
An Incremental Algorithm for Computing
Cylindrical Algebraic Decompositions

Changbo Chen, Marc Moreno Maza

ORCCA, University of Western Ontario, Canada

Oct. 27, 2012
ASCM 2012, Beijing, China

Cylindrical Algebraic Decomposition (CAD) of Rn

A CAD of Rn is a partition of Rn such that each cell in the partition is a
connected semi-algebraic subset of Rn and all the cells are cylindrically
arranged.
Two subsets A and B of Rn are called cylindrically arranged if for any
1 ≤ k < n, the projections of A and B on Rk are either equal or disjoint.

Cylindrical algebraic decomposition (CAD)

Invented by G.E. Collins in 1973 for solving Real Quantifier Elimination
(QE) problems.

Previous work on CAD

Adjacency and clustering techniques (D. Arnon, G.E. Collins and S.
McCallum 84), Improved projection operator (H. Hong 90; S. McCallum
88, 98; C. Brown 01), Partially built CADs (Collins and Hong 91, A.
Strzeboński 00), Improved stack construction (G.E. Collins, J.R. Johnson,
and W. Krandick), Efficient projection orders (A. Dolzmann, A. Seidl and
T. Sturm 04), Making use of equational constraints (G.E. Collins 98; C.
Brown and S. McCallum 05), Computing CAD via triangular
decompositions (C. Chen, M. Moreno Maza, B. Xia and L. Yang 09),
Preprocessing input by Gröbner bases (B. Buchberger and H. Hong 91;
D.J. Wilson, R.J. Bradford, and J.H. Davenport 12), Set-theoretical
operations by CAD (A. Strzeboński 10)· · ·

Software

Qepcad, Mathematica, Redlog, SyNRAC, TCAD (Since Maple 14).

Outline

1 First Idea: Introduce Case Discussion

2 Second Idea: Compute the Decomposition Incrementally

3 Third Idea: Compute CAD of a Variety

4 Implementation and Benchmark

Outline

1 First Idea: Introduce Case Discussion

2 Second Idea: Compute the Decomposition Incrementally

3 Third Idea: Compute CAD of a Variety

4 Implementation and Benchmark

CAD based on projection-lifting scheme (PCAD)

Projection

Let Proj be a projection operator.

Repeatedly apply Proj:

Fn(x1, . . . , xn)
Proj−−−→ Fn−1(x1, . . . , xn−1)

Proj−−−→ · · · Proj−−−→ F1(x1).

Lifting

The real roots of the polynomials in F1 plus the open intervals
between them form an F1-invariant CAD of R1.

For each cell C of the Fk−1 invariant CAD of Rk−1, isolating the real
roots of the polynomials of Fk at a sample point of C, produces all
the cells of the Fk-invariant CAD of Rk above C.

CAD based on triangular decompositions (TCAD)

Motivation: potential drawback of Collins’ scheme

The projection operator is a function defined independently of the
input system.

As a result, a strong projection operator (Collins-Hong operator)
usually produces much more polynomials than needed.

A weak projection operator (McCalumn-Brown operator) may fail for
non-generic cases.

Solution: make case discussion during projection

Case discussion is common for algorithms computing triangular
decomposition.

At ISSAC’09, we (with B. Xia and L. Yang) introduced case
discussion (as in triangular decomposition of polynomials systems)
into CAD computation. As a result, the projection phase in classical
CAD algorithm is replaced by computing a complex cylindrical tree.

Complex cylindrical tree

let α = (α1, . . . , αn−1) ∈ Cn−1

define C[x1, . . . , xn]
Φα−−→ C[xn], where p(x1, . . . , xn) 7→ p(α, xn)

Separation

Let S ⊂ Cn−1 and P ⊂ k[x1, . . . , xn−1, xn] be a finite set of level n
polynomials. We say that P separates above S if for each α ∈ S:

for each p ∈ P , Φα(leading coefficient of p w.r.t. xn) 6= 0

the polynomials Φα(p) are squarefree and pairwise coprime.

A {y2 + x, y2 + y}-sign invariant complex cylindrical tree

x = 0 x + 1 = 0

y + 1 = 0 y = 0 y2 + x = 0

y = 0 y2 + y 6= 0 y + 1 = 0 y3 − y 6= 0 y2 + y = 0

(y2 + x)(y2 + y) 6= 0

x2 + x 6= 0

y − 1 = 0

Rethink classical CAD in terms of complex cylindrical tree

The projection factors are a, b, c, 4ac− b2, ax2 + bx+ c.
any x

ax2 + bx+ c 6= 0

ax2 + bx+ c = 0

ax2 + bx+ c = 0

ax2 + bx+ c 6= 0

c 6= 0

c = 0

any x

b 6= 0

b = 0

ax2 + bx+ c = 0

ax2 + bx+ c 6= 0

ax2 + bx+ c 6= 0

ax2 + bx+ c = 0

ax2 + bx+ c = 0

ax2 + bx+ c 6= 0

4ac− b2 = 0

c = 0

ax2 + bx+ c = 0

ax2 + bx+ c 6= 0
4ac− b2 = 0

4ac− b2 6= 0

ax2 + bx+ c = 0

ax2 + bx+ c 6= 0

a 6= 0

b = 0

c(4ac− b2) 6= 0

a = 0
c = 0

c 6= 0

b 6= 0

The complex cylindrical tree constructed by TCAD

a 6= 0
2ax+ b 6= 0

4ac− b2 = 0
2ax+ b = 0

bx+ c 6= 0

bx+ c = 0

ax2 + bx+ c = 0

ax2 + bx+ c 6= 0

any x

any x

c 6= 0

c = 0

b = 0

b 6= 0

4ac− b2 6= 0

a = 0

any c

any b

Outline

1 First Idea: Introduce Case Discussion

2 Second Idea: Compute the Decomposition Incrementally

3 Third Idea: Compute CAD of a Variety

4 Implementation and Benchmark

Incremental solving

p1 := x2 + y2 + z2 − 4

p2 := x2 + y2 − z2 − 1

p3 := z3 + xy − 1

W (T) := V (p1) ∩ V (p2) V (p3) ∩W (T)

Algorithms using incremental strategy: Triangular Decomposition (D.
Lazard, 91; M3, 00; C. Chen & M3, 11); Lifting Fibers (G. Lecerf, 2003);
Diagonal Homotopy (A.J. Sommese, J. Verschelde, C. W. Wampler, 08).

The refinement operation

Input

A y2 + x sign invariant complex cylindrical tree

T :=

x = 0

{
y = 0 : y2 + x = 0
y 6= 0 : y2 + x 6= 0

x 6= 0

{
y2 + x = 0 : y2 + x = 0
y2 + x 6= 0 : y2 + x 6= 0

A polynomial y2 + y.

Output

The tree T is refined into a new tree, above each path of which both
y2 + x and y2 + y are sign invariant.

Refine the first path of the tree with y2 + y

x = 0

{
y = 0 : y2 + x = 0
y 6= 0 : y2 + x 6= 0

x 6= 0 · · ·

⇒

x = 0

{
y = 0 : y2 + x = 0 ∧ y2 + y = 0
y 6= 0 : y2 + x 6= 0

x 6= 0 · · ·

Refine the next path of the tree with y2 + y

x = 0

{
y = 0 : y2 + x = 0 ∧ y2 + y = 0
y 6= 0 : y2 + x 6= 0

x 6= 0 · · ·

⇒

x = 0

y = 0 : y2 + x = 0 ∧ y2 + y = 0

y = −1 : y2 + x 6= 0 ∧ y2 + y = 0
otherwise : y2 + x 6= 0 ∧ y2 + y 6= 0

x 6= 0 · · ·

The {y2 + x, y2 + y} sign invariant cylindrical tree of C2

x = 0

y = 0 : y2 + x = 0 ∧ y2 + y = 0
y = −1 : y2 + x 6= 0 ∧ y2 + y = 0
otherwise : y2 + x 6= 0 ∧ y2 + y 6= 0

x = −1

y = −1 : y2 + x = 0 ∧ y2 + y = 0
y = 1 : y2 + x = 0 ∧ y2 + y 6= 0
y = 0 : y2 + x 6= 0 ∧ y2 + y = 0
otherwise : y2 + x 6= 0 ∧ y2 + y 6= 0

otherwise

y2 + x = 0 : y2 + x = 0 ∧ y2 + y 6= 0
y2 + y = 0 : y2 + x 6= 0 ∧ y2 + y = 0
otherwise : y2 + x 6= 0 ∧ y2 + y 6= 0

x = 0 x 6= 0

y = 0 y 6= 0 y2 + x 6= 0y2 + x = 0

x = 0 x + 1 = 0

y + 1 = 0 y = 0 y2 + x = 0

y = 0 y2 + y 6= 0 y + 1 = 0 y3 − y 6= 0 y2 + y = 0

(y2 + x)(y2 + y) 6= 0

x2 + x 6= 0

y − 1 = 0

Outline

1 First Idea: Introduce Case Discussion

2 Second Idea: Compute the Decomposition Incrementally

3 Third Idea: Compute CAD of a Variety

4 Implementation and Benchmark

Compute partial cylindrical tree

A partial cylindrical tree induced by the F := {y2 + x = 0, y2 + y = 0} is

x = 0

y = 0

x + 1 = 0

y + 1 = 0

Transform a complex cylindrical decomposition to a real one

Complex :

x = 0

{
y = 0 : y2 + x = 0
y 6= 0 : y2 + x 6= 0

x 6= 0

{
y2 + x = 0 : y2 + x = 0
y2 + x 6= 0 : y2 + x 6= 0

Real :

x < 0

y < −

√
|x| : y2 + x > 0

y = −
√
|x| : y2 + x = 0

y > −
√
|x| ∧ y <

√
|x| : y2 + x < 0

y =
√
|x| : y2 + x = 0

y >
√
|x| : y2 + x > 0

x = 0

 y < 0 : y2 + x > 0
y = 0 : y2 + x = 0
y > 0 : y2 + x > 0

x > 0 for any y : y2 + x > 0

Outline

1 First Idea: Introduce Case Discussion

2 Second Idea: Compute the Decomposition Incrementally

3 Third Idea: Compute CAD of a Variety

4 Implementation and Benchmark

Implementation in Maple

The universe tree is always up-to-date

 0

1 2

3 4 5 6

 0

2

3 4 5 6

7 8

0

7 8 2

9 12 5 6

Split Deep Copy

10 11

A sub-tree evolves with the universe tree

 0

1

4

 0

4

7 8

4

 0

10 12

7 8

A typical sub-algorithm

p, f : polynomials of level n.
S: the subresultant chain S of p and f w.r.t. xn.
s: the principle subresultant coefficients of p and f
d, i : two non-negative integers such that sd is invertible modulo Γ
and sj is zero modulo Γ, for all 0 ≤ j < i.
T : a cylindrical tree of k[x1 < · · · < xn−1]; Γ: a path of T .

A refined tree T such that above each path C of T derived from Γ,
C.leaf.Gcd[p, f] is a GCD of p and f modulo C.

Algorithm 1: RegularGcd(p, f, S, d, i,Γ, T)

if i = d then1

Γ.leaf.Gcd[p, f] := Si; return;2

IntersectPathn−1(si,Γ, T);3

while C := NextPathToDon−1(Γ) 6= ∅ do4

if C.leaf.signs[si] = 1 then5

if i = 0 then C.leaf.Gcd[p, f] := 1 ;6

else C.leaf.Gcd[p, f] := Si7

else RegularGcd(p, f, S, d, i+ 1, C, T)8

tcd-rec : our ISSAC’09 recursive algorithm

tcd-inc : the incremental algorithm

tcd-inc: the incremental algorithm with set of polynomials as input

tcd-eqs: the incremental algorithm with set of equations as input

Conclusion and work in progress

Conclusion

We presented an incremental algorithm for computing CADs.

The core operation of our algorithm is an Intersect operation, which
refines a complex cylindrical tree by means of a polynomial constraint.

The Intersect operation provides a systematic solution for propagating
equational constraints.

For many examples, the incremental outperforms both Qepcad and
Mathematica as well as our previous recursive algorithm.

Work in progress

We have developed a preliminary QE routine Qetcad based on
TCAD.

We are working on different optimizations for both Tcad and
Qetcad.

	First Idea: Introduce Case Discussion
	Second Idea: Compute the Decomposition Incrementally
	Third Idea: Compute CAD of a Variety
	Implementation and Benchmark

