
Counting problems with parametric polyhedral
Sets

Rui-Juan Jing1 Yuzhuo Lei2 Christopher Maligec
Marc Moreno Maza2

1School of Mathematical Sciences, Jiangsu University

2ORCCA (Ontario Research Center for Computer Algebra), UWO, London, Ontario

CASC 2024
September 2, 2024

Plan

Motivations and objectives

Related works

Brion’s formula

Barvinok’s algorithm for non-parametric polyhedra

Examples of integer point counting for parametric polyhedra

Dealing with parametric polyhedra

Concluding remarks

Plan

Motivations and objectives

Related works

Brion’s formula

Barvinok’s algorithm for non-parametric polyhedra

Examples of integer point counting for parametric polyhedra

Dealing with parametric polyhedra

Concluding remarks

Counting memory accesses in a for-loop nest (1/2)

Consider the well-known example SOR (Successive-Over Relaxation)
from the numerical solving of PDEs (Partial differential Equations).

for (i=2, i<N, i++)

for (j=2, j <N, j++)

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] +

a[i][j-1] + a[i][j+1])/6;

▸ The memory slots accessed by the for-loop nest are given by:

{(i +∆i , j +∆j) ∣ −1 ≤∆i −∆j ,∆i +∆j ,≤ 1,2 ≤ i , j ≤ N − 1}

▸ Using standard techniques from Linear Algebra, namely
Fourier-Motzkin elimination (FME), we can rewrite the above set as:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(x , y) ∣

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 ≤ x , y ≤ N
3 ≤ x + y ≤ 2N − 1
2 −N ≤ x − y ≤ N − 2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, for N ≥ 3.

▸ Hence the problem becomes counting the number of integer points
of a parametric polyhedral set PN .

Counting memory accesses in a for-loop nest (1/2)

Consider the well-known example SOR (Successive-Over Relaxation)
from the numerical solving of PDEs (Partial differential Equations).

for (i=2, i<N, i++)

for (j=2, j <N, j++)

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] +

a[i][j-1] + a[i][j+1])/6;

▸ The memory slots accessed by the for-loop nest are given by:

{(i +∆i , j +∆j) ∣ −1 ≤∆i −∆j ,∆i +∆j ,≤ 1,2 ≤ i , j ≤ N − 1}

▸ Using standard techniques from Linear Algebra, namely
Fourier-Motzkin elimination (FME), we can rewrite the above set as:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(x , y) ∣

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 ≤ x , y ≤ N
3 ≤ x + y ≤ 2N − 1
2 −N ≤ x − y ≤ N − 2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, for N ≥ 3.

▸ Hence the problem becomes counting the number of integer points
of a parametric polyhedral set PN .

Counting memory accesses in a for-loop nest (1/2)

Consider the well-known example SOR (Successive-Over Relaxation)
from the numerical solving of PDEs (Partial differential Equations).

for (i=2, i<N, i++)

for (j=2, j <N, j++)

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] +

a[i][j-1] + a[i][j+1])/6;

▸ The memory slots accessed by the for-loop nest are given by:

{(i +∆i , j +∆j) ∣ −1 ≤∆i −∆j ,∆i +∆j ,≤ 1,2 ≤ i , j ≤ N − 1}

▸ Using standard techniques from Linear Algebra, namely
Fourier-Motzkin elimination (FME), we can rewrite the above set as:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(x , y) ∣

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 ≤ x , y ≤ N
3 ≤ x + y ≤ 2N − 1
2 −N ≤ x − y ≤ N − 2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, for N ≥ 3.

▸ Hence the problem becomes counting the number of integer points
of a parametric polyhedral set PN .

Counting memory accesses in a for-loop nest (1/2)

Consider the well-known example SOR (Successive-Over Relaxation)
from the numerical solving of PDEs (Partial differential Equations).

for (i=2, i<N, i++)

for (j=2, j <N, j++)

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] +

a[i][j-1] + a[i][j+1])/6;

▸ The memory slots accessed by the for-loop nest are given by:

{(i +∆i , j +∆j) ∣ −1 ≤∆i −∆j ,∆i +∆j ,≤ 1,2 ≤ i , j ≤ N − 1}

▸ Using standard techniques from Linear Algebra, namely
Fourier-Motzkin elimination (FME), we can rewrite the above set as:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(x , y) ∣

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 ≤ x , y ≤ N
3 ≤ x + y ≤ 2N − 1
2 −N ≤ x − y ≤ N − 2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, for N ≥ 3.

▸ Hence the problem becomes counting the number of integer points
of a parametric polyhedral set PN .

Counting memory accesses in a for-loop nest (2/2)

for (i=2, i<N, i++)

for (j=2, j <N, j++)

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] +

a[i][j-1] + a[i][j+1])/6;

The integer points of the parametric polyhedron PN for N = 5 and N = 10.
We will see later that ∣ P ∩Z2 ∣ = N2 − 4.

Counting memory accesses in a for-loop nest (2/2)

for (i=2, i<N, i++)

for (j=2, j <N, j++)

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] +

a[i][j-1] + a[i][j+1])/6;

The integer points of the parametric polyhedron PN for N = 5 and N = 10.

We will see later that ∣ P ∩Z2 ∣ = N2 − 4.

Counting memory accesses in a for-loop nest (2/2)

for (i=2, i<N, i++)

for (j=2, j <N, j++)

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] +

a[i][j-1] + a[i][j+1])/6;

The integer points of the parametric polyhedron PN for N = 5 and N = 10.
We will see later that ∣ P ∩Z2 ∣ = N2 − 4.

Objective and challenges (1/2)
▸ Parametric polyhedra are used in various applications (optimization

of computer programs, combinatorial optimization).

▸ A polyhedron P is the solution set of a system of linear inequalities:

Ax⃗ ≤ b⃗,

where:

1. A is an m × d matrix of rational numbers,
2. x⃗ is a column vector of n unknowns x1, . . . , xd and
3. b⃗ is a column vector of n coefficients b1, . . . ,bm.

▸ If all b1, . . . ,bm are rational numbers, then P is non-parametric.

▸ If at least one bi is an affine expression in some parameters (e.g.
N − 1) then P is said parametric.

▸ For simplicity, in the sequel, we will see the vector b⃗ as the
parameter of a parametric polyhedron P(b⃗).

Objective
Our goal is, given a parametric polyhedron P(b⃗), to count the number of
its integer points as a function c(b⃗) of the parameter b⃗.

Objective and challenges (1/2)
▸ Parametric polyhedra are used in various applications (optimization

of computer programs, combinatorial optimization).

▸ A polyhedron P is the solution set of a system of linear inequalities:

Ax⃗ ≤ b⃗,

where:

1. A is an m × d matrix of rational numbers,
2. x⃗ is a column vector of n unknowns x1, . . . , xd and
3. b⃗ is a column vector of n coefficients b1, . . . ,bm.

▸ If all b1, . . . ,bm are rational numbers, then P is non-parametric.

▸ If at least one bi is an affine expression in some parameters (e.g.
N − 1) then P is said parametric.

▸ For simplicity, in the sequel, we will see the vector b⃗ as the
parameter of a parametric polyhedron P(b⃗).

Objective
Our goal is, given a parametric polyhedron P(b⃗), to count the number of
its integer points as a function c(b⃗) of the parameter b⃗.

Objective and challenges (1/2)
▸ Parametric polyhedra are used in various applications (optimization

of computer programs, combinatorial optimization).

▸ A polyhedron P is the solution set of a system of linear inequalities:

Ax⃗ ≤ b⃗,

where:

1. A is an m × d matrix of rational numbers,
2. x⃗ is a column vector of n unknowns x1, . . . , xd and
3. b⃗ is a column vector of n coefficients b1, . . . ,bm.

▸ If all b1, . . . ,bm are rational numbers, then P is non-parametric.

▸ If at least one bi is an affine expression in some parameters (e.g.
N − 1) then P is said parametric.

▸ For simplicity, in the sequel, we will see the vector b⃗ as the
parameter of a parametric polyhedron P(b⃗).

Objective
Our goal is, given a parametric polyhedron P(b⃗), to count the number of
its integer points as a function c(b⃗) of the parameter b⃗.

Objective and challenges (1/2)
▸ Parametric polyhedra are used in various applications (optimization

of computer programs, combinatorial optimization).

▸ A polyhedron P is the solution set of a system of linear inequalities:

Ax⃗ ≤ b⃗,

where:

1. A is an m × d matrix of rational numbers,
2. x⃗ is a column vector of n unknowns x1, . . . , xd and
3. b⃗ is a column vector of n coefficients b1, . . . ,bm.

▸ If all b1, . . . ,bm are rational numbers, then P is non-parametric.

▸ If at least one bi is an affine expression in some parameters (e.g.
N − 1) then P is said parametric.

▸ For simplicity, in the sequel, we will see the vector b⃗ as the
parameter of a parametric polyhedron P(b⃗).

Objective
Our goal is, given a parametric polyhedron P(b⃗), to count the number of
its integer points as a function c(b⃗) of the parameter b⃗.

Objective and challenges (1/2)
▸ Parametric polyhedra are used in various applications (optimization

of computer programs, combinatorial optimization).

▸ A polyhedron P is the solution set of a system of linear inequalities:

Ax⃗ ≤ b⃗,

where:

1. A is an m × d matrix of rational numbers,
2. x⃗ is a column vector of n unknowns x1, . . . , xd and
3. b⃗ is a column vector of n coefficients b1, . . . ,bm.

▸ If all b1, . . . ,bm are rational numbers, then P is non-parametric.

▸ If at least one bi is an affine expression in some parameters (e.g.
N − 1) then P is said parametric.

▸ For simplicity, in the sequel, we will see the vector b⃗ as the
parameter of a parametric polyhedron P(b⃗).

Objective
Our goal is, given a parametric polyhedron P(b⃗), to count the number of
its integer points as a function c(b⃗) of the parameter b⃗.

Objective and challenges (1/2)
▸ Parametric polyhedra are used in various applications (optimization

of computer programs, combinatorial optimization).

▸ A polyhedron P is the solution set of a system of linear inequalities:

Ax⃗ ≤ b⃗,

where:

1. A is an m × d matrix of rational numbers,
2. x⃗ is a column vector of n unknowns x1, . . . , xd and
3. b⃗ is a column vector of n coefficients b1, . . . ,bm.

▸ If all b1, . . . ,bm are rational numbers, then P is non-parametric.

▸ If at least one bi is an affine expression in some parameters (e.g.
N − 1) then P is said parametric.

▸ For simplicity, in the sequel, we will see the vector b⃗ as the
parameter of a parametric polyhedron P(b⃗).

Objective
Our goal is, given a parametric polyhedron P(b⃗), to count the number of
its integer points as a function c(b⃗) of the parameter b⃗.

Objective and challenges (2/2)
▸ One challenge is that the shape (vertices, facets, etc.) of the integer

hull of P(b⃗), that is, P(b⃗) ∩Zd , may vary with the values of b⃗.

▸ Consider the parametric polyhedron PN given by:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 ≤ i , j
j ≤ 2i
2i + j ≤ N

▸ The plots below show PN for N = 8,10,12.

▸ Fortunately, Ehrhart Theory tells us that these variations are periodic

▸ Hence, the function c(b⃗) is computable as a piece-wise function.

Objective and challenges (2/2)
▸ One challenge is that the shape (vertices, facets, etc.) of the integer

hull of P(b⃗), that is, P(b⃗) ∩Zd , may vary with the values of b⃗.

▸ Consider the parametric polyhedron PN given by:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 ≤ i , j
j ≤ 2i
2i + j ≤ N

▸ The plots below show PN for N = 8,10,12.

▸ Fortunately, Ehrhart Theory tells us that these variations are periodic

▸ Hence, the function c(b⃗) is computable as a piece-wise function.

Objective and challenges (2/2)
▸ One challenge is that the shape (vertices, facets, etc.) of the integer

hull of P(b⃗), that is, P(b⃗) ∩Zd , may vary with the values of b⃗.

▸ Consider the parametric polyhedron PN given by:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 ≤ i , j
j ≤ 2i
2i + j ≤ N

▸ The plots below show PN for N = 8,10,12.

▸ Fortunately, Ehrhart Theory tells us that these variations are periodic

▸ Hence, the function c(b⃗) is computable as a piece-wise function.

Objective and challenges (2/2)
▸ One challenge is that the shape (vertices, facets, etc.) of the integer

hull of P(b⃗), that is, P(b⃗) ∩Zd , may vary with the values of b⃗.

▸ Consider the parametric polyhedron PN given by:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 ≤ i , j
j ≤ 2i
2i + j ≤ N

▸ The plots below show PN for N = 8,10,12.

▸ Fortunately, Ehrhart Theory tells us that these variations are periodic

▸ Hence, the function c(b⃗) is computable as a piece-wise function.

Plan

Motivations and objectives

Related works

Brion’s formula

Barvinok’s algorithm for non-parametric polyhedra

Examples of integer point counting for parametric polyhedra

Dealing with parametric polyhedra

Concluding remarks

Related works
▸ Given a 2D polyhedral set (= polytope) P, whose

vertices are integer points, Pick’s theorem relates the
area A of P, the number b of integer points on the
border of P, and the number i in the interior of P:

A = i +
b

2
− 1

▸ No generalization of Pick’s theorem to higher
dimension.

▸ By studying the dilation
of polyhedral sets,
Eugène Ehrhart
discovered and studied
the periodic behaviour
of parametric polyhedral
sets.

▸ See Ehrhart polynomial.

▸ Images are from Wikipedia

(fair use category).

https://en.wikipedia.org/wiki/Ehrhart_polynomial

Related works
▸ Given a 2D polyhedral set (= polytope) P, whose

vertices are integer points, Pick’s theorem relates the
area A of P, the number b of integer points on the
border of P, and the number i in the interior of P:

A = i +
b

2
− 1

▸ No generalization of Pick’s theorem to higher
dimension.

▸ By studying the dilation
of polyhedral sets,
Eugène Ehrhart
discovered and studied
the periodic behaviour
of parametric polyhedral
sets.

▸ See Ehrhart polynomial.

▸ Images are from Wikipedia

(fair use category).

https://en.wikipedia.org/wiki/Ehrhart_polynomial

Related works
▸ Given a 2D polyhedral set (= polytope) P, whose

vertices are integer points, Pick’s theorem relates the
area A of P, the number b of integer points on the
border of P, and the number i in the interior of P:

A = i +
b

2
− 1

▸ No generalization of Pick’s theorem to higher
dimension.

▸ By studying the dilation
of polyhedral sets,
Eugène Ehrhart
discovered and studied
the periodic behaviour
of parametric polyhedral
sets.

▸ See Ehrhart polynomial.

▸ Images are from Wikipedia

(fair use category).

https://en.wikipedia.org/wiki/Ehrhart_polynomial

Related works
▸ Given a 2D polyhedral set (= polytope) P, whose

vertices are integer points, Pick’s theorem relates the
area A of P, the number b of integer points on the
border of P, and the number i in the interior of P:

A = i +
b

2
− 1

▸ No generalization of Pick’s theorem to higher
dimension.

▸ By studying the dilation
of polyhedral sets,
Eugène Ehrhart
discovered and studied
the periodic behaviour
of parametric polyhedral
sets.

▸ See Ehrhart polynomial.

▸ Images are from Wikipedia

(fair use category).

https://en.wikipedia.org/wiki/Ehrhart_polynomial

Related works
▸ Given a 2D polyhedral set (= polytope) P, whose

vertices are integer points, Pick’s theorem relates the
area A of P, the number b of integer points on the
border of P, and the number i in the interior of P:

A = i +
b

2
− 1

▸ No generalization of Pick’s theorem to higher
dimension.

▸ By studying the dilation
of polyhedral sets,
Eugène Ehrhart
discovered and studied
the periodic behaviour
of parametric polyhedral
sets.

▸ See Ehrhart polynomial.

▸ Images are from Wikipedia

(fair use category).

https://en.wikipedia.org/wiki/Ehrhart_polynomial

Related works
▸ Given a 2D polyhedral set (= polytope) P, whose

vertices are integer points, Pick’s theorem relates the
area A of P, the number b of integer points on the
border of P, and the number i in the interior of P:

A = i +
b

2
− 1

▸ No generalization of Pick’s theorem to higher
dimension.

▸ By studying the dilation
of polyhedral sets,
Eugène Ehrhart
discovered and studied
the periodic behaviour
of parametric polyhedral
sets.

▸ See Ehrhart polynomial.

▸ Images are from Wikipedia

(fair use category).

https://en.wikipedia.org/wiki/Ehrhart_polynomial

Plan

Motivations and objectives

Related works

Brion’s formula

Barvinok’s algorithm for non-parametric polyhedra

Examples of integer point counting for parametric polyhedra

Dealing with parametric polyhedra

Concluding remarks

Generating function of a polyhedral set (1/4)
▸ Consider a polyhedral set P ⊆ Qd .

▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial
xe = x1

e1⋯xd
ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal power series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

Generating function of a polyhedral set (1/4)
▸ Consider a polyhedral set P ⊆ Qd .
▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial

xe = x1
e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal power series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

Generating function of a polyhedral set (1/4)
▸ Consider a polyhedral set P ⊆ Qd .
▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial

xe = x1
e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal power series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

Generating function of a polyhedral set (1/4)
▸ Consider a polyhedral set P ⊆ Qd .
▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial

xe = x1
e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal power series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

Generating function of a polyhedral set (1/4)
▸ Consider a polyhedral set P ⊆ Qd .
▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial

xe = x1
e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal power series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

Generating function of a polyhedral set (1/4)
▸ Consider a polyhedral set P ⊆ Qd .
▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial

xe = x1
e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal power series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

Generating function of a polyhedral set (1/4)
▸ Consider a polyhedral set P ⊆ Qd .
▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial

xe = x1
e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal power series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

Generating function of a polyhedral set (1/4)
▸ Consider a polyhedral set P ⊆ Qd .
▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial

xe = x1
e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal power series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

Generating function of a polyhedral set (1/4)
▸ Consider a polyhedral set P ⊆ Qd .
▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial

xe = x1
e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal power series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

Generating function of a polyhedral set (1/4)
▸ Consider a polyhedral set P ⊆ Qd .
▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial

xe = x1
e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal power series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =

1

1 − x
.

Generating function of a polyhedral set (1/4)
▸ Consider a polyhedral set P ⊆ Qd .
▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial

xe = x1
e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal power series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0
=

n=∞
∑
n=0

xn =
1

1 − x
.

Generating function of a polyhedral set (2/4)
With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) =

∑
m,n≥0

xmyn
= (

n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn
) =

1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) =

(∑
m≥0

xm)(∑
n≤2

yn
) = (∑

m≥0
xm) y2

(∑
n≥0
(y−1)n) =

1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)
With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) =

∑
m,n≥0

xmyn
= (

n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn
) =

1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) =

(∑
m≥0

xm)(∑
n≤2

yn
) = (∑

m≥0
xm) y2

(∑
n≥0
(y−1)n) =

1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)
With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn
=

(
n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn
) =

1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) =

(∑
m≥0

xm)(∑
n≤2

yn
) = (∑

m≥0
xm) y2

(∑
n≥0
(y−1)n) =

1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)
With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn
= (

n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn
) =

1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) =

(∑
m≥0

xm)(∑
n≤2

yn
) = (∑

m≥0
xm) y2

(∑
n≥0
(y−1)n) =

1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)
With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn
= (

n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn
) =

1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) =

(∑
m≥0

xm)(∑
n≤2

yn
) = (∑

m≥0
xm) y2

(∑
n≥0
(y−1)n) =

1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)
With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn
= (

n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn
) =

1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) =

(∑
m≥0

xm)(∑
n≤2

yn
) = (∑

m≥0
xm) y2

(∑
n≥0
(y−1)n) =

1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)
With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn
= (

n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn
) =

1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) = (∑
m≥0

xm)(∑
n≤2

yn
) =

(∑
m≥0

xm) y2
(∑
n≥0
(y−1)n) =

1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)
With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn
= (

n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn
) =

1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) = (∑
m≥0

xm)(∑
n≤2

yn
) = (∑

m≥0
xm) y2

(∑
n≥0
(y−1)n) =

1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)
With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn
= (

n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn
) =

1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) = (∑
m≥0

xm)(∑
n≤2

yn
) = (∑

m≥0
xm) y2

(∑
n≥0
(y−1)n) =

1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)
Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) =

x4y2
(∑
n≤m≤0

xmyn
) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) =

x4y0 ⎛

⎝
∑

0≤n,m≤n
xmyn⎞

⎠
=

x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) we have:

G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)
Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) =

x4y2
(∑
n≤m≤0

xmyn
) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) =

x4y0 ⎛

⎝
∑

0≤n,m≤n
xmyn⎞

⎠
=

x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) we have:

G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)
Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x
4y2
(∑
n≤m≤0

xmyn
) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) =

x4y0 ⎛

⎝
∑

0≤n,m≤n
xmyn⎞

⎠
=

x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) we have:

G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)
Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x
4y2
(∑
n≤m≤0

xmyn
) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) =

x4y0 ⎛

⎝
∑

0≤n,m≤n
xmyn⎞

⎠
=

x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) we have:

G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)
Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x
4y2
(∑
n≤m≤0

xmyn
) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) =

x4y0 ⎛

⎝
∑

0≤n,m≤n
xmyn⎞

⎠
=

x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) we have:

G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)
Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x
4y2
(∑
n≤m≤0

xmyn
) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x
4y0 ⎛

⎝
∑

0≤n,m≤n
xmyn⎞

⎠
=

x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) we have:

G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)
Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x
4y2
(∑
n≤m≤0

xmyn
) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x
4y0 ⎛

⎝
∑

0≤n,m≤n
xmyn⎞

⎠
=

x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) we have:

G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)
Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x
4y2
(∑
n≤m≤0

xmyn
) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x
4y0 ⎛

⎝
∑

0≤n,m≤n
xmyn⎞

⎠
=

x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) we have:

G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)
Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x
4y2
(∑
n≤m≤0

xmyn
) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x
4y0 ⎛

⎝
∑

0≤n,m≤n
xmyn⎞

⎠
=

x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) we have:

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)
Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x
4y2
(∑
n≤m≤0

xmyn
) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x
4y0 ⎛

⎝
∑

0≤n,m≤n
xmyn⎞

⎠
=

x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) we have:

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)

= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)
Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x
4y2
(∑
n≤m≤0

xmyn
) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x
4y0 ⎛

⎝
∑

0≤n,m≤n
xmyn⎞

⎠
=

x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) we have:

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)
Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x
4y2
(∑
n≤m≤0

xmyn
) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x
4y0 ⎛

⎝
∑

0≤n,m≤n
xmyn⎞

⎠
=

x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) we have:

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Plan

Motivations and objectives

Related works

Brion’s formula

Barvinok’s algorithm for non-parametric polyhedra

Examples of integer point counting for parametric polyhedra

Dealing with parametric polyhedra

Concluding remarks

Recall Brion’s formula

▸ This formula asserts that for a polytope P ⊆ Qd its generating
function is the sum of the generating functions of its corners (=
vertex cones)

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x)

▸ Our previous calculations used two facts

1. In dimension d = 2, every cone is simplicial that is, can be generated
by d rays,

2. The cones Q2,Q3,Q4 are unimodular, that is, the sums of the power
series G(Q2, x), G(Q3, x), G(Q4, x) can be deduced from that of
G(Q1, x) (the first quadrant) by means of unimodular
transformations (that is, mapping integer vectors to integer vectors).

Recall Brion’s formula

▸ This formula asserts that for a polytope P ⊆ Qd its generating
function is the sum of the generating functions of its corners (=
vertex cones)

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x)
▸ Our previous calculations used two facts

1. In dimension d = 2, every cone is simplicial that is, can be generated
by d rays,

2. The cones Q2,Q3,Q4 are unimodular, that is, the sums of the power
series G(Q2, x), G(Q3, x), G(Q4, x) can be deduced from that of
G(Q1, x) (the first quadrant) by means of unimodular
transformations (that is, mapping integer vectors to integer vectors).

Recall Brion’s formula

▸ This formula asserts that for a polytope P ⊆ Qd its generating
function is the sum of the generating functions of its corners (=
vertex cones)

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x)
▸ Our previous calculations used two facts

1. In dimension d = 2, every cone is simplicial that is, can be generated
by d rays,

2. The cones Q2,Q3,Q4 are unimodular, that is, the sums of the power
series G(Q2, x), G(Q3, x), G(Q4, x) can be deduced from that of
G(Q1, x) (the first quadrant) by means of unimodular
transformations (that is, mapping integer vectors to integer vectors).

Recall Brion’s formula

▸ This formula asserts that for a polytope P ⊆ Qd its generating
function is the sum of the generating functions of its corners (=
vertex cones)

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x)
▸ Our previous calculations used two facts

1. In dimension d = 2, every cone is simplicial that is, can be generated
by d rays,

2. The cones Q2,Q3,Q4 are unimodular, that is, the sums of the power
series G(Q2, x), G(Q3, x), G(Q4, x) can be deduced from that of
G(Q1, x) (the first quadrant) by means of unimodular
transformations (that is, mapping integer vectors to integer vectors).

Barvinok’s algorithm
▸ In dimension d , one can decompose any cone into simplicial cones

(= cones generated by d rays),

▸ Alexander Barvinok (1994) proposed an algorithm to decompose any
simplicial cones into unimodular cones,

▸ consequently, Barvinok has found the first algorithm to compute
G(P,x),

▸ Moreover, Barvinok’s algorithm runs in polynomial time for a
fixed d .

Barvinok’s algorithm
▸ In dimension d , one can decompose any cone into simplicial cones

(= cones generated by d rays),

▸ Alexander Barvinok (1994) proposed an algorithm to decompose any
simplicial cones into unimodular cones,

▸ consequently, Barvinok has found the first algorithm to compute
G(P,x),

▸ Moreover, Barvinok’s algorithm runs in polynomial time for a
fixed d .

Barvinok’s algorithm
▸ In dimension d , one can decompose any cone into simplicial cones

(= cones generated by d rays),

▸ Alexander Barvinok (1994) proposed an algorithm to decompose any
simplicial cones into unimodular cones,

▸ consequently, Barvinok has found the first algorithm to compute
G(P,x),

▸ Moreover, Barvinok’s algorithm runs in polynomial time for a
fixed d .

Barvinok’s algorithm
▸ In dimension d , one can decompose any cone into simplicial cones

(= cones generated by d rays),

▸ Alexander Barvinok (1994) proposed an algorithm to decompose any
simplicial cones into unimodular cones,

▸ consequently, Barvinok has found the first algorithm to compute
G(P,x),

▸ Moreover, Barvinok’s algorithm runs in polynomial time for a
fixed d .

Plan

Motivations and objectives

Related works

Brion’s formula

Barvinok’s algorithm for non-parametric polyhedra

Examples of integer point counting for parametric polyhedra

Dealing with parametric polyhedra

Concluding remarks

Sanity-check examples

Example (1)
Input:

{1 ≤ i ,1 ≤ j , i ≤ n, j ≤ n}

Output:

[[{n2}, [0 ≤ n − 1]]]

Example (3)
Input:

{1 ≤ i ,1 ≤ j , i + j ≤ n,0 ≤ n}

Output:

[[{ n
2

2
− n

2
}, [0 ≤ n − 2]]]

Sanity-check examples

Example (1)
Input:

{1 ≤ i ,1 ≤ j , i ≤ n, j ≤ n}

Output:

[[{n2}, [0 ≤ n − 1]]]

Example (3)
Input:

{1 ≤ i ,1 ≤ j , i + j ≤ n,0 ≤ n}

Output:

[[{ n
2

2
− n

2
}, [0 ≤ n − 2]]]

Examples with several parameters
Example (4)
Input:

{1 ≤ i , i ≤ n, i ≤ m,1 ≤ j , j ≤ i}

Output:

[[{1}, [m − 1 = 0,0 ≤ n − 2]],

[{ n
2

2
+ n

2
}, [0 ≤ m − n,0 ≤ n − 1]],

[{m
2

2
+ m

2
}, [0 ≤ m − 2,0 ≤ n − 3,0 ≤ −m + n − 1]]]

Example (5)
Input:

{1 ≤ i , i ≤ n, i ≤ m,1 ≤ j , j ≤ p}

Output:

[[{pm}, [n −m ≥ 1,p − 2 ≥ 0,m − 1 ≥ 0]],
[{pn}, [m − n ≥ 0,n − 2 ≥ 0,p − 1 ≥ 0]],
[{1}, [n − 1 = 0,p − 1 = 0,0 ≤ m − 1]],
[{p}, [m − 1 = 0,0 ≤ −2 + n,0 ≤ p − 1]]]

Examples with several parameters
Example (4)
Input:

{1 ≤ i , i ≤ n, i ≤ m,1 ≤ j , j ≤ i}

Output:

[[{1}, [m − 1 = 0,0 ≤ n − 2]],

[{ n
2

2
+ n

2
}, [0 ≤ m − n,0 ≤ n − 1]],

[{m
2

2
+ m

2
}, [0 ≤ m − 2,0 ≤ n − 3,0 ≤ −m + n − 1]]]

Example (5)
Input:

{1 ≤ i , i ≤ n, i ≤ m,1 ≤ j , j ≤ p}

Output:

[[{pm}, [n −m ≥ 1,p − 2 ≥ 0,m − 1 ≥ 0]],
[{pn}, [m − n ≥ 0,n − 2 ≥ 0,p − 1 ≥ 0]],
[{1}, [n − 1 = 0,p − 1 = 0,0 ≤ m − 1]],
[{p}, [m − 1 = 0,0 ≤ −2 + n,0 ≤ p − 1]]]

Examples with quasi-polynomials

Example (6)
Input:

{1 ≤ i , j ≤ n,2i ≤ 3j}

Output:

[[{Q([n,2, [3n
2

4
+ n

2
,−1/4 + 3n2

4
+ n

2
]])}, [1 ≤ n]]]

Example (7)
Input:

{0 ≤ i ,0 ≤ j , j ≤ 2i ,2i + j ≤ n}

Output:

[[{Q([n,4, [1 + n
2
+ n2

8
,3/8 + n

2
+ n2

8
,1/2 + n

2
+ n2

8
,3/8 + n

2
+ n2

8
]])},

[0 ≤ n − 1]],
[{1}, [n = 0]]]

Examples with quasi-polynomials

Example (6)
Input:

{1 ≤ i , j ≤ n,2i ≤ 3j}

Output:

[[{Q([n,2, [3n
2

4
+ n

2
,−1/4 + 3n2

4
+ n

2
]])}, [1 ≤ n]]]

Example (7)
Input:

{0 ≤ i ,0 ≤ j , j ≤ 2i ,2i + j ≤ n}

Output:

[[{Q([n,4, [1 + n
2
+ n2

8
,3/8 + n

2
+ n2

8
,1/2 + n

2
+ n2

8
,3/8 + n

2
+ n2

8
]])},

[0 ≤ n − 1]],
[{1}, [n = 0]]]

Plan

Motivations and objectives

Related works

Brion’s formula

Barvinok’s algorithm for non-parametric polyhedra

Examples of integer point counting for parametric polyhedra

Dealing with parametric polyhedra

Concluding remarks

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1. Vertices(P(b⃗)) determines the vertices of P(b⃗)

1.1 Yields to solve a (large) number of parametric linear systems, which
are independent problems

1.2 Their results need to be merged into a single case discussion

2. Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

2.1 Same challenges!
2.2 And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3. GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

3.1 since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

3.2 thanks the periodicity of things, quasi-polynomials solve the issue.

4. NumberOfIntegerPoints(P(b⃗))

4.1 Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1. Vertices(P(b⃗)) determines the vertices of P(b⃗)

1.1 Yields to solve a (large) number of parametric linear systems, which
are independent problems

1.2 Their results need to be merged into a single case discussion

2. Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

2.1 Same challenges!
2.2 And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3. GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

3.1 since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

3.2 thanks the periodicity of things, quasi-polynomials solve the issue.

4. NumberOfIntegerPoints(P(b⃗))

4.1 Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1. Vertices(P(b⃗)) determines the vertices of P(b⃗)

1.1 Yields to solve a (large) number of parametric linear systems, which
are independent problems

1.2 Their results need to be merged into a single case discussion

2. Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

2.1 Same challenges!
2.2 And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3. GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

3.1 since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

3.2 thanks the periodicity of things, quasi-polynomials solve the issue.

4. NumberOfIntegerPoints(P(b⃗))

4.1 Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1. Vertices(P(b⃗)) determines the vertices of P(b⃗)

1.1 Yields to solve a (large) number of parametric linear systems, which
are independent problems

1.2 Their results need to be merged into a single case discussion

2. Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

2.1 Same challenges!
2.2 And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3. GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

3.1 since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

3.2 thanks the periodicity of things, quasi-polynomials solve the issue.

4. NumberOfIntegerPoints(P(b⃗))

4.1 Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1. Vertices(P(b⃗)) determines the vertices of P(b⃗)

1.1 Yields to solve a (large) number of parametric linear systems, which
are independent problems

1.2 Their results need to be merged into a single case discussion

2. Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

2.1 Same challenges!

2.2 And, at the end, many sets of cases of the case discussion can be
replaced by a single case, that is, doing recombination.

3. GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

3.1 since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

3.2 thanks the periodicity of things, quasi-polynomials solve the issue.

4. NumberOfIntegerPoints(P(b⃗))

4.1 Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1. Vertices(P(b⃗)) determines the vertices of P(b⃗)

1.1 Yields to solve a (large) number of parametric linear systems, which
are independent problems

1.2 Their results need to be merged into a single case discussion

2. Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

2.1 Same challenges!
2.2 And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3. GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

3.1 since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

3.2 thanks the periodicity of things, quasi-polynomials solve the issue.

4. NumberOfIntegerPoints(P(b⃗))

4.1 Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1. Vertices(P(b⃗)) determines the vertices of P(b⃗)

1.1 Yields to solve a (large) number of parametric linear systems, which
are independent problems

1.2 Their results need to be merged into a single case discussion

2. Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

2.1 Same challenges!
2.2 And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3. GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

3.1 since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

3.2 thanks the periodicity of things, quasi-polynomials solve the issue.

4. NumberOfIntegerPoints(P(b⃗))

4.1 Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1. Vertices(P(b⃗)) determines the vertices of P(b⃗)

1.1 Yields to solve a (large) number of parametric linear systems, which
are independent problems

1.2 Their results need to be merged into a single case discussion

2. Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

2.1 Same challenges!
2.2 And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3. GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

3.1 since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

3.2 thanks the periodicity of things, quasi-polynomials solve the issue.

4. NumberOfIntegerPoints(P(b⃗))

4.1 Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1. Vertices(P(b⃗)) determines the vertices of P(b⃗)

1.1 Yields to solve a (large) number of parametric linear systems, which
are independent problems

1.2 Their results need to be merged into a single case discussion

2. Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

2.1 Same challenges!
2.2 And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3. GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

3.1 since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

3.2 thanks the periodicity of things, quasi-polynomials solve the issue.

4. NumberOfIntegerPoints(P(b⃗))

4.1 Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1. Vertices(P(b⃗)) determines the vertices of P(b⃗)

1.1 Yields to solve a (large) number of parametric linear systems, which
are independent problems

1.2 Their results need to be merged into a single case discussion

2. Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

2.1 Same challenges!
2.2 And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3. GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

3.1 since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

3.2 thanks the periodicity of things, quasi-polynomials solve the issue.

4. NumberOfIntegerPoints(P(b⃗))

4.1 Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1. Vertices(P(b⃗)) determines the vertices of P(b⃗)

1.1 Yields to solve a (large) number of parametric linear systems, which
are independent problems

1.2 Their results need to be merged into a single case discussion

2. Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

2.1 Same challenges!
2.2 And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3. GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

3.1 since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

3.2 thanks the periodicity of things, quasi-polynomials solve the issue.

4. NumberOfIntegerPoints(P(b⃗))

4.1 Putting everything together requires computing with multivariate
quasi-polynomials.

Generic case discussion (1/3)

1. Let A,B,V be 3 non-empty sets

2. Let F be a non-empty set of functions from A to B.

3. Let P be a non-empty set of predicates on B. closed under negation.

4. A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (1)

while its negation is ¬c ∶= (f ,¬p).

5. The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6. A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (2)

7. A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8. A value-constraints pair is any pair (V ,C) where V ⊆ V and C is
a system of constraints.

Generic case discussion (1/3)

1. Let A,B,V be 3 non-empty sets

2. Let F be a non-empty set of functions from A to B.

3. Let P be a non-empty set of predicates on B. closed under negation.

4. A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (1)

while its negation is ¬c ∶= (f ,¬p).

5. The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6. A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (2)

7. A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8. A value-constraints pair is any pair (V ,C) where V ⊆ V and C is
a system of constraints.

Generic case discussion (1/3)

1. Let A,B,V be 3 non-empty sets

2. Let F be a non-empty set of functions from A to B.

3. Let P be a non-empty set of predicates on B. closed under negation.

4. A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (1)

while its negation is ¬c ∶= (f ,¬p).

5. The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6. A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (2)

7. A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8. A value-constraints pair is any pair (V ,C) where V ⊆ V and C is
a system of constraints.

Generic case discussion (1/3)

1. Let A,B,V be 3 non-empty sets

2. Let F be a non-empty set of functions from A to B.

3. Let P be a non-empty set of predicates on B. closed under negation.

4. A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (1)

while its negation is ¬c ∶= (f ,¬p).

5. The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6. A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (2)

7. A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8. A value-constraints pair is any pair (V ,C) where V ⊆ V and C is
a system of constraints.

Generic case discussion (1/3)

1. Let A,B,V be 3 non-empty sets

2. Let F be a non-empty set of functions from A to B.

3. Let P be a non-empty set of predicates on B. closed under negation.

4. A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (1)

while its negation is ¬c ∶= (f ,¬p).

5. The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6. A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (2)

7. A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8. A value-constraints pair is any pair (V ,C) where V ⊆ V and C is
a system of constraints.

Generic case discussion (1/3)

1. Let A,B,V be 3 non-empty sets

2. Let F be a non-empty set of functions from A to B.

3. Let P be a non-empty set of predicates on B. closed under negation.

4. A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (1)

while its negation is ¬c ∶= (f ,¬p).

5. The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6. A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (2)

7. A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8. A value-constraints pair is any pair (V ,C) where V ⊆ V and C is
a system of constraints.

Generic case discussion (1/3)

1. Let A,B,V be 3 non-empty sets

2. Let F be a non-empty set of functions from A to B.

3. Let P be a non-empty set of predicates on B. closed under negation.

4. A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (1)

while its negation is ¬c ∶= (f ,¬p).

5. The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6. A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (2)

7. A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8. A value-constraints pair is any pair (V ,C) where V ⊆ V and C is
a system of constraints.

Generic case discussion (1/3)

1. Let A,B,V be 3 non-empty sets

2. Let F be a non-empty set of functions from A to B.

3. Let P be a non-empty set of predicates on B. closed under negation.

4. A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (1)

while its negation is ¬c ∶= (f ,¬p).

5. The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6. A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (2)

7. A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8. A value-constraints pair is any pair (V ,C) where V ⊆ V and C is
a system of constraints.

Generic case discussion (2/3)

1. Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2. S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3. S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4. Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5. We say that T refines S whenever the following 3 properties all
hold:

5.1 we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
5.2 we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

5.3 (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6. We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7. Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1. Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2. S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3. S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4. Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5. We say that T refines S whenever the following 3 properties all
hold:

5.1 we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
5.2 we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

5.3 (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6. We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7. Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1. Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2. S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3. S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4. Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5. We say that T refines S whenever the following 3 properties all
hold:

5.1 we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
5.2 we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

5.3 (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6. We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7. Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1. Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2. S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3. S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4. Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5. We say that T refines S whenever the following 3 properties all
hold:

5.1 we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
5.2 we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

5.3 (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6. We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7. Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1. Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2. S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3. S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4. Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5. We say that T refines S whenever the following 3 properties all
hold:

5.1 we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),

5.2 we have: ⋃e
i=1 Vi = ⋃f

i=1Wi ,
5.3 (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6. We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7. Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1. Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2. S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3. S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4. Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5. We say that T refines S whenever the following 3 properties all
hold:

5.1 we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
5.2 we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

5.3 (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6. We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7. Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1. Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2. S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3. S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4. Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5. We say that T refines S whenever the following 3 properties all
hold:

5.1 we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
5.2 we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

5.3 (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6. We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7. Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1. Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2. S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3. S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4. Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5. We say that T refines S whenever the following 3 properties all
hold:

5.1 we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
5.2 we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

5.3 (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6. We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7. Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1. Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2. S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3. S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4. Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5. We say that T refines S whenever the following 3 properties all
hold:

5.1 we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
5.2 we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

5.3 (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6. We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7. Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

“Generic” case discussion (3/3)

1. Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.

2. Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3. Consider two systems of constraints C1 and C2

4. For each constraint γ ∶ p(x) ≥ 0 of C1

4.1 γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
4.2 γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
4.3 γ is cut over C2 if γ neither valid nor separating over C2.
4.4 If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5. Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1. Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.

2. Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3. Consider two systems of constraints C1 and C2

4. For each constraint γ ∶ p(x) ≥ 0 of C1

4.1 γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
4.2 γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
4.3 γ is cut over C2 if γ neither valid nor separating over C2.
4.4 If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5. Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1. Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.

2. Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3. Consider two systems of constraints C1 and C2

4. For each constraint γ ∶ p(x) ≥ 0 of C1

4.1 γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
4.2 γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
4.3 γ is cut over C2 if γ neither valid nor separating over C2.
4.4 If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5. Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1. Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.

2. Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3. Consider two systems of constraints C1 and C2

4. For each constraint γ ∶ p(x) ≥ 0 of C1

4.1 γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
4.2 γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
4.3 γ is cut over C2 if γ neither valid nor separating over C2.
4.4 If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5. Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1. Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.

2. Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3. Consider two systems of constraints C1 and C2

4. For each constraint γ ∶ p(x) ≥ 0 of C1

4.1 γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)

4.2 γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
4.3 γ is cut over C2 if γ neither valid nor separating over C2.
4.4 If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5. Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1. Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.

2. Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3. Consider two systems of constraints C1 and C2

4. For each constraint γ ∶ p(x) ≥ 0 of C1

4.1 γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
4.2 γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)

4.3 γ is cut over C2 if γ neither valid nor separating over C2.
4.4 If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5. Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1. Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.

2. Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3. Consider two systems of constraints C1 and C2

4. For each constraint γ ∶ p(x) ≥ 0 of C1

4.1 γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
4.2 γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
4.3 γ is cut over C2 if γ neither valid nor separating over C2.

4.4 If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a
constraint of C2, then (p,u) is a pair of adjacent inequalities.

5. Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1. Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.

2. Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3. Consider two systems of constraints C1 and C2

4. For each constraint γ ∶ p(x) ≥ 0 of C1

4.1 γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
4.2 γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
4.3 γ is cut over C2 if γ neither valid nor separating over C2.
4.4 If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5. Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1. Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.

2. Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3. Consider two systems of constraints C1 and C2

4. For each constraint γ ∶ p(x) ≥ 0 of C1

4.1 γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
4.2 γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
4.3 γ is cut over C2 if γ neither valid nor separating over C2.
4.4 If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5. Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

Plan

Motivations and objectives

Related works

Brion’s formula

Barvinok’s algorithm for non-parametric polyhedra

Examples of integer point counting for parametric polyhedra

Dealing with parametric polyhedra

Concluding remarks

Concluding remarks

Summary and notes

1. We have presented Brion’s formula and Barvinok’s algorithm for
computing the number of integer points of a polytope.

2. We have discussed our adaptation of those works to the case of
parametric polyhedra and its implementation in Maple.

3. Another adaptation to this parametric case, tailored to compiler
optimization, was led by Sven Verdoolaege and is part of a C library
called barvinok.

Work in progress

1. Our Maple implementation aims at supporting Presburger
arithmetic

2. This implementation is designed to extend to parametric polyhedra
Ax⃗ ≤ b⃗ where parameters appear not only in b⃗ but also in A.

3. Our current work focuses on minimizing the number of cases in the
discussion and controlling expression swell.

References

[1] A. Barvinok. A course in convexity. Vol. 54. American
Mathematical Soc., 2002.

[2] A. Barvinok and J. E. Pommersheim. “An algorithmic theory of
lattice points in polyhedra”. In: New perspectives in algebraic
combinatorics 38 (1999), pp. 91–147.

[3] A. I. Barvinok. “A polynomial time algorithm for counting integral
points in polyhedra when the dimension is fixed”. In: Mathematics
of Operations Research 19.4 (1994), pp. 769–779.

[4] M. Beck, C. Haase, and F. Sottile. “Formulas of Brion, Lawrence,
and Varchenko on rational generating functions for cones”. In:
Math. Intelligencer 31.1 (2009), pp. 9–17.

[5] M. Beck, S. V. Sam, and K. M. Woods. “Maximal periods of
Ehrhart quasi-polynomials”. In: Journal of Combinatorial Theory,
Series A 115.3 (2008), pp. 517–525.

[6] A. Bemporad, K. Fukuda, and F. D. Torrisi. “Convexity recognition
of the union of polyhedra”. In: Computational Geometry 18.3
(2001), pp. 141–154. issn: 0925-7721.

[7] M. Brion. “Points entiers dans les polyedres convexes”. In: Annales
scientifiques de l’École normale supérieure. Vol. 21. 4. 1988,
pp. 653–663.

[8] R. Jing and M. Moreno Maza. “Computing the Integer Points of a
Polyhedron, I: Algorithm”. In: CASC 2017, Proceedings.
Vol. 10490. LNCS. Springer, 2017, pp. 225–241.

[9] V. Loechner and D. K. Wilde. “Parameterized polyhedra and their
vertices”. In: International Journal of Parallel Programming 25
(1997), pp. 525–549.

[10] J. A. D. Loera, R. Hemmecke, J. Tauzer, and R. Yoshida.
“Effective lattice point counting in rational convex polytopes”. In:
J. Symb. Comput. 38.4 (2004), pp. 1273–1302.

[11] S. Verdoolaege. “Integer set coalescing”. In: International
Workshop on Polyhedral Compilation Techniques, Date:
2015/01/19-2015/01/19, Location: Amsterdam, The Netherlands.
2015.

[12] K. Woods. “The unreasonable ubiquitousness of
quasi-polynomials”. In: The Electronic Journal of Combinatorics
21.1 (2014), P1–44.

	Motivations and objectives
	Related works
	Brion's formula
	Barvinok's algorithm for non-parametric polyhedra
	Examples of integer point counting for parametric polyhedra
	Dealing with parametric polyhedra
	Concluding remarks

