Efficient detection of redundancies in systems of linear inequalities

Rui-Juan Jing¹ Marc Moreno Maza² Yan-Feng Xie³ Chun-Ming Yuan³

¹School of Mathematical Sciences, Jiangsu University

²Ontario Research Center for Computer Algebra, UWO, London, Ontario

 $^3{\rm KLMM},$ Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing

July 18, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Overview

Redundant inequalities

Efficient removal of redundant inequalities

Algorithms

Implementation techniques

Experimentation

Complexity Estimates

Concluding remarks

$$\begin{array}{c} -x_3 \leq 1 \\ -x_1 - x_2 - x_3 \leq 2 \\ -x_1 + x_2 - x_3 \leq 2 \\ x_1 - x_2 - x_3 \leq 2 \\ x_1 - x_2 - x_3 \leq 2 \\ x_3 0 \leq 1 \\ -x_1 - x_2 + x_3 \leq 2 \\ -x_1 + x_2 + x_3 \leq 2 \\ x_1 - x_2 + x_3 \leq 2 \\ x_1 - x_2 + x_3 \leq 2 \\ x_1 + x_2 + x_3 \leq 2 \\ -x_2 0 \leq 1 \\ x_2 \leq 1 \\ -x_1 \leq 1 \\ x_1 0 \leq 1 \end{array}$$

・ロト ・四ト ・ヨト ・ヨト ・日・

$$\begin{cases} -x_3 \leq 1 \\ -x_1 - x_2 - x_3 \leq 2 \\ -x_1 + x_2 - x_3 \leq 2 \\ x_1 - x_2 - x_3 \leq 2 \\ x_1 + x_2 - x_3 \leq 2 \\ x_3 0 \leq 1 \\ -x_1 - x_2 + x_3 \leq 2 \\ -x_1 + x_2 + x_3 \leq 2 \\ x_1 - x_2 + x_3 \leq 2 \\ x_1 - x_2 + x_3 \leq 2 \\ x_1 + x_2 + x_3 \leq 2 \\ x_1 + x_2 + x_3 \leq 2 \\ -x_2 0 \leq 1 \\ x_2 \leq 1 \\ -x_1 \leq 1 \\ x_1 0 \leq 1 \end{cases}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶

æ

$$-x_{3} \leq 1$$

$$-x_{1} - x_{2} - x_{3} \leq 2$$

$$-x_{1} + x_{2} - x_{3} \leq 2$$

$$x_{1} - x_{2} - x_{3} \leq 2$$

$$x_{1} - x_{2} - x_{3} \leq 2$$

$$x_{3} 0 \leq 1$$

$$-x_{1} - x_{2} + x_{3} \leq 2$$

$$x_{1} - x_{2} + x_{3} \leq 2$$

$$x_{1} - x_{2} + x_{3} \leq 2$$

$$x_{1} + x_{2} + x_{3} \leq 2$$

$$x_{1} + x_{2} + x_{3} \leq 2$$

$$-x_{2} 0 \leq 1$$

$$x_{2} \leq 1$$

$$-x_{1} \leq 1$$

$$x_{1} 0 \leq 1$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶

æ

 $\begin{cases} 0 \le 1 + x_2 \\ 0 \le 1 - x_2 \\ 0 \le x_1 + 1 \\ 0 \le 1 - x_1 \end{cases}$

$$\begin{array}{c} -x_3 \leq 1 \\ -x_1 - x_2 - x_3 \leq 2 \\ -x_1 + x_2 - x_3 \leq 2 \\ x_1 - x_2 - x_3 \leq 2 \\ x_1 - x_2 - x_3 \leq 2 \\ x_3 0 \leq 1 \\ -x_1 - x_2 + x_3 \leq 2 \\ -x_1 + x_2 + x_3 \leq 2 \\ x_1 - x_2 + x_3 \leq 2 \\ x_1 - x_2 + x_3 \leq 2 \\ x_1 + x_2 + x_3 \leq 2 \\ x_1 - x_2 + x_3 \leq 2 \\ -x_2 0 \leq 1 \\ x_2 \leq 1 \\ -x_1 \leq 1 \\ x_1 0 \leq 1 \end{array}$$

$$\begin{array}{c} -x_3 \leq 1 \\ -x_1 - x_2 - x_3 \leq 2 \\ -x_1 + x_2 - x_3 \leq 2 \\ x_1 - x_2 - x_3 \leq 2 \\ x_1 - x_2 - x_3 \leq 2 \\ x_3 0 \leq 1 \\ -x_1 - x_2 + x_3 \leq 2 \\ -x_1 + x_2 + x_3 \leq 2 \\ x_1 - x_2 + x_3 \leq 2 \\ x_1 - x_2 + x_3 \leq 2 \\ x_1 + x_2 + x_3 \leq 2 \\ -x_2 \leq 1 \\ -x_1 \leq 1 \\ x_1 0 \leq 1 \end{array}$$

 $\begin{cases} 0 \le 1 + x_2 \\ 0 \le 1 - x_2 \\ 0 \le x_1 + 1 \\ 0 \le 1 - x_1 \end{cases}$

E> E ∽9Q0

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dependence analysis yields: (t, p) := (n - j, i + j).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dependence analysis yields: (t, p) := (n - j, i + j).

$$\begin{cases} 0 \le i \\ i \le n \\ 0 \le j \\ j \le n \\ t = n - j \\ p = i + j \end{cases}$$

▶ skip slide

Dependence analysis yields: (t, p) := (n - j, i + j).

$$\begin{cases} 0 \le i \\ i \le n \\ 0 \le j \\ j \le n \\ t = n - j \\ p = i + j \end{cases}$$

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i, j. \Rightarrow skip slide

Dependence analysis yields: (t, p) := (n - j, i + j).

$$\begin{cases} 0 \le i & i \\ i \le n & j \\ 0 \le j & j \\ j \le n & t = n-j \\ p = i+j & 0 \end{cases} \begin{cases} i = p+t-n \\ j = -t+n \\ t \ge \max(0, -p+n) \\ t \le \min(n, -p+2n) \\ 0 \le p \\ p \le 2n \\ 0 \le n. \end{cases}$$

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i, j.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Dependence analysis yields: (t, p) := (n - j, i + j). The new representation allows us to generate the multithreaded code.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(0<	i	(i =	p+t-n	
	,	<i>j</i> =	-t + n	
/ ≤	n	$t \ge$	$\max(0, -p+n)$	
∫0 ≤	j	$\int_{t} t < t$	$\min(n, -n+2n)$	
$j \leq j$	п		(, p ·)	
t =	n – j	0 S	p	
p =	i + j	$p \leq p$	21	
	5	(0≤	n.	

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i, j.

🕨 skip slide

Dependence analysis yields: (t, p) := (n - j, i + j). The new representation allows us to generate the multithreaded code.

(0 /	;	(<i>i</i> =	p+t-n
0 2	1	<i>i</i> =	-t + n
<i>i</i> ≤	п	$\begin{vmatrix} s \\ t > \end{vmatrix}$	$\max(0, -p+n)$
∫0 ≤	j		$\min(n - n + 2n)$
$j \leq j$	п		mm(n, p + 2n)
+ _	n i	0 ≤	р
	n – j	<i>p</i> ≤	2 <i>n</i>
(<i>p</i> =	i + j	0 ≤	n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i, j.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Application of FME: computing integer hulls (1/3)

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

The input polyhedral set:

Application of FME: computing integer hulls (1/3)

The input polyhedral set:

\leq	705915
≤	31333
\leq	4303504
\leq	4561
\leq	3489

Normalization (leaves the integer hull unchanged):

	$-98877x_1 - 189663x_2 - 1798x_3$	≤	705915
	$-10109x_1 - 5958x_2 - 14601x_3$	\leq	31333
	$-1081x_1 + 993x_2 + 774x_3$	≤	860700
	$729x_1 - 117x_2 + 350x_3$	\leq	4561
	$677x_1 + 465x_2 - 540x_3$	≤	3489
•			

< ロ > < 同 > < 回 > < 回 >

э

Application of FME: computing integer hulls (2/3)

- 1. The red is an approximation of the integer hull of the input.
- 2. The integer hulls of border regions (green, blue, purple) are brute-force computed via FME.
- 3. Then QuickHull is applied to obtain the integer hull of the input.

Application of FME: computing integer hulls (3/3)Its integer hull has 139 vertices.

The input has only 5 vertices.

All details are in https://ir.lib.uwo.ca/etd/8985/ and in https://doi.org/10.1007/978-3-031-14788-3_14

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

Plan

Overview

Redundant inequalities

Efficient removal of redundant inequalities

Algorithms

Implementation techniques

Experimentation

Complexity Estimates

Concluding remarks

1. A *polyhedral set* P is any $\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$, where $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$. Such a linear system is called an *H*-representation of P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1. A *polyhedral set P* is any $\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$, where $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$. Such a linear system is called an *H*-representation of *P*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2. *P* is *full-dimensional* whenever dim(P) = n

- 1. A *polyhedral set P* is any $\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$, where $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$. Such a linear system is called an *H*-representation of *P*.
- 2. *P* is *full-dimensional* whenever dim(P) = n
- 3. An inequality ℓ of $A\mathbf{x} \leq \mathbf{b}$ is an *implicit equation* if $\mathbf{a}^t \mathbf{x} = b$ holds for all $\mathbf{x} \in P$.

- 1. A *polyhedral set* P is any $\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$, where $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$. Such a linear system is called an *H*-representation of P.
- 2. *P* is *full-dimensional* whenever dim(P) = n
- 3. An inequality ℓ of $A\mathbf{x} \leq \mathbf{b}$ is an *implicit equation* if $\mathbf{a}^t \mathbf{x} = b$ holds for all $\mathbf{x} \in P$.

4. Thus, *P* is full-dimensional iff $A\mathbf{x} \leq \mathbf{b}$ has no implicit equation.

- 1. A *polyhedral set* P is any $\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$, where $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$. Such a linear system is called an *H*-representation of P.
- 2. *P* is *full-dimensional* whenever dim(P) = n
- 3. An inequality ℓ of $A\mathbf{x} \leq \mathbf{b}$ is an *implicit equation* if $\mathbf{a}^t \mathbf{x} = b$ holds for all $\mathbf{x} \in P$.

- 4. Thus, *P* is full-dimensional iff $A\mathbf{x} \leq \mathbf{b}$ has no implicit equation.
- 5. The polyhedron *P* is said *pointed*, if *A* is full column rank.

- 1. A *polyhedral set* P is any $\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$, where $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$. Such a linear system is called an *H*-representation of P.
- 2. *P* is *full-dimensional* whenever dim(P) = n
- 3. An inequality ℓ of $A\mathbf{x} \leq \mathbf{b}$ is an *implicit equation* if $\mathbf{a}^t \mathbf{x} = b$ holds for all $\mathbf{x} \in P$.

- 4. Thus, *P* is full-dimensional iff $A\mathbf{x} \leq \mathbf{b}$ has no implicit equation.
- 5. The polyhedron P is said *pointed*, if A is full column rank.
- 6. From now, P is full-dimensional and pointed.

- 1. A *polyhedral set* P is any $\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$, where $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$. Such a linear system is called an *H*-representation of P.
- 2. *P* is *full-dimensional* whenever dim(P) = n
- 3. An inequality ℓ of $A\mathbf{x} \leq \mathbf{b}$ is an *implicit equation* if $\mathbf{a}^t \mathbf{x} = b$ holds for all $\mathbf{x} \in P$.
- 4. Thus, *P* is full-dimensional iff $A\mathbf{x} \leq \mathbf{b}$ has no implicit equation.
- 5. The polyhedron P is said *pointed*, if A is full column rank.
- 6. From now, P is full-dimensional and pointed.
- 7. Fixing $F : A\mathbf{x} \leq \mathbf{b}$ an *H*-representation of *P*, a *face* of *P* is any intersection of *P* with the solution set of sub-system of *F*.

- 1. A *polyhedral set* P is any $\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$, where $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$. Such a linear system is called an *H*-representation of P.
- 2. *P* is *full-dimensional* whenever dim(P) = n
- 3. An inequality ℓ of $A\mathbf{x} \leq \mathbf{b}$ is an *implicit equation* if $\mathbf{a}^t \mathbf{x} = b$ holds for all $\mathbf{x} \in P$.
- 4. Thus, *P* is full-dimensional iff $A\mathbf{x} \leq \mathbf{b}$ has no implicit equation.
- 5. The polyhedron P is said *pointed*, if A is full column rank.
- 6. From now, P is full-dimensional and pointed.
- 7. Fixing $F : A\mathbf{x} \leq \mathbf{b}$ an *H*-representation of *P*, a *face* of *P* is any intersection of *P* with the solution set of sub-system of *F*.

8. A vertex (resp. facet) is a face of dimension 0 (resp. n-1).

- 1. A *polyhedral set* P is any $\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$, where $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$. Such a linear system is called an *H*-representation of P.
- 2. *P* is *full-dimensional* whenever dim(P) = n
- 3. An inequality ℓ of $A\mathbf{x} \leq \mathbf{b}$ is an *implicit equation* if $\mathbf{a}^t \mathbf{x} = b$ holds for all $\mathbf{x} \in P$.
- 4. Thus, *P* is full-dimensional iff $A\mathbf{x} \leq \mathbf{b}$ has no implicit equation.
- 5. The polyhedron P is said *pointed*, if A is full column rank.
- 6. From now, P is full-dimensional and pointed.
- 7. Fixing $F : A\mathbf{x} \leq \mathbf{b}$ an *H*-representation of *P*, a *face* of *P* is any intersection of *P* with the solution set of sub-system of *F*.
- 8. A vertex (resp. facet) is a face of dimension 0 (resp. n-1).
- The *characteristic cone* of *P* is the polyhedral cone CharCone(*P*) represented by {*A*x ≤ 0}.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1. A *polyhedral set* P is any $\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$, where $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$. Such a linear system is called an *H*-representation of P.
- 2. *P* is *full-dimensional* whenever dim(P) = n
- An inequality ℓ of Ax ≤ b is an *implicit equation* if a^tx = b holds for all x ∈ P.
- 4. Thus, *P* is full-dimensional iff $A\mathbf{x} \leq \mathbf{b}$ has no implicit equation.
- 5. The polyhedron *P* is said *pointed*, if *A* is full column rank.
- 6. From now, P is full-dimensional and pointed.
- 7. Fixing $F : A\mathbf{x} \leq \mathbf{b}$ an *H*-representation of *P*, a *face* of *P* is any intersection of *P* with the solution set of sub-system of *F*.
- 8. A vertex (resp. facet) is a face of dimension 0 (resp. n-1).
- The *characteristic cone* of *P* is the polyhedral cone CharCone(*P*) represented by {*A*x ≤ 0}.
- 10. Every polyhedral cone has a unique representation as a conical hull of its extremal generators, called the *extreme rays* of *P*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1. A *polyhedral set P* is any $\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$, where $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$. Such a linear system is called an *H*-representation of *P*.
- 2. *P* is *full-dimensional* whenever dim(P) = n
- An inequality ℓ of Ax ≤ b is an *implicit equation* if a^tx = b holds for all x ∈ P.
- 4. Thus, *P* is full-dimensional iff $A\mathbf{x} \leq \mathbf{b}$ has no implicit equation.
- 5. The polyhedron *P* is said *pointed*, if *A* is full column rank.
- 6. From now, P is full-dimensional and pointed.
- 7. Fixing $F : A\mathbf{x} \leq \mathbf{b}$ an *H*-representation of *P*, a *face* of *P* is any intersection of *P* with the solution set of sub-system of *F*.
- 8. A vertex (resp. facet) is a face of dimension 0 (resp. n-1).
- The *characteristic cone* of *P* is the polyhedral cone CharCone(*P*) represented by {*A*x ≤ 0}.
- 10. Every polyhedral cone has a unique representation as a conical hull of its extremal generators, called the *extreme rays* of *P*.
- 11. Since P is pointed, an extreme ray of P is a one-dimensional face of CharCone(P).

- 1. A *polyhedral set P* is any $\{\mathbf{x} \mid A\mathbf{x} \leq \mathbf{b}\}$, where $A \in \mathbb{Q}^{m \times n}$ and $\mathbf{b} \in \mathbb{Q}^m$. Such a linear system is called an *H*-representation of *P*.
- 2. *P* is *full-dimensional* whenever dim(P) = n
- 3. An inequality ℓ of $A\mathbf{x} \leq \mathbf{b}$ is an *implicit equation* if $\mathbf{a}^t \mathbf{x} = b$ holds for all $\mathbf{x} \in P$.
- 4. Thus, *P* is full-dimensional iff $A\mathbf{x} \leq \mathbf{b}$ has no implicit equation.
- 5. The polyhedron P is said *pointed*, if A is full column rank.
- 6. From now, P is full-dimensional and pointed.
- 7. Fixing $F : A\mathbf{x} \leq \mathbf{b}$ an *H*-representation of *P*, a *face* of *P* is any intersection of *P* with the solution set of sub-system of *F*.
- 8. A vertex (resp. facet) is a face of dimension 0 (resp. n-1).
- The *characteristic cone* of *P* is the polyhedral cone CharCone(*P*) represented by {*A*x ≤ 0}.
- 10. Every polyhedral cone has a unique representation as a conical hull of its extremal generators, called the *extreme rays* of *P*.
- 11. Since P is pointed, an extreme ray of P is a one-dimensional face of CharCone(P).
- 12. Let V and R denote the set of vertices and extreme rays of P. Then, the pair $\mathcal{VR}(F) \coloneqq (V, R)$ is called a V-representation of P.

An unbounded polyhedral set and its representations

The open cube $P := \{(x, y, z) \mid -z \le 1, 0 \le x \le 1, 0 \le y \le 1\}$ shown above has 4 vertices $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ and extreme ray \mathbf{r} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. Recall $F : A\mathbf{x} \leq \mathbf{b}$ is an *H*-representation of our polyhedral set *P*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1. Recall $F : A\mathbf{x} \leq \mathbf{b}$ is an *H*-representation of our polyhedral set *P*.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

2. Fix an inequality $\ell : \mathbf{a}^t \mathbf{x} \leq b$ of F

1. Recall $F : A\mathbf{x} \leq \mathbf{b}$ is an *H*-representation of our polyhedral set *P*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 2. Fix an inequality $\ell : \mathbf{a}^t \mathbf{x} \leq b$ of F
- 3. Denote by \mathcal{H}_{ℓ} the hyperplane $\mathbf{a}^t \mathbf{x} = b$.

- 1. Recall $F : A\mathbf{x} \leq \mathbf{b}$ is an *H*-representation of our polyhedral set *P*.
- 2. Fix an inequality $\ell : \mathbf{a}^t \mathbf{x} \leq b$ of F
- 3. Denote by \mathcal{H}_{ℓ} the hyperplane $\mathbf{a}^t \mathbf{x} = b$.
- 4. Recall V and R are the vertices and rays of P. Let $k := \# \mathcal{VR}(F)$.
- 1. Recall $F : A\mathbf{x} \leq \mathbf{b}$ is an *H*-representation of our polyhedral set *P*.
- 2. Fix an inequality $\ell : \mathbf{a}^t \mathbf{x} \le b$ of F
- 3. Denote by \mathcal{H}_{ℓ} the hyperplane $\mathbf{a}^t \mathbf{x} = b$.
- 4. Recall V and R are the vertices and rays of P. Let $k := \# \mathcal{VR}(F)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

The inequality ℓ of F is

- 1. Recall $F : A\mathbf{x} \leq \mathbf{b}$ is an *H*-representation of our polyhedral set *P*.
- 2. Fix an inequality $\ell : \mathbf{a}^t \mathbf{x} \le b$ of F
- 3. Denote by \mathcal{H}_{ℓ} the hyperplane $\mathbf{a}^t \mathbf{x} = b$.
- 4. Recall V and R are the vertices and rays of P. Let $k := \# \mathcal{VR}(F)$.

Definition

The inequality ℓ of F is

• *redundant* in *F*, if $F \setminus \{\ell\}$ still defines *P*,

- 1. Recall $F : A\mathbf{x} \leq \mathbf{b}$ is an *H*-representation of our polyhedral set *P*.
- 2. Fix an inequality $\ell : \mathbf{a}^t \mathbf{x} \le b$ of F
- 3. Denote by \mathcal{H}_{ℓ} the hyperplane $\mathbf{a}^t \mathbf{x} = b$.
- 4. Recall V and R are the vertices and rays of P. Let $k := \# \mathcal{VR}(F)$.

Definition

The inequality ℓ of F is

- *redundant* in *F*, if $F \setminus \{\ell\}$ still defines *P*,
- strongly redundant in F, if $\mathbf{a}^t \mathbf{x} < b$ holds for all $\mathbf{x} \in P$,

- 1. Recall $F : A\mathbf{x} \leq \mathbf{b}$ is an *H*-representation of our polyhedral set *P*.
- 2. Fix an inequality $\ell : \mathbf{a}^t \mathbf{x} \le b$ of F
- 3. Denote by \mathcal{H}_{ℓ} the hyperplane $\mathbf{a}^t \mathbf{x} = b$.
- 4. Recall V and R are the vertices and rays of P. Let $k := \# \mathcal{VR}(F)$.

Definition

The inequality ℓ of F is

- *redundant* in *F*, if $F \setminus \{\ell\}$ still defines *P*,
- strongly redundant in F, if $\mathbf{a}^t \mathbf{x} < b$ holds for all $\mathbf{x} \in P$,
- weakly redundant if it is redundant and $\mathbf{a}^t \mathbf{x} = b$ holds for some $\mathbf{x} \in P$.

- 1. Recall $F : A\mathbf{x} \leq \mathbf{b}$ is an *H*-representation of our polyhedral set *P*.
- 2. Fix an inequality $\ell : \mathbf{a}^t \mathbf{x} \le b$ of F
- 3. Denote by \mathcal{H}_{ℓ} the hyperplane $\mathbf{a}^t \mathbf{x} = b$.
- 4. Recall V and R are the vertices and rays of P. Let $k := \# \mathcal{VR}(F)$.

Definition

The inequality ℓ of F is

- *redundant* in *F*, if $F \setminus \{\ell\}$ still defines *P*,
- strongly redundant in F, if $\mathbf{a}^t \mathbf{x} < b$ holds for all $\mathbf{x} \in P$,
- weakly redundant if it is redundant and $\mathbf{a}^t \mathbf{x} = b$ holds for some $\mathbf{x} \in P$.

Definition

- 1. Recall $F : A\mathbf{x} \leq \mathbf{b}$ is an *H*-representation of our polyhedral set *P*.
- 2. Fix an inequality $\ell : \mathbf{a}^t \mathbf{x} \le b$ of F
- 3. Denote by \mathcal{H}_{ℓ} the hyperplane $\mathbf{a}^t \mathbf{x} = b$.
- 4. Recall V and R are the vertices and rays of P. Let $k := \# \mathcal{VR}(F)$.

Definition

The inequality ℓ of F is

- *redundant* in *F*, if $F \setminus \{\ell\}$ still defines *P*,
- strongly redundant in F, if $\mathbf{a}^t \mathbf{x} < b$ holds for all $\mathbf{x} \in P$,
- weakly redundant if it is redundant and $\mathbf{a}^t \mathbf{x} = b$ holds for some $\mathbf{x} \in P$.

Definition

A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that is, if a^tv = b holds.

- 1. Recall $F : A\mathbf{x} \leq \mathbf{b}$ is an *H*-representation of our polyhedral set *P*.
- 2. Fix an inequality $\ell : \mathbf{a}^t \mathbf{x} \le b$ of F
- 3. Denote by \mathcal{H}_{ℓ} the hyperplane $\mathbf{a}^t \mathbf{x} = b$.
- 4. Recall V and R are the vertices and rays of P. Let $k := \# \mathcal{VR}(F)$.

Definition

The inequality ℓ of F is

- *redundant* in *F*, if $F \setminus \{\ell\}$ still defines *P*,
- strongly redundant in F, if $\mathbf{a}^t \mathbf{x} < b$ holds for all $\mathbf{x} \in P$,
- weakly redundant if it is redundant and $\mathbf{a}^t \mathbf{x} = b$ holds for some $\mathbf{x} \in P$.

Definition

A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that is, if a^tv = b holds.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the hyperplane H_ℓ, that is, if a^tr = 0 holds.

- 1. Recall $F : A\mathbf{x} \leq \mathbf{b}$ is an *H*-representation of our polyhedral set *P*.
- 2. Fix an inequality $\ell : \mathbf{a}^t \mathbf{x} \le b$ of F
- 3. Denote by \mathcal{H}_{ℓ} the hyperplane $\mathbf{a}^t \mathbf{x} = b$.
- 4. Recall V and R are the vertices and rays of P. Let $k := \# \mathcal{VR}(F)$.

Definition

The inequality ℓ of F is

- *redundant* in *F*, if $F \setminus \{\ell\}$ still defines *P*,
- strongly redundant in F, if $\mathbf{a}^t \mathbf{x} < b$ holds for all $\mathbf{x} \in P$,
- weakly redundant if it is redundant and $\mathbf{a}^t \mathbf{x} = b$ holds for some $\mathbf{x} \in P$.

Definition

- A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that is, if a^tv = b holds.
- A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the hyperplane H_ℓ, that is, if a^tr = 0 holds.

The saturation matrix of F is the 0-1 matrix $S \in \mathbb{Q}^{m \times k}$, where $S_{i,j} = 1$ iff the *j*-th element of $\mathcal{VR}(F)$ saturates the *i*-th inequality of F. A bounded polyhedral set and its the saturation matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

1. Denote by $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ the vertices and rays in $\mathcal{VR}(F)$ saturating the hyperplane \mathcal{H}_{ℓ} .

- 1. Denote by $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ the vertices and rays in $\mathcal{VR}(F)$ saturating the hyperplane \mathcal{H}_{ℓ} .
- 2. Write $\mathcal{VR}(F) \cap \mathcal{H}_{\ell} := (\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t\}, \{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s\})$, where \mathbf{v}_i 's are vertices and \mathbf{r}_i 's are rays.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1. Denote by $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ the vertices and rays in $\mathcal{VR}(F)$ saturating the hyperplane \mathcal{H}_{ℓ} .
- 2. Write $\mathcal{VR}(F) \cap \mathcal{H}_{\ell} := (\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t\}, \{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s\})$, where \mathbf{v}_i 's are vertices and \mathbf{r}_j 's are rays.
- 3. The *affine rank* of $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ is the rank of the matrix

 $[\mathbf{v}_2 - \mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_1, \dots, \mathbf{v}_t - \mathbf{v}_1, \mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s].$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1. Denote by $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ the vertices and rays in $\mathcal{VR}(F)$ saturating the hyperplane \mathcal{H}_{ℓ} .
- 2. Write $\mathcal{VR}(F) \cap \mathcal{H}_{\ell} := (\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t\}, \{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s\})$, where \mathbf{v}_i 's are vertices and \mathbf{r}_i 's are rays.
- 3. The *affine rank* of $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ is the rank of the matrix

$$[\mathbf{v}_2 - \mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_1, \dots, \mathbf{v}_t - \mathbf{v}_1, \mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

With these notations, we have the following lemma. We note that any permutation $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t)$ would leave this result unchanged.

- 1. Denote by $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ the vertices and rays in $\mathcal{VR}(F)$ saturating the hyperplane \mathcal{H}_{ℓ} .
- 2. Write $\mathcal{VR}(F) \cap \mathcal{H}_{\ell} := (\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t\}, \{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s\})$, where \mathbf{v}_i 's are vertices and \mathbf{r}_j 's are rays.
- 3. The *affine rank* of $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ is the rank of the matrix

$$[\mathbf{v}_2 - \mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_1, \dots, \mathbf{v}_t - \mathbf{v}_1, \mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

With these notations, we have the following lemma. We note that any permutation $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t)$ would leave this result unchanged.

Lemma

Assume the inequalities of F define hyperplanes that are pairwise different. Then, the following conditions are equivalent:

- 1. Denote by $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ the vertices and rays in $\mathcal{VR}(F)$ saturating the hyperplane \mathcal{H}_{ℓ} .
- 2. Write $\mathcal{VR}(F) \cap \mathcal{H}_{\ell} := (\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t\}, \{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s\})$, where \mathbf{v}_i 's are vertices and \mathbf{r}_j 's are rays.
- 3. The *affine rank* of $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ is the rank of the matrix

$$[\mathbf{v}_2 - \mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_1, \dots, \mathbf{v}_t - \mathbf{v}_1, \mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

With these notations, we have the following lemma. We note that any permutation $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t)$ would leave this result unchanged.

Lemma

Assume the inequalities of F define hyperplanes that are pairwise different. Then, the following conditions are equivalent:

1. The inequality $\ell \in F$ is irredundant,

- 1. Denote by $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ the vertices and rays in $\mathcal{VR}(F)$ saturating the hyperplane \mathcal{H}_{ℓ} .
- 2. Write $\mathcal{VR}(F) \cap \mathcal{H}_{\ell} \coloneqq (\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t\}, \{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s\})$, where \mathbf{v}_i 's are vertices and \mathbf{r}_j 's are rays.
- 3. The *affine rank* of $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ is the rank of the matrix

$$[\mathbf{v}_2 - \mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_1, \dots, \mathbf{v}_t - \mathbf{v}_1, \mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s].$$

With these notations, we have the following lemma. We note that any permutation $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t)$ would leave this result unchanged.

Lemma

Assume the inequalities of F define hyperplanes that are pairwise different. Then, the following conditions are equivalent:

- 1. The inequality $\ell \in F$ is irredundant,
- 2. $\mathcal{H}_{\ell} \cap P$ is a facet of the polyhedron P.

- 1. Denote by $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ the vertices and rays in $\mathcal{VR}(F)$ saturating the hyperplane \mathcal{H}_{ℓ} .
- 2. Write $\mathcal{VR}(F) \cap \mathcal{H}_{\ell} \coloneqq (\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t\}, \{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s\})$, where \mathbf{v}_i 's are vertices and \mathbf{r}_j 's are rays.
- 3. The *affine rank* of $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ is the rank of the matrix

$$[\mathbf{v}_2 - \mathbf{v}_1, \mathbf{v}_3 - \mathbf{v}_1, \dots, \mathbf{v}_t - \mathbf{v}_1, \mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_s].$$

With these notations, we have the following lemma. We note that any permutation $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_t)$ would leave this result unchanged.

Lemma

Assume the inequalities of F define hyperplanes that are pairwise different. Then, the following conditions are equivalent:

- 1. The inequality $\ell \in F$ is irredundant,
- 2. $\mathcal{H}_{\ell} \cap P$ is a facet of the polyhedron P.
- 3. The affine rank of $\mathcal{VR}(F) \cap \mathcal{H}_{\ell}$ equals to n-1.

Plan

Overview

Redundant inequalities

Efficient removal of redundant inequalities

Algorithms

Implementation techniques

Experimentation

Complexity Estimates

Concluding remarks

1. For any inequality ℓ , the set $S^{VR}(\ell)$ collects all the vertices and rays saturating ℓ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- 1. For any inequality ℓ , the set $S^{VR}(\ell)$ collects all the vertices and rays saturating ℓ .
- 2. For any ray or vertex **u**, the set $\mathcal{S}^{\mathcal{H}}(\mathbf{u})$ collects all the hyperplanes saturated by **u**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1. For any inequality ℓ , the set $S^{VR}(\ell)$ collects all the vertices and rays saturating ℓ .
- 2. For any ray or vertex **u**, the set $\mathcal{S}^{\mathcal{H}}(\mathbf{u})$ collects all the hyperplanes saturated by **u**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3. Fix an inequality ℓ of F.

- 1. For any inequality ℓ , the set $S^{VR}(\ell)$ collects all the vertices and rays saturating ℓ .
- 2. For any ray or vertex u, the set $\mathcal{S}^{\mathcal{H}}(u)$ collects all the hyperplanes saturated by u.
- 3. Fix an inequality ℓ of F.
- 4. Hence, the set

$$\mathcal{S}^{\mathcal{H}}(\mathcal{S}^{\mathcal{VR}}(\ell)) \coloneqq \bigcap_{\mathbf{u}\in\mathcal{S}^{\mathcal{VR}}(\ell)} \mathcal{S}^{\mathcal{H}}(\mathbf{u}),$$

is the set of all inequalities saturated by all the vertices or rays saturating $\ell.$

- 1. For any inequality ℓ , the set $S^{VR}(\ell)$ collects all the vertices and rays saturating ℓ .
- 2. For any ray or vertex u, the set $\mathcal{S}^{\mathcal{H}}(u)$ collects all the hyperplanes saturated by u.
- 3. Fix an inequality ℓ of F.
- 4. Hence, the set

$$\mathcal{S}^{\mathcal{H}}(\mathcal{S}^{\mathcal{VR}}(\ell)) \coloneqq \bigcap_{\mathbf{u}\in\mathcal{S}^{\mathcal{VR}}(\ell)} \mathcal{S}^{\mathcal{H}}(\mathbf{u}),$$

is the set of all inequalities saturated by all the vertices or rays saturating $\ell.$

Theorem

Let ℓ be an inequality in F. The following properties hold:

- 1. For any inequality ℓ , the set $S^{VR}(\ell)$ collects all the vertices and rays saturating ℓ .
- 2. For any ray or vertex u, the set $\mathcal{S}^{\mathcal{H}}(u)$ collects all the hyperplanes saturated by u.
- 3. Fix an inequality ℓ of F.
- 4. Hence, the set

$$\mathcal{S}^{\mathcal{H}}(\mathcal{S}^{\mathcal{VR}}(\ell)) \coloneqq \bigcap_{\mathbf{u}\in\mathcal{S}^{\mathcal{VR}}(\ell)} \mathcal{S}^{\mathcal{H}}(\mathbf{u}),$$

is the set of all inequalities saturated by all the vertices or rays saturating $\ell.$

Theorem

Let ℓ be an inequality in F. The following properties hold:

1. The inequality ℓ is strongly redundant in F iff $S^{VR}(\ell)$ is empty.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1. For any inequality ℓ , the set $S^{VR}(\ell)$ collects all the vertices and rays saturating ℓ .
- 2. For any ray or vertex u, the set $\mathcal{S}^{\mathcal{H}}(u)$ collects all the hyperplanes saturated by u.
- 3. Fix an inequality ℓ of F.
- 4. Hence, the set

$$\mathcal{S}^{\mathcal{H}}(\mathcal{S}^{\mathcal{VR}}(\ell)) \coloneqq \bigcap_{\mathbf{u}\in\mathcal{S}^{\mathcal{VR}}(\ell)} \mathcal{S}^{\mathcal{H}}(\mathbf{u}),$$

is the set of all inequalities saturated by all the vertices or rays saturating $\ell.$

Theorem

Let ℓ be an inequality in F. The following properties hold:

- 1. The inequality ℓ is strongly redundant in F iff $S^{\mathcal{VR}}(\ell)$ is empty.
- 2. If $S^{VR}(\ell)$ is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in *F*.

- 1. For any inequality ℓ , the set $S^{VR}(\ell)$ collects all the vertices and rays saturating ℓ .
- 2. For any ray or vertex u, the set $\mathcal{S}^{\mathcal{H}}(u)$ collects all the hyperplanes saturated by u.
- 3. Fix an inequality ℓ of F.
- 4. Hence, the set

$$\mathcal{S}^{\mathcal{H}}(\mathcal{S}^{\mathcal{VR}}(\ell)) \coloneqq \bigcap_{\mathbf{u}\in\mathcal{S}^{\mathcal{VR}}(\ell)} \mathcal{S}^{\mathcal{H}}(\mathbf{u}),$$

is the set of all inequalities saturated by all the vertices or rays saturating $\ell.$

Theorem

Let ℓ be an inequality in F. The following properties hold:

- 1. The inequality ℓ is strongly redundant in F iff $S^{VR}(\ell)$ is empty.
- 2. If $S^{VR}(\ell)$ is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in *F*.
- The inequality ℓ is weakly redundant in F iff the set S^H(S^{VR}(ℓ)) \ {ℓ} is not empty.

Theorem (Recall from previous slide)

Let ℓ be an inequality in F. The following properties hold:

- 1. The inequality ℓ is strongly redundant in F iff $S^{VR}(\ell)$ is empty.
- 2. If $S^{VR}(\ell)$ is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in *F*.

 The inequality ℓ is weakly redundant in F iff the set S^H(S^{VR}(ℓ)) \ {ℓ} is not empty.

Theorem (Recall from previous slide)

Let ℓ be an inequality in F. The following properties hold:

- 1. The inequality ℓ is strongly redundant in F iff $S^{VR}(\ell)$ is empty.
- 2. If $S^{VR}(\ell)$ is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in *F*.

- The inequality ℓ is weakly redundant in F iff the set S^H(S^{VR}(ℓ)) \ {ℓ} is not empty.
- Denote by satM(F) the saturation matrix of F.

Theorem (Recall from previous slide)

Let ℓ be an inequality in F. The following properties hold:

- 1. The inequality ℓ is strongly redundant in $F \quad \underline{iff} \ \mathcal{S}^{\mathcal{VR}}(\ell)$ is empty.
- 2. If $S^{VR}(\ell)$ is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in *F*.
- The inequality ℓ is weakly redundant in F iff the set S^H(S^{VR}(ℓ)) \ {ℓ} is not empty.
- ▶ Denote by satM(*F*) the saturation matrix of *F*.
- ▶ satM(F)[ℓ] is the row in satM(F) corresponding to ℓ , for $\ell \in F$.

Theorem (Recall from previous slide)

Let ℓ be an inequality in F. The following properties hold:

- 1. The inequality ℓ is strongly redundant in F iff $S^{VR}(\ell)$ is empty.
- 2. If $S^{VR}(\ell)$ is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in *F*.
- The inequality ℓ is weakly redundant in F iff the set S^H(S^{VR}(ℓ)) \ {ℓ} is not empty.
- ▶ Denote by satM(*F*) the saturation matrix of *F*.
- ▶ satM(F)[ℓ] is the row in satM(F) corresponding to ℓ , for $\ell \in F$.

Corollary

The following properties hold:

Theorem (Recall from previous slide)

Let ℓ be an inequality in F. The following properties hold:

- 1. The inequality ℓ is strongly redundant in F iff $S^{VR}(\ell)$ is empty.
- 2. If $S^{VR}(\ell)$ is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in F.
- The inequality ℓ is weakly redundant in F iff the set S^H(S^{VR}(ℓ)) \ {ℓ} is not empty.
- ▶ Denote by satM(*F*) the saturation matrix of *F*.
- ▶ satM(F)[ℓ] is the row in satM(F) corresponding to ℓ , for $\ell \in F$.

Corollary

The following properties hold:

1. If satM(F)[ℓ] contains zeros only, then ℓ is strongly redundant.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Recall from previous slide)

Let ℓ be an inequality in F. The following properties hold:

- 1. The inequality ℓ is strongly redundant in F iff $S^{VR}(\ell)$ is empty.
- 2. If $S^{VR}(\ell)$ is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in F.
- The inequality ℓ is weakly redundant in F iff the set S^H(S^{VR}(ℓ)) \ {ℓ} is not empty.
- ▶ Denote by satM(*F*) the saturation matrix of *F*.
- ▶ satM(F)[ℓ] is the row in satM(F) corresponding to ℓ , for $\ell \in F$.

Corollary

The following properties hold:

- 1. If satM(F)[ℓ] contains zeros only, then ℓ is strongly redundant.
- 2. If the number of nonzeros of satM(F)[ℓ] is positive and less than the dimension n, then ℓ is weakly redundant.

Theorem (Recall from previous slide)

Let ℓ be an inequality in F. The following properties hold:

- 1. The inequality ℓ is strongly redundant in F iff $S^{VR}(\ell)$ is empty.
- 2. If $S^{VR}(\ell)$ is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in *F*.
- The inequality ℓ is weakly redundant in F iff the set S^H(S^{VR}(ℓ)) \ {ℓ} is not empty.
- ▶ Denote by satM(*F*) the saturation matrix of *F*.
- ▶ satM(*F*)[ℓ] is the row in satM(*F*) corresponding to ℓ , for $\ell \in F$.

Corollary

The following properties hold:

- 1. If satM(F)[$\ell]$ contains zeros only, then ℓ is strongly redundant.
- 2. If the number of nonzeros of satM(F)[ℓ] is positive and less than the dimension n, then ℓ is weakly redundant.
- If satM(F)[ℓ] is contained in satM(F)[ℓ₁] for some ℓ₁ ∈ F \ {ℓ}, then ℓ is weakly redundant.

Updating satM(F) after eliminating one variable

• Consider the elimination of a variable, say *x*, during FME.

(ロ)、(型)、(E)、(E)、 E) の(()

Updating satM(F) after eliminating one variable

- Consider the elimination of a variable, say x, during FME.
- Let $\ell_{pos} : a_1x + \mathbf{c}_1^t \mathbf{y} \le b_1$ and $\ell_{neg} : a_2x + \mathbf{c}_2^t \mathbf{y} \le b_2$, be two inequalities in *x*, where:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Updating satM(F) after eliminating one variable

- Consider the elimination of a variable, say x, during FME.
- Let $\ell_{pos} : a_1x + \mathbf{c}_1^t \mathbf{y} \le b_1$ and $\ell_{neg} : a_2x + \mathbf{c}_2^t \mathbf{y} \le b_2$, be two inequalities in *x*, where:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1. we have $a_1 > 0$ and $a_2 < 0$,

- Consider the elimination of a variable, say x, during FME.
- Let $\ell_{pos} : a_1x + \mathbf{c}_1^t \mathbf{y} \le b_1$ and $\ell_{neg} : a_2x + \mathbf{c}_2^t \mathbf{y} \le b_2$, be two inequalities in *x*, where:

- 1. we have $a_1 > 0$ and $a_2 < 0$,
- 2. **y** is the vector of the remaining (n-1) variables, and

- Consider the elimination of a variable, say x, during FME.
- Let $\ell_{pos} : a_1x + \mathbf{c}_1^t \mathbf{y} \le b_1$ and $\ell_{neg} : a_2x + \mathbf{c}_2^t \mathbf{y} \le b_2$, be two inequalities in *x*, where:

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- 1. we have $a_1 > 0$ and $a_2 < 0$,
- 2. **y** is the vector of the remaining (n-1) variables, and
- 3. $\mathbf{c}_1, \mathbf{c}_2$ are the corresponding coefficient vectors.

- Consider the elimination of a variable, say x, during FME.
- Let $\ell_{pos} : a_1x + \mathbf{c}_1^t \mathbf{y} \le b_1$ and $\ell_{neg} : a_2x + \mathbf{c}_2^t \mathbf{y} \le b_2$, be two inequalities in *x*, where:
 - 1. we have $a_1 > 0$ and $a_2 < 0$,
 - 2. **y** is the vector of the remaining (n-1) variables, and
 - 3. c_1, c_2 are the corresponding coefficient vectors.
- Then, we have

$$\operatorname{proj}(\{\ell_{pos}, \ell_{neg}\}, \{x\}) = \{-a_2 \mathbf{c}_1^t \mathbf{y} + a_1 \mathbf{c}_2^t \mathbf{y} \le -a_2 b_1 + a_1 b_2\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Consider the elimination of a variable, say x, during FME.
- Let $\ell_{pos} : a_1x + \mathbf{c}_1^t \mathbf{y} \le b_1$ and $\ell_{neg} : a_2x + \mathbf{c}_2^t \mathbf{y} \le b_2$, be two inequalities in *x*, where:
 - 1. we have $a_1 > 0$ and $a_2 < 0$,
 - 2. **y** is the vector of the remaining (n-1) variables, and
 - 3. c_1, c_2 are the corresponding coefficient vectors.
- Then, we have

$$\operatorname{proj}(\{\ell_{pos}, \ell_{neg}\}, \{x\}) = \{-a_2 \mathbf{c}_1^t \mathbf{y} + a_1 \mathbf{c}_2^t \mathbf{y} \le -a_2 b_1 + a_1 b_2\}.$$

After computing all proj($\{\ell_{pos}, \ell_{neg}\}, \{x\}$)'s and eliminating the redundant such inequalities, how to update the saturation matrix and prepare for the next variable elimination?

- Consider the elimination of a variable, say *x*, during FME.
- Let $\ell_{pos} : a_1x + \mathbf{c}_1^t \mathbf{y} \le b_1$ and $\ell_{neg} : a_2x + \mathbf{c}_2^t \mathbf{y} \le b_2$, be two inequalities in *x*, where:
 - 1. we have $a_1 > 0$ and $a_2 < 0$,
 - 2. **y** is the vector of the remaining (n-1) variables, and
 - 3. c_1, c_2 are the corresponding coefficient vectors.
- Then, we have

$$\operatorname{proj}(\{\ell_{pos}, \ell_{neg}\}, \{x\}) = \{-a_2 \mathbf{c}_1^t \mathbf{y} + a_1 \mathbf{c}_2^t \mathbf{y} \le -a_2 b_1 + a_1 b_2\}.$$

After computing all proj($\{\ell_{pos}, \ell_{neg}\}, \{x\}$)'s and eliminating the redundant such inequalities, how to update the saturation matrix and prepare for the next variable elimination?

Theorem We have:

 $\mathcal{S}^{\mathcal{VR}}(\mathsf{proj}(\{\ell_{\mathit{pos}},\ell_{\mathit{neg}}\},\{x\})) = \mathsf{proj}(\mathcal{S}^{\mathcal{VR}}(\ell_{\mathit{pos}}) \cap \mathcal{S}^{\mathcal{VR}}(\ell_{\mathit{neg}}),\{x\}).$

Plan

Overview

Redundant inequalities

Efficient removal of redundant inequalities

Algorithms

Implementation techniques

Experimentation

Complexity Estimates

Concluding remarks

Algorithm 1: CheckRedundancy

```
Input: 1. the inequality system F with m inequalities;
   2. the saturation matrix satM.
   Output: the minimal system F_{irred} and the corresponding saturation
               matrix satM<sub>irred</sub>.
 1 Irredundant := {seq(i, i = 1..m)}.
 2 for i from 1 to m do
       if the number of nonzero elements in satM[i] is less than n then
 3
            Irredundant := Irredundant \setminus {i}.
 4
            next.
 5
       for j in Irredundant \setminus {i} do
 6
            if satM[i] = satM[i]&satM[j] then
 7
                Irredundant := Irredundant \smallsetminus \{i\}.
break.
 8
 9
10 F_{\text{irred}} := [\text{seq}(F[i], i \text{ in } Irredundant)] and
    satM_{irred} := [seq(satM[i], i in Irredundant)].
11 return F_{\text{irred}} and satM<sub>irred</sub>.
```

・ロト・四ト・モート ヨー うへの

Algorithm 2: Minimal projected representation

- **Input:** 1. an inequality system *F*;
- 2. a variable order $x_1 > x_2 > \ldots > x_n$.

Output: the minimal projected representation res of F.

- 1 Compute the V-representation V of F by DD method;
- 2 Set res ≔ table().
- 3 Sort the elements in V w.r.t. the reverse lexico order.
- 4 Compute the saturation matrix satM.
- 5 F, satM := CheckRedundancy(F, sat<math>M(F)).

```
6 res[x_1] := F^{x_1}.
```

```
7 for i from 1 to n-1 do
```

```
8 (F^p, F^n, F^0) \coloneqq \operatorname{partition}(F).
```

```
9 V_{new} := \text{proj}(V, \{x_i\}).
```

```
10 Merging: satM := Merge(satM).
```

```
11 Let F_{new} \coloneqq F^0 and satM<sub>new</sub> \coloneqq satM[F^0].
```

```
12 foreach f_p \in F^p and f_n \in F^n do
```

Append
$$\operatorname{proj}((f_p, f_n), \{x_i\})$$
 to F_{new} ,

Append satM[
$$t_p$$
]&satM[t_n] to satM_{new}.

15
$$F$$
, sat $M := \text{CheckRedundancy}(F_{new}, \text{sat}M_{new})$.
16 $V := V_{new}, res[x_{i+1}] := F^{x_{i+1}}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

17 return res.

13 14

Plan

Overview

Redundant inequalities

Efficient removal of redundant inequalities

Algorithms

Implementation techniques

Experimentation

Complexity Estimates

Concluding remarks

1. Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).

1. Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).

2. We use bitarray, the bitarray library by Michael Dipperstein.

1. Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- 2. We use bitarray, the bitarray library by Michael Dipperstein.
- 3. satM(F) is traversed both

- 1. Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
- 2. We use bitarray, the bitarray library by Michael Dipperstein.
- 3. satM(F) is traversed both
 - row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 1. Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
- 2. We use bitarray, the bitarray library by Michael Dipperstein.
- 3. satM(F) is traversed both
 - row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and

column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.

- 1. Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
- 2. We use bitarray, the bitarray library by Michael Dipperstein.
- 3. satM(F) is traversed both
 - row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.
- 4. For cache complexity reasons, we maintain both satM(F) and $satM(F)^{t}$.

- 1. Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
- 2. We use bitarray, the bitarray library by Michael Dipperstein.
- 3. satM(F) is traversed both
 - row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
 - column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.
- 4. For cache complexity reasons, we maintain both satM(F) and satM(F)^t.
- 5. Moreover, these matrices should be represented by blocks.

(日)

- 1. Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
- 2. We use bitarray, the bitarray library by Michael Dipperstein.
- 3. satM(F) is traversed both
 - row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
 - column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.
- 4. For cache complexity reasons, we maintain both satM(F) and satM(F)^t.
- 5. Moreover, these matrices should be represented by blocks.
- 6. Other key tasks Algorithm 2 are

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 1. Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
- 2. We use bitarray, the bitarray library by Michael Dipperstein.
- 3. satM(F) is traversed both
 - row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
 - column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.
- 4. For cache complexity reasons, we maintain both satM(F) and satM(F)^t.
- 5. Moreover, these matrices should be represented by blocks.
- 6. Other key tasks Algorithm 2 are
 - computing the V-representation of each successive projection

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 1. Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
- 2. We use bitarray, the bitarray library by Michael Dipperstein.
- 3. satM(F) is traversed both
 - row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
 - column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.
- 4. For cache complexity reasons, we maintain both satM(F) and satM(F)^t.
- 5. Moreover, these matrices should be represented by blocks.
- 6. Other key tasks Algorithm 2 are
 - computing the V-representation of each successive projection
 - updating the saturation matrix.

・ロット (雪) (山) (山)

Plan

Overview

Redundant inequalities

Efficient removal of redundant inequalities

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Algorithms

Implementation techniques

Experimentation

Complexity Estimates

Concluding remarks

Cuboctahedron

- 1. strongly redundannt inequalities
- 2. weakly redundant inequalities eliminated by cardinality
- 3. weakly redundancies inequalities eliminated by containment

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Snub disphenoid (triangular dodecahedron)

- 1. strongly redundannt inequalities
- 2. weakly redundant inequalities eliminated by cardinality
- 3. weakly redundancies inequalities eliminated by containment

Truncated octahedron

ヨー つへの

Random 3D polyhedron

Random 10D polyhedron

うせん 同一人用 (一日) (日)

Random 10D polyhedron

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ

Random 10D polyhedron

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Four ways of eliminating all variables:

 MPR (this paper): one variable after another, uses both the H-representation and V-representations, redundancy test via saturation matrices

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Four ways of eliminating all variables:

- MPR (this paper): one variable after another, uses both the H-representation and V-representations, redundancy test via saturation matrices
- BPAS ([3] by Authors 1 and 2, with Delaram Talaashrafi): one variable after another, uses both the *H*-representation and *V*-representations, redundancy test via redundancy test cones, thus linear algebra over Q.

Four ways of eliminating all variables:

- MPR (this paper): one variable after another, uses both the H-representation and V-representations, redundancy test via saturation matrices
- BPAS ([3] by Authors 1 and 2, with Delaram Talaashrafi): one variable after another, uses both the *H*-representation and *V*-representations, redundancy test via redundancy test cones, thus linear algebra over Q.
- cddlib [1] by Komei Fukuda: can eliminate several variables in one step, can work with the *H*-representation only, redundancy test via Linear Programming (LP).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Four ways of eliminating all variables:

- MPR (this paper): one variable after another, uses both the H-representation and V-representations, redundancy test via saturation matrices
- BPAS ([3] by Authors 1 and 2, with Delaram Talaashrafi): one variable after another, uses both the *H*-representation and *V*-representations, redundancy test via redundancy test cones, thus linear algebra over Q.
- cddlib [1] by Komei Fukuda: can eliminate several variables in one step, can work with the *H*-representation only, redundancy test via Linear Programming (LP).
- polylib [5] by Vincent Loechner and Doran K. Wilde: can eliminate several variables in one step, can work with the V-representation only, convert between H-rep and V-rep as needed.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Four ways of eliminating all variables:

- MPR (this paper): one variable after another, uses both the H-representation and V-representations, redundancy test via saturation matrices
- BPAS ([3] by Authors 1 and 2, with Delaram Talaashrafi): one variable after another, uses both the *H*-representation and *V*-representations, redundancy test via redundancy test cones, thus linear algebra over Q.
- cddlib [1] by Komei Fukuda: can eliminate several variables in one step, can work with the *H*-representation only, redundancy test via Linear Programming (LP).
- polylib [5] by Vincent Loechner and Doran K. Wilde: can eliminate several variables in one step, can work with the V-representation only, convert between H-rep and V-rep as needed.

We used the following sources for our test cases:

- 1. random non-empty polyhedra with n variables and m inequalities. The coefficients rang in the interval [-10, 10].
- 2. polyhedra coming from libraries polylib and BPAS.

Four ways of eliminating all variables:

- MPR (this paper): one variable after another, uses both the H-representation and V-representations, redundancy test via saturation matrices
- BPAS ([3] by Authors 1 and 2, with Delaram Talaashrafi): one variable after another, uses both the *H*-representation and *V*-representations, redundancy test via redundancy test cones, thus linear algebra over Q.
- cddlib [1] by Komei Fukuda: can eliminate several variables in one step, can work with the *H*-representation only, redundancy test via Linear Programming (LP).
- polylib [5] by Vincent Loechner and Doran K. Wilde: can eliminate several variables in one step, can work with the V-representation only, convert between H-rep and V-rep as needed.

We used the following sources for our test cases:

- 1. random non-empty polyhedra with n variables and m inequalities. The coefficients rang in the interval [-10, 10].
- 2. polyhedra coming from libraries polylib and BPAS.

All the experimental results were collected on a PC (Intel(R) Xeon(R) Gold 6258R CPU 2.70GHz, 503G RAM, Ubuntu 20.04.3).

1. Four different random polyhedra with m = 15 and n = 10.

- 2. For $1 \le i \le 9$, in the hor. axiss, the first *i* variables are eliminated.
- 3. The vert. axis in each figure shows the running time (in seconds).

test case	(n,m,k)	mpr	BPAS	cdd	polylib
32hedron	(6, 32, 11)	6.54	16.80	4183.08	1.92
64hedron	(7,64,13)	13.05	52.42	>5min	1.67
francois	(13,27,2304)	499.92	253.66	388.36	> 5min
francois2	(13,31,384)	41.80	140.34	55.17	80.63
herve.in	(14,25,262)	34.42	140.34	294.01	30.08
c6.in	(11,17,31)	9.85	12.72	84.11	5.56
c9.in	(16,18,140)	25.08	65.54	151.17	131.53
c10.in	(18,20,142)	22.10	98.68	249.02	16.06
S24	(24, 25,25)	23.50	58.80	748.67	17.47
S35	(35, 36,36)	46.55	182.14	3575.00	46.007
cube	(10, 20,1024)	81.33	201.92	125.900	161.06
C56	(5, 6,6)	3.67	4.09	11.81	0.79
C1011	(10, 11,11)	24.99	115.68	1716.25	9.99
C510	(5, 42,10)	12.00	40.01	>5min	4.42
T1	(5, 10,38)	5.61	16.44	27.42	8.81
T3	(10,12,29)	21.29	141.64	288.07	12.07
T5	(5, 10,36)	8.12	15.62	22.92	4.76
T6	(10,20,390)	1142.9	23800.11	14937.61	>5min
T7	(5, 8,26)	5.81	10.79	13.96	4.00
Т9	(10,12,36)	36.56	414.53	479.18	100.34
T10	(6, 8,24)	4.58	13.65	18.39	5.27
T12	(5, 11,42)	8.52	19.03	38.65	8.60
R_15_20	(15, 20, 1328)	28430.40	336035.00	38037.21	≤>5min

Plan

Overview

Redundant inequalities

Efficient removal of redundant inequalities

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Algorithms

Implementation techniques

Experimentation

Complexity Estimates

Concluding remarks
Complexity estimates (1/2)

Recall the notations

- 1. m is the number of inequalities and n is the dimension of the ambient space. If the input *H*-representation is irredundant, the m is also the number of facets of *P*.
- Let h := height([A, b]), let θ be the coefficient of linear algebra and ω the bit-size of a machine word.

Well-known bounds

- 1. The size k of the V-representation (V, R) is at most $\binom{m}{n} + \binom{m}{n-1} \leq \frac{m^n}{n!}$.
- 2. From [2], for $1 \le i < n$, after eliminating *i* variables during the process of FME, the number of irredundant inequalities defining the projection is at most $\binom{m}{n-i-1} \le m^n$.

Theorem

The costs for computing all the inequalities (redundant and irredundant) and generating the initial saturation matrix are within $O(m^{2n}n^{\theta+\varepsilon}h^{1+\varepsilon})$ bit operations, while the costs for updating and operating on the saturation matrices are bounded over by $\frac{3m^{3n-4}}{\omega}$ word operations.

Complexity estimates (1/2)

Recall the notations

- 1. *m* is the number of inequalities and *n* is the dimension of the ambient space. If the input *H*-representation is irredundant, the *m* is also the number of facets of *P*.
- Let h := height([A, b]), let θ be the coefficient of linear algebra and ω the bit-size of a machine word.

Bounds for FME

1. FME based on LP: $O(n^2 m^{2n} LP(n, 2^n hn^2 m^n))$ bit operations, where LP(d, H) is an upper bound for the number of bit operations required for solving a linear program in d variables and with total bit size H. For instance, in the case of Karmarkar's algorithm [4], we have $LP(d, H) \in O(d^{3.5}H^2 \cdot \log H \cdot \log \log H)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- 2. FME based on redundancy test cone: $O(m^{\frac{5n}{2}}n^{\theta+1+\epsilon}h^{1+\epsilon})$ bit operations, for any $\epsilon > 0$.
- 3. This paper: $O(m^{2n}n^{\theta+\varepsilon}h^{1+\varepsilon})$ bit operations and $\frac{3m^{3n-4}}{\omega}$ word operations.

Plan

Overview

Redundant inequalities

Efficient removal of redundant inequalities

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Algorithms

Implementation techniques

Experimentation

Complexity Estimates

Concluding remarks

Concluding remarks

Summary and notes

- 1. We proposed a technique for removing redundant inequalities in linear systems.
- 2. It relies on the analysis of 3 different types of redundancies
- 3. Our redundancy tests allow for efficient implementation based on bit-vector arithmetic.
- 4. From the experimental results, our method works best on hard problems.
- 5. This is promising to solve large scale problems in areas like information theory, SMT and optimizing compilers.

Work in progress

- 1. Our implementation has room for improvements.
- 2. Indeed, our algorithms have opportunities for both multithreaded parallelism and instruction-level parallelism.
- 3. The third criterion (redundancy test based on containment) needs further study to discover the container.

References

- K. Fukuda. The CDD and CDDplus Homepage. https://www.inf.ethz.ch/personal/fukudak/cdd_home/.
- [2] R. J. Jing and M. Moreno Maza. "Computing the integer points of a polyhedron, II: complexity estimates". In: *Proceedings of CASC*. Springer. 2017, pp. 242–256.
- [3] R. J. Jing, M. Moreno-Maza, and D. Talaashrafi. "Complexity estimates for Fourier-Motzkin elimination". In: *Proceedings of CASC*. Springer. 2020, pp. 282–306.
- N. Karmarkar. "A new polynomial-time algorithm for linear programming". In: Proceedings of the sixteenth annual ACM symposium on Theory of computing. STOC '84. New York, NY, USA: ACM, 1984, pp. 302–311. ISBN: 0-89791-133-4. DOI: 10.1145/800057.808695. URL: http://doi.acm.org/10.1145/800057.808695.
- [5] V. Loechner. *PolyLib: A library for manipulating parameterized polyhedra*. 1999.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●