de Bruijn sequences of &@eist and their total
number is(“_lz)Z%Ea, whereFE, is the total number of Euler tours if,.

The precise formula foF, is complicated and so far there is no closed form
for E,. We know that the formulae for the number of pseudo de Br@fflusnces
is at least as hard as that f&f, and any formula for the latter leads to a formula
of the former.

4 Conclusion

In this paper, we generalized the classic de Bruijn sequemeenew multi-shift
setting and to a bioinformation inspired setting.

A word w is anm-shift de Bruijn sequence(m,n) of ordern, if each word
of lengthn appears exactly once as a factor at a modulposition. An ordinary
de Bruijn sequence iskshift de Bruijn sequence.

We showed that the total number of distinatshift de Bruijn sequences of
ordern is #(m,n) = (a™)la™ 0" =D for 1 < n < m and is#(m,n) =
(@™ ™™ for 1 < m < n, wherea = | X |. This result generalizes the formula
(a!)“nfl for the number of ordinary de Bruijn sequences [1]. Here we ars
ordinary word form; if counting the sequences in a circutant, then the number
is to be divided by.".

We provided two algorithms for generatingrashift de Bruijn sequence of
ordern. The first algorithm is to rearrange factors from two simptaulti-shift
de Bruijn sequences, where the order is a multiple of the.sHihe second is
the analogue of the “prefer one” algorithm (for example, [f@efor generating
ordinary de Bruijn sequence.

The multi-shift de Bruijn sequence has applications to ttebe&nius problem
in a free monoid by providing constructions of examples. ilt be interesting to
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see whether this generalized concept of the de Bruijn seguleas an impact in
other fields of theoretical computer science and discretbenzatics.

A word w is a pseudo de Bruijn sequence with respect to an antimorphic
involution @ if for each wordu of lengthn, eitheru or 6(u) appears as a factor
and it appears exactly once in this way.

We showed that a binary pseudo de Bruijn sequence with resptee mirror
image does not have a circular form. We showed that a pseuBouga sequence
of order2 with respect to the mirror image over alphabet of even sizé¢ does
not exist.

We showed that the number of pseudo de Bruijn sequence of Brddth
respect to the mirror image over an alphabet of odd siz&is (a — 1)%a(a +
1)E,/2%t!, whereE, is the total number of Euler tours in the complete graph
K,.

With respect to antimorphic involution other than the mirnimage, no non-
trivial property on the pseudo de Bruijn sequences is known.
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