
Efficient detection of redundancies in systems of
linear inequalities

Rui-Juan Jing1 Marc Moreno Maza2 Yan-Feng Xie3

Chun-Ming Yuan3

1School of Mathematical Sciences, Jiangsu University

2Ontario Research Center for Computer Algebra, UWO, London, Ontario

3KLMM, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences,
Beijing

July 18, 2024
17/07/2024, 17:09 Mail - Marc Moreno Maza - Outlook

https://outlook.office.com/mail/inbox/id/AAQkAGMwN2ViYjg1LWRmMmUtNGUwZi04MjkxLTM0NDg5YWFjMTE3YwAQAOX1lYJnt9NBonT… 1/1



Plan

Overview

Redundant inequalities

Efficient removal of redundant inequalities

Algorithms

Implementation techniques

Experimentation

Complexity Estimates

Concluding remarks



⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1



⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1



⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1



⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1



⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1



Application of FME: code generation

f o r ( i =0; i<=n ; i ++){
c [ i ] = 0 ; c [ i+n ] = 0 ;
f o r ( j =0; j<=n ; j++)

c [ i+j ] += a [ i ]∗ b [ j ] ;
}

p a r a l l e l f o r ( p=0; p<=2∗n ; p++){
c [ p ] = 0 ;
f o r ( t=max (0 , n−p ) ;

t<=min (n ,2∗ n−p ) ; t++)
c [ p ] += A[ t+p−n ] ∗ B[ n−t ] ;

}

The new representation allows us to
generate the multithreaded code.
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t = n − j
p = i + j
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j = −t + n
t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .
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Application of FME: computing integer hulls (1/3)

The input polyhedral set:
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−98877x1 − 189663x2 − 1798x3 ≤ 705915
−10109x1 − 5958x2 − 14601x3 ≤ 31333
−5405x1 + 4965x2 + 3870x3 ≤ 4303504

729x1 − 117x2 + 350x3 ≤ 4561
677x1 + 465x2 − 540x3 ≤ 3489

Normalization (leaves the integer
hull unchanged):
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−1081x1 + 993x2 + 774x3 ≤ 860700
729x1 − 117x2 + 350x3 ≤ 4561
677x1 + 465x2 − 540x3 ≤ 3489
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Application of FME: computing integer hulls (2/3)

1. The red is an approximation of the integer hull of the input.
2. The integer hulls of border regions (green, blue, purple) are

brute-force computed via FME.
3. Then QuickHull is applied to obtain the integer hull of the input.



Application of FME: computing integer hulls (3/3)

The input has only 5 vertices.
Its integer hull has 139 vertices.

All details are in https://ir.lib.uwo.ca/etd/8985/ and in
https://doi.org/10.1007/978-3-031-14788-3 14

https://ir.lib.uwo.ca/etd/8985/
https://doi.org/10.1007/978-3-031-14788-3_14
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Polyhedral sets
1. A polyhedral set P is any {x ∣ Ax ≤ b}, where A ∈ Qm×n and b ∈ Qm.

Such a linear system is called an H-representation of P.

2. P is full-dimensional whenever dim(P) = n
3. An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for

all x ∈ P.
4. Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5. The polyhedron P is said pointed, if A is full column rank.

6. From now, P is full-dimensional and pointed.

7. Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8. A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).
9. The characteristic cone of P is the polyhedral cone CharCone(P)

represented by {Ax ≤ 0}.
10. Every polyhedral cone has a unique representation as a conical hull

of its extremal generators, called the extreme rays of P.

11. Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12. Let V and R denote the set of vertices and extreme rays of P.
Then, the pair VR(F ) ∶= (V ,R) is called a V-representation of P.
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An unbounded polyhedral set and its representations

The open cube P ∶= {(x , y , z) ∣ − z ≤ 1,0 ≤ x ≤ 1,0 ≤ y ≤ 1} shown above
has 4 vertices v1,v2,v3,v4 and extreme ray r.



Redundant inequalities, the saturation matrix
1. Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.

2. Fix an inequality ℓ ∶ atx ≤ b of F
3. Denote by Hℓ the hyperplane atx = b.
4. Recall V and R are the vertices and rays of P. Let k ∶=#VR(F ).

Definition
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,
▸ strongly redundant in F , if atx < b holds for all x ∈ P,
▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition

▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that
is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of VR(F ) saturates the i-th inequality of F .
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A bounded polyhedral set and its the saturation matrix

F

ℓ1 ∶ x + y ≤ 1
ℓ2 ∶ −x − y ≤ 1
ℓ3 ∶ x − y ≤ 1
ℓ4 ∶ −x + y ≤ 1

VR(F )
v1 ∶ (0,1)
v2 ∶ (1,0)
v3 ∶ (−1,0)
v4 ∶ (0,−1)

satM(F )
v1 v2 v3 v4

ℓ1 1 1 0 0
ℓ2 0 0 1 1
ℓ3 0 1 0 1
ℓ4 1 0 1 0



Basic redundancy check

1. Denote by VR(F ) ∩Hℓ the vertices and rays in VR(F ) saturating
the hyperplane Hℓ.

2. Write VR(F ) ∩Hℓ ∶= ({v1,v2, . . . ,vt},{r1, r2, . . . , rs}), where vi ’s
are vertices and rj ’s are rays.

3. The affine rank of VR(F ) ∩Hℓ is the rank of the matrix

[v2 − v1,v3 − v1, . . . ,vt − v1, r1, r2, . . . , rs].

With these notations, we have the following lemma. We note that any
permutation (v1,v2, . . . ,vt) would leave this result unchanged.

Lemma

Assume the inequalities of F define hyperplanes that are pairwise
different. Then, the following conditions are equivalent:

1. The inequality ℓ ∈ F is irredundant,

2. Hℓ ∩ P is a facet of the polyhedron P.

3. The affine rank of VR(F ) ∩Hℓ equals to n − 1.
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With these notations, we have the following lemma. We note that any
permutation (v1,v2, . . . ,vt) would leave this result unchanged.
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Assume the inequalities of F define hyperplanes that are pairwise
different. Then, the following conditions are equivalent:
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2. Hℓ ∩ P is a facet of the polyhedron P.
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Redundancy tests (1/2)
1. For any inequality ℓ, the set SVR(ℓ) collects all the vertices and rays

saturating ℓ.

2. For any ray or vertex u, the set SH(u) collects all the hyperplanes
saturated by u.

3. Fix an inequality ℓ of F .

4. Hence, the set

SH(SVR(ℓ)) ∶= ⋂
u∈SVR(ℓ)

SH(u),

is the set of all inequalities saturated by all the vertices or rays
saturating ℓ.

Theorem
Let ℓ be an inequality in F . The following properties hold:

1. The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2. If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3. The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.
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Redundancy tests (2/2)
Theorem (Recall from previous slide)
Let ℓ be an inequality in F . The following properties hold:

1. The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2. If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3. The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

▸ Denote by satM(F ) the saturation matrix of F .
▸ satM(F )[ℓ] is the row in satM(F ) corresponding to ℓ, for ℓ ∈ F .

Corollary
The following properties hold:

1. If satM(F )[ℓ] contains zeros only, then ℓ is strongly redundant.

2. If the number of nonzeros of satM(F )[ℓ] is positive and less than
the dimension n, then ℓ is weakly redundant.

3. If satM(F )[ℓ] is contained in satM(F )[ℓ1] for some ℓ1 ∈ F ∖ {ℓ},
then ℓ is weakly redundant.
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Updating satM(F ) after eliminating one variable
▸ Consider the elimination of a variable, say x , during FME.

▸ Let ℓpos ∶ a1x + ct1y ≤ b1 and ℓneg ∶ a2x + ct2y ≤ b2, be two inequalities
in x , where:

1. we have a1 > 0 and a2 < 0,
2. y is the vector of the remaining (n − 1) variables, and
3. c1, c2 are the corresponding coefficient vectors.

▸ Then, we have

proj({ℓpos , ℓneg},{x}) = {−a2ct1y + a1ct2y ≤ −a2b1 + a1b2}.

After computing all proj({ℓpos , ℓneg},{x})’s and eliminating the
redundant such inequalities, how to update the saturation matrix and
prepare for the next variable elimination?

Theorem
We have:

SVR(proj({ℓpos , ℓneg},{x})) = proj(SVR(ℓpos) ∩ SVR(ℓneg),{x}).

skip slide
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Algorithm 1: CheckRedundancy

Input: 1. the inequality system F with m inequalities;
2. the saturation matrix satM.
Output: the minimal system Firred and the corresponding saturation

matrix satMirred.
1 Irredundant ∶= {seq(i , i = 1..m)}.
2 for i from 1 to m do
3 if the number of nonzero elements in satM[i] is less than n then
4 Irredundant ∶= Irredundant ∖ {i}.
5 next.

6 for j in Irredundant ∖ {i} do
7 if satM[i] = satM[i]&satM[j] then
8 Irredundant ∶= Irredundant ∖ {i}.
9 break.

10 Firred ∶= [seq(F [i], i in Irredundant)] and
satMirred ∶= [seq(satM[i], i in Irredundant)].

11 return Firred and satMirred.



Algorithm 2: Minimal projected representation

Input: 1. an inequality system F ;
2. a variable order x1 > x2 > . . . > xn.
Output: the minimal projected representation res of F .

1 Compute the V-representation V of F by DD method;
2 Set res ∶= table().
3 Sort the elements in V w.r.t. the reverse lexico order.
4 Compute the saturation matrix satM.
5 F , satM ∶= CheckRedundancy(F , satM(F )).
6 res[x1] ∶= F x1 .
7 for i from 1 to n − 1 do
8 (F p,F n,F 0) ∶= partition(F ).
9 Vnew ∶= proj(V ,{xi}).

10 Merging: satM ∶=Merge(satM).
11 Let Fnew ∶= F 0 and satMnew ∶= satM[F 0].
12 foreach fp ∈ F p and fn ∈ F n do
13 Append proj((fp, fn),{xi}) to Fnew ,
14 Append satM[fp]&satM[fn] to satMnew .

15 F , satM ∶= CheckRedundancy(Fnew , satMnew).
16 V ∶= Vnew , res[xi+1] ∶= F xi+1 .

17 return res.
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Implementation techniques
1. Clearly, satM(F ) should be encoded with bit vectors (aka bit-arrays).

2. We use bitarray, the bitarray library by Michael Dipperstein.
3. satM(F ) is traversed both

▸ row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
▸ column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.

4. For cache complexity reasons, we maintain both satM(F ) and
satM(F )t .

5. Moreover, these matrices should be represented by blocks.
6. Other key tasks Algorithm 2 are

▸ computing the V -representation of each successive projection
▸ updating the saturation matrix.

https://michaeldipperstein.github.io/bitarray
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Cuboctahedron

1. strongly redundannt inequalities

2. weakly redundant inequalities eliminated by cardinality

3. weakly redundancies inequalities eliminated by containment



Snub disphenoid (triangular dodecahedron)

1. strongly redundannt inequalities

2. weakly redundant inequalities eliminated by cardinality

3. weakly redundancies inequalities eliminated by containment



Truncated octahedron

1. strongly redundant inequalities

2. weakly redundant inequalities eliminated by cardinality

3. weakly redundancies inequalities eliminated by containment



Random 3D polyhedron

1. strongly redundant inequalities

2. weakly redundant inequalities eliminated by cardinality

3. weakly redundancies inequalities eliminated by containment



Random 10D polyhedron



Random 10D polyhedron



Random 10D polyhedron



Comparative experimentation (1/3)
Four ways of eliminating all variables:
▸ MPR (this paper): one variable after another, uses both the

H-representation and V -representations, redundancy test via
saturation matrices

▸ BPAS ([3] by Authors 1 and 2, with Delaram Talaashrafi): one
variable after another, uses both the H-representation and
V -representations, redundancy test via redundancy test cones, thus
linear algebra over Q.

▸ cddlib [1] by Komei Fukuda: can eliminate several variables in one
step, can work with the H-representation only, redundancy test via
Linear Programming (LP).

▸ polylib [5] by Vincent Loechner and Doran K. Wilde: can eliminate
several variables in one step, can work with the V -representation
only, convert between H-rep and V -rep as needed.

We used the following sources for our test cases:

1. random non-empty polyhedra with n variables and m inequalities. The
coefficients rang in the interval [−10,10].

2. polyhedra coming from libraries polylib and BPAS.

All the experimental results were collected on a PC (Intel(R) Xeon(R) Gold

6258R CPU 2.70GHz, 503G RAM, Ubuntu 20.04.3).
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Comparative experimentation (2/3)

1. Four different random polyhedra with m = 15 and n = 10.
2. For 1 ≤ i ≤ 9, in the hor. axiss, the first i variables are eliminated.
3. The vert. axis in each figure shows the running time (in seconds).



test case (n,m, k) mpr BPAS cdd polylib

32hedron (6, 32, 11) 6.54 16.80 4183.08 1.92
64hedron (7,64,13) 13.05 52.42 >5min 1.67
francois (13,27,2304) 499.92 253.66 388.36 > 5min

francois2 (13,31,384) 41.80 140.34 55.17 80.63

herve.in (14,25,262) 34.42 140.34 294.01 30.08
c6.in (11,17,31) 9.85 12.72 84.11 5.56

c9.in (16,18,140) 25.08 65.54 151.17 131.53

c10.in (18,20,142) 22.10 98.68 249.02 16.06
S24 (24, 25,25) 23.50 58.80 748.67 17.47
S35 (35, 36,36) 46.55 182.14 3575.00 46.007
cube (10, 20,1024) 81.33 201.92 125.900 161.06

C56 (5, 6,6) 3.67 4.09 11.81 0.79
C1011 (10, 11,11) 24.99 115.68 1716.25 9.99
C510 (5, 42,10) 12.00 40.01 >5min 4.42
T1 (5, 10,38) 5.61 16.44 27.42 8.81

T3 (10,12,29) 21.29 141.64 288.07 12.07
T5 (5, 10,36) 8.12 15.62 22.92 4.76
T6 (10,20,390) 1142.9 23800.11 14937.61 >5min

T7 (5, 8,26) 5.81 10.79 13.96 4.00
T9 (10,12,36) 36.56 414.53 479.18 100.34

T10 (6, 8,24) 4.58 13.65 18.39 5.27

T12 (5, 11,42) 8.52 19.03 38.65 8.60

R 15 20 (15, 20,1328) 28430.40 336035.00 38037.21 >5min
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Complexity estimates (1/2)
Recall the notations
1. m is the number of inequalities and n is the dimension of the

ambient space. If the input H-representation is irredundant, the m is
also the number of facets of P.

2. Let h ∶= height([A,b]), let θ be the coefficient of linear algebra and
ω the bit-size of a machine word.

Well-known bounds
1. The size k of the V-representation (V ,R) is at most
(m
n
) + ( m

n−1) ≤
mn

n!
.

2. From [2], for 1 ≤ i < n, after eliminating i variables during the
process of FME, the number of irredundant inequalities defining the
projection is at most ( m

n−i−1) ≤ m
n.

Theorem
The costs for computing all the inequalities (redundant and irredundant)
and generating the initial saturation matrix are within O(m2nnθ+εh1+ε)
bit operations, while the costs for updating and operating on the

saturation matrices are bounded over by 3m3n−4

ω
word operations.



Complexity estimates (1/2)

Recall the notations
1. m is the number of inequalities and n is the dimension of the

ambient space. If the input H-representation is irredundant, the m is
also the number of facets of P.

2. Let h ∶= height([A,b]), let θ be the coefficient of linear algebra and
ω the bit-size of a machine word.

Bounds for FME
1. FME based on LP: O(n2m2n LP(n,2nhn2mn)) bit operations, where

LP(d ,H) is an upper bound for the number of bit operations
required for solving a linear program in d variables and with total bit
size H. For instance, in the case of Karmarkar’s algorithm [4], we
have LP(d ,H) ∈ O(d3.5H2 ⋅ logH ⋅ log logH).

2. FME based on redundancy test cone: O(m 5n
2 nθ+1+ϵh1+ϵ) bit

operations, for any ϵ > 0.
3. This paper: O(m2nnθ+εh1+ε) bit operations and 3m3n−4

ω
word

operations.
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Concluding remarks

Summary and notes

1. We proposed a technique for removing redundant inequalities in
linear systems.

2. It relies on the analysis of 3 different types of redundancies

3. Our redundancy tests allow for efficient implementation based on
bit-vector arithmetic.

4. From the experimental results, our method works best on hard
problems.

5. This is promising to solve large scale problems in areas like
information theory, SMT and optimizing compilers.

Work in progress

1. Our implementation has room for improvements.

2. Indeed, our algorithms have opportunities for both multithreaded
parallelism and instruction-level parallelism.

3. The third criterion (redundancy test based on containment) needs
further study to discover the container.
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