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Abstract. We discuss theoretical aspects of the self-assembly of trian-
gular tiles, in particular, right triangular tiles and equilateral triangular
tiles, and the self-assembly of hexagonal tiles. We show that triangular
tile assembly systems and square tile assembly systems cannot be sim-
ulated by each other in a non-trivial way. More precisely, there exists
a deterministic square (hexagonal) tile assembly system S such that no
deterministic triangular tile assembly system that is a division of S pro-
duces an equivalent supertile (of the same shape and same border glues).
There also exists a deterministic triangular tile assembly system T such
that no deterministic square (hexagonal) tile assembly system produces
the same final supertile while preserving border glues.

1 Introduction

A basic model of DNA computation by self-assembly was proposed by Adle-
man [1] and Winfree [2], based on the theory of Wang tiles [3]. In this model,
the basic components are square tiles with sides painted with “glues”, that can
stick together to form supertiles if the glues at abutting edges match, and attach
with sufficient strength.

A regular tiling of the plane is a highly symmetric tiling made up of con-
gruent regular polygons. Only three such regular tilings exist: those made up
of equilateral triangles, squares, or hexagons. This paper departs from the ex-
isting model of self-assembly by investigating, instead of square tiles, the case
of triangular tiles and hexagonal tiles. We namely discuss the self-assembly by
equilateral-triangular, right-triangular, and hexagonal tile systems.

Our line of investigation follows that started by Winfree [4], who showed
how the formation of large structures made out of the aggregation of rectan-
gular DNA complexes can simulate Blocked Cellular Automata (BCA), which
have the computational power of Turing machines. Winfree, Liu, Wenzler, and
Seeman [2] designed and experimentally produced two-dimensional DNA crys-
tals by self-assembly. A systematic study of self-assembly as a computational
process was initiated by Adleman [1], who studied the time complexity of a par-
ticular case of linear self-assembly via “step counting” and raised the question of
the construction of large squares via self-assembly. Rothemund and Winfree [5]
studied the self-assembly of squares at fixed temperature (the threshold that the
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Fig. 1. Four kinds of isosceles right triangular tiles (γ1, γ2, γ3, se), (γ1, γ2, γ3, ne),
(γ1, γ2, γ3, nw), and (γ1, γ2, γ3, sw).

sum of the strengths of glues of a tile have to surpass, in order for it to “stick”
to an existing assembled shape), and showed that in order to deterministically
self-assemble an N × N full square (the square, N tiles on a side), N2 different
tile types are required at temperature τ = 1 and O(log N) different tiles suffice
at fixed temperature τ ≥ 2. Adleman, Cheng, Goel, and Huang [6] improved the
latter result to Θ(log N/ log log N) different tiles. Kao and Schweller [7] showed
that if the temperature τ is allowed to change systematically, then a constant
number of tiles is enough for the self-assembly of an arbitrary N ×N full square,
with a temperature sequence of length O(log N).

In this paper, we follow a similar line of inquiry for triangular tiles and
hexagonal tiles. Besides a natural theoretical interest, this study is motivated
by the fact that triangular DNA tiles have been experimentally produced. For
example, Liu, Wang, Deng, Walulu and Mao [8] reported the construction of a
DNA triangle tile composed of three four-arm junctions, while Ding, Sha and
Seeman [9] reported obtaining a triangular DNA tile formed from DX DNA
molecules, and He, Chen, Liu, Ribbe and Mao [10] built a 3-point DNA star tile.

In this paper, in Sect. 2 we introduce the definition of triangular, respectively
hexagonal, tile assembly systems. In Sect. 3 we compare the square tile assembly
systems and triangular tile assembly systems from the point of view of shapes
of the final supertiles they generate and show that the two types of systems
cannot be simulated by each other in a straightforward way; we also compare
the triangular tile assembly systems and hexagonal tile assembly systems.

2 Preliminaries

Our discussion of the triangular, respectively hexagonal, tile assembly systems
will make use of the following definitions.

A triangular tile is a tile with three edges, each of which is “colored” with
elements from a finite set Γ , called a glue set, whose elements dictate the inter-
actions between the tiles. For all tiles discussed in this paper, we assume that
the shortest side of the tile is of unit length, and that tiles cannot be rotated or
flipped over.

An isosceles right triangular tile is a triangular tile in the shape of an isosceles
right triangle, with each of its three edges colored by a glue from the glue set,
and with the right angle pointing to the four possible directions: South-East,
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Fig. 2. Two equilateral triangular tiles (γ1, γ2, γ3, u), (γ1, γ2, γ3, d) and a hexagonal tile
(γ1, γ2, γ3, γ4, γ5, γ6).
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Fig. 3. Three diamond tiles (γ1, γ2, γ3, γ4, II), (γ1, γ2, γ3, γ4, IV), and (γ1, γ2, γ3, γ4, VI).

North-East, North-West, South-West as illustrated in FIG. 1. More formally, an
isosceles right triangular tile t is represented as a quadruple (γ1, γ2, γ3, k), where
γ1, γ2, γ3 ∈ Γ are the glues on the sides of the tile in the counter-clockwise order
starting from the longest side, and k ∈ {se, ne, nw, sw} presents the direction
pointed to by the right angle. In the rest of this paper, we denote the glues
γ1, γ2, γ3 of the 3 edges of a tile t by γ1(t), γ2(t), and γ3(t). Throughout this
paper we will call isosceles right triangular tiles simply right triangular tiles.

An equilateral triangular tile is a triangular tile in the shape of an equilateral
triangle, with its edges colored by glues from the glue set, and that is either
in an upward position or in a downward position as illustrated in FIG. 2. An
equilateral triangular tile is formally represented as a quadruple (γ1, γ2, γ3, k),
where γ1, γ2, γ3 ∈ Γ are the glues on the sides of the tile in the counter-clockwise
order starting from the horizontal side and k ∈ {u, d} presents the upward,
respectively downward, orientation of the “arrow” represented by the triangle.
The notations γ1(t), γ2(t), and γ3(t) are defined in the same way as for right
triangular tiles.

A regular hexagonal tile is a tile in the shape of a regular hexagon, with
each of the six edges being colored with glues from the set Γ . Unlike triangular
tiles, two geometrically adjacent regular hexagonal tiles must be of the same
orientation. Without loss of generality, we assume that all regular hexagonal
tiles are positioned as illustrated in FIG. 2. More formally, a regular hexagonal
tile t is represented as a tuple (γ1, γ2, γ3, γ4, γ5, γ6), where γi ∈ Γ are the glues
on the sides of the tile in the counter-clockwise order starting from the top-most
side. The notations γi(t) for i = 1, . . . , 6 are defined in the same way as for



Fig. 4. A hexagonal grid graph

triangular tiles. In this paper we will only investigate regular hexagonal tiles,
and simply call them hexagonal tiles.

A diamond tile is a tile in the shape of a diamond (rhombus), one angle
of which is π/3, with each of the four edges being colored with glues from the
set Γ . We assume each diamond tile is in one of the three possible positions
illustrated in FIG. 3. More formally, a diamond tile t is represented as a tuple
(γ1, γ2, γ3, γ4, k), where γi ∈ Γ are the glues on the sides of the tile and k ∈
{II, IV, VI} as specified by the three typical examples in FIG. 3. The notations
γi(t) for i = 1, . . . , 4 are defined in the same way as for triangular tiles.

Let us define Tsq = Γ 4, TR = Γ 3 × {se, ne, nw, sw}, T△ = Γ 3 × {u, d},
TH = Γ 6, and TD = Γ 4 × {II, IV, V I} as the sets of all possible square tiles,
right triangular tiles, equilateral triangular tiles, hexagonal tiles, and diamond
tiles respectively, given the glue set Γ . We can further split TR into four disjoint
subsets TR,se, TR,ne, TR,nw, TR,sw depending on the fourth element of tiles, defined
as: TR,x = {(γ1, γ2, γ3, x) ∈ TR} for x ∈ {se, ne, nw, sw}. In a similar manner,
T△ can be split into the two disjoint subsets T△,u, T△,d and TD can be split into
three disjoint subsets TD,II, TD,IV, TD,VI.

Let us proceed now to augment the notion of glue by associating to every
glue a numerical “glue strength” as follows. Let R be the set of non-negative
real numbers. Let Γ = {(ℓ1, n1), (ℓ2, n2), . . . , (ℓk, nk) | n1, . . . , nk ∈ R, where
ℓ1, . . . , ℓk are unique labels, i.e., ℓi = ℓj iff i = j} for some k ≥ 1. The set Γ
dictates interactions between tiles, where for each 1 ≤ i ≤ k, ℓi is the label of
the i-th glue and ni is the glue strength associated with it. (In the figures of this
paper, the strength associated with the glue on a side will be represented by the
number of parallel edges along that side.) A particular glue φ ∈ Γ , defined as
φ = (φ, 0), denotes the non-interactive glue. Tiles can stick to each other by the
glues on their adjacent edges to form supertiles.

Let T be a set of tiles of the same kind (square, equilateral triangle, right
triangle, hexagon, or diamond). Conventionally, tiling the plane by tiles in T is
modeled as a partial function from either the set of coordinates on the plane,
or from the corresponding undirected lattice graph, to the set of tiles T . This
partial function is called a supertile of T . Tiles assigned to adjacent vertices of
the lattice graph are considered to be adjacent in the supertile.



Fig. 5. A triangular grid graph

For square supertiles, the coordinate system should be orthogonal, and hence,
the corresponding graph is the grid graph (the two-dimensional integer lattice).
In contrast, the lattice graph for a supertile made of triangular tiles should
be 3-regular (each vertex of the underlying graph has 3 neighbours) because a
triangular tile can abut to at most 3 other tiles. Thus, the most appropriate
lattice graph for tiling by equilateral triangular tiles is a hexagonal grid graph
H = (V, E) (see FIG. 4). In order to enforce the condition that two upward
equilateral triangular tiles are never adjacent to each other, and neither are two
downward ones, H has to be bipartite as: V = Vu ∪ Vd and E ⊆ Vu × Vd. For
T ⊆ T△, a supertile C of T is defined as a partial function from V to T such
that

1. for any tu ∈ T△,u, if C(v) = tu, then v ∈ Vu, and
2. for any td ∈ T△,d, if C(v′) = td, then v′ ∈ Vd.

For defining a supertile of a set of right triangular tiles, the underlying 3-regular
lattice graph G = (V ′, E′) should be a 4-partite graph because there are the
four kinds of right triangular tiles. Hence, let V ′ = Vse ∪ Vne ∪ Vnw ∪ Vsw and E′

satisfy

1. for vse ∈ Vse, {(vse, v1), (vse, v2), (vse, v3)} ⊆ E′ such that v1 ∈ Vnw, v2 ∈
Vne ∪ Vnw, and v3 ∈ Vnw ∪ Vsw;

2. for vne ∈ Vne, {(vne, v
′
1), (vne, v

′
2), (vne, v

′
3)} ⊆ E′ such that v′1 ∈ Vsw, v′2 ∈

Vnw ∪ Vsw, and v′3 ∈ Vse ∪ Vsw;
3. for vnw ∈ Vnw, {(vnw, v

′′
1 ), (vnw, v

′′
2 ), (vnw, v

′′
3 )} ⊆ E′ such that v′′1 ∈ Vse, v′′2 ∈

Vse ∪ Vsw, and v′′3 ∈ Vse ∪ Vne;
4. for vsw ∈ Vsw, {(vsw, v

′′′
1 ), (vsw, v

′′′
2 ), (vsw, v

′′′
3 )} ⊆ E′ such that v′′′1 ∈ Vne, v′′′2 ∈

Vse ∪ Vne, and v′′′3 ∈ Vne ∪ Vnw.

For T ′ ⊆ TR, a supertile C′ of T ′ is defined as a partial function from V ′

of G to T ′ such that for any tx ∈ TR,x, if C′(v) = tx, then v ∈ Vx, where
x ∈ {se, ne, nw, sw}. For defining the supertile of a set of hexagonal tiles, a
6-regular lattice graph, triangular grid graph Tr = (V ′′, E′′), is adopted (see
FIG. 5). For T ′′ ⊆ TH, a supertile C′′ of T ′′ is defined as a partial function from
V ′′ of Tr to T ′′. For defining the supertile of a set of diamond tiles, a 4-regular
lattice graph G′ = (V ′′′, E′′′) is needed and the lattice graph is a 3-partite graph.
Let V ′′′ = VII ∪ VIV ∪ VVI and E′′′ satisfy



1. for vII ∈ VII, {(vII, v1), (vII, v2), (vII, v3), (vII, v4)} ⊆ E′′′ such that v1, v3 ∈
VII ∪ VIV and v2, v4 ∈ VII ∪ VVI;

2. for vIV ∈ VIV, {(vIV, v1), (vIV, v2), (vIV, v3), (vIV, v4)} ⊆ E′′′ such that v2, v4 ∈
VII ∪ VIV and v1, v3 ∈ VIV ∪ VVI;

3. for vVI ∈ VVI, {(vVI, v1), (vVI, v2), (vVI, v3), (vVI, v4)} ⊆ E′′′ such that v1, v3 ∈
VII ∪ VII ∪ VVI and v2, v4 ∈ VIV ∪ VVI.

For T ′′′ ⊆ TD, a supertile C′′′ of right triangular tiles from T ′′′ is defined as a
partial function from V ′′′ of G′ to T ′′′. In the definition of a supertile, both the
hexagonal grid graph H and the triangular grid graph Tr are unique, but there
are more than one valid lattice graphs to present supertiles for right triangular
tiles and for diamond tiles.

Let us now formally define the interaction between tiles which depends on
the match between the glues on the tiles’ adjacent edges and also on a thresh-
old parameter called temperature τ ∈ R that determines whether or not the
“sticking” is strong enough for the new tile to attach to an existing super-
tile. In general, the strength function g : Γ × Γ → R is defined such that
g(γ, γ′) = g(γ′, γ) and g(φ, γ) = 0 for all γ, γ′ ∈ Γ . In particular, we are in-
terested in the discrete case where τ is an integer and g((ℓ, n), (ℓ′, n′)) = n if
ℓ = ℓ′ and n = n′; g((ℓ, n), (ℓ′, n′)) = 0 otherwise. We call a supertile D full if
the strength g(γi(D(v)), γi(D(vi))) of common edges of every two adjacent tiles
D(v) and D(vi) in the supertile is strictly positive.

In order to model the growth of tile assemblies, we need to define the notion of
attachability. Let T ⊆ T△ be a set of equilateral triangular tiles and C, D be two
supertiles of T . We say that t attaches to C at vertex v, to derive D, and we write
C →T,g,τ D, if the following conditions hold. Firstly, C(u) = D(u) for all u ∈
dom(C). Secondly, there exist some t ∈ T and v ∈ V such that C(v) is undefined,
dom(C) =dom(D) \ {v}, D(v) = t, and for every {(v, v1), (v, v2), (v, v3)} ⊆ E
we have,

∑

i∈{1,2,3}

g(γi(t), γi(D(vi))) ≥ τ.

Informally, the supertile D is derived from the supertile C by the attachment
of t to C iff the sum of the glue strengths on those edges of t that are adjacent
to C is greater than or equal to the threshold τ . Note that in the definition of
attachability, we do not require either C or D be full.

We can define the notions of attachability and transition for right triangular
tiles, hexagonal tiles and diamond tiles in a similar manner, and those notions
for square tiles can be found in the literature [6]. The reflexive and transitive
closure of →T,g,τ is denoted by →∗

T,g,τ .
A tile assembly system (TAS) is a tuple S = (T, s, g, τ). T is a finite set of

tiles of the same kind ; so T ⊆ Tsq (T ⊆ TR, T ⊆ T△, T ⊆ TH, T ⊆ TD) implies
that all tiles of S are square (respectively, right triangular, equilateral triangular,
hexagonal, diamond). The other parameters of S mean that s ∈ T is a special
supertile called the seed, g is a strength function, and τ is the temperature.

We now define the notion of derived supertile of a given TAS S as follows.
The seed tile s, when placed in an a priori chosen “reference position” on the
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Fig. 6. A set of 12 tiles from which the Sierpinski triangle self-assembles deterministi-
cally. S, L, R, p, p′, y, and y′ are the glue labels and the number of parallel lines along
each edge denotes the glue strength. The labels 1 and 0 specify the digits used in the
XOR operation.

plane or on the grid graph, is a partial function called the seed derived supertile
or simply seed supertile. For example, in the case of square TASs, we may choose
to always place the seed supertile on the plane as the square with corners at
coordinates (0, 0), (0, 1), (1, 0), (1, 1). A derived supertile of S is a supertile C
such that s →∗

T,g,τ C. A final supertile of S is a derived supertile C such that
C →∗

T,g,τ D implies C = D for any supertile D, that is, no tile is attachable
at any vertex in C. The number of tile types of S is called the program size
complexity of S, and is denoted by |S| [5].

A TAS is said to be deterministic if its final supertile is unique regardless
of how the self-assembly proceeds starting from the seed. Otherwise, the TAS is
said to be non-deterministic. A non-deterministic TAS can have many different
final supertiles possibly with different shapes. In this paper, unless explicitely
stated otherwise, all tile systems are assumed to be deterministic. When T ⊆ TR

(respectively, T ⊆ T△, T ⊆ TH, T ⊆ TD), S is explicitly called a right triangular
TAS (respectively, an equilateral triangular TAS, a hexagonal TAS, a diamond
TAS).

Before we discuss shapes generated by non-square self-assembly systems, let
us first see an example of how a Sierpinski triangle can self-assemble using tiles
from an equilateral triangular TAS.

Proposition 1. There exists an equilateral triangular tile system which deter-
ministically self-assembles the Sierpinski triangle at temperature τ = 2.

Proof. Let us recall the square tile system which deterministically self-assembles
the Sierpinski triangle [11], whose tile set contains seven tile types in two colour
categories, dark and light. Using the technique of “division”, formally defined in
Section 3, we transform each of the square tiles by flattening it into a parallelo-
gram, and dividing this parallelogram to obtain one upward and one downward
equilateral triangular tile, see Fig. 9. Furthermore, by reusing some of the trian-
gular tiles, the number of triangular tiles needed to assemble an arbitrarily large
Sierpinski triangle is reduced to twelve. The tile set of an equilateral triangular
tile system thus designed is illustrated in FIG. 6.



The seed tile is (φ, S, φ, u) and together with the other five tiles on the top
row in FIG. 6 can form the L-shaped supertile, which composes the outmost
left and bottom boundary of the Sierpinski triangle (See FIG. 7). Then each
parallelogram-shaped space is filled by a pair of triangular tiles that together
simulate a flattened square tile that implements an XOR-like rule. This XOR
rule takes as input the left and bottom glues of the first triangular tile of the
pair (corresponding to the left and bottom neighbours of that tile), and outputs
the result as the right and top glues of the second triangular tile of the pair.
The tiles of the pair are held together by a glue of strength 2. Four tile types
are enough to implement the XOR operation. Two more tile types deliver the
information and fill the triangle, as illustrated on the bottom row in FIG. 6. The
result is a Sierpinski triangle as illustrated in FIG. 7.
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Fig. 7. The Sierpinski-triangle which consists of 64 equilateral triangular tiles with 12
different tile types.

3 Comparing Supertiles

We now proceed to compare the final supertiles produced by various tile assembly
systems in terms of their shape and boundary glues.

The tiles we considered are well defined geometrically by their shape and
the fact that their shortest edge is of unit length. Thus, given a TAS with tiles



of shape α, where α ∈ {square, triangle, right triangle, hexagon}, we can now
associate to every supertile a corresponding region in R2 as follows.

We associate to a supertile of size 1, i.e., consisting of one tile only, the region
in R2 enclosed by the edges of that tile, assuming the tile is placed on the two-
dimensional plane at an a priori chosen reference position. For example if α =
square, then the corresponding region is the square (including its interior) with
corners (0, 0), (0, 1), (1, 0), (1, 1). Let us assume we have associated to the seed
tile a region in R2 in this fashion. We can now associate to a supertile of size
2, obtained by attaching a single tile to the seed tile, a region in R2. This is
obtained by taking the union between the region in R2 coresponding to the seed
tile, and the region in R2 resulting by translating the region in R2 corresponding
to the second tile to the position where it attaches to the seed. By iterating the
process, we can thus associate to each supertile that is derived from the seed a
corresponding region in R2.

Two supertiles are said to have the same shape if their corresponding regions
of R2 are identical. If, in addition, the glues on the boundaries of the two super-
tiles (but not necessarily the internal glues) are the same, the two supertiles are
said to be equivalent. The fact that, in order to be considered equivalent, final
supertiles have the same boundary glues in addition to covering the same region
in R2, reflects the fact that supertiles are often used as components for further
assemblies, and thus have to have the same “sticking properties” if they are to
be used interchangeably.

A region Y ⊆ R2 is called α-compatible, where α is an element of {square,
right triangle, equilateral triangle, hexagon, diamond}, if Y can be geometrically
“covered” by tiles from an α-TAS, i.e., if Y can be written as the set union of
regions, overlapping at most on their edges, that are obtained by translating
the regions corresponding to single tiles from an α-TAS. We call a supertile
α-compatible if its corresponding region in R2 is α-compatible.

For example, the region corresponding to the final supertile of any hexagonal
TAS is equilateral-triangle-compatible, and none of the triangular regions of R2

is square-compatible. For a given α-TAS, only the assembly of final supertiles of
α-compatible shapes is meaningful. Hence, in the remaining discussion, we only
consider the assembly of final supertiles of α-compatible shapes.

First, note that for any α-compatible supertile, there is a trivial α-TAS (de-
terministic or non-deterministic) that produces a final supertile of the same
shape.

Proposition 2. Let α ∈ {square, right triangle, equilateral triangle, hexagon,
diamond} and let Y be an α-compatible supertile. There exists a non-deterministic
α-TAS of a constant number of tile types whose final supertile has the same shape
as Y . If Y is finite, then there exists a deterministic α-TAS with n tile types
whose final supertile has the same shape as Y , where n is the total number of
tiles needed to mosaic Y geometrically.

Proof. Let us consider α being equilateral triangle. The other cases are similar.
Consider first the non-deterministic case. Let T be the set of tiles T =

{(a, b, c, k) | a, b, c ∈ {φ, g}, k ∈ {u, d}}. All glues of g are of strength 1 and
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Fig. 9. Even with the help of affine transformations, squares can be divided into two
equilateral triangles in only one way.

temperature is τ = 1. The seed and assembly process are as follows: The super-
tile Y is assembled according to the geometrical division of the region enclosed
by Y into triangular tiles of T . This can be done since Y is equilateral-triangle-
compatible. At each step, a tile sticks to the supertile in such a way that if the
tile is surrounded by other tiles in the completed region, then every edge of that
tile is of glue g; otherwise, the edge that compose the boundary of that region are
of empty glue φ. Then a final supertile of the same shape as Y can be produced
by the given TAS with at most 16 tile types.

For the deterministic case, we mosaic T geometrically with equilateral trian-
gular tiles. If n tiles are needed, we define a TAS consisting of n tiles, where the
glues between each two tiles that stick to each other in the final supertile are
unique.

Proposition 2 shows that, if we are interested only in shape, and we either a)
do not care that a unique supertile is assembled, or b) we care about uniqueness
of the final supertile but we do not care about the program complexity of the
tile system (how many tile types are needed), then α-compatible tile systems
can essentially produce final supertiles of the same shape. This is because every
α-compatible supertile can be produced by a trivial but huge deterministic α-
TAS of type α, where α ∈ {square, right triangle, equilateral triangle, hexagon,
diamond}, or by a non-deterministic one. In what follows, we will discuss natural
restrictions on the comparison of TASs, that avoid these trivial cases.

We first compare the triangular TASs and square TASs from the point of
view of the shapes of the final supertiles they generate. A right triangular TAS
SR = (TR, sR, g, τ) is called a triangular division of a square TAS S = (T, s, g, τ),
if:

1. For any square tile t ∈ T of S, there is a pair of triangular tiles t′, t′′ ∈ TR

of SR whose hypotenuses are colored with the same glue (lt, nt) with nt ≥ τ
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so that at temperature τ ≥ 1, these tiles can stick to each other via their
hypotenuses and result in a two-tile supertile equivalent to the square tile t;

2. For any triangular tile t ∈ TR, there exists another triangular tile t′ ∈ TR of
SR such that these two tiles can stick to each other via their hypotenuses and
produce a supertile that is equivalent to a square tile in T at temperature
τ ≥ 1.

Note that the “hypothenuse glues” may or may not be distinct for different
triangular tile pairs. Note also that the numbers of tiles in the two systems, the
square tile system S and its division SR, above satisfy the inequality

√

|T | ≤
|TR|. By definition, the division of a square TAS may not be unique. This is
mainly because a square tile can be divided into two right triangular tiles in two
different ways (see FIG. 8). In addition, two different square TASs can have the
same right triangular TAS as a division. Finally, note that even if a square TAS
is deterministic, its triangular division may not be so. A triangular division of
a square TAS S is called a deterministic triangular division if it is a triangular
division of S and, in addition, it is deterministic.

Let us define the flattening function f : T△ → TR as f((γ1, γ2, γ3, u)) =
(γ2, γ3, γ1, sw) and f((γ1, γ2, γ3, d)) = (γ2, γ3, γ1, ne). This function has the ef-
fect of “flattening” an equilateral triangular TAS S = (T, s, g, τ) into a right
triangular TAS F(S) = (U, f(s), g, τ), where U = {f(t) | t ∈ T }. Informally,
a flattened right-triangular TAS is obtained from an equilateral triangular one
by morphing each of the equilateral triangular tiles into either a South-West
pointing, or respectively North-East pointing right triangular one.

An equilateral triangular TAS T is called a division of a square TAS S, FIG.
9, if the flattened TAS F(T ) obtained from it is a division of S. T is called a



deterministic division of S if it is a division of S which is deterministic. The
numbers of tiles in the two systems, the square tile system S with a tile set TS

and its equilateral triangle division T with the tile set TT , satisfy the inequality
√

|TS | ≤ |TT |.
We now ask the question of whether or not any square TAS can be converted,

by division, into a triangular TAS that produces an equivalent final supertile. In
general, the answer is “no”, as shown by the following lemma.

Lemma 1. There exists a deterministic square TAS, none of whose determin-
istic triangular divisions produces an equivalent final supertile.

Two examples proving this lemma are illustrated in FIG. 13, one for τ = 2,
(left), and one for τ = 3, (center). In the figure, each tile is numbered in the
order of a possible assembly process.

For the example in FIG. 13 (left), each of the square tiles s, 1, . . . , 6 can
be simulated by a pair of right triangular tiles. There are two sticky edges for
tile 7, which are on parallel sides of the square tile, each of which is of strength
1. So under τ = 2 the attachment of tile 7 cannot be simulated by successive
attachments of two right triangular tiles to assemble the same final supertile.
This is because the edges necessary for tile 7 to attach are its North and South
edges, both of them of strength one. No matter how we divide this square tile
into two triangles, the North and South edges will belong to different triangular
tiles and, because they have only strength 1 ≤ τ = 2, neither of them can attach
to the existing supertile.

The next example is the 4 × 4 square in FIG. 13 (center). By a similar rea-
soning, the attachment of tile 11 cannot be simulated by successive attachments
of two right triangular tiles, and thus, the assembly stops and fails to grow into
the 4 × 4 square.

The supertile in FIG. 13 (left) has a missing tile in the middle, and we say
that it has a “hole”. In general, a derived supertile S is hole-free if it is full and
for any closed tile-path, all the positions of the grid subgraph corresponding to
S that are inside the closed path are filled with tiles.

Lemma 2. For any deterministic square TAS S at τ = 1, and any square TAS
at τ = 2 whose final supertile is hole-free, there is a triangular division of S that
can produce an equivalent final supertile.

Proof. For τ = 1, the proof is straightforward. Any square tile si with glues
γ1, γ2, γ3, γ4 (on East, North, West, South sides, respectively) in S is replaced
with a pair of right triangular tiles (i, γ1, γ2, ne) and (i, γ3, γ4, sw), where i is a
new glue added, and when si is the seed, we let (i, γ1, γ2, ne) be the new seed.
Then the new right triangular TAS is a division of S and produces an equivalent
final supertile.

Now we assume τ = 2 and assume that there is no hole in the final supertile
of S.

First we prove that for any hole-free derived supertile st, there is an assem-
bly process such that every derived supertile in the process is hole-free. For an
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Fig. 12. Proof of Lemma 2: Tiles lt and rb in a hole area.

assembly process p : st0 → st1 → st2 → . . . → stn = st, let f(p) be the number
such that sti is hole-free for i < f(p) but stf(p) has a hole. For the case that
none of sii has a hole, we write f(p) = +∞. Now choose a p such that f(p)
is the largest among all assembly process of st. We prove by contradiction and
assume f(p) 6= +∞. Let t be the new attached tile in the step stf(p)−1 → stf(p).
Since stn is full, every sti is also full. So stf(p) has a hole for the reason that
there are missing tiles in a hole region. Those missing tiles will eventually be
filled up in stn since stn is hole-free. Now we consider the following two tiles, not
necessarily distinct, among all missing tiles in the hole of stf(p): the left-most
tiles lt among the top-most tiles, and the right-most tiles rb among the bottom-
most tiles. Then the closest positions to the North of lt, to the West of lt and
to the North-West of lt have tiles on them, called group one, and similarly the
closest positions to the South of rb, to the East of rb and to the South-East of
rb have tiles on them, called group two. (See FIG. 12) Tile t cannot be in both
group one and group two. Without loss of generality, we assume t is not in group
one. So both West and North of lt are tiles in stf(p)−1, and thus there are two
adjacent edges in the hole area that can stick to lt due to the fullness. Then
there is a valid assembly process p′ such that the first few steps up to sti−1 are
the same and then tile lt instead of t sticks to the supertile sti−1. The process
p′ will finally assemble st since the TAS S is deterministic. In this case, we have
f(p′) ≥ f(p) + 1, which contradicts the property that f(p) is the largest among
all assembly of st. Therefore f(p) = +∞.

Now we prove, for the TAS S, that for the assembly process wherein all the
intermediate supertiles are hole-free, a new tile can stick to the supertile at each
step either by two adjacent edges or by an edge of strength at least 2. If the new
tile sticks by more than two edges, then we can pick two adjacent edges. The
only remaining case is when the new tile sticks by exactly two parallel edges.
We show it is impossible. Without loss of generality, suppose sti−1 becomes sti
by sticking t to sti−1 by North and South sides. There is no tile on the East and
on the West sides, or t can stick by two adjacent edges due to the fullness of sti.
But in this case, since sti−1 is a derived supertile, there is a tile-path between
the two tiles to the North and to the South of t in sti−1. So there is a closed
tile-path in sti which encloses either the position to the East or the position to



the West of t. In other words, sti contains a hole, which contradicts the fact that
sti is hole-free.

We construct the following right triangular TAS: any square tile si with
glues γ1, γ2, γ3, γ4 (on East, North, West, South sides, respectively) in S is re-
placed with four right triangular tiles (i, γ2, γ3, nw), (i, γ4, γ1, se), (i, γ1, γ2, ne)
and (i, γ3, γ4, sw), where i is a new glue added with strength ≥ τ = 2, and when
si is the seed, we let (i, γ1, γ2, ne) be the new seed. Then the new right triangular
TAS is a division of S. Since new tile can stick to the supertile at each step by
either two adjacent edges or by an edge of strength at least 2, the assemble of
the square TAS can be simulated by the constructed right triangular TAS. So
the constructed right triangular TAS produces a final supertile equivalent to the
final supertile of the square TAS.

By Lemmas 1 and 2, we see that square TASs can be simulated by their
right triangular divisions only under certain conditions. Now we discuss the other
direction: whether every right triangular TAS can be simulated by a square TAS,
assuming that the final supertile is square-compatible. For τ = 1, the answer is
a qualified “yes”, as shown by the following lemma.

Lemma 3. For any deterministic right triangular TAS SR, at τ = 1, if its final
supertile is square-compatible and the strength of the glue of the hypothenuse of
any of its tiles is 1, then there exists a deterministic square TAS S such that SR

is a division of S.

Proof. Let t be a tile of SR. Without loss of generality, assume that this tile is
used at least once in the (unique) final supertile of SR. Since the final supertile
is square-compatible, there must be a (unique) tile that abuts t in the final
supertile, by its hypothenuse. In addition, these two tiles attach to each other
via a glue of strength 1. For each tile t in SR, we add to S the square tile
obtained by thus binding these two triangular tiles. Being thus contructed, S is
deterministic, and SR is its division.

For τ = 2, the situation is different, as shown by the following lemma. Note
that, in the following lemmas, when comparing two TASs, we ask the final su-
pertiles generated by them to be equivalent, that is, to have the same shape and
the same border glues.

Lemma 4. There exists a deterministic right triangular TAS at τ = 2, whose
final supertile is square-compatible, but no deterministic square TAS produces an
equivalent final supertile.

An example of a right triangular TAS at τ = 2 as postulated in Lemma 4
is illustrated in FIG. 13 (right), where each tile is numbered in the order of a
possible assembly process. Note that any square TAS that produces a supertile
of the same shape as the rightmost supertile depicted in FIG. 13 must include
a square tile with West side glue a, and South glue b. However, if a tile system
contained such a tile, its assembly would grow at its North-East corner and
produce the 3 × 2 rectangle instead.
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Fig. 13. Examples that show that square TASs and triangular TASs are, in some sense,
not comparable from the point of view of the shapes of final supertiles they generate.
The left and center figures depict two final supertiles of square systems at τ = 2,
and τ = 3, respectively, that illustrate Lemma 1. The right figure (τ = 2), illustrates
Lemma 4. Each glue, unless mentioned, is unique, and thus, the label is omitted.

Lemmas 1 and 4 indicate that square TASs and triangular TASs are, in some
sense, not comparable from the point of view of the shapes of final supertiles
they generate.

The following lemma compares square TASs with hexagonal TASs from the
point of view of the shapes of the final supertiles they generate.

Lemma 5. No supertile is both hexagon-compatible and square-compatible, even
under possible affine transformation on R2.

Proof. Suppose there is a supertile st assembled by hexagonal tiles that is of the
same shape to a supertile st′ assembled by square tiles under affine transforma-
tion F . Let t be the left-most tile on the top-most row of tiles in st. Assume the
vertices of t are v1, . . . , v6, starting from the top-right vertex in the counterclock-
wise order. Then v1, v2, v3, v6 are also vertices of the supertile st by the position
of t. Assume v′1, v

′
2, v

′
3, v

′
6 be the corresponding vertices in st′. Since an affine

transformation transform lines to lines, the angle v′1, v
′
2, v

′
3 and v′2, v

′
1, v

′
6 are of

degree π/4 or 3π/4. In other words, the two lines v′2v
′
3 and v′1v

′
6 are parallel. Then

v2v3 and v1v6 should also be parallel, since an affine transformation preserves
parallel relationship of lines. But v2v3 and v1v6 are not parallel, a contradiction.
So no hexagon-compatible shape is square-compatible even under possible affine
transformation on R2.

We now compare triangular TASs with hexagonal TASs from the point of
view of the shapes of the final supertiles they generate.

An equilateral triangular TAS T is called a triangular division of a hexagonal
TAS H , if (i) for any hexagonal tile h in H , there are six triangular tiles in T that
can attach to each other to produce a supertile equivalent to h at temperature
τ ≥ 1, and (ii) for any triangular tile t in T , there are five other triangular
tiles in T , that can attach to each other to produce a supertile equivalent to
a hexagonal tile in H (see FIG. 10). An equilateral triangular TAS T is called
a deterministic triangular division of a hexagonal TAS H if it is a triangular
division of H that is a deterministic TAS. A right triangular TAS T is called
a division of a hexagonal TAS H , if T is the flattening F(T ′) of an equilateral



triangle TAS T ′ that is a division of H . A right triangular TAS T is called a
deterministic division of a hexagonal TAS H if it is a division of H that is a
deterministic TAS.

It is obvious that for any hexagonal TAS H at τ = 1, there is a triangular
division of H that produces a final supertile of the same shape. For τ = 2 the
situation is different, as shown by the following lemma.

Lemma 6. There exists a deterministic hexagonal TAS H at τ = 2, such that
no deterministic triangular division of H produces an equivalent final supertile.

An example is illustrated in FIG. 14 (left), for τ = 2, where S is the seed and
tile 1 attached to the supertile before tile 2 is. Tiles s and 1 can be simulated
by their triangular divisions, but tile 2 cannot, since the cooperation between
edges, even for the case when the cooperative edges abut in the hexagonal tile,
cannot be preserved when replacing a hexagonal tile by equilateral triangular
tiles. Indeed, not triangular tile from the division of the hexagonal tile can attach
to the supertile formed by the seed and tile 1, since the edges that would be
needed for any of them to attach all have strength 1. This simple example shows
that most hexagonal TASs cannot be simulated by their triangular divisions.

It is obvious that for any equilateral triangular TAS T at τ = 1 whose final
supertile is hexagon-compatible, there is a hexagonal TAS H that produces an
equivalent final supertile. For τ = 2, the situation is different, as shown by the
following lemma.

Lemma 7. There exists a deterministic equilateral triangular TAS T at τ = 2
whose final supertile is hexagon-compatible, but no deterministic hexagonal TAS
produces an equivalent final supertile.

An example is illustrated in FIG. 14 (right), where tiles are numbered in
a possible order of assembly. Note that any hexagonal TAS that produces an
equivalent final supertile as that of FIG. 14 (right), has to contain a hexagonal
tile t such that γ1(t) = b and γ2(t) = a. Then the process of assembly of such a
hexagonal TAS can grow further in the right-bottom direction, and thus cannot
produce the unique required final supertile.

By replacing pairs of tiles (s, 1), (2, 3), . . . , (10, 11) by diamond tiles in the ex-
ample in FIG. 14, one can also show that there exists a diamond TAS whose final
supertile is hexagon-compatible but no hexagonal TAS produces an equivalent
final supertile.

Lemmas 6 and 7 together indicate that hexagonal TASs and triangular TASs
are, in some sense, not comparable from the point of view of the shapes of the
final supertiles they generate.

Let us now compare square with diamond tile assembly systems. For every
square TAS S, there is a diamond TAS D such that the final supertiles pro-
duced by the systems are equivalent up to an affine transformation on the two
dimensional plane R2. To see this, we use a single type, either II, IV, or VI,
of diamond tile to simulate each square tile. On the other hand, by Lemma 5,
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every diamond TAS that produces a hexagon-compatible final supertile cannot
be simulated by a square TAS.

The comparison of diamond TAS and equilateral TAS is similar to the com-
parison of square TAS and right triangular TAS: the examples given in FIG. 13,
under affine transformations, indicate that diamond TASs and triangular TASs
are, in some sense, not comparable from the point of view of the shapes of the
final supertiles they generate.

Now we compare diamond TASs with hexagonal TASs. A diamond TAS D
is called a diamond division of a hexagonal TAS H if (i) for any hexagonal tile
h in H , there are three diamond tiles in D that can can assemble to produce a
supertile equivalent to h at temperature τ ≥ 1, and (ii) for any diamond tile d
in D, there are other two diamond tiles in D that can assemble to produce a
supertile tile equivalent to a hexagonal in H (see FIG. 11). A diamond TAS D is
called a deterministic diamond division of a hexagonal TAS H if it is a diamond
division of H that is a deterministic TAS.

Lemma 8. There exists a deterministic hexagonal TAS H such that no deter-
minisic diamond division of H produces an equivalent final supertile.

Two examples that prove the statement of Lemma 8, are illustrated in
FIG. 15, one for τ = 2 (left), and one for τ = 4 (centre), none of which can
be simulated by their diamond division. Each tile is numbered in the order in
which it would appear in a possible assembly process. The two examples are
of the same flavor as those in FIG. 13: tile 5, respectively tile 11, cannot be
simulated by successive attachments of diamond tiles, since the two cooperative
sticky edges that attached the original hexagonal tile to the supertile are not
adjacent, hence they will belong to different diamond tiles in the division.

Lemma 9. There exists a deterministic diamond TAS T whose final supertile is
hexagon-compatible, but no deterministic hexagonal TAS produces an equivalent
final supertile.

An example is given in FIG. 15 (right). The proof is similar to that of
Lemma 7.

Lemmas 8 and 9 indicate that hexagonal TASs and diamond TASs are, in
some sense, not comparable from the point of view of the shapes of the final
supertiles they generate. In spite of this, under certain conditions, hexagonal
TASs can be simulated by diamond TASs. It is, for example, obvious that for
any hexagonal TAS H at τ = 1, there is a diamond division of H that produces
a final supertile of the same shape. Furthermore, we have the following result.

Proposition 3. For any hexagonal TAS H at τ = 1, and any hexagonal TAS
at τ = 2, whose final supertile has no hole, there is a diamond division of H that
produces a final supertile of the same shape.

The proof is similar to that of Lemma 2.



4 Conclusion

Square tile assembly systems have been widely studied in the literature as a
model, in particular for DNA self-assembly. In this paper, we focus instead on
triangular and hexagonal TASs and some of their properties. We show that, in
some restricted sense, triangular TASs and square TASs, respectively triangu-
lar TASs and hexagonal TASs, are not comparable from the point of view of
the shape of the final supertiles they generate. More precisely, there exists a
deterministic square (respectively hexagonal) TAS S such that no deterministic
triangular division of S produces an equivalent final supertile (of the same shape
and same boundary glues). Also, there exists a deterministic triangular TAS T
such that the final supertile is square (respectively hexagon) -compatible, but no
deterministic square (respectively hexagonal) TAS produces an equivalent final
supertile.
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