
Polyhedral sets, lattice points, optimizing
compilers and computer algebra

Marc Moreno Maza1

1Ontario Research Center for Computer Algebra, UWO, London, Ontario

March 14, 2025(version 2)
17/07/2024, 17:09 Mail - Marc Moreno Maza - Outlook

https://outlook.office.com/mail/inbox/id/AAQkAGMwN2ViYjg1LWRmMmUtNGUwZi04MjkxLTM0NDg5YWFjMTE3YwAQAOX1lYJnt9NBonT… 1/1

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Acknowledgements

▸ Many thanks to the JNCF 2025 organizers, who gave me the
opportunity to be back in Luminy 20 years after.

▸ This tutorial is based on research projects in which many of my
former and current PhD students have played an essential role. By
alphabetic order: Xiaohui Chen, Rui-Juan Jing Yuzhuo Lei,
Christopher Maligec, Chirantan Mukherjee, Delaram Talaashrafi,
Linxiao Wang and Ning Xie.

▸ This tutorial is based on collaborations with Maplesoft, MIT/CSAIL,
NVIDIA, Intel and IBM Canada, with funding support from
Maplesoft, MITACS, IBM and NSERC of Canada.

▸ Most of the algorithms presented in this tutorial are implemented in
Maple’s PolyhedralSets library.

https://www.linkedin.com/in/xiaohui-chen-76113371/?originalSubdomain=ca
https://jingrj.github.io/
https://dtalaashrafi.github.io/
https://www.csd.uwo.ca/~lwang739/
https://www.linkedin.com/in/ning-nxie/?originalSubdomain=ca

Acknowledgements

▸ Many thanks to the JNCF 2025 organizers, who gave me the
opportunity to be back in Luminy 20 years after.

▸ This tutorial is based on research projects in which many of my
former and current PhD students have played an essential role. By
alphabetic order: Xiaohui Chen, Rui-Juan Jing Yuzhuo Lei,
Christopher Maligec, Chirantan Mukherjee, Delaram Talaashrafi,
Linxiao Wang and Ning Xie.

▸ This tutorial is based on collaborations with Maplesoft, MIT/CSAIL,
NVIDIA, Intel and IBM Canada, with funding support from
Maplesoft, MITACS, IBM and NSERC of Canada.

▸ Most of the algorithms presented in this tutorial are implemented in
Maple’s PolyhedralSets library.

https://www.linkedin.com/in/xiaohui-chen-76113371/?originalSubdomain=ca
https://jingrj.github.io/
https://dtalaashrafi.github.io/
https://www.csd.uwo.ca/~lwang739/
https://www.linkedin.com/in/ning-nxie/?originalSubdomain=ca

Acknowledgements

▸ Many thanks to the JNCF 2025 organizers, who gave me the
opportunity to be back in Luminy 20 years after.

▸ This tutorial is based on research projects in which many of my
former and current PhD students have played an essential role. By
alphabetic order: Xiaohui Chen, Rui-Juan Jing Yuzhuo Lei,
Christopher Maligec, Chirantan Mukherjee, Delaram Talaashrafi,
Linxiao Wang and Ning Xie.

▸ This tutorial is based on collaborations with Maplesoft, MIT/CSAIL,
NVIDIA, Intel and IBM Canada, with funding support from
Maplesoft, MITACS, IBM and NSERC of Canada.

▸ Most of the algorithms presented in this tutorial are implemented in
Maple’s PolyhedralSets library.

https://www.linkedin.com/in/xiaohui-chen-76113371/?originalSubdomain=ca
https://jingrj.github.io/
https://dtalaashrafi.github.io/
https://www.csd.uwo.ca/~lwang739/
https://www.linkedin.com/in/ning-nxie/?originalSubdomain=ca

Acknowledgements

▸ Many thanks to the JNCF 2025 organizers, who gave me the
opportunity to be back in Luminy 20 years after.

▸ This tutorial is based on research projects in which many of my
former and current PhD students have played an essential role. By
alphabetic order: Xiaohui Chen, Rui-Juan Jing Yuzhuo Lei,
Christopher Maligec, Chirantan Mukherjee, Delaram Talaashrafi,
Linxiao Wang and Ning Xie.

▸ This tutorial is based on collaborations with Maplesoft, MIT/CSAIL,
NVIDIA, Intel and IBM Canada, with funding support from
Maplesoft, MITACS, IBM and NSERC of Canada.

▸ Most of the algorithms presented in this tutorial are implemented in
Maple’s PolyhedralSets library.

https://www.linkedin.com/in/xiaohui-chen-76113371/?originalSubdomain=ca
https://jingrj.github.io/
https://dtalaashrafi.github.io/
https://www.csd.uwo.ca/~lwang739/
https://www.linkedin.com/in/ning-nxie/?originalSubdomain=ca

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .

skip slide

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

Dependence analysis yields:
(t,p) ∶= (n − j , i + j).

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .

skip slide

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

Dependence analysis yields:
(t,p) ∶= (n − j , i + j).

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .

skip slide

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

Dependence analysis yields:
(t,p) ∶= (n − j , i + j).

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .
skip slide

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

Dependence analysis yields:
(t,p) ∶= (n − j , i + j).

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .
skip slide

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

Dependence analysis yields:
(t,p) ∶= (n − j , i + j).

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .
skip slide

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

Dependence analysis yields:
(t,p) ∶= (n − j , i + j).

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .
skip slide

Application of FME: computing integer hulls (1/3)

The input polyhedral set:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−98877x1 − 189663x2 − 1798x3 ≤ 705915
−10109x1 − 5958x2 − 14601x3 ≤ 31333
−5405x1 + 4965x2 + 3870x3 ≤ 4303504

729x1 − 117x2 + 350x3 ≤ 4561
677x1 + 465x2 − 540x3 ≤ 3489

Normalization (leaves the integer
hull unchanged):
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−98877x1 − 189663x2 − 1798x3 ≤ 705915
−10109x1 − 5958x2 − 14601x3 ≤ 31333
−1081x1 + 993x2 + 774x3 ≤ 860700
729x1 − 117x2 + 350x3 ≤ 4561
677x1 + 465x2 − 540x3 ≤ 3489

Application of FME: computing integer hulls (1/3)

The input polyhedral set:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−98877x1 − 189663x2 − 1798x3 ≤ 705915
−10109x1 − 5958x2 − 14601x3 ≤ 31333
−5405x1 + 4965x2 + 3870x3 ≤ 4303504

729x1 − 117x2 + 350x3 ≤ 4561
677x1 + 465x2 − 540x3 ≤ 3489

Normalization (leaves the integer
hull unchanged):
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−98877x1 − 189663x2 − 1798x3 ≤ 705915
−10109x1 − 5958x2 − 14601x3 ≤ 31333
−1081x1 + 993x2 + 774x3 ≤ 860700
729x1 − 117x2 + 350x3 ≤ 4561
677x1 + 465x2 − 540x3 ≤ 3489

Application of FME: computing integer hulls (2/3)

1 The red is an approximation of the integer hull of the input.
2 The integer hulls of border regions (green, blue, purple) are
brute-force computed via FME.

3 Then QuickHull is applied to obtain the integer hull of the input.

Application of FME: computing integer hulls (3/3)

The input has only 5 vertices.
Its integer hull has 139 vertices.

All details are in https://ir.lib.uwo.ca/etd/8985/ and in
https://doi.org/10.1007/978-3-031-14788-3 14

https://ir.lib.uwo.ca/etd/8985/
https://doi.org/10.1007/978-3-031-14788-3_14

Application to dependence analysis

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

A[i * n + j] = A[(n * j - n + j - i - 1];

1 Can we parallelize the two for-loops?

2 Is there data dependence between two different iterations of the
nest?

3 Are there integer solutions to the following system of linear
inequalities?

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

Application to dependence analysis

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

A[i * n + j] = A[(n * j - n + j - i - 1];

1 Can we parallelize the two for-loops?

2 Is there data dependence between two different iterations of the
nest?

3 Are there integer solutions to the following system of linear
inequalities?

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

Application to dependence analysis

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

A[i * n + j] = A[(n * j - n + j - i - 1];

1 Can we parallelize the two for-loops?

2 Is there data dependence between two different iterations of the
nest?

3 Are there integer solutions to the following system of linear
inequalities?

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

Application to dependence analysis

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

A[i * n + j] = A[(n * j - n + j - i - 1];

1 Can we parallelize the two for-loops?

2 Is there data dependence between two different iterations of the
nest?

3 Are there integer solutions to the following system of linear
inequalities?

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

A[i * n + j] =

A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 =j2 − 1

j1 =j2 − i2 − 1

1 There is no integer solution, therefore, no dependence

2 The problem of delinearization requires to do QE over Z for
non-linear expressions, which is, in principle, unfeasible. But see next
slide.

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

A[i * n + j] =

A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 =j2 − 1

j1 =j2 − i2 − 1

1 There is no integer solution, therefore, no dependence

2 The problem of delinearization requires to do QE over Z for
non-linear expressions, which is, in principle, unfeasible. But see next
slide.

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

A[i * n + j] =

A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 =j2 − 1

j1 =j2 − i2 − 1

1 There is no integer solution, therefore, no dependence

2 The problem of delinearization requires to do QE over Z for
non-linear expressions, which is, in principle, unfeasible. But see next
slide.

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

A[i * n + j] =

A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 =j2 − 1

j1 =j2 − i2 − 1

1 There is no integer solution, therefore, no dependence

2 The problem of delinearization requires to do QE over Z for
non-linear expressions, which is, in principle, unfeasible. But see next
slide.

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

A[i * n + j] =

A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤i1 < n
i1 + 1 ≤j1 < n

0 ≤i2 < n
i2 + 1 ≤j2 < n

i1 =j2 − 1

j1 =j2 − i2 − 1

1 There is no integer solution, therefore, no dependence

2 The problem of delinearization requires to do QE over Z for
non-linear expressions, which is, in principle, unfeasible. But see next
slide.

Another approach to the delinearization problem
Principles

1 Assume that the delinearization problem has been solved for a
particular problem instance, say 2D-Jacobi.

2 Assume that we have another problem instance which looks very
similar

3 We may want to check whether the solved problem instance is
obtained from the unsolved problem instance via a rank-preserving
unimodular transformation between the two iteration domains.

Details

1 rank-preserving guarantees that the same array coefficients are
read/written in the same order.

2 rank-preserving transformations are “classifiable” off-line, next slide.

3 unimodularity guarantees that we can map integers to integers back
and forth.

4 This can be performed at compile time (at the simple cost of linear
algebra) and leads to a case discussion which can be evaluated at
execution time.

Another approach to the delinearization problem
Principles

1 Assume that the delinearization problem has been solved for a
particular problem instance, say 2D-Jacobi.

2 Assume that we have another problem instance which looks very
similar

3 We may want to check whether the solved problem instance is
obtained from the unsolved problem instance via a rank-preserving
unimodular transformation between the two iteration domains.

Details

1 rank-preserving guarantees that the same array coefficients are
read/written in the same order.

2 rank-preserving transformations are “classifiable” off-line, next slide.

3 unimodularity guarantees that we can map integers to integers back
and forth.

4 This can be performed at compile time (at the simple cost of linear
algebra) and leads to a case discussion which can be evaluated at
execution time.

Another approach to the delinearization problem
Principles

1 Assume that the delinearization problem has been solved for a
particular problem instance, say 2D-Jacobi.

2 Assume that we have another problem instance which looks very
similar

3 We may want to check whether the solved problem instance is
obtained from the unsolved problem instance via a rank-preserving
unimodular transformation between the two iteration domains.

Details

1 rank-preserving guarantees that the same array coefficients are
read/written in the same order.

2 rank-preserving transformations are “classifiable” off-line, next slide.

3 unimodularity guarantees that we can map integers to integers back
and forth.

4 This can be performed at compile time (at the simple cost of linear
algebra) and leads to a case discussion which can be evaluated at
execution time.

Another approach to the delinearization problem
Principles

1 Assume that the delinearization problem has been solved for a
particular problem instance, say 2D-Jacobi.

2 Assume that we have another problem instance which looks very
similar

3 We may want to check whether the solved problem instance is
obtained from the unsolved problem instance via a rank-preserving
unimodular transformation between the two iteration domains.

Details
1 rank-preserving guarantees that the same array coefficients are
read/written in the same order.

2 rank-preserving transformations are “classifiable” off-line, next slide.

3 unimodularity guarantees that we can map integers to integers back
and forth.

4 This can be performed at compile time (at the simple cost of linear
algebra) and leads to a case discussion which can be evaluated at
execution time.

Another approach to the delinearization problem
Principles

1 Assume that the delinearization problem has been solved for a
particular problem instance, say 2D-Jacobi.

2 Assume that we have another problem instance which looks very
similar

3 We may want to check whether the solved problem instance is
obtained from the unsolved problem instance via a rank-preserving
unimodular transformation between the two iteration domains.

Details
1 rank-preserving guarantees that the same array coefficients are
read/written in the same order.

2 rank-preserving transformations are “classifiable” off-line, next slide.

3 unimodularity guarantees that we can map integers to integers back
and forth.

4 This can be performed at compile time (at the simple cost of linear
algebra) and leads to a case discussion which can be evaluated at
execution time.

Another approach to the delinearization problem
Principles

1 Assume that the delinearization problem has been solved for a
particular problem instance, say 2D-Jacobi.

2 Assume that we have another problem instance which looks very
similar

3 We may want to check whether the solved problem instance is
obtained from the unsolved problem instance via a rank-preserving
unimodular transformation between the two iteration domains.

Details
1 rank-preserving guarantees that the same array coefficients are
read/written in the same order.

2 rank-preserving transformations are “classifiable” off-line, next slide.

3 unimodularity guarantees that we can map integers to integers back
and forth.

4 This can be performed at compile time (at the simple cost of linear
algebra) and leads to a case discussion which can be evaluated at
execution time.

Another approach to the delinearization problem
Principles

1 Assume that the delinearization problem has been solved for a
particular problem instance, say 2D-Jacobi.

2 Assume that we have another problem instance which looks very
similar

3 We may want to check whether the solved problem instance is
obtained from the unsolved problem instance via a rank-preserving
unimodular transformation between the two iteration domains.

Details
1 rank-preserving guarantees that the same array coefficients are
read/written in the same order.

2 rank-preserving transformations are “classifiable” off-line, next slide.

3 unimodularity guarantees that we can map integers to integers back
and forth.

4 This can be performed at compile time (at the simple cost of linear
algebra) and leads to a case discussion which can be evaluated at
execution time.

3D Pattern matching problem

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a b c
d e f
g h l

⎤
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

i
j
k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ai + bj + ck
di + ej + fk
gi + hj + lf

⎤
⎥
⎥
⎥
⎥
⎥
⎦

QE input:

∀[i1, j1, k1, i2, j2, k2],

(i1 < i2) ∨ ((i1 = i2) ∧ (j1 < j2)) ∨ ((i1 = i2) ∧ (j1 = j2) ∧ (k1 < k2)) Ô⇒

(a i1 + b j1 + c k1 < a i2 + b j2 + c k2)

∨((a i1 + b j1 + c k1 = a i2 + b j2 + c k2) ∧ (d i1 + e j1 + f k1 < d i2 + e j2 + f k2))

∨((a i1 + b j1 + c k1 = a i2 + b j2 + c k2) ∧ (d i1 + e j1 + f k1 = d i2 + e j2 + f k2)

∧(g i1 + h j1 + l k1 < g i2 + h j2 + l k2))

QE output:
(f = 0) ∧ (0 < e) ∧ (c = 0) ∧ (b = 0) ∧ (0 < a) ∧ (0 < l)

which gives us the final matrix as below

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a > 0 0 0
c e > 0 0
g h l > 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Plan

1. Overview

2. Basic concepts

3. Solving systems of linear inequalities

4. Integer hulls of polyhedra

5. Integer point counting for parametric polyhedra

6. Quantifier elimination over the integers

7. Concluding remarks

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

1 This section is a review of the theory of polyhedral sets.

2 It is based on the books of Branko Grünbaum [6] and Alexander
Schrijver [18], where the missing proofs can be found.

Notations 1

1 As usual, we denote by Z, Q, and R the ring of integers, the field of
rational numbers, and the field of real numbers.

2 We consider the d-dimensional Euclidean space Rd equipped with
the Euclidean topology.

3 Upper case letters A,B, . . . ,X , . . . will usually denote matrices or
polyhedra, sometimes polynomials.

4 Bold lower case letters a,b, . . . ,x, . . . will usually denote vectors or
points.

5 Non-bold case letters a,b, . . . , x . . . will usually denote scalars or
points (outside the context of linear algebra).

6 Let K be a subset of Rd .

7 We denote by K , K̊ , ∂K the closure, the interior the border of K.

1 This section is a review of the theory of polyhedral sets.

2 It is based on the books of Branko Grünbaum [6] and Alexander
Schrijver [18], where the missing proofs can be found.

Notations 1

1 As usual, we denote by Z, Q, and R the ring of integers, the field of
rational numbers, and the field of real numbers.

2 We consider the d-dimensional Euclidean space Rd equipped with
the Euclidean topology.

3 Upper case letters A,B, . . . ,X , . . . will usually denote matrices or
polyhedra, sometimes polynomials.

4 Bold lower case letters a,b, . . . ,x, . . . will usually denote vectors or
points.

5 Non-bold case letters a,b, . . . , x . . . will usually denote scalars or
points (outside the context of linear algebra).

6 Let K be a subset of Rd .

7 We denote by K , K̊ , ∂K the closure, the interior the border of K.

1 This section is a review of the theory of polyhedral sets.

2 It is based on the books of Branko Grünbaum [6] and Alexander
Schrijver [18], where the missing proofs can be found.

Notations 1
1 As usual, we denote by Z, Q, and R the ring of integers, the field of
rational numbers, and the field of real numbers.

2 We consider the d-dimensional Euclidean space Rd equipped with
the Euclidean topology.

3 Upper case letters A,B, . . . ,X , . . . will usually denote matrices or
polyhedra, sometimes polynomials.

4 Bold lower case letters a,b, . . . ,x, . . . will usually denote vectors or
points.

5 Non-bold case letters a,b, . . . , x . . . will usually denote scalars or
points (outside the context of linear algebra).

6 Let K be a subset of Rd .

7 We denote by K , K̊ , ∂K the closure, the interior the border of K.

1 This section is a review of the theory of polyhedral sets.

2 It is based on the books of Branko Grünbaum [6] and Alexander
Schrijver [18], where the missing proofs can be found.

Notations 1
1 As usual, we denote by Z, Q, and R the ring of integers, the field of
rational numbers, and the field of real numbers.

2 We consider the d-dimensional Euclidean space Rd equipped with
the Euclidean topology.

3 Upper case letters A,B, . . . ,X , . . . will usually denote matrices or
polyhedra, sometimes polynomials.

4 Bold lower case letters a,b, . . . ,x, . . . will usually denote vectors or
points.

5 Non-bold case letters a,b, . . . , x . . . will usually denote scalars or
points (outside the context of linear algebra).

6 Let K be a subset of Rd .

7 We denote by K , K̊ , ∂K the closure, the interior the border of K.

1 This section is a review of the theory of polyhedral sets.

2 It is based on the books of Branko Grünbaum [6] and Alexander
Schrijver [18], where the missing proofs can be found.

Notations 1
1 As usual, we denote by Z, Q, and R the ring of integers, the field of
rational numbers, and the field of real numbers.

2 We consider the d-dimensional Euclidean space Rd equipped with
the Euclidean topology.

3 Upper case letters A,B, . . . ,X , . . . will usually denote matrices or
polyhedra, sometimes polynomials.

4 Bold lower case letters a,b, . . . ,x, . . . will usually denote vectors or
points.

5 Non-bold case letters a,b, . . . , x . . . will usually denote scalars or
points (outside the context of linear algebra).

6 Let K be a subset of Rd .

7 We denote by K , K̊ , ∂K the closure, the interior the border of K.

1 This section is a review of the theory of polyhedral sets.

2 It is based on the books of Branko Grünbaum [6] and Alexander
Schrijver [18], where the missing proofs can be found.

Notations 1
1 As usual, we denote by Z, Q, and R the ring of integers, the field of
rational numbers, and the field of real numbers.

2 We consider the d-dimensional Euclidean space Rd equipped with
the Euclidean topology.

3 Upper case letters A,B, . . . ,X , . . . will usually denote matrices or
polyhedra, sometimes polynomials.

4 Bold lower case letters a,b, . . . ,x, . . . will usually denote vectors or
points.

5 Non-bold case letters a,b, . . . , x . . . will usually denote scalars or
points (outside the context of linear algebra).

6 Let K be a subset of Rd .

7 We denote by K , K̊ , ∂K the closure, the interior the border of K.

1 This section is a review of the theory of polyhedral sets.

2 It is based on the books of Branko Grünbaum [6] and Alexander
Schrijver [18], where the missing proofs can be found.

Notations 1
1 As usual, we denote by Z, Q, and R the ring of integers, the field of
rational numbers, and the field of real numbers.

2 We consider the d-dimensional Euclidean space Rd equipped with
the Euclidean topology.

3 Upper case letters A,B, . . . ,X , . . . will usually denote matrices or
polyhedra, sometimes polynomials.

4 Bold lower case letters a,b, . . . ,x, . . . will usually denote vectors or
points.

5 Non-bold case letters a,b, . . . , x . . . will usually denote scalars or
points (outside the context of linear algebra).

6 Let K be a subset of Rd .

7 We denote by K , K̊ , ∂K the closure, the interior the border of K.

1 This section is a review of the theory of polyhedral sets.

2 It is based on the books of Branko Grünbaum [6] and Alexander
Schrijver [18], where the missing proofs can be found.

Notations 1
1 As usual, we denote by Z, Q, and R the ring of integers, the field of
rational numbers, and the field of real numbers.

2 We consider the d-dimensional Euclidean space Rd equipped with
the Euclidean topology.

3 Upper case letters A,B, . . . ,X , . . . will usually denote matrices or
polyhedra, sometimes polynomials.

4 Bold lower case letters a,b, . . . ,x, . . . will usually denote vectors or
points.

5 Non-bold case letters a,b, . . . , x . . . will usually denote scalars or
points (outside the context of linear algebra).

6 Let K be a subset of Rd .

7 We denote by K , K̊ , ∂K the closure, the interior the border of K.

1 This section is a review of the theory of polyhedral sets.

2 It is based on the books of Branko Grünbaum [6] and Alexander
Schrijver [18], where the missing proofs can be found.

Notations 1
1 As usual, we denote by Z, Q, and R the ring of integers, the field of
rational numbers, and the field of real numbers.

2 We consider the d-dimensional Euclidean space Rd equipped with
the Euclidean topology.

3 Upper case letters A,B, . . . ,X , . . . will usually denote matrices or
polyhedra, sometimes polynomials.

4 Bold lower case letters a,b, . . . ,x, . . . will usually denote vectors or
points.

5 Non-bold case letters a,b, . . . , x . . . will usually denote scalars or
points (outside the context of linear algebra).

6 Let K be a subset of Rd .

7 We denote by K , K̊ , ∂K the closure, the interior the border of K.

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Affine, conical and convex hulls

Definition 1
Let X ⊆ Rd . The span, the affine hull, the convex hull, the
conical hull of X , denoted Span(X), AffineHull(X), ConvexHull(X),
ConicalHull(X), are defined by: For every y ∈ Rd , we have:

1 y ∈ Span(X) ⇐⇒ ∃e ∈ N,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈ Re ∣
y = λ1x1 +⋯ + λexe .

2 y ∈ AffineHull(X) ⇐⇒ ∃e ∈ N>0,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
Re ∣ y = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

3 y ∈ ConvexHull(X) ⇐⇒ ∃e ∈ N>0,∃(x1, . . . , xe) ∈
X e ,∃(λ1, . . . , λe) ∈ R≥0e ∣ y = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

4 y ∈ ConicalHull(X) ⇐⇒ ∃e ∈ N,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
R≥0e ∣ y = λ1x1 +⋯ + λexe .

In the plane, the conical and
convex hulls of a few points.

Affine, conical and convex hulls

Definition 1
Let X ⊆ Rd . The span, the affine hull, the convex hull, the
conical hull of X , denoted Span(X), AffineHull(X), ConvexHull(X),
ConicalHull(X), are defined by: For every y ∈ Rd , we have:

1 y ∈ Span(X) ⇐⇒ ∃e ∈ N,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈ Re ∣
y = λ1x1 +⋯ + λexe .

2 y ∈ AffineHull(X) ⇐⇒ ∃e ∈ N>0,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
Re ∣ y = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

3 y ∈ ConvexHull(X) ⇐⇒ ∃e ∈ N>0,∃(x1, . . . , xe) ∈
X e ,∃(λ1, . . . , λe) ∈ R≥0e ∣ y = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

4 y ∈ ConicalHull(X) ⇐⇒ ∃e ∈ N,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
R≥0e ∣ y = λ1x1 +⋯ + λexe .

In the plane, the conical and
convex hulls of a few points.

Affine, conical and convex hulls

Definition 1
Let X ⊆ Rd . The span, the affine hull, the convex hull, the
conical hull of X , denoted Span(X), AffineHull(X), ConvexHull(X),
ConicalHull(X), are defined by: For every y ∈ Rd , we have:

1 y ∈ Span(X) ⇐⇒ ∃e ∈ N,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈ Re ∣
y = λ1x1 +⋯ + λexe .

2 y ∈ AffineHull(X) ⇐⇒ ∃e ∈ N>0,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
Re ∣ y = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

3 y ∈ ConvexHull(X) ⇐⇒ ∃e ∈ N>0,∃(x1, . . . , xe) ∈
X e ,∃(λ1, . . . , λe) ∈ R≥0e ∣ y = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

4 y ∈ ConicalHull(X) ⇐⇒ ∃e ∈ N,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
R≥0e ∣ y = λ1x1 +⋯ + λexe .

In the plane, the conical and
convex hulls of a few points.

Affine, conical and convex hulls

Definition 1
Let X ⊆ Rd . The span, the affine hull, the convex hull, the
conical hull of X , denoted Span(X), AffineHull(X), ConvexHull(X),
ConicalHull(X), are defined by: For every y ∈ Rd , we have:

1 y ∈ Span(X) ⇐⇒ ∃e ∈ N,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈ Re ∣
y = λ1x1 +⋯ + λexe .

2 y ∈ AffineHull(X) ⇐⇒ ∃e ∈ N>0,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
Re ∣ y = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

3 y ∈ ConvexHull(X) ⇐⇒ ∃e ∈ N>0,∃(x1, . . . , xe) ∈
X e ,∃(λ1, . . . , λe) ∈ R≥0e ∣ y = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

4 y ∈ ConicalHull(X) ⇐⇒ ∃e ∈ N,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
R≥0e ∣ y = λ1x1 +⋯ + λexe .

In the plane, the conical and
convex hulls of a few points.

Affine, conical and convex hulls

Definition 1
Let X ⊆ Rd . The span, the affine hull, the convex hull, the
conical hull of X , denoted Span(X), AffineHull(X), ConvexHull(X),
ConicalHull(X), are defined by: For every y ∈ Rd , we have:

1 y ∈ Span(X) ⇐⇒ ∃e ∈ N,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈ Re ∣
y = λ1x1 +⋯ + λexe .

2 y ∈ AffineHull(X) ⇐⇒ ∃e ∈ N>0,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
Re ∣ y = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

3 y ∈ ConvexHull(X) ⇐⇒ ∃e ∈ N>0,∃(x1, . . . , xe) ∈
X e ,∃(λ1, . . . , λe) ∈ R≥0e ∣ y = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

4 y ∈ ConicalHull(X) ⇐⇒ ∃e ∈ N,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
R≥0e ∣ y = λ1x1 +⋯ + λexe .

In the plane, the conical and
convex hulls of a few points.

Affine, conical and convex hulls

Definition 2
Let X ⊆ Rd . The span, the affine hull, the convex hull, the conical hull
of X , denoted Span(X), AffineHull(X), ConvexHull(X), ConicalHull(X),
are defined by: For every y ∈ Rd , we have:

1 y ∈ Span(X) ⇐⇒ ∃e ∈ N,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈ Re ∣
y = λ1x1 +⋯ + λexe .

2 y ∈ AffineHull(X) ⇐⇒ ∃e ∈ N>0,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
Re ∣ y = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

3 y ∈ ConvexHull(X) ⇐⇒ ∃e ∈ N>0,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
R≥0e ∣ y = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

4 y ∈ ConicalHull(X) ⇐⇒ ∃e ∈ N,∃(x1, . . . , xe) ∈ X e ,∃(λ1, . . . , λe) ∈
R≥0e ∣ y = λ1x1 +⋯ + λexe .

In the plane, the conical hull of a circle
passing through the origin is the open
half-plane defined by the tangent line to the
circle at the origin plus the origin.

Some properties of hulls and spans (1/3)

Definition 3
For X ,Y ⊆ Rd and x0 ∈ Rd , we define the Minkowski sum of X and Y as

X +Y = {x + y ∣ x ∈ Xandy ∈ Y },

and we write X + x0 for X + {x0}.

In the plane, the blue polyhedron is the
Minkowski sum of the red and green
polyhedra.

Definition 4
A subset P ⊆ Rd is a polytope, if it is the convex hull of finitely many
points, that is, if there exists a finite set X ⊆ Rd so that
P = ConvexHull(X).

Some properties of hulls and spans (1/3)

Definition 3
For X ,Y ⊆ Rd and x0 ∈ Rd , we define the Minkowski sum of X and Y as

X +Y = {x + y ∣ x ∈ Xandy ∈ Y },

and we write X + x0 for X + {x0}.

In the plane, the blue polyhedron is the
Minkowski sum of the red and green
polyhedra.

Definition 4
A subset P ⊆ Rd is a polytope, if it is the convex hull of finitely many
points, that is, if there exists a finite set X ⊆ Rd so that
P = ConvexHull(X).

Some properties of hulls and spans (1/3)

Definition 3
For X ,Y ⊆ Rd and x0 ∈ Rd , we define the Minkowski sum of X and Y as

X +Y = {x + y ∣ x ∈ Xandy ∈ Y },

and we write X + x0 for X + {x0}.

In the plane, the blue polyhedron is the
Minkowski sum of the red and green
polyhedra.

Definition 4
A subset P ⊆ Rd is a polytope, if it is the convex hull of finitely many
points, that is, if there exists a finite set X ⊆ Rd so that
P = ConvexHull(X).

Some properties of hulls and spans (1/3)
Definition 5
For X ,Y ⊆ Rd and x0 ∈ Rd , we define the Minkowski sum of X and Y as

X +Y = {x + y ∣ x ∈ Xandy ∈ Y },

and we write X + x0 for X + {x0}.

Proposition 1
If x0 ∈ X, then we have AffineHull(X) = x0 + Span(X).

Proof.

Assume x0 ∈ X and let x ∈ AffineHull(X). Then, there exists
(x1, . . . , xe) ∈ X e and (λ1, . . . , λe) ∈ Re such that
x = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1. Then, we have:

x = x0 + λ1(x1 − x0) +⋯λe(xe − x0),

that is, x ∈ x0 + Span(X). Conversely, let x ∈∈ x0 + Span(X). Let
(λ1, . . . , λe) ∈ Re such that x = x0 + λ1x1 +⋯λexe . Define µi = λi , for
1 ≤ i ≤ e and µ0 = 1 − λ1 −⋯ − λe . Then, we have:

x = µ0x0 + µ1x1 +⋯ + µexe ,

that is, x ∈ AffineHull(X).

Some properties of hulls and spans (1/3)
Definition 5
For X ,Y ⊆ Rd and x0 ∈ Rd , we define the Minkowski sum of X and Y as

X +Y = {x + y ∣ x ∈ Xandy ∈ Y },

and we write X + x0 for X + {x0}.

Proposition 1
If x0 ∈ X, then we have AffineHull(X) = x0 + Span(X).

Proof.
Assume x0 ∈ X and let x ∈ AffineHull(X). Then, there exists
(x1, . . . , xe) ∈ X e and (λ1, . . . , λe) ∈ Re such that
x = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1. Then, we have:

x = x0 + λ1(x1 − x0) +⋯λe(xe − x0),

that is, x ∈ x0 + Span(X).

Conversely, let x ∈∈ x0 + Span(X). Let
(λ1, . . . , λe) ∈ Re such that x = x0 + λ1x1 +⋯λexe . Define µi = λi , for
1 ≤ i ≤ e and µ0 = 1 − λ1 −⋯ − λe . Then, we have:

x = µ0x0 + µ1x1 +⋯ + µexe ,

that is, x ∈ AffineHull(X).

Some properties of hulls and spans (1/3)
Definition 5
For X ,Y ⊆ Rd and x0 ∈ Rd , we define the Minkowski sum of X and Y as

X +Y = {x + y ∣ x ∈ Xandy ∈ Y },

and we write X + x0 for X + {x0}.

Proposition 1
If x0 ∈ X, then we have AffineHull(X) = x0 + Span(X).

Proof.
Assume x0 ∈ X and let x ∈ AffineHull(X). Then, there exists
(x1, . . . , xe) ∈ X e and (λ1, . . . , λe) ∈ Re such that
x = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1. Then, we have:

x = x0 + λ1(x1 − x0) +⋯λe(xe − x0),

that is, x ∈ x0 + Span(X). Conversely, let x ∈∈ x0 + Span(X). Let
(λ1, . . . , λe) ∈ Re such that x = x0 + λ1x1 +⋯λexe . Define µi = λi , for
1 ≤ i ≤ e and µ0 = 1 − λ1 −⋯ − λe . Then, we have:

x = µ0x0 + µ1x1 +⋯ + µexe ,

that is, x ∈ AffineHull(X).

Some properties of hulls and spans (2/3)

Proposition 2
We have:

ConicalHull(X) = {x ∈ Rd ∣ ∃t ∈ R>0 tx ∈ ConvexHull(X)} ∪ {0}.

Proof.
Denote by Z the set on the right-hand side of the equality. Let x ∈ Z . If
x = 0 holds then x ∈ ConicalHull(X) holds. Assume from now on that
x ≠ 0. Let t ∈ R>0 such that tx ∈ ConvexHull(X) holds. Then, let e ∈ N>0,
let (x1, . . . , xe) ∈ X e , let (λ1, . . . , λe) ∈ R≥0e such that

tx = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

It follows that x ∈ ConicalHull(X) holds.

Conversely, let
x ∈ ConicalHull(X). If x = 0 holds then x ∈ Z holds. Assume from now on
that x ≠ 0. Then, let e ∈ N>0, let (x1, . . . , xe) ∈ X e , let (λ1, . . . , λe) ∈ R≥0e
such that

x = λ1x1 +⋯ + λexe holds.

Since x ≠ 0, we have λ ∶= λ1 +⋯ + λe ≠ 0. It follows that x
λ
∈ X , that is,

x ∈ Z .

Some properties of hulls and spans (2/3)

Proposition 2
We have:

ConicalHull(X) = {x ∈ Rd ∣ ∃t ∈ R>0 tx ∈ ConvexHull(X)} ∪ {0}.

Proof.
Denote by Z the set on the right-hand side of the equality. Let x ∈ Z . If
x = 0 holds then x ∈ ConicalHull(X) holds. Assume from now on that
x ≠ 0. Let t ∈ R>0 such that tx ∈ ConvexHull(X) holds. Then, let e ∈ N>0,
let (x1, . . . , xe) ∈ X e , let (λ1, . . . , λe) ∈ R≥0e such that

tx = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

It follows that x ∈ ConicalHull(X) holds.

Conversely, let
x ∈ ConicalHull(X). If x = 0 holds then x ∈ Z holds. Assume from now on
that x ≠ 0. Then, let e ∈ N>0, let (x1, . . . , xe) ∈ X e , let (λ1, . . . , λe) ∈ R≥0e
such that

x = λ1x1 +⋯ + λexe holds.

Since x ≠ 0, we have λ ∶= λ1 +⋯ + λe ≠ 0. It follows that x
λ
∈ X , that is,

x ∈ Z .

Some properties of hulls and spans (2/3)

Proposition 2
We have:

ConicalHull(X) = {x ∈ Rd ∣ ∃t ∈ R>0 tx ∈ ConvexHull(X)} ∪ {0}.

Proof.
Denote by Z the set on the right-hand side of the equality. Let x ∈ Z . If
x = 0 holds then x ∈ ConicalHull(X) holds. Assume from now on that
x ≠ 0. Let t ∈ R>0 such that tx ∈ ConvexHull(X) holds. Then, let e ∈ N>0,
let (x1, . . . , xe) ∈ X e , let (λ1, . . . , λe) ∈ R≥0e such that

tx = λ1x1 +⋯ + λexe and λ1 +⋯ + λe = 1.

It follows that x ∈ ConicalHull(X) holds. Conversely, let
x ∈ ConicalHull(X). If x = 0 holds then x ∈ Z holds. Assume from now on
that x ≠ 0. Then, let e ∈ N>0, let (x1, . . . , xe) ∈ X e , let (λ1, . . . , λe) ∈ R≥0e
such that

x = λ1x1 +⋯ + λexe holds.

Since x ≠ 0, we have λ ∶= λ1 +⋯ + λe ≠ 0. It follows that x
λ
∈ X , that is,

x ∈ Z .

Some properties of hulls and spans (3/3)

Proposition 3
For all X ,Y ⊆ Rd , the following properties hold:

1 ConvexHull(X +Y) = ConvexHull(X) + ConvexHull(Y) holds,
2 X ⊆ ConvexHull(X) holds and ConvexHull(X) is convex.
3 ConvexHull(X) contains any convex set that contains X .

4 X ⊆ ConicalHull(X) holds and ConicalHull(X) is convex.
5 ConicalHull(X) is a convex cone, that is: it contains the origin, it
is closed under addition and multiplication by a non-negative scalar.

Proof is routine.

Definition 6
A finite set X ⊆ Rd is called affinely independent if for every x ∈ X we
have x /∈ AffineHull(X ∖ {x}), that is, {y − x ∣ y ∈ X and y ≠ x} is linearly
independent for each x ∈ X .

Some properties of hulls and spans (3/3)

Proposition 3
For all X ,Y ⊆ Rd , the following properties hold:

1 ConvexHull(X +Y) = ConvexHull(X) + ConvexHull(Y) holds,

2 X ⊆ ConvexHull(X) holds and ConvexHull(X) is convex.
3 ConvexHull(X) contains any convex set that contains X .

4 X ⊆ ConicalHull(X) holds and ConicalHull(X) is convex.
5 ConicalHull(X) is a convex cone, that is: it contains the origin, it
is closed under addition and multiplication by a non-negative scalar.

Proof is routine.

Definition 6
A finite set X ⊆ Rd is called affinely independent if for every x ∈ X we
have x /∈ AffineHull(X ∖ {x}), that is, {y − x ∣ y ∈ X and y ≠ x} is linearly
independent for each x ∈ X .

Some properties of hulls and spans (3/3)

Proposition 3
For all X ,Y ⊆ Rd , the following properties hold:

1 ConvexHull(X +Y) = ConvexHull(X) + ConvexHull(Y) holds,
2 X ⊆ ConvexHull(X) holds and ConvexHull(X) is convex.

3 ConvexHull(X) contains any convex set that contains X .

4 X ⊆ ConicalHull(X) holds and ConicalHull(X) is convex.
5 ConicalHull(X) is a convex cone, that is: it contains the origin, it
is closed under addition and multiplication by a non-negative scalar.

Proof is routine.

Definition 6
A finite set X ⊆ Rd is called affinely independent if for every x ∈ X we
have x /∈ AffineHull(X ∖ {x}), that is, {y − x ∣ y ∈ X and y ≠ x} is linearly
independent for each x ∈ X .

Some properties of hulls and spans (3/3)

Proposition 3
For all X ,Y ⊆ Rd , the following properties hold:

1 ConvexHull(X +Y) = ConvexHull(X) + ConvexHull(Y) holds,
2 X ⊆ ConvexHull(X) holds and ConvexHull(X) is convex.
3 ConvexHull(X) contains any convex set that contains X .

4 X ⊆ ConicalHull(X) holds and ConicalHull(X) is convex.
5 ConicalHull(X) is a convex cone, that is: it contains the origin, it
is closed under addition and multiplication by a non-negative scalar.

Proof is routine.

Definition 6
A finite set X ⊆ Rd is called affinely independent if for every x ∈ X we
have x /∈ AffineHull(X ∖ {x}), that is, {y − x ∣ y ∈ X and y ≠ x} is linearly
independent for each x ∈ X .

Some properties of hulls and spans (3/3)

Proposition 3
For all X ,Y ⊆ Rd , the following properties hold:

1 ConvexHull(X +Y) = ConvexHull(X) + ConvexHull(Y) holds,
2 X ⊆ ConvexHull(X) holds and ConvexHull(X) is convex.
3 ConvexHull(X) contains any convex set that contains X .

4 X ⊆ ConicalHull(X) holds and ConicalHull(X) is convex.

5 ConicalHull(X) is a convex cone, that is: it contains the origin, it
is closed under addition and multiplication by a non-negative scalar.

Proof is routine.

Definition 6
A finite set X ⊆ Rd is called affinely independent if for every x ∈ X we
have x /∈ AffineHull(X ∖ {x}), that is, {y − x ∣ y ∈ X and y ≠ x} is linearly
independent for each x ∈ X .

Some properties of hulls and spans (3/3)

Proposition 3
For all X ,Y ⊆ Rd , the following properties hold:

1 ConvexHull(X +Y) = ConvexHull(X) + ConvexHull(Y) holds,
2 X ⊆ ConvexHull(X) holds and ConvexHull(X) is convex.
3 ConvexHull(X) contains any convex set that contains X .

4 X ⊆ ConicalHull(X) holds and ConicalHull(X) is convex.
5 ConicalHull(X) is a convex cone, that is: it contains the origin, it
is closed under addition and multiplication by a non-negative scalar.

Proof is routine.

Definition 6
A finite set X ⊆ Rd is called affinely independent if for every x ∈ X we
have x /∈ AffineHull(X ∖ {x}), that is, {y − x ∣ y ∈ X and y ≠ x} is linearly
independent for each x ∈ X .

Some properties of hulls and spans (3/3)

Proposition 3
For all X ,Y ⊆ Rd , the following properties hold:

1 ConvexHull(X +Y) = ConvexHull(X) + ConvexHull(Y) holds,
2 X ⊆ ConvexHull(X) holds and ConvexHull(X) is convex.
3 ConvexHull(X) contains any convex set that contains X .

4 X ⊆ ConicalHull(X) holds and ConicalHull(X) is convex.
5 ConicalHull(X) is a convex cone, that is: it contains the origin, it
is closed under addition and multiplication by a non-negative scalar.

Proof is routine.

Definition 6
A finite set X ⊆ Rd is called affinely independent if for every x ∈ X we
have x /∈ AffineHull(X ∖ {x}), that is, {y − x ∣ y ∈ X and y ≠ x} is linearly
independent for each x ∈ X .

Some properties of hulls and spans (3/3)

Proposition 3
For all X ,Y ⊆ Rd , the following properties hold:

1 ConvexHull(X +Y) = ConvexHull(X) + ConvexHull(Y) holds,
2 X ⊆ ConvexHull(X) holds and ConvexHull(X) is convex.
3 ConvexHull(X) contains any convex set that contains X .

4 X ⊆ ConicalHull(X) holds and ConicalHull(X) is convex.
5 ConicalHull(X) is a convex cone, that is: it contains the origin, it
is closed under addition and multiplication by a non-negative scalar.

Proof is routine.

Definition 6
A finite set X ⊆ Rd is called affinely independent if for every x ∈ X we
have x /∈ AffineHull(X ∖ {x}), that is, {y − x ∣ y ∈ X and y ≠ x} is linearly
independent for each x ∈ X .

Supporting hyperplanes

Notations 2
Let α ∈ Rd , let β ∈ R and denote by H the hyperplane defined by

H = {x ∈ Rd ∣ αT x = β}.

Definition 7
We say that the hyperplane H supports K if either

sup{αT x ∣ x ∈ K} = β, or inf{αT x ∣ x ∈ K} = β

holds, but not both.

Supporting hyperplanes

Notations 2
Let α ∈ Rd , let β ∈ R and denote by H the hyperplane defined by

H = {x ∈ Rd ∣ αT x = β}.

Definition 7
We say that the hyperplane H supports K if either

sup{αT x ∣ x ∈ K} = β, or inf{αT x ∣ x ∈ K} = β

holds, but not both.

Supporting hyperplanes

Notations 2
Let α ∈ Rd , let β ∈ R and denote by H the hyperplane defined by

H = {x ∈ Rd ∣ αT x = β}.

Definition 7
We say that the hyperplane H supports K if either

sup{αT x ∣ x ∈ K} = β, or inf{αT x ∣ x ∈ K} = β

holds, but not both.

Faces
Definition 8

1 A set F ⊆ K is a face if either F = ∅, or F = K , or if there exists a
hyperplane H supporting K such that we have F = K ∩ H.

2 Faces(K) denotes the set of all faces of K .

3 We say F ∈ Faces(K) is proper if F ≠ ∅ and F ≠ K .

Faces
Definition 8

1 A set F ⊆ K is a face if either F = ∅, or F = K , or if there exists a
hyperplane H supporting K such that we have F = K ∩ H.

2 Faces(K) denotes the set of all faces of K .

3 We say F ∈ Faces(K) is proper if F ≠ ∅ and F ≠ K .

Faces
Definition 8

1 A set F ⊆ K is a face if either F = ∅, or F = K , or if there exists a
hyperplane H supporting K such that we have F = K ∩ H.

2 Faces(K) denotes the set of all faces of K .

3 We say F ∈ Faces(K) is proper if F ≠ ∅ and F ≠ K .

Faces
Definition 8

1 A set F ⊆ K is a face if either F = ∅, or F = K , or if there exists a
hyperplane H supporting K such that we have F = K ∩ H.

2 Faces(K) denotes the set of all faces of K .

3 We say F ∈ Faces(K) is proper if F ≠ ∅ and F ≠ K .

Extreme points and exposed points
Notations 3
From now on, let us assume that K ⊆ Rd is convex.

Definition 9

1 A point x ∈ K is an extreme point of K if it does not belong to the
relative interior of any segment contained in K .

2 ExtremePoints(K) denotes the set of all extreme points of K .

3 A point x ∈ K is an exposed point of K if {x} ∈ Faces(K) holds.
4 ExposedPoints(K) denotes the set of exposed points of K .

Extreme points and exposed points
Notations 3
From now on, let us assume that K ⊆ Rd is convex.

Definition 9
1 A point x ∈ K is an extreme point of K if it does not belong to the
relative interior of any segment contained in K .

2 ExtremePoints(K) denotes the set of all extreme points of K .

3 A point x ∈ K is an exposed point of K if {x} ∈ Faces(K) holds.
4 ExposedPoints(K) denotes the set of exposed points of K .

Extreme points and exposed points
Notations 3
From now on, let us assume that K ⊆ Rd is convex.

Definition 9
1 A point x ∈ K is an extreme point of K if it does not belong to the
relative interior of any segment contained in K .

2 ExtremePoints(K) denotes the set of all extreme points of K .

3 A point x ∈ K is an exposed point of K if {x} ∈ Faces(K) holds.
4 ExposedPoints(K) denotes the set of exposed points of K .

Extreme points and exposed points
Notations 3
From now on, let us assume that K ⊆ Rd is convex.

Definition 9
1 A point x ∈ K is an extreme point of K if it does not belong to the
relative interior of any segment contained in K .

2 ExtremePoints(K) denotes the set of all extreme points of K .

3 A point x ∈ K is an exposed point of K if {x} ∈ Faces(K) holds.

4 ExposedPoints(K) denotes the set of exposed points of K .

Extreme points and exposed points
Notations 3
From now on, let us assume that K ⊆ Rd is convex.

Definition 9
1 A point x ∈ K is an extreme point of K if it does not belong to the
relative interior of any segment contained in K .

2 ExtremePoints(K) denotes the set of all extreme points of K .

3 A point x ∈ K is an exposed point of K if {x} ∈ Faces(K) holds.
4 ExposedPoints(K) denotes the set of exposed points of K .

Extreme points and exposed points
Notations 3
From now on, let us assume that K ⊆ Rd is convex.

Definition 9
1 A point x ∈ K is an extreme point of K if it does not belong to the
relative interior of any segment contained in K .

2 ExtremePoints(K) denotes the set of all extreme points of K .

3 A point x ∈ K is an exposed point of K if {x} ∈ Faces(K) holds.
4 ExposedPoints(K) denotes the set of exposed points of K .

Extreme points and exposed points
Notations 3
From now on, let us assume that K ⊆ Rd is convex.

Definition 9
1 A point x ∈ K is an extreme point of K if it does not belong to the
relative interior of any segment contained in K .

2 ExtremePoints(K) denotes the set of all extreme points of K .

3 A point x ∈ K is an exposed point of K if {x} ∈ Faces(K) holds.
4 ExposedPoints(K) denotes the set of exposed points of K .

Some properties of faces, exposed and extreme points

Proposition 4
The following properties hold.

1 For all F ∈ Faces(K), we have:

ExtremePoints(F) = F ∩ ExtremePoints(K).

2 We have:

ExposedPoints(K) ⊆ ExtremePoints(K).
3 If K is compact then:

ConvexHull(ExtremePoints(K)) = K .

4 If K is closed then:

ExtremePoints(K) ⊆ ExposedPoints(K).
5 The intersection of any family of faces of K is itself a face of K.

6 K is unbounded if and only if it contains a ray (= half-line).

7 Assume K is closed. let L = {λz ∣ λ ≥ 0} be a ray emanating from
the origin and let x , y ∈ K. Then, we have:

x + L ⊆ K ⇐⇒ y + L ⊆ K .

Some properties of faces, exposed and extreme points

Proposition 4
The following properties hold.

1 For all F ∈ Faces(K), we have:

ExtremePoints(F) = F ∩ ExtremePoints(K).
2 We have:

ExposedPoints(K) ⊆ ExtremePoints(K).

3 If K is compact then:

ConvexHull(ExtremePoints(K)) = K .

4 If K is closed then:

ExtremePoints(K) ⊆ ExposedPoints(K).
5 The intersection of any family of faces of K is itself a face of K.

6 K is unbounded if and only if it contains a ray (= half-line).

7 Assume K is closed. let L = {λz ∣ λ ≥ 0} be a ray emanating from
the origin and let x , y ∈ K. Then, we have:

x + L ⊆ K ⇐⇒ y + L ⊆ K .

Some properties of faces, exposed and extreme points

Proposition 4
The following properties hold.

1 For all F ∈ Faces(K), we have:

ExtremePoints(F) = F ∩ ExtremePoints(K).
2 We have:

ExposedPoints(K) ⊆ ExtremePoints(K).
3 If K is compact then:

ConvexHull(ExtremePoints(K)) = K .

4 If K is closed then:

ExtremePoints(K) ⊆ ExposedPoints(K).
5 The intersection of any family of faces of K is itself a face of K.

6 K is unbounded if and only if it contains a ray (= half-line).

7 Assume K is closed. let L = {λz ∣ λ ≥ 0} be a ray emanating from
the origin and let x , y ∈ K. Then, we have:

x + L ⊆ K ⇐⇒ y + L ⊆ K .

Some properties of faces, exposed and extreme points

Proposition 4
The following properties hold.

1 For all F ∈ Faces(K), we have:

ExtremePoints(F) = F ∩ ExtremePoints(K).
2 We have:

ExposedPoints(K) ⊆ ExtremePoints(K).
3 If K is compact then:

ConvexHull(ExtremePoints(K)) = K .

4 If K is closed then:

ExtremePoints(K) ⊆ ExposedPoints(K).

5 The intersection of any family of faces of K is itself a face of K.

6 K is unbounded if and only if it contains a ray (= half-line).

7 Assume K is closed. let L = {λz ∣ λ ≥ 0} be a ray emanating from
the origin and let x , y ∈ K. Then, we have:

x + L ⊆ K ⇐⇒ y + L ⊆ K .

Some properties of faces, exposed and extreme points

Proposition 4
The following properties hold.

1 For all F ∈ Faces(K), we have:

ExtremePoints(F) = F ∩ ExtremePoints(K).
2 We have:

ExposedPoints(K) ⊆ ExtremePoints(K).
3 If K is compact then:

ConvexHull(ExtremePoints(K)) = K .

4 If K is closed then:

ExtremePoints(K) ⊆ ExposedPoints(K).
5 The intersection of any family of faces of K is itself a face of K.

6 K is unbounded if and only if it contains a ray (= half-line).

7 Assume K is closed. let L = {λz ∣ λ ≥ 0} be a ray emanating from
the origin and let x , y ∈ K. Then, we have:

x + L ⊆ K ⇐⇒ y + L ⊆ K .

Some properties of faces, exposed and extreme points

Proposition 4
The following properties hold.

1 For all F ∈ Faces(K), we have:

ExtremePoints(F) = F ∩ ExtremePoints(K).
2 We have:

ExposedPoints(K) ⊆ ExtremePoints(K).
3 If K is compact then:

ConvexHull(ExtremePoints(K)) = K .

4 If K is closed then:

ExtremePoints(K) ⊆ ExposedPoints(K).
5 The intersection of any family of faces of K is itself a face of K.

6 K is unbounded if and only if it contains a ray (= half-line).

7 Assume K is closed. let L = {λz ∣ λ ≥ 0} be a ray emanating from
the origin and let x , y ∈ K. Then, we have:

x + L ⊆ K ⇐⇒ y + L ⊆ K .

Some properties of faces, exposed and extreme points

Proposition 4
The following properties hold.

1 For all F ∈ Faces(K), we have:

ExtremePoints(F) = F ∩ ExtremePoints(K).
2 We have:

ExposedPoints(K) ⊆ ExtremePoints(K).
3 If K is compact then:

ConvexHull(ExtremePoints(K)) = K .

4 If K is closed then:

ExtremePoints(K) ⊆ ExposedPoints(K).
5 The intersection of any family of faces of K is itself a face of K.

6 K is unbounded if and only if it contains a ray (= half-line).

7 Assume K is closed. let L = {λz ∣ λ ≥ 0} be a ray emanating from
the origin and let x , y ∈ K. Then, we have:

x + L ⊆ K ⇐⇒ y + L ⊆ K .

Cones
Definition 10

1 A non-empty set C ⊆ Rd is a cone if: ∀λ ∈ R≥0 λx ∈ C .

2 A non-empty set C ⊆ Rd is a convex cone if:

∀λ,µ ∈ R≥0 ∀x,y ∈ C λx + µy ∈ C .

3 The cone C ⊆ Rd is polyhedral, if, for some matrix A ∈ Rm×d , with
m ∈ N>0, we have:

C = {x ∈ Rd ∣ Ax ≤ 0}.
4 The cone C ⊆ Rd is finitely generated by x1, . . . ,xe ∈ Rd , if we
have:

C = ConicalHull({x1, . . . ,xe}).

A non-polyhedral cone. A polyhedral cone.

Cones
Definition 10

1 A non-empty set C ⊆ Rd is a cone if: ∀λ ∈ R≥0 λx ∈ C .

2 A non-empty set C ⊆ Rd is a convex cone if:

∀λ,µ ∈ R≥0 ∀x,y ∈ C λx + µy ∈ C .

3 The cone C ⊆ Rd is polyhedral, if, for some matrix A ∈ Rm×d , with
m ∈ N>0, we have:

C = {x ∈ Rd ∣ Ax ≤ 0}.
4 The cone C ⊆ Rd is finitely generated by x1, . . . ,xe ∈ Rd , if we
have:

C = ConicalHull({x1, . . . ,xe}).

A non-polyhedral cone. A polyhedral cone.

Cones
Definition 10

1 A non-empty set C ⊆ Rd is a cone if: ∀λ ∈ R≥0 λx ∈ C .

2 A non-empty set C ⊆ Rd is a convex cone if:

∀λ,µ ∈ R≥0 ∀x,y ∈ C λx + µy ∈ C .

3 The cone C ⊆ Rd is polyhedral, if, for some matrix A ∈ Rm×d , with
m ∈ N>0, we have:

C = {x ∈ Rd ∣ Ax ≤ 0}.

4 The cone C ⊆ Rd is finitely generated by x1, . . . ,xe ∈ Rd , if we
have:

C = ConicalHull({x1, . . . ,xe}).

A non-polyhedral cone. A polyhedral cone.

Cones
Definition 10

1 A non-empty set C ⊆ Rd is a cone if: ∀λ ∈ R≥0 λx ∈ C .

2 A non-empty set C ⊆ Rd is a convex cone if:

∀λ,µ ∈ R≥0 ∀x,y ∈ C λx + µy ∈ C .

3 The cone C ⊆ Rd is polyhedral, if, for some matrix A ∈ Rm×d , with
m ∈ N>0, we have:

C = {x ∈ Rd ∣ Ax ≤ 0}.
4 The cone C ⊆ Rd is finitely generated by x1, . . . ,xe ∈ Rd , if we
have:

C = ConicalHull({x1, . . . ,xe}).

A non-polyhedral cone. A polyhedral cone.

Cones
Definition 10

1 A non-empty set C ⊆ Rd is a cone if: ∀λ ∈ R≥0 λx ∈ C .

2 A non-empty set C ⊆ Rd is a convex cone if:

∀λ,µ ∈ R≥0 ∀x,y ∈ C λx + µy ∈ C .

3 The cone C ⊆ Rd is polyhedral, if, for some matrix A ∈ Rm×d , with
m ∈ N>0, we have:

C = {x ∈ Rd ∣ Ax ≤ 0}.
4 The cone C ⊆ Rd is finitely generated by x1, . . . ,xe ∈ Rd , if we
have:

C = ConicalHull({x1, . . . ,xe}).

A non-polyhedral cone. A polyhedral cone.

Dual cones

Definition 11
For a subset C ⊆ Rd , the dual cone is given by:

C∗ = {y ∈ Rd ∣ ytx ≥ 0 ∀x ∈ C} .

For a subset C ⊆ Rd , the polar cone is given by:
C 0 = {y ∈ Rd ∣ ytx ≤ 0 ∀x ∈ C} ,

Proposition 5
The dual cone C∗ of C ⊆ Rd is a convex cone and we have C 0 = −C∗.

A cranberry and its dual. A cranberry and its polar cone.

Dual cones

Definition 11
For a subset C ⊆ Rd , the dual cone is given by:

C∗ = {y ∈ Rd ∣ ytx ≥ 0 ∀x ∈ C} .
For a subset C ⊆ Rd , the polar cone is given by:

C 0 = {y ∈ Rd ∣ ytx ≤ 0 ∀x ∈ C} ,

Proposition 5
The dual cone C∗ of C ⊆ Rd is a convex cone and we have C 0 = −C∗.

A cranberry and its dual. A cranberry and its polar cone.

Dual cones

Definition 11
For a subset C ⊆ Rd , the dual cone is given by:

C∗ = {y ∈ Rd ∣ ytx ≥ 0 ∀x ∈ C} .
For a subset C ⊆ Rd , the polar cone is given by:

C 0 = {y ∈ Rd ∣ ytx ≤ 0 ∀x ∈ C} ,
Proposition 5
The dual cone C∗ of C ⊆ Rd is a convex cone and we have C 0 = −C∗.

A cranberry and its dual. A cranberry and its polar cone.

Dual cones

Definition 11
For a subset C ⊆ Rd , the dual cone is given by:

C∗ = {y ∈ Rd ∣ ytx ≥ 0 ∀x ∈ C} .
For a subset C ⊆ Rd , the polar cone is given by:

C 0 = {y ∈ Rd ∣ ytx ≤ 0 ∀x ∈ C} ,
Proposition 5
The dual cone C∗ of C ⊆ Rd is a convex cone and we have C 0 = −C∗.

A cranberry and its dual. A cranberry and its polar cone.

Polar cone theorem

Theorem 12
For a subset C ⊆ Rd , we have:

C 00 = ConicalHull(C).
In particular, if C is closed and convex, then we have:

C 00 = C .

Proof when C is closed and convex.

Since we have ytx ≤ 0 for all y ∈ C 0 and all x ∈ C it follows that we have

C ⊆ C 00. To prove the reverse inclusion, take z ∈ C 00. Let ẑ be the
projection of z on C , so that we have: (z − ẑ)t(x − ẑ)t ≤ 0, for all x ∈ C .
Taking x = z and x = 2z, we deduce: (z − ẑ)t ẑ = 0, so that we have:

(z − ẑ)tx ≤ 0,

for all x ∈ C . Therefore, we have z − ẑ ∈ C 0. Since z ∈ C 00, we deduce:
(z − ẑ)tz ≤ 0. Subtracting (z − ẑ)t ẑ = 0 yields that ∥z − ẑ∥2 = 0, that is,
z = ẑ, thus z ∈ C , implying C 00 ⊆ C .

Polar cone theorem

Theorem 12
For a subset C ⊆ Rd , we have:

C 00 = ConicalHull(C).
In particular, if C is closed and convex, then we have:

C 00 = C .

Proof when C is closed and convex.
Since we have ytx ≤ 0 for all y ∈ C 0 and all x ∈ C it follows that we have

C ⊆ C 00.

To prove the reverse inclusion, take z ∈ C 00. Let ẑ be the
projection of z on C , so that we have: (z − ẑ)t(x − ẑ)t ≤ 0, for all x ∈ C .
Taking x = z and x = 2z, we deduce: (z − ẑ)t ẑ = 0, so that we have:

(z − ẑ)tx ≤ 0,

for all x ∈ C . Therefore, we have z − ẑ ∈ C 0. Since z ∈ C 00, we deduce:
(z − ẑ)tz ≤ 0. Subtracting (z − ẑ)t ẑ = 0 yields that ∥z − ẑ∥2 = 0, that is,
z = ẑ, thus z ∈ C , implying C 00 ⊆ C .

Polar cone theorem

Theorem 12
For a subset C ⊆ Rd , we have:

C 00 = ConicalHull(C).
In particular, if C is closed and convex, then we have:

C 00 = C .

Proof when C is closed and convex.
Since we have ytx ≤ 0 for all y ∈ C 0 and all x ∈ C it follows that we have

C ⊆ C 00. To prove the reverse inclusion, take z ∈ C 00. Let ẑ be the
projection of z on C , so that we have: (z − ẑ)t(x − ẑ)t ≤ 0, for all x ∈ C .
Taking x = z and x = 2z, we deduce: (z − ẑ)t ẑ = 0, so that we have:

(z − ẑ)tx ≤ 0,

for all x ∈ C .

Therefore, we have z − ẑ ∈ C 0. Since z ∈ C 00, we deduce:
(z − ẑ)tz ≤ 0. Subtracting (z − ẑ)t ẑ = 0 yields that ∥z − ẑ∥2 = 0, that is,
z = ẑ, thus z ∈ C , implying C 00 ⊆ C .

Polar cone theorem

Theorem 12
For a subset C ⊆ Rd , we have:

C 00 = ConicalHull(C).
In particular, if C is closed and convex, then we have:

C 00 = C .

Proof when C is closed and convex.
Since we have ytx ≤ 0 for all y ∈ C 0 and all x ∈ C it follows that we have

C ⊆ C 00. To prove the reverse inclusion, take z ∈ C 00. Let ẑ be the
projection of z on C , so that we have: (z − ẑ)t(x − ẑ)t ≤ 0, for all x ∈ C .
Taking x = z and x = 2z, we deduce: (z − ẑ)t ẑ = 0, so that we have:

(z − ẑ)tx ≤ 0,

for all x ∈ C . Therefore, we have z − ẑ ∈ C 0. Since z ∈ C 00, we deduce:
(z − ẑ)tz ≤ 0. Subtracting (z − ẑ)t ẑ = 0 yields that ∥z − ẑ∥2 = 0, that is,
z = ẑ, thus z ∈ C , implying C 00 ⊆ C .

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Polyhedra
Definition 13

1 A subset P ⊆ Rd is a convex polyhedron (or simply a polyhedron) if

P = {x ∈ Rd ∣ Ax ≤ b}
holds, for a matrix A ∈ Rm×d and a vector b ∈ Rm, where m ∈ N>0.

2 we call the linear system {Ax ≤ b} an H-representation of P and
denote by Polyhedron(A,b) the polyhedron P, that is, the solution
set of the system of linear inequalities Ax ≤ b.

Remark 1

1 A polyhedron is the intersection of finitely many affine half-spaces.

2 Therefore, a polyhedron is both closed and convex.

Polyhedra
Definition 13

1 A subset P ⊆ Rd is a convex polyhedron (or simply a polyhedron) if

P = {x ∈ Rd ∣ Ax ≤ b}
holds, for a matrix A ∈ Rm×d and a vector b ∈ Rm, where m ∈ N>0.

2 we call the linear system {Ax ≤ b} an H-representation of P and
denote by Polyhedron(A,b) the polyhedron P, that is, the solution
set of the system of linear inequalities Ax ≤ b.

Remark 1

1 A polyhedron is the intersection of finitely many affine half-spaces.

2 Therefore, a polyhedron is both closed and convex.

Polyhedra
Definition 13

1 A subset P ⊆ Rd is a convex polyhedron (or simply a polyhedron) if

P = {x ∈ Rd ∣ Ax ≤ b}
holds, for a matrix A ∈ Rm×d and a vector b ∈ Rm, where m ∈ N>0.

2 we call the linear system {Ax ≤ b} an H-representation of P and
denote by Polyhedron(A,b) the polyhedron P, that is, the solution
set of the system of linear inequalities Ax ≤ b.

Remark 1
1 A polyhedron is the intersection of finitely many affine half-spaces.

2 Therefore, a polyhedron is both closed and convex.

Polyhedra
Definition 13

1 A subset P ⊆ Rd is a convex polyhedron (or simply a polyhedron) if

P = {x ∈ Rd ∣ Ax ≤ b}
holds, for a matrix A ∈ Rm×d and a vector b ∈ Rm, where m ∈ N>0.

2 we call the linear system {Ax ≤ b} an H-representation of P and
denote by Polyhedron(A,b) the polyhedron P, that is, the solution
set of the system of linear inequalities Ax ≤ b.

Remark 1
1 A polyhedron is the intersection of finitely many affine half-spaces.

2 Therefore, a polyhedron is both closed and convex.

Polyhedra
Definition 13

1 A subset P ⊆ Rd is a convex polyhedron (or simply a polyhedron) if

P = {x ∈ Rd ∣ Ax ≤ b}
holds, for a matrix A ∈ Rm×d and a vector b ∈ Rm, where m ∈ N>0.

2 we call the linear system {Ax ≤ b} an H-representation of P and
denote by Polyhedron(A,b) the polyhedron P, that is, the solution
set of the system of linear inequalities Ax ≤ b.

Remark 1
1 A polyhedron is the intersection of finitely many affine half-spaces.

2 Therefore, a polyhedron is both closed and convex.

Polyhedra
Definition 13

1 A subset P ⊆ Rd is a convex polyhedron (or simply a polyhedron) if

P = {x ∈ Rd ∣ Ax ≤ b}
holds, for a matrix A ∈ Rm×d and a vector b ∈ Rm, where m ∈ N>0.

2 we call the linear system {Ax ≤ b} an H-representation of P and
denote by Polyhedron(A,b) the polyhedron P, that is, the solution
set of the system of linear inequalities Ax ≤ b.

Remark 1
1 A polyhedron is the intersection of finitely many affine half-spaces.

2 Therefore, a polyhedron is both closed and convex.

Implicit or redundant equalities (1/3)
Notations 4

1 Let again P ∶= Polyhedron(A,b).

2 Let c ∈ Rd and β ∈ R such that the inequality ctx ≤ β is one of the
inequalities of Ax ≤ b.

Definition 14

1 We say that ctx ≤ β is an redundant inequality of Ax ≤ b if it is
implied by the other inequalities defining P.

2 We say that ctx ≤ β is an implicit equality in Ax ≤ b if for all
x ∈ Rd we have

Ax ≤ b Ô⇒ ctx = β.

Implicit or redundant equalities (1/3)
Notations 4

1 Let again P ∶= Polyhedron(A,b).
2 Let c ∈ Rd and β ∈ R such that the inequality ctx ≤ β is one of the
inequalities of Ax ≤ b.

Definition 14

1 We say that ctx ≤ β is an redundant inequality of Ax ≤ b if it is
implied by the other inequalities defining P.

2 We say that ctx ≤ β is an implicit equality in Ax ≤ b if for all
x ∈ Rd we have

Ax ≤ b Ô⇒ ctx = β.

Implicit or redundant equalities (1/3)
Notations 4

1 Let again P ∶= Polyhedron(A,b).
2 Let c ∈ Rd and β ∈ R such that the inequality ctx ≤ β is one of the
inequalities of Ax ≤ b.

Definition 14
1 We say that ctx ≤ β is an redundant inequality of Ax ≤ b if it is
implied by the other inequalities defining P.

2 We say that ctx ≤ β is an implicit equality in Ax ≤ b if for all
x ∈ Rd we have

Ax ≤ b Ô⇒ ctx = β.

Implicit or redundant equalities (1/3)
Notations 4

1 Let again P ∶= Polyhedron(A,b).
2 Let c ∈ Rd and β ∈ R such that the inequality ctx ≤ β is one of the
inequalities of Ax ≤ b.

Definition 14
1 We say that ctx ≤ β is an redundant inequality of Ax ≤ b if it is
implied by the other inequalities defining P.

2 We say that ctx ≤ β is an implicit equality in Ax ≤ b if for all
x ∈ Rd we have

Ax ≤ b Ô⇒ ctx = β.

Implicit or redundant equalities (1/3)
Notations 4

1 Let again P ∶= Polyhedron(A,b).
2 Let c ∈ Rd and β ∈ R such that the inequality ctx ≤ β is one of the
inequalities of Ax ≤ b.

Definition 14
1 We say that ctx ≤ β is an redundant inequality of Ax ≤ b if it is
implied by the other inequalities defining P.

2 We say that ctx ≤ β is an implicit equality in Ax ≤ b if for all
x ∈ Rd we have

Ax ≤ b Ô⇒ ctx = β.

Implicit or redundant equalities (2/3)

Notations 5
Following [18], we denote by A= (resp. A+) and b= (resp. b+) the rows of
A and b corresponding to the implicit (resp. non-implicit) equalities.

Proposition 6
If P is not empty, then there exists x ∈ P satisfying both

A=x = b= and A+x < b+. (2.1)

Proof.
Assume P is not empty and has at least one non-implicit equality.
Denote by ct1x ≤ β1, . . . , c

t
ex ≤ βe . For each 1 ≤ i ≤ e, there exists xi ∈ P

so that we have ctexi ≤ βe . Define:

x = x1 +⋯ + xe
e

.

Then x satisfies Equation 2.1 null.

Implicit or redundant equalities (2/3)

Notations 5
Following [18], we denote by A= (resp. A+) and b= (resp. b+) the rows of
A and b corresponding to the implicit (resp. non-implicit) equalities.

Proposition 6
If P is not empty, then there exists x ∈ P satisfying both

A=x = b= and A+x < b+. (2.1)

Proof.
Assume P is not empty and has at least one non-implicit equality.
Denote by ct1x ≤ β1, . . . , c

t
ex ≤ βe . For each 1 ≤ i ≤ e, there exists xi ∈ P

so that we have ctexi ≤ βe . Define:

x = x1 +⋯ + xe
e

.

Then x satisfies Equation 2.1 null.

Implicit or redundant equalities (2/3)

Notations 5
Following [18], we denote by A= (resp. A+) and b= (resp. b+) the rows of
A and b corresponding to the implicit (resp. non-implicit) equalities.

Proposition 6
If P is not empty, then there exists x ∈ P satisfying both

A=x = b= and A+x < b+. (2.1)

Proof.
Assume P is not empty and has at least one non-implicit equality.
Denote by ct1x ≤ β1, . . . , c

t
ex ≤ βe . For each 1 ≤ i ≤ e, there exists xi ∈ P

so that we have ctexi ≤ βe . Define:

x = x1 +⋯ + xe
e

.

Then x satisfies Equation 2.1 null.

Implicit or redundant equalities (3/3)

Proposition 7
If Polyhedron(A,b) is not empty, then we have:

AffineHull(Polyhedron(A,b)) = {x ∈ Rd ∣ A=x = b=}
= {x ∈ Rd ∣ A=x ≤ b=}.

Proof.

Let x1, . . . ,xe ∈ Polyhedron(A,b), let λ1, . . . , λe ∈ R, and let ctx ≤ β be
an implicit equality. Since ctxi = β holds for all 1 ≤ i ≤ e, we have:

ct (Σe
i=1 λixi) = β.

The inclusion ⊆ follows. Conversely, let x0 satisfy A=x ≤ b=. Let
x1 ∈ Polyhedron(A,b). Using Proposition 6 null, we can assume that
A+x1 < b+ holds. If x0 = x1, then we have x0 ∈ Polyhedron(A,b) and
thus x0 ∈ AffineHull(Polyhedron(A,b)). Otherwise, using a continuity
argument, the segment joining x0 and x1 contains more than one point in
Polyhedron(A,b), and thus more than one point in
AffineHull(Polyhedron(A,b)). Therefore, the whole segment [x0,x1] is
necessarily contained in that latter set, which proves the inclusion ⊇.

Implicit or redundant equalities (3/3)

Proposition 7
If Polyhedron(A,b) is not empty, then we have:

AffineHull(Polyhedron(A,b)) = {x ∈ Rd ∣ A=x = b=}
= {x ∈ Rd ∣ A=x ≤ b=}.

Proof.
Let x1, . . . ,xe ∈ Polyhedron(A,b), let λ1, . . . , λe ∈ R, and let ctx ≤ β be
an implicit equality. Since ctxi = β holds for all 1 ≤ i ≤ e, we have:

ct (Σe
i=1 λixi) = β.

The inclusion ⊆ follows.

Conversely, let x0 satisfy A=x ≤ b=. Let
x1 ∈ Polyhedron(A,b). Using Proposition 6 null, we can assume that
A+x1 < b+ holds. If x0 = x1, then we have x0 ∈ Polyhedron(A,b) and
thus x0 ∈ AffineHull(Polyhedron(A,b)). Otherwise, using a continuity
argument, the segment joining x0 and x1 contains more than one point in
Polyhedron(A,b), and thus more than one point in
AffineHull(Polyhedron(A,b)). Therefore, the whole segment [x0,x1] is
necessarily contained in that latter set, which proves the inclusion ⊇.

Implicit or redundant equalities (3/3)

Proposition 7
If Polyhedron(A,b) is not empty, then we have:

AffineHull(Polyhedron(A,b)) = {x ∈ Rd ∣ A=x = b=}
= {x ∈ Rd ∣ A=x ≤ b=}.

Proof.
Let x1, . . . ,xe ∈ Polyhedron(A,b), let λ1, . . . , λe ∈ R, and let ctx ≤ β be
an implicit equality. Since ctxi = β holds for all 1 ≤ i ≤ e, we have:

ct (Σe
i=1 λixi) = β.

The inclusion ⊆ follows. Conversely, let x0 satisfy A=x ≤ b=. Let
x1 ∈ Polyhedron(A,b). Using Proposition 6 null, we can assume that
A+x1 < b+ holds. If x0 = x1, then we have x0 ∈ Polyhedron(A,b) and
thus x0 ∈ AffineHull(Polyhedron(A,b)). Otherwise, using a continuity
argument, the segment joining x0 and x1 contains more than one point in
Polyhedron(A,b), and thus more than one point in
AffineHull(Polyhedron(A,b)). Therefore, the whole segment [x0,x1] is
necessarily contained in that latter set, which proves the inclusion ⊇.

The faces of a polyhedral set (1/2)

Notations 6
Let again P ∶= Polyhedron(A,b) be a polyhedron of Rd .

Proposition 8
A non-empty subset F ⊆ P is a face of P if F = {x ∈ P ∣A′x = b′} for some
subsystem A′x ≤ b′ of Ax ≤ b.

Definition 15
1 A face of P, distinct from P, and with maximum dimension is a
facet of P.

2 The lineality space of P is {x ∈ Rd ∣ Ax = 0⃗} and P is said pointed
if its lineality space has dimension zero.

3 For a pointed polyhedron P, the inclusion-minimal faces are the
vertices of P, that is, its 0-dimensional faces.

The faces of a polyhedral set (2/2)

Theorem 16
If Polyhedron(A,b) is full-dimensional (that is, has dimension d) and the
the system Ax ≤ b has no redundant inequalities, then the inequalities of
that system are in 1-to-1 correspondence with the facets of P.

Theorem 17

1 The faces of P, when ordered by the set theoretic inclusion, form a
lattice L which enjoys three important properties (that are not true
in general for an arbitrary lattice):

a L is graded (that is, it admits a rank function),
b L is ranked (that is, its maximal chains have the same cardinality),
c if the ranks of two faces a > b differ by 2, then there are exactly 2

faces that lie strictly between a and b.

2 the face lattice of a polytope can be uniquely determined from its
facets, its vertices and its vertex-facet incidences.

skip slide

The faces of a polyhedral set (2/2)

Theorem 16
If Polyhedron(A,b) is full-dimensional (that is, has dimension d) and the
the system Ax ≤ b has no redundant inequalities, then the inequalities of
that system are in 1-to-1 correspondence with the facets of P.

Theorem 17
1 The faces of P, when ordered by the set theoretic inclusion, form a
lattice L which enjoys three important properties (that are not true
in general for an arbitrary lattice):

a L is graded (that is, it admits a rank function),
b L is ranked (that is, its maximal chains have the same cardinality),
c if the ranks of two faces a > b differ by 2, then there are exactly 2

faces that lie strictly between a and b.

2 the face lattice of a polytope can be uniquely determined from its
facets, its vertices and its vertex-facet incidences.

skip slide

The faces of a polyhedral set (2/2)

Theorem 16
If Polyhedron(A,b) is full-dimensional (that is, has dimension d) and the
the system Ax ≤ b has no redundant inequalities, then the inequalities of
that system are in 1-to-1 correspondence with the facets of P.

Theorem 17
1 The faces of P, when ordered by the set theoretic inclusion, form a
lattice L which enjoys three important properties (that are not true
in general for an arbitrary lattice):

a L is graded (that is, it admits a rank function),

b L is ranked (that is, its maximal chains have the same cardinality),
c if the ranks of two faces a > b differ by 2, then there are exactly 2

faces that lie strictly between a and b.

2 the face lattice of a polytope can be uniquely determined from its
facets, its vertices and its vertex-facet incidences.

skip slide

The faces of a polyhedral set (2/2)

Theorem 16
If Polyhedron(A,b) is full-dimensional (that is, has dimension d) and the
the system Ax ≤ b has no redundant inequalities, then the inequalities of
that system are in 1-to-1 correspondence with the facets of P.

Theorem 17
1 The faces of P, when ordered by the set theoretic inclusion, form a
lattice L which enjoys three important properties (that are not true
in general for an arbitrary lattice):

a L is graded (that is, it admits a rank function),
b L is ranked (that is, its maximal chains have the same cardinality),

c if the ranks of two faces a > b differ by 2, then there are exactly 2
faces that lie strictly between a and b.

2 the face lattice of a polytope can be uniquely determined from its
facets, its vertices and its vertex-facet incidences.

skip slide

The faces of a polyhedral set (2/2)

Theorem 16
If Polyhedron(A,b) is full-dimensional (that is, has dimension d) and the
the system Ax ≤ b has no redundant inequalities, then the inequalities of
that system are in 1-to-1 correspondence with the facets of P.

Theorem 17
1 The faces of P, when ordered by the set theoretic inclusion, form a
lattice L which enjoys three important properties (that are not true
in general for an arbitrary lattice):

a L is graded (that is, it admits a rank function),
b L is ranked (that is, its maximal chains have the same cardinality),
c if the ranks of two faces a > b differ by 2, then there are exactly 2

faces that lie strictly between a and b.

2 the face lattice of a polytope can be uniquely determined from its
facets, its vertices and its vertex-facet incidences.

skip slide

The faces of a polyhedral set (2/2)

Theorem 16
If Polyhedron(A,b) is full-dimensional (that is, has dimension d) and the
the system Ax ≤ b has no redundant inequalities, then the inequalities of
that system are in 1-to-1 correspondence with the facets of P.

Theorem 17
1 The faces of P, when ordered by the set theoretic inclusion, form a
lattice L which enjoys three important properties (that are not true
in general for an arbitrary lattice):

a L is graded (that is, it admits a rank function),
b L is ranked (that is, its maximal chains have the same cardinality),
c if the ranks of two faces a > b differ by 2, then there are exactly 2

faces that lie strictly between a and b.

2 the face lattice of a polytope can be uniquely determined from its
facets, its vertices and its vertex-facet incidences.

skip slide

Linear programming (review)

Notations 7
1 Let A ∈ Rm×d be a matrix, let c ∈ Rd and b ∈ Rm be two vectors

2 Consider the linear program

Minimize ctx subject to Ax ≤ b,x ≥ 0.
3 and its dual:

Maximize bty subject to Aty ≤ c,y ≥ 0.

Proposition 9

1 Weak duality: If both programs have feasible solutions, then

maxyb
ty ≤ minxc

tx.

2 Strong duality: if one of the two problems has an optimal solution,
so does the other one and the bounds given by the weak duality
theorem are tight.

Remark 2
The same results hold if the constraints are Ax = b,x ≥ 0 and Aty ≤ c,
respectively.

Linear programming (review)

Notations 7
1 Let A ∈ Rm×d be a matrix, let c ∈ Rd and b ∈ Rm be two vectors

2 Consider the linear program

Minimize ctx subject to Ax ≤ b,x ≥ 0.

3 and its dual:

Maximize bty subject to Aty ≤ c,y ≥ 0.

Proposition 9

1 Weak duality: If both programs have feasible solutions, then

maxyb
ty ≤ minxc

tx.

2 Strong duality: if one of the two problems has an optimal solution,
so does the other one and the bounds given by the weak duality
theorem are tight.

Remark 2
The same results hold if the constraints are Ax = b,x ≥ 0 and Aty ≤ c,
respectively.

Linear programming (review)

Notations 7
1 Let A ∈ Rm×d be a matrix, let c ∈ Rd and b ∈ Rm be two vectors

2 Consider the linear program

Minimize ctx subject to Ax ≤ b,x ≥ 0.
3 and its dual:

Maximize bty subject to Aty ≤ c,y ≥ 0.

Proposition 9

1 Weak duality: If both programs have feasible solutions, then

maxyb
ty ≤ minxc

tx.

2 Strong duality: if one of the two problems has an optimal solution,
so does the other one and the bounds given by the weak duality
theorem are tight.

Remark 2
The same results hold if the constraints are Ax = b,x ≥ 0 and Aty ≤ c,
respectively.

Linear programming (review)

Notations 7
1 Let A ∈ Rm×d be a matrix, let c ∈ Rd and b ∈ Rm be two vectors

2 Consider the linear program

Minimize ctx subject to Ax ≤ b,x ≥ 0.
3 and its dual:

Maximize bty subject to Aty ≤ c,y ≥ 0.

Proposition 9

1 Weak duality: If both programs have feasible solutions, then

maxyb
ty ≤ minxc

tx.

2 Strong duality: if one of the two problems has an optimal solution,
so does the other one and the bounds given by the weak duality
theorem are tight.

Remark 2
The same results hold if the constraints are Ax = b,x ≥ 0 and Aty ≤ c,
respectively.

Linear programming (review)

Notations 7
1 Let A ∈ Rm×d be a matrix, let c ∈ Rd and b ∈ Rm be two vectors

2 Consider the linear program

Minimize ctx subject to Ax ≤ b,x ≥ 0.
3 and its dual:

Maximize bty subject to Aty ≤ c,y ≥ 0.

Proposition 9

1 Weak duality: If both programs have feasible solutions, then

maxyb
ty ≤ minxc

tx.

2 Strong duality: if one of the two problems has an optimal solution,
so does the other one and the bounds given by the weak duality
theorem are tight.

Remark 2
The same results hold if the constraints are Ax = b,x ≥ 0 and Aty ≤ c,
respectively.

Linear programming (review)

Notations 7
1 Let A ∈ Rm×d be a matrix, let c ∈ Rd and b ∈ Rm be two vectors

2 Consider the linear program

Minimize ctx subject to Ax ≤ b,x ≥ 0.
3 and its dual:

Maximize bty subject to Aty ≤ c,y ≥ 0.

Proposition 9

1 Weak duality: If both programs have feasible solutions, then

maxyb
ty ≤ minxc

tx.

2 Strong duality: if one of the two problems has an optimal solution,
so does the other one and the bounds given by the weak duality
theorem are tight.

Remark 2
The same results hold if the constraints are Ax = b,x ≥ 0 and Aty ≤ c,
respectively.

Fundamental theorem of linear inequalities
Theorem 18
Let a1, . . . ,am,b ∈ Rd , Denote by r the rank of the d × (m + 1) matrix
whose columns are a1, . . . ,am,b. Then exactly one of the following
statements holds:

1 There exists s linearly independent vectors v1, . . . ,vs ∈ {a1, . . . ,am}
and s numbers λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs ,

2 There exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing r − 1 linearly
independent vectors from {a1, . . . ,am} such that we have:

a ctb < 0,
b ctai ≥ 0, for all 1 ≤ i ≤ m.

Moreover, if a1, . . . ,am are rational then c is rational as well.

Proof.
1 A constructive proof based on the simplex algorithm in Schrijver’s
book [18].

2 For a shorter proof, one can weaken the above statement and
proving Gordan’s theorem, instead.

3 The proof of Gordan’s theorem is very similar to that of the bipolar
theorem.

Fundamental theorem of linear inequalities
Theorem 18
Let a1, . . . ,am,b ∈ Rd , Denote by r the rank of the d × (m + 1) matrix
whose columns are a1, . . . ,am,b. Then exactly one of the following
statements holds:

1 There exists s linearly independent vectors v1, . . . ,vs ∈ {a1, . . . ,am}
and s numbers λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs ,

2 There exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing r − 1 linearly
independent vectors from {a1, . . . ,am} such that we have:

a ctb < 0,
b ctai ≥ 0, for all 1 ≤ i ≤ m.

Moreover, if a1, . . . ,am are rational then c is rational as well.

Proof.
1 A constructive proof based on the simplex algorithm in Schrijver’s
book [18].

2 For a shorter proof, one can weaken the above statement and
proving Gordan’s theorem, instead.

3 The proof of Gordan’s theorem is very similar to that of the bipolar
theorem.

Fundamental theorem of linear inequalities
Theorem 18
Let a1, . . . ,am,b ∈ Rd , Denote by r the rank of the d × (m + 1) matrix
whose columns are a1, . . . ,am,b. Then exactly one of the following
statements holds:

1 There exists s linearly independent vectors v1, . . . ,vs ∈ {a1, . . . ,am}
and s numbers λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs ,

2 There exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing r − 1 linearly
independent vectors from {a1, . . . ,am} such that we have:

a ctb < 0,
b ctai ≥ 0, for all 1 ≤ i ≤ m.

Moreover, if a1, . . . ,am are rational then c is rational as well.

Proof.
1 A constructive proof based on the simplex algorithm in Schrijver’s
book [18].

2 For a shorter proof, one can weaken the above statement and
proving Gordan’s theorem, instead.

3 The proof of Gordan’s theorem is very similar to that of the bipolar
theorem.

Fundamental theorem of linear inequalities
Theorem 18
Let a1, . . . ,am,b ∈ Rd , Denote by r the rank of the d × (m + 1) matrix
whose columns are a1, . . . ,am,b. Then exactly one of the following
statements holds:

1 There exists s linearly independent vectors v1, . . . ,vs ∈ {a1, . . . ,am}
and s numbers λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs ,

2 There exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing r − 1 linearly
independent vectors from {a1, . . . ,am} such that we have:

a ctb < 0,

b ctai ≥ 0, for all 1 ≤ i ≤ m.

Moreover, if a1, . . . ,am are rational then c is rational as well.

Proof.
1 A constructive proof based on the simplex algorithm in Schrijver’s
book [18].

2 For a shorter proof, one can weaken the above statement and
proving Gordan’s theorem, instead.

3 The proof of Gordan’s theorem is very similar to that of the bipolar
theorem.

Fundamental theorem of linear inequalities
Theorem 18
Let a1, . . . ,am,b ∈ Rd , Denote by r the rank of the d × (m + 1) matrix
whose columns are a1, . . . ,am,b. Then exactly one of the following
statements holds:

1 There exists s linearly independent vectors v1, . . . ,vs ∈ {a1, . . . ,am}
and s numbers λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs ,

2 There exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing r − 1 linearly
independent vectors from {a1, . . . ,am} such that we have:

a ctb < 0,
b ctai ≥ 0, for all 1 ≤ i ≤ m.

Moreover, if a1, . . . ,am are rational then c is rational as well.

Proof.
1 A constructive proof based on the simplex algorithm in Schrijver’s
book [18].

2 For a shorter proof, one can weaken the above statement and
proving Gordan’s theorem, instead.

3 The proof of Gordan’s theorem is very similar to that of the bipolar
theorem.

Fundamental theorem of linear inequalities
Theorem 18
Let a1, . . . ,am,b ∈ Rd , Denote by r the rank of the d × (m + 1) matrix
whose columns are a1, . . . ,am,b. Then exactly one of the following
statements holds:

1 There exists s linearly independent vectors v1, . . . ,vs ∈ {a1, . . . ,am}
and s numbers λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs ,

2 There exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing r − 1 linearly
independent vectors from {a1, . . . ,am} such that we have:

a ctb < 0,
b ctai ≥ 0, for all 1 ≤ i ≤ m.

Moreover, if a1, . . . ,am are rational then c is rational as well.

Proof.
1 A constructive proof based on the simplex algorithm in Schrijver’s
book [18].

2 For a shorter proof, one can weaken the above statement and
proving Gordan’s theorem, instead.

3 The proof of Gordan’s theorem is very similar to that of the bipolar
theorem.

Fundamental theorem of linear inequalities
Theorem 18
Let a1, . . . ,am,b ∈ Rd , Denote by r the rank of the d × (m + 1) matrix
whose columns are a1, . . . ,am,b. Then exactly one of the following
statements holds:

1 There exists s linearly independent vectors v1, . . . ,vs ∈ {a1, . . . ,am}
and s numbers λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs ,

2 There exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing r − 1 linearly
independent vectors from {a1, . . . ,am} such that we have:

a ctb < 0,
b ctai ≥ 0, for all 1 ≤ i ≤ m.

Moreover, if a1, . . . ,am are rational then c is rational as well.

Proof.
1 A constructive proof based on the simplex algorithm in Schrijver’s
book [18].

2 For a shorter proof, one can weaken the above statement and
proving Gordan’s theorem, instead.

3 The proof of Gordan’s theorem is very similar to that of the bipolar
theorem.

Farkas lemma

Theorem 19
Let a1, . . . ,am,b ∈ Rd , Denote by A the m × d matrix whose columns are
a1, . . . ,am. Then exactly one of the following statements holds:

1 the system Ax = b, x ≥ 0 has solutions,

2 there exists y ∈ Rm such that ytA ≥ 0,ytb < 0.

Proof.
We apply Theorem 18 null.

Suppose that here exists s linearly
independent vectors v1, . . . ,vs ∈ {a1, . . . ,am} and s numbers
λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs . This is equivalent to say
that the system Ax = b, x ≥ 0 has solutions.
Suppose now that there exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing
r − 1 linearly independent vectors from {a1, . . . ,am} such that we have
ctb < 0 and ctai ≥ 0, for all 1 ≤ i ≤ m. Set y = c. Then, this implies that
both ytA ≥ 0 and ytb < 0 hold.

Farkas lemma

Theorem 19
Let a1, . . . ,am,b ∈ Rd , Denote by A the m × d matrix whose columns are
a1, . . . ,am. Then exactly one of the following statements holds:

1 the system Ax = b, x ≥ 0 has solutions,

2 there exists y ∈ Rm such that ytA ≥ 0,ytb < 0.

Proof.
We apply Theorem 18 null.

Suppose that here exists s linearly
independent vectors v1, . . . ,vs ∈ {a1, . . . ,am} and s numbers
λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs . This is equivalent to say
that the system Ax = b, x ≥ 0 has solutions.
Suppose now that there exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing
r − 1 linearly independent vectors from {a1, . . . ,am} such that we have
ctb < 0 and ctai ≥ 0, for all 1 ≤ i ≤ m. Set y = c. Then, this implies that
both ytA ≥ 0 and ytb < 0 hold.

Farkas lemma

Theorem 19
Let a1, . . . ,am,b ∈ Rd , Denote by A the m × d matrix whose columns are
a1, . . . ,am. Then exactly one of the following statements holds:

1 the system Ax = b, x ≥ 0 has solutions,

2 there exists y ∈ Rm such that ytA ≥ 0,ytb < 0.

Proof.
We apply Theorem 18 null.

Suppose that here exists s linearly
independent vectors v1, . . . ,vs ∈ {a1, . . . ,am} and s numbers
λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs . This is equivalent to say
that the system Ax = b, x ≥ 0 has solutions.
Suppose now that there exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing
r − 1 linearly independent vectors from {a1, . . . ,am} such that we have
ctb < 0 and ctai ≥ 0, for all 1 ≤ i ≤ m. Set y = c. Then, this implies that
both ytA ≥ 0 and ytb < 0 hold.

Farkas lemma

Theorem 19
Let a1, . . . ,am,b ∈ Rd , Denote by A the m × d matrix whose columns are
a1, . . . ,am. Then exactly one of the following statements holds:

1 the system Ax = b, x ≥ 0 has solutions,

2 there exists y ∈ Rm such that ytA ≥ 0,ytb < 0.

Proof.
We apply Theorem 18 null.

Suppose that here exists s linearly
independent vectors v1, . . . ,vs ∈ {a1, . . . ,am} and s numbers
λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs . This is equivalent to say
that the system Ax = b, x ≥ 0 has solutions.
Suppose now that there exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing
r − 1 linearly independent vectors from {a1, . . . ,am} such that we have
ctb < 0 and ctai ≥ 0, for all 1 ≤ i ≤ m. Set y = c. Then, this implies that
both ytA ≥ 0 and ytb < 0 hold.

Farkas lemma

Theorem 19
Let a1, . . . ,am,b ∈ Rd , Denote by A the m × d matrix whose columns are
a1, . . . ,am. Then exactly one of the following statements holds:

1 the system Ax = b, x ≥ 0 has solutions,

2 there exists y ∈ Rm such that ytA ≥ 0,ytb < 0.

Proof.
We apply Theorem 18 null. Suppose that here exists s linearly
independent vectors v1, . . . ,vs ∈ {a1, . . . ,am} and s numbers
λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs . This is equivalent to say
that the system Ax = b, x ≥ 0 has solutions.

Suppose now that there exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing
r − 1 linearly independent vectors from {a1, . . . ,am} such that we have
ctb < 0 and ctai ≥ 0, for all 1 ≤ i ≤ m. Set y = c. Then, this implies that
both ytA ≥ 0 and ytb < 0 hold.

Farkas lemma

Theorem 19
Let a1, . . . ,am,b ∈ Rd , Denote by A the m × d matrix whose columns are
a1, . . . ,am. Then exactly one of the following statements holds:

1 the system Ax = b, x ≥ 0 has solutions,

2 there exists y ∈ Rm such that ytA ≥ 0,ytb < 0.

Proof.
We apply Theorem 18 null. Suppose that here exists s linearly
independent vectors v1, . . . ,vs ∈ {a1, . . . ,am} and s numbers
λ1, . . . , λs ∈ R≥0 so that b = λ1v1 +⋯ + λsvs . This is equivalent to say
that the system Ax = b, x ≥ 0 has solutions.
Suppose now that there exists a hyperplane {x ∈ Rd ∣ ctx = 0} containing
r − 1 linearly independent vectors from {a1, . . . ,am} such that we have
ctb < 0 and ctai ≥ 0, for all 1 ≤ i ≤ m. Set y = c. Then, this implies that
both ytA ≥ 0 and ytb < 0 hold.

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Farkas–Minkowsi–Weyl theorem (1/4)

Theorem 20
A convex cone C ⊆ Rd is polyhedral if and only if it is finitely generated.

Proof.

Assume there exists x1, . . . ,xm ∈ Rd so that C = ConicalHull(x1, . . . ,xm).
1 W.l.o.g. assume that Span(x1, . . . ,xm) = Rd , otherwise do the proof
in Span(x1, . . . ,xm). Thus we have d ≤ m.

2 By the fundamental theorem of linear inequalities, the following
statements are equivalent, for all y ∈ Rd :

a y ∈ ConicalHull(x1, . . . , xm),
b for every hyperplane {x ∣ ctx = 0} containing d − 1 linearly

independent vectors from x1, . . . , xm so that ctx≥0 holds for all
1 ≤ i ≤ m, we have cty ≥ 0.

3 Consider all hyperplanes spanned by d − 1 linearly independent
vectors from x1, . . . ,xm so that ctxi ≥ 0 holds for all 1 ≤ i ≤ m.

4 The number of such hyperplanes is at most N ∶= (m
d−1).

5 Let those hyperplanes be defined by c1, . . . , cN .

Farkas–Minkowsi–Weyl theorem (1/4)

Theorem 20
A convex cone C ⊆ Rd is polyhedral if and only if it is finitely generated.

Proof.
Assume there exists x1, . . . ,xm ∈ Rd so that C = ConicalHull(x1, . . . ,xm).

1 W.l.o.g. assume that Span(x1, . . . ,xm) = Rd , otherwise do the proof
in Span(x1, . . . ,xm). Thus we have d ≤ m.

2 By the fundamental theorem of linear inequalities, the following
statements are equivalent, for all y ∈ Rd :

a y ∈ ConicalHull(x1, . . . , xm),
b for every hyperplane {x ∣ ctx = 0} containing d − 1 linearly

independent vectors from x1, . . . , xm so that ctx≥0 holds for all
1 ≤ i ≤ m, we have cty ≥ 0.

3 Consider all hyperplanes spanned by d − 1 linearly independent
vectors from x1, . . . ,xm so that ctxi ≥ 0 holds for all 1 ≤ i ≤ m.

4 The number of such hyperplanes is at most N ∶= (m
d−1).

5 Let those hyperplanes be defined by c1, . . . , cN .

Farkas–Minkowsi–Weyl theorem (1/4)

Theorem 20
A convex cone C ⊆ Rd is polyhedral if and only if it is finitely generated.

Proof.
Assume there exists x1, . . . ,xm ∈ Rd so that C = ConicalHull(x1, . . . ,xm).

1 W.l.o.g. assume that Span(x1, . . . ,xm) = Rd , otherwise do the proof
in Span(x1, . . . ,xm). Thus we have d ≤ m.

2 By the fundamental theorem of linear inequalities, the following
statements are equivalent, for all y ∈ Rd :

a y ∈ ConicalHull(x1, . . . , xm),
b for every hyperplane {x ∣ ctx = 0} containing d − 1 linearly

independent vectors from x1, . . . , xm so that ctx≥0 holds for all
1 ≤ i ≤ m, we have cty ≥ 0.

3 Consider all hyperplanes spanned by d − 1 linearly independent
vectors from x1, . . . ,xm so that ctxi ≥ 0 holds for all 1 ≤ i ≤ m.

4 The number of such hyperplanes is at most N ∶= (m
d−1).

5 Let those hyperplanes be defined by c1, . . . , cN .

Farkas–Minkowsi–Weyl theorem (1/4)

Theorem 20
A convex cone C ⊆ Rd is polyhedral if and only if it is finitely generated.

Proof.
Assume there exists x1, . . . ,xm ∈ Rd so that C = ConicalHull(x1, . . . ,xm).

1 W.l.o.g. assume that Span(x1, . . . ,xm) = Rd , otherwise do the proof
in Span(x1, . . . ,xm). Thus we have d ≤ m.

2 By the fundamental theorem of linear inequalities, the following
statements are equivalent, for all y ∈ Rd :

a y ∈ ConicalHull(x1, . . . , xm),
b for every hyperplane {x ∣ ctx = 0} containing d − 1 linearly

independent vectors from x1, . . . , xm so that ctx≥0 holds for all
1 ≤ i ≤ m, we have cty ≥ 0.

3 Consider all hyperplanes spanned by d − 1 linearly independent
vectors from x1, . . . ,xm so that ctxi ≥ 0 holds for all 1 ≤ i ≤ m.

4 The number of such hyperplanes is at most N ∶= (m
d−1).

5 Let those hyperplanes be defined by c1, . . . , cN .

Farkas–Minkowsi–Weyl theorem (1/4)

Theorem 20
A convex cone C ⊆ Rd is polyhedral if and only if it is finitely generated.

Proof.
Assume there exists x1, . . . ,xm ∈ Rd so that C = ConicalHull(x1, . . . ,xm).

1 W.l.o.g. assume that Span(x1, . . . ,xm) = Rd , otherwise do the proof
in Span(x1, . . . ,xm). Thus we have d ≤ m.

2 By the fundamental theorem of linear inequalities, the following
statements are equivalent, for all y ∈ Rd :

a y ∈ ConicalHull(x1, . . . , xm),
b for every hyperplane {x ∣ ctx = 0} containing d − 1 linearly

independent vectors from x1, . . . , xm so that ctx≥0 holds for all
1 ≤ i ≤ m, we have cty ≥ 0.

3 Consider all hyperplanes spanned by d − 1 linearly independent
vectors from x1, . . . ,xm so that ctxi ≥ 0 holds for all 1 ≤ i ≤ m.

4 The number of such hyperplanes is at most N ∶= (m
d−1).

5 Let those hyperplanes be defined by c1, . . . , cN .

Farkas–Minkowsi–Weyl theorem (1/4)

Theorem 20
A convex cone C ⊆ Rd is polyhedral if and only if it is finitely generated.

Proof.
Assume there exists x1, . . . ,xm ∈ Rd so that C = ConicalHull(x1, . . . ,xm).

1 W.l.o.g. assume that Span(x1, . . . ,xm) = Rd , otherwise do the proof
in Span(x1, . . . ,xm). Thus we have d ≤ m.

2 By the fundamental theorem of linear inequalities, the following
statements are equivalent, for all y ∈ Rd :

a y ∈ ConicalHull(x1, . . . , xm),
b for every hyperplane {x ∣ ctx = 0} containing d − 1 linearly

independent vectors from x1, . . . , xm so that ctx≥0 holds for all
1 ≤ i ≤ m, we have cty ≥ 0.

3 Consider all hyperplanes spanned by d − 1 linearly independent
vectors from x1, . . . ,xm so that ctxi ≥ 0 holds for all 1 ≤ i ≤ m.

4 The number of such hyperplanes is at most N ∶= (m
d−1).

5 Let those hyperplanes be defined by c1, . . . , cN .

Farkas–Minkowsi–Weyl theorem (1/4)

Theorem 20
A convex cone C ⊆ Rd is polyhedral if and only if it is finitely generated.

Proof.
Assume there exists x1, . . . ,xm ∈ Rd so that C = ConicalHull(x1, . . . ,xm).

1 W.l.o.g. assume that Span(x1, . . . ,xm) = Rd , otherwise do the proof
in Span(x1, . . . ,xm). Thus we have d ≤ m.

2 By the fundamental theorem of linear inequalities, the following
statements are equivalent, for all y ∈ Rd :

a y ∈ ConicalHull(x1, . . . , xm),
b for every hyperplane {x ∣ ctx = 0} containing d − 1 linearly

independent vectors from x1, . . . , xm so that ctx≥0 holds for all
1 ≤ i ≤ m, we have cty ≥ 0.

3 Consider all hyperplanes spanned by d − 1 linearly independent
vectors from x1, . . . ,xm so that ctxi ≥ 0 holds for all 1 ≤ i ≤ m.

4 The number of such hyperplanes is at most N ∶= (m
d−1).

5 Let those hyperplanes be defined by c1, . . . , cN .

Farkas–Minkowsi–Weyl theorem (2/4)

Proof.
We shall prove that we have:

ConicalHull(x1, . . . ,xm) = {x ∈ Rd ∣ xcti ≥ 0,1 ≤ i ≤ N}, (2.2)
which will imply that the cone C is polyhedral. We prove the two
inclusions ⊆ and ⊇.

⊆: This inclusion follows immediately from our above observation
derived from the fundamental theorem of linear inequalities.

⊇: Consider y ∈ Rd so that y /∈ ConicalHull(x1, . . . ,xm). From the same
observation, there exists an hyperplane Hi among those defined by
c1, . . . , cN such that xcti ≥ 0 does not hold.

Assume now that exist a1, . . . ,am ∈ Rd so that we have
C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, (2.3)

that is, assume C is polyhedral.

Farkas–Minkowsi–Weyl theorem (2/4)

Proof.
We shall prove that we have:

ConicalHull(x1, . . . ,xm) = {x ∈ Rd ∣ xcti ≥ 0,1 ≤ i ≤ N}, (2.2)
which will imply that the cone C is polyhedral. We prove the two
inclusions ⊆ and ⊇.

⊆: This inclusion follows immediately from our above observation
derived from the fundamental theorem of linear inequalities.

⊇: Consider y ∈ Rd so that y /∈ ConicalHull(x1, . . . ,xm). From the same
observation, there exists an hyperplane Hi among those defined by
c1, . . . , cN such that xcti ≥ 0 does not hold.

Assume now that exist a1, . . . ,am ∈ Rd so that we have
C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, (2.3)

that is, assume C is polyhedral.

Farkas–Minkowsi–Weyl theorem (2/4)

Proof.
We shall prove that we have:

ConicalHull(x1, . . . ,xm) = {x ∈ Rd ∣ xcti ≥ 0,1 ≤ i ≤ N}, (2.2)
which will imply that the cone C is polyhedral. We prove the two
inclusions ⊆ and ⊇.
⊆: This inclusion follows immediately from our above observation

derived from the fundamental theorem of linear inequalities.

⊇: Consider y ∈ Rd so that y /∈ ConicalHull(x1, . . . ,xm). From the same
observation, there exists an hyperplane Hi among those defined by
c1, . . . , cN such that xcti ≥ 0 does not hold.

Assume now that exist a1, . . . ,am ∈ Rd so that we have
C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, (2.3)

that is, assume C is polyhedral.

Farkas–Minkowsi–Weyl theorem (2/4)

Proof.
We shall prove that we have:

ConicalHull(x1, . . . ,xm) = {x ∈ Rd ∣ xcti ≥ 0,1 ≤ i ≤ N}, (2.2)
which will imply that the cone C is polyhedral. We prove the two
inclusions ⊆ and ⊇.
⊆: This inclusion follows immediately from our above observation

derived from the fundamental theorem of linear inequalities.

⊇: Consider y ∈ Rd so that y /∈ ConicalHull(x1, . . . ,xm). From the same
observation, there exists an hyperplane Hi among those defined by
c1, . . . , cN such that xcti ≥ 0 does not hold.

Assume now that exist a1, . . . ,am ∈ Rd so that we have
C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, (2.3)

that is, assume C is polyhedral.

Farkas–Minkowsi–Weyl theorem (2/4)

Proof.
We shall prove that we have:

ConicalHull(x1, . . . ,xm) = {x ∈ Rd ∣ xcti ≥ 0,1 ≤ i ≤ N}, (2.2)
which will imply that the cone C is polyhedral. We prove the two
inclusions ⊆ and ⊇.
⊆: This inclusion follows immediately from our above observation

derived from the fundamental theorem of linear inequalities.

⊇: Consider y ∈ Rd so that y /∈ ConicalHull(x1, . . . ,xm). From the same
observation, there exists an hyperplane Hi among those defined by
c1, . . . , cN such that xcti ≥ 0 does not hold.

Assume now that exist a1, . . . ,am ∈ Rd so that we have
C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, (2.3)

that is, assume C is polyhedral.

Farkas–Minkowsi–Weyl theorem (3/4)

Proof.
1 From the first part of the proof, there exist vectors b1, . . . ,bN ∈ Rd

such that we have:
ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N}, (2.4)

2 Note that for all 1 ≤ j ≤ m and all 1 ≤ i ≤ N, we have:
bti ai ≤ 0, (2.5)

since aj , ∈ ConicalHull(a1, . . . ,am) holds.
3 We will show that C is a finitely generated, by proving:

C = ConicalHull(b1, . . . ,bN). (2.6)

4 We prove ConicalHull(b1, . . . ,bN) ⊆ {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}.
5 Observe that bi ∈ C , since bti ai ≤ 0 holds for all 1 ≤ j ≤ m and all
1 ≤ i ≤ N.

6 It follows that all linear combination of b1, . . . ,bN with non-negative
coefficients are in C . This proves the inclusion.

Farkas–Minkowsi–Weyl theorem (3/4)

Proof.
1 From the first part of the proof, there exist vectors b1, . . . ,bN ∈ Rd

such that we have:
ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N}, (2.4)

2 Note that for all 1 ≤ j ≤ m and all 1 ≤ i ≤ N, we have:
bti ai ≤ 0, (2.5)

since aj , ∈ ConicalHull(a1, . . . ,am) holds.

3 We will show that C is a finitely generated, by proving:
C = ConicalHull(b1, . . . ,bN). (2.6)

4 We prove ConicalHull(b1, . . . ,bN) ⊆ {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}.
5 Observe that bi ∈ C , since bti ai ≤ 0 holds for all 1 ≤ j ≤ m and all
1 ≤ i ≤ N.

6 It follows that all linear combination of b1, . . . ,bN with non-negative
coefficients are in C . This proves the inclusion.

Farkas–Minkowsi–Weyl theorem (3/4)

Proof.
1 From the first part of the proof, there exist vectors b1, . . . ,bN ∈ Rd

such that we have:
ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N}, (2.4)

2 Note that for all 1 ≤ j ≤ m and all 1 ≤ i ≤ N, we have:
bti ai ≤ 0, (2.5)

since aj , ∈ ConicalHull(a1, . . . ,am) holds.
3 We will show that C is a finitely generated, by proving:

C = ConicalHull(b1, . . . ,bN). (2.6)

4 We prove ConicalHull(b1, . . . ,bN) ⊆ {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}.
5 Observe that bi ∈ C , since bti ai ≤ 0 holds for all 1 ≤ j ≤ m and all
1 ≤ i ≤ N.

6 It follows that all linear combination of b1, . . . ,bN with non-negative
coefficients are in C . This proves the inclusion.

Farkas–Minkowsi–Weyl theorem (3/4)

Proof.
1 From the first part of the proof, there exist vectors b1, . . . ,bN ∈ Rd

such that we have:
ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N}, (2.4)

2 Note that for all 1 ≤ j ≤ m and all 1 ≤ i ≤ N, we have:
bti ai ≤ 0, (2.5)

since aj , ∈ ConicalHull(a1, . . . ,am) holds.
3 We will show that C is a finitely generated, by proving:

C = ConicalHull(b1, . . . ,bN). (2.6)

4 We prove ConicalHull(b1, . . . ,bN) ⊆ {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}.

5 Observe that bi ∈ C , since bti ai ≤ 0 holds for all 1 ≤ j ≤ m and all
1 ≤ i ≤ N.

6 It follows that all linear combination of b1, . . . ,bN with non-negative
coefficients are in C . This proves the inclusion.

Farkas–Minkowsi–Weyl theorem (3/4)

Proof.
1 From the first part of the proof, there exist vectors b1, . . . ,bN ∈ Rd

such that we have:
ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N}, (2.4)

2 Note that for all 1 ≤ j ≤ m and all 1 ≤ i ≤ N, we have:
bti ai ≤ 0, (2.5)

since aj , ∈ ConicalHull(a1, . . . ,am) holds.
3 We will show that C is a finitely generated, by proving:

C = ConicalHull(b1, . . . ,bN). (2.6)

4 We prove ConicalHull(b1, . . . ,bN) ⊆ {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}.
5 Observe that bi ∈ C , since bti ai ≤ 0 holds for all 1 ≤ j ≤ m and all
1 ≤ i ≤ N.

6 It follows that all linear combination of b1, . . . ,bN with non-negative
coefficients are in C . This proves the inclusion.

Farkas–Minkowsi–Weyl theorem (3/4)

Proof.
1 From the first part of the proof, there exist vectors b1, . . . ,bN ∈ Rd

such that we have:
ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N}, (2.4)

2 Note that for all 1 ≤ j ≤ m and all 1 ≤ i ≤ N, we have:
bti ai ≤ 0, (2.5)

since aj , ∈ ConicalHull(a1, . . . ,am) holds.
3 We will show that C is a finitely generated, by proving:

C = ConicalHull(b1, . . . ,bN). (2.6)

4 We prove ConicalHull(b1, . . . ,bN) ⊆ {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}.
5 Observe that bi ∈ C , since bti ai ≤ 0 holds for all 1 ≤ j ≤ m and all
1 ≤ i ≤ N.

6 It follows that all linear combination of b1, . . . ,bN with non-negative
coefficients are in C . This proves the inclusion.

Farkas–Minkowsi–Weyl theorem (4/4)

Proof.
We prove {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m} ⊆ ConicalHull(b1, . . . ,bN), by
contradiction.

1 So let y ∈ C and y /∈ ConicalHull(b1, . . . ,bN).
2 From the first part of the proof, there exist vectors w1, . . . ,wr ∈ Rd

such that we have:
ConicalHull(b1, . . . ,bN) = {x ∈ Rd ∣ wt

i x ≤ 0, 1 ≤ i ≤ r}, (2.7)

3 Consequently, there exists some 1 ≤ i ≤ r , such that wt
i y > 0.

4 By definition of w1, . . . ,wr we have: wt
i bj ≤ 0, for all 1 ≤ j ≤ N.

5 Since ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N},
there exist λ1, . . . , λm ∈ R≥0 such that we have: wt

i = Σm
k=1λkak .

6 Since y ∈ C and C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, we deduce
wt

i y = Σm
k=1λka

t
kwi ≤ 0. (2.8)

7 In contradiction with wt
i y > 0.

Farkas–Minkowsi–Weyl theorem (4/4)

Proof.
We prove {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m} ⊆ ConicalHull(b1, . . . ,bN), by
contradiction.

1 So let y ∈ C and y /∈ ConicalHull(b1, . . . ,bN).

2 From the first part of the proof, there exist vectors w1, . . . ,wr ∈ Rd

such that we have:
ConicalHull(b1, . . . ,bN) = {x ∈ Rd ∣ wt

i x ≤ 0, 1 ≤ i ≤ r}, (2.7)

3 Consequently, there exists some 1 ≤ i ≤ r , such that wt
i y > 0.

4 By definition of w1, . . . ,wr we have: wt
i bj ≤ 0, for all 1 ≤ j ≤ N.

5 Since ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N},
there exist λ1, . . . , λm ∈ R≥0 such that we have: wt

i = Σm
k=1λkak .

6 Since y ∈ C and C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, we deduce
wt

i y = Σm
k=1λka

t
kwi ≤ 0. (2.8)

7 In contradiction with wt
i y > 0.

Farkas–Minkowsi–Weyl theorem (4/4)

Proof.
We prove {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m} ⊆ ConicalHull(b1, . . . ,bN), by
contradiction.

1 So let y ∈ C and y /∈ ConicalHull(b1, . . . ,bN).
2 From the first part of the proof, there exist vectors w1, . . . ,wr ∈ Rd

such that we have:
ConicalHull(b1, . . . ,bN) = {x ∈ Rd ∣ wt

i x ≤ 0, 1 ≤ i ≤ r}, (2.7)

3 Consequently, there exists some 1 ≤ i ≤ r , such that wt
i y > 0.

4 By definition of w1, . . . ,wr we have: wt
i bj ≤ 0, for all 1 ≤ j ≤ N.

5 Since ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N},
there exist λ1, . . . , λm ∈ R≥0 such that we have: wt

i = Σm
k=1λkak .

6 Since y ∈ C and C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, we deduce
wt

i y = Σm
k=1λka

t
kwi ≤ 0. (2.8)

7 In contradiction with wt
i y > 0.

Farkas–Minkowsi–Weyl theorem (4/4)

Proof.
We prove {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m} ⊆ ConicalHull(b1, . . . ,bN), by
contradiction.

1 So let y ∈ C and y /∈ ConicalHull(b1, . . . ,bN).
2 From the first part of the proof, there exist vectors w1, . . . ,wr ∈ Rd

such that we have:
ConicalHull(b1, . . . ,bN) = {x ∈ Rd ∣ wt

i x ≤ 0, 1 ≤ i ≤ r}, (2.7)

3 Consequently, there exists some 1 ≤ i ≤ r , such that wt
i y > 0.

4 By definition of w1, . . . ,wr we have: wt
i bj ≤ 0, for all 1 ≤ j ≤ N.

5 Since ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N},
there exist λ1, . . . , λm ∈ R≥0 such that we have: wt

i = Σm
k=1λkak .

6 Since y ∈ C and C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, we deduce
wt

i y = Σm
k=1λka

t
kwi ≤ 0. (2.8)

7 In contradiction with wt
i y > 0.

Farkas–Minkowsi–Weyl theorem (4/4)

Proof.
We prove {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m} ⊆ ConicalHull(b1, . . . ,bN), by
contradiction.

1 So let y ∈ C and y /∈ ConicalHull(b1, . . . ,bN).
2 From the first part of the proof, there exist vectors w1, . . . ,wr ∈ Rd

such that we have:
ConicalHull(b1, . . . ,bN) = {x ∈ Rd ∣ wt

i x ≤ 0, 1 ≤ i ≤ r}, (2.7)

3 Consequently, there exists some 1 ≤ i ≤ r , such that wt
i y > 0.

4 By definition of w1, . . . ,wr we have: wt
i bj ≤ 0, for all 1 ≤ j ≤ N.

5 Since ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N},
there exist λ1, . . . , λm ∈ R≥0 such that we have: wt

i = Σm
k=1λkak .

6 Since y ∈ C and C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, we deduce
wt

i y = Σm
k=1λka

t
kwi ≤ 0. (2.8)

7 In contradiction with wt
i y > 0.

Farkas–Minkowsi–Weyl theorem (4/4)

Proof.
We prove {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m} ⊆ ConicalHull(b1, . . . ,bN), by
contradiction.

1 So let y ∈ C and y /∈ ConicalHull(b1, . . . ,bN).
2 From the first part of the proof, there exist vectors w1, . . . ,wr ∈ Rd

such that we have:
ConicalHull(b1, . . . ,bN) = {x ∈ Rd ∣ wt

i x ≤ 0, 1 ≤ i ≤ r}, (2.7)

3 Consequently, there exists some 1 ≤ i ≤ r , such that wt
i y > 0.

4 By definition of w1, . . . ,wr we have: wt
i bj ≤ 0, for all 1 ≤ j ≤ N.

5 Since ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N},
there exist λ1, . . . , λm ∈ R≥0 such that we have: wt

i = Σm
k=1λkak .

6 Since y ∈ C and C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, we deduce
wt

i y = Σm
k=1λka

t
kwi ≤ 0. (2.8)

7 In contradiction with wt
i y > 0.

Farkas–Minkowsi–Weyl theorem (4/4)

Proof.
We prove {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m} ⊆ ConicalHull(b1, . . . ,bN), by
contradiction.

1 So let y ∈ C and y /∈ ConicalHull(b1, . . . ,bN).
2 From the first part of the proof, there exist vectors w1, . . . ,wr ∈ Rd

such that we have:
ConicalHull(b1, . . . ,bN) = {x ∈ Rd ∣ wt

i x ≤ 0, 1 ≤ i ≤ r}, (2.7)

3 Consequently, there exists some 1 ≤ i ≤ r , such that wt
i y > 0.

4 By definition of w1, . . . ,wr we have: wt
i bj ≤ 0, for all 1 ≤ j ≤ N.

5 Since ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N},
there exist λ1, . . . , λm ∈ R≥0 such that we have: wt

i = Σm
k=1λkak .

6 Since y ∈ C and C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, we deduce
wt

i y = Σm
k=1λka

t
kwi ≤ 0. (2.8)

7 In contradiction with wt
i y > 0.

Farkas–Minkowsi–Weyl theorem (4/4)

Proof.
We prove {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m} ⊆ ConicalHull(b1, . . . ,bN), by
contradiction.

1 So let y ∈ C and y /∈ ConicalHull(b1, . . . ,bN).
2 From the first part of the proof, there exist vectors w1, . . . ,wr ∈ Rd

such that we have:
ConicalHull(b1, . . . ,bN) = {x ∈ Rd ∣ wt

i x ≤ 0, 1 ≤ i ≤ r}, (2.7)

3 Consequently, there exists some 1 ≤ i ≤ r , such that wt
i y > 0.

4 By definition of w1, . . . ,wr we have: wt
i bj ≤ 0, for all 1 ≤ j ≤ N.

5 Since ConicalHull(a1, . . . ,am) = {x ∈ Rd ∣ bti x ≤ 0, 1 ≤ i ≤ N},
there exist λ1, . . . , λm ∈ R≥0 such that we have: wt

i = Σm
k=1λkak .

6 Since y ∈ C and C = {x ∈ Rd ∣ ati x ≤ 0, 1 ≤ i ≤ m}, we deduce
wt

i y = Σm
k=1λka

t
kwi ≤ 0. (2.8)

7 In contradiction with wt
i y > 0.

Decomposition theorem for polyhedron (1/6)
Theorem 21
Let P ⊆ Rd . Then, P is a polyhedron if and only if P = Q + C for some
polytope Q and some polyhedral cone C .

Proof.
1 We will show that it follows from Farkas-Minkowsi-Weyl theorem.

2 For this, we will rely on the geometric intuition that a polyhedron is a
slice of a cone.

Decomposition theorem for polyhedron (1/6)
Theorem 21
Let P ⊆ Rd . Then, P is a polyhedron if and only if P = Q + C for some
polytope Q and some polyhedral cone C .

Proof.
1 We will show that it follows from Farkas-Minkowsi-Weyl theorem.
2 For this, we will rely on the geometric intuition that a polyhedron is a
slice of a cone.

Decomposition theorem for polyhedron (2/6)

Proof.
1 Let P = {x ∈ Rd ∣ Ax ≤ b} be a polyhedron.

2 We are looking for a polytope Q and a cone C such that P = Q +C .

a Define:

T = {(x
λ
) ∣ Ax − λb ≤ 0, λ ≥ 0} .

b Note that T is a polyhedral cone.
c From the Farkas-Minkowsi-Weyl theorem, there exist x1, . . . , xm ∈ Rd

and λ1, . . . , λm ∈ R such hat

T = ConicalHull((x1
λ1
) , . . . ,(xm

λm
)).

d By rescaling the elements of T , we can assume λi ∈ {0,1}, for all i .

Decomposition theorem for polyhedron (2/6)

Proof.
1 Let P = {x ∈ Rd ∣ Ax ≤ b} be a polyhedron.

2 We are looking for a polytope Q and a cone C such that P = Q +C .

a Define:

T = {(x
λ
) ∣ Ax − λb ≤ 0, λ ≥ 0} .

b Note that T is a polyhedral cone.
c From the Farkas-Minkowsi-Weyl theorem, there exist x1, . . . , xm ∈ Rd

and λ1, . . . , λm ∈ R such hat

T = ConicalHull((x1
λ1
) , . . . ,(xm

λm
)).

d By rescaling the elements of T , we can assume λi ∈ {0,1}, for all i .

Decomposition theorem for polyhedron (2/6)

Proof.
1 Let P = {x ∈ Rd ∣ Ax ≤ b} be a polyhedron.

2 We are looking for a polytope Q and a cone C such that P = Q +C .

a Define:

T = {(x
λ
) ∣ Ax − λb ≤ 0, λ ≥ 0} .

b Note that T is a polyhedral cone.
c From the Farkas-Minkowsi-Weyl theorem, there exist x1, . . . , xm ∈ Rd

and λ1, . . . , λm ∈ R such hat

T = ConicalHull((x1
λ1
) , . . . ,(xm

λm
)).

d By rescaling the elements of T , we can assume λi ∈ {0,1}, for all i .

Decomposition theorem for polyhedron (2/6)

Proof.
1 Let P = {x ∈ Rd ∣ Ax ≤ b} be a polyhedron.

2 We are looking for a polytope Q and a cone C such that P = Q +C .

a Define:

T = {(x
λ
) ∣ Ax − λb ≤ 0, λ ≥ 0} .

b Note that T is a polyhedral cone.

c From the Farkas-Minkowsi-Weyl theorem, there exist x1, . . . , xm ∈ Rd

and λ1, . . . , λm ∈ R such hat

T = ConicalHull((x1
λ1
) , . . . ,(xm

λm
)).

d By rescaling the elements of T , we can assume λi ∈ {0,1}, for all i .

Decomposition theorem for polyhedron (2/6)

Proof.
1 Let P = {x ∈ Rd ∣ Ax ≤ b} be a polyhedron.

2 We are looking for a polytope Q and a cone C such that P = Q +C .

a Define:

T = {(x
λ
) ∣ Ax − λb ≤ 0, λ ≥ 0} .

b Note that T is a polyhedral cone.
c From the Farkas-Minkowsi-Weyl theorem, there exist x1, . . . , xm ∈ Rd

and λ1, . . . , λm ∈ R such hat

T = ConicalHull((x1
λ1
) , . . . ,(xm

λm
)).

d By rescaling the elements of T , we can assume λi ∈ {0,1}, for all i .

Decomposition theorem for polyhedron (2/6)

Proof.
1 Let P = {x ∈ Rd ∣ Ax ≤ b} be a polyhedron.

2 We are looking for a polytope Q and a cone C such that P = Q +C .

a Define:

T = {(x
λ
) ∣ Ax − λb ≤ 0, λ ≥ 0} .

b Note that T is a polyhedral cone.
c From the Farkas-Minkowsi-Weyl theorem, there exist x1, . . . , xm ∈ Rd

and λ1, . . . , λm ∈ R such hat

T = ConicalHull((x1
λ1
) , . . . ,(xm

λm
)).

d By rescaling the elements of T , we can assume λi ∈ {0,1}, for all i .

Decomposition theorem for polyhedron (3/6)

Proof.
Recall

T = {(x
λ
) ∣ Ax − λb ≤ 0, λ ≥ 0} = ConicalHull((x1

λ1
) , . . . ,(xm

λm
)),

with λi ∈ {0,1}, for all i .

For all y ∈ Rd we have:

y ∈ P ⇐⇒ (∃λ ∈ R≥0) (
y
λ
) ∈ T

⇐⇒ (∃λ, γ1, . . . , γm ∈ R≥0) (
y
λ
) = γ1 (

x1
λ1
) +⋯ + γm (

xm
λm
)

⇐⇒ (∃γ1, . . . , γm ∈ R≥0) {
y = Σm

i=1γixi
Σm

i=1,λi = 1γi = 1

⇐⇒ (∃γ1, . . . , γm ∈ R≥0)
⎧⎪⎪⎨⎪⎪⎩

y = Σm
i=1,λi=0γixi +Σm

i=1,λi = 1γixi
Σm

i=1,λi = 1γi = 1
⇐⇒ (∃γ1, . . . , γm ∈ R≥0) y ∈ C +Q,

where:
C = ConicalHull(xi ∣ λi = 0) and Q = ConvexHull(xi ∣ λi = 1).

Decomposition theorem for polyhedron (3/6)

Proof.
Recall

T = {(x
λ
) ∣ Ax − λb ≤ 0, λ ≥ 0} = ConicalHull((x1

λ1
) , . . . ,(xm

λm
)),

with λi ∈ {0,1}, for all i . For all y ∈ Rd we have:

y ∈ P ⇐⇒ (∃λ ∈ R≥0) (
y
λ
) ∈ T

⇐⇒ (∃λ, γ1, . . . , γm ∈ R≥0) (
y
λ
) = γ1 (

x1
λ1
) +⋯ + γm (

xm
λm
)

⇐⇒ (∃γ1, . . . , γm ∈ R≥0) {
y = Σm

i=1γixi
Σm

i=1,λi = 1γi = 1

⇐⇒ (∃γ1, . . . , γm ∈ R≥0)
⎧⎪⎪⎨⎪⎪⎩

y = Σm
i=1,λi=0γixi +Σm

i=1,λi = 1γixi
Σm

i=1,λi = 1γi = 1
⇐⇒ (∃γ1, . . . , γm ∈ R≥0) y ∈ C +Q,

where:
C = ConicalHull(xi ∣ λi = 0) and Q = ConvexHull(xi ∣ λi = 1).

Decomposition theorem for polyhedron (4/6)

Proof.
1 Let P = C +Q, where C is a polyhedral cone and Q is a polytope.

2 We need to show that P is a polyhedron.

3 From the Farkas-Minkowsi-Weyl theorem, there exist r1, . . . , rt ∈ Rd

so that C = ConicalHull(r1, . . . , rt).
4 By definition of a polytope, there exist x1, . . . ,xm ∈ Rd so that
Q = ConvexHull(x1, . . . ,xm).

5 Then, we have:

y ∈ P ⇐⇒ (∃λi , γj ∈ R≥0) {
y = Σt

i=1λi ri +Σm
j=1γjxj

Σm
j=1γj = 1

⇐⇒ (∃λi , γj ∈ R≥0)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(y
1
) = Σt

i=1λi (
ri
0
) + Σm

j=1γj (
xj
1
)

Σm
j=1γj = 1

⇐⇒ (y
1
) ∈ ConicalHull((ri

0
) ,(xj

1
) ,1 ≤ i ≤ t,1 ≤ j ≤ m)

Decomposition theorem for polyhedron (4/6)

Proof.
1 Let P = C +Q, where C is a polyhedral cone and Q is a polytope.

2 We need to show that P is a polyhedron.

3 From the Farkas-Minkowsi-Weyl theorem, there exist r1, . . . , rt ∈ Rd

so that C = ConicalHull(r1, . . . , rt).
4 By definition of a polytope, there exist x1, . . . ,xm ∈ Rd so that
Q = ConvexHull(x1, . . . ,xm).

5 Then, we have:

y ∈ P ⇐⇒ (∃λi , γj ∈ R≥0) {
y = Σt

i=1λi ri +Σm
j=1γjxj

Σm
j=1γj = 1

⇐⇒ (∃λi , γj ∈ R≥0)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(y
1
) = Σt

i=1λi (
ri
0
) + Σm

j=1γj (
xj
1
)

Σm
j=1γj = 1

⇐⇒ (y
1
) ∈ ConicalHull((ri

0
) ,(xj

1
) ,1 ≤ i ≤ t,1 ≤ j ≤ m)

Decomposition theorem for polyhedron (4/6)

Proof.
1 Let P = C +Q, where C is a polyhedral cone and Q is a polytope.

2 We need to show that P is a polyhedron.

3 From the Farkas-Minkowsi-Weyl theorem, there exist r1, . . . , rt ∈ Rd

so that C = ConicalHull(r1, . . . , rt).

4 By definition of a polytope, there exist x1, . . . ,xm ∈ Rd so that
Q = ConvexHull(x1, . . . ,xm).

5 Then, we have:

y ∈ P ⇐⇒ (∃λi , γj ∈ R≥0) {
y = Σt

i=1λi ri +Σm
j=1γjxj

Σm
j=1γj = 1

⇐⇒ (∃λi , γj ∈ R≥0)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(y
1
) = Σt

i=1λi (
ri
0
) + Σm

j=1γj (
xj
1
)

Σm
j=1γj = 1

⇐⇒ (y
1
) ∈ ConicalHull((ri

0
) ,(xj

1
) ,1 ≤ i ≤ t,1 ≤ j ≤ m)

Decomposition theorem for polyhedron (4/6)

Proof.
1 Let P = C +Q, where C is a polyhedral cone and Q is a polytope.

2 We need to show that P is a polyhedron.

3 From the Farkas-Minkowsi-Weyl theorem, there exist r1, . . . , rt ∈ Rd

so that C = ConicalHull(r1, . . . , rt).
4 By definition of a polytope, there exist x1, . . . ,xm ∈ Rd so that
Q = ConvexHull(x1, . . . ,xm).

5 Then, we have:

y ∈ P ⇐⇒ (∃λi , γj ∈ R≥0) {
y = Σt

i=1λi ri +Σm
j=1γjxj

Σm
j=1γj = 1

⇐⇒ (∃λi , γj ∈ R≥0)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(y
1
) = Σt

i=1λi (
ri
0
) + Σm

j=1γj (
xj
1
)

Σm
j=1γj = 1

⇐⇒ (y
1
) ∈ ConicalHull((ri

0
) ,(xj

1
) ,1 ≤ i ≤ t,1 ≤ j ≤ m)

Decomposition theorem for polyhedron (4/6)

Proof.
1 Let P = C +Q, where C is a polyhedral cone and Q is a polytope.

2 We need to show that P is a polyhedron.

3 From the Farkas-Minkowsi-Weyl theorem, there exist r1, . . . , rt ∈ Rd

so that C = ConicalHull(r1, . . . , rt).
4 By definition of a polytope, there exist x1, . . . ,xm ∈ Rd so that
Q = ConvexHull(x1, . . . ,xm).

5 Then, we have:

y ∈ P ⇐⇒ (∃λi , γj ∈ R≥0) {
y = Σt

i=1λi ri +Σm
j=1γjxj

Σm
j=1γj = 1

⇐⇒ (∃λi , γj ∈ R≥0)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(y
1
) = Σt

i=1λi (
ri
0
) + Σm

j=1γj (
xj
1
)

Σm
j=1γj = 1

⇐⇒ (y
1
) ∈ ConicalHull((ri

0
) ,(xj

1
) ,1 ≤ i ≤ t,1 ≤ j ≤ m)

Decomposition theorem for polyhedron (5/6)

Proof.
1 Denote by S the above cone, that is:

S = ConicalHull((ri
0
) ,(xj

1
) ,1 ≤ i ≤ t,1 ≤ j ≤ m).

2 Apply Farkas-Minkowsi-Weyl theorem to S .

3 Hence, there exists a matrix A and a vector b such that

S = {(x
λ
) ∣ Ax + λb ≤ 0}.

4 Therefore, we have:

y ∈ P ⇐⇒ (y
1
) ∈ S

⇐⇒ (y
1
) ∈ {(x

λ
) ∣ Ax + λb ≤ 0}

⇐⇒ Ay ≤ −b.

This proves that P is a polyhedron and completes the proof.

Decomposition theorem for polyhedron (5/6)

Proof.
1 Denote by S the above cone, that is:

S = ConicalHull((ri
0
) ,(xj

1
) ,1 ≤ i ≤ t,1 ≤ j ≤ m).

2 Apply Farkas-Minkowsi-Weyl theorem to S .

3 Hence, there exists a matrix A and a vector b such that

S = {(x
λ
) ∣ Ax + λb ≤ 0}.

4 Therefore, we have:

y ∈ P ⇐⇒ (y
1
) ∈ S

⇐⇒ (y
1
) ∈ {(x

λ
) ∣ Ax + λb ≤ 0}

⇐⇒ Ay ≤ −b.

This proves that P is a polyhedron and completes the proof.

Decomposition theorem for polyhedron (5/6)

Proof.
1 Denote by S the above cone, that is:

S = ConicalHull((ri
0
) ,(xj

1
) ,1 ≤ i ≤ t,1 ≤ j ≤ m).

2 Apply Farkas-Minkowsi-Weyl theorem to S .

3 Hence, there exists a matrix A and a vector b such that

S = {(x
λ
) ∣ Ax + λb ≤ 0}.

4 Therefore, we have:

y ∈ P ⇐⇒ (y
1
) ∈ S

⇐⇒ (y
1
) ∈ {(x

λ
) ∣ Ax + λb ≤ 0}

⇐⇒ Ay ≤ −b.

This proves that P is a polyhedron and completes the proof.

Decomposition theorem for polyhedron (5/6)

Proof.
1 Denote by S the above cone, that is:

S = ConicalHull((ri
0
) ,(xj

1
) ,1 ≤ i ≤ t,1 ≤ j ≤ m).

2 Apply Farkas-Minkowsi-Weyl theorem to S .

3 Hence, there exists a matrix A and a vector b such that

S = {(x
λ
) ∣ Ax + λb ≤ 0}.

4 Therefore, we have:

y ∈ P ⇐⇒ (y
1
) ∈ S

⇐⇒ (y
1
) ∈ {(x

λ
) ∣ Ax + λb ≤ 0}

⇐⇒ Ay ≤ −b.

This proves that P is a polyhedron and completes the proof.

Decomposition theorem for polyhedron (5/6)

Proof.
1 Denote by S the above cone, that is:

S = ConicalHull((ri
0
) ,(xj

1
) ,1 ≤ i ≤ t,1 ≤ j ≤ m).

2 Apply Farkas-Minkowsi-Weyl theorem to S .

3 Hence, there exists a matrix A and a vector b such that

S = {(x
λ
) ∣ Ax + λb ≤ 0}.

4 Therefore, we have:

y ∈ P ⇐⇒ (y
1
) ∈ S

⇐⇒ (y
1
) ∈ {(x

λ
) ∣ Ax + λb ≤ 0}

⇐⇒ Ay ≤ −b.

This proves that P is a polyhedron and completes the proof.

Decomposition theorem for polyhedron (6/6)

Corollary 22
Let P ⊆ Rd . Then, P is a polytope if and only if it is a bounded
polyhedron.

Proof.
1 Assume P is a polytope.

a Then, it is bounded as the it is the convex hull of finitely many
points.

b Applying the decomposition theorem, and using the trivial cone
(reduced to {0}, P is also a polyhedron.

2 Assume P is a bounded polyhedron.

a Then, applying the decomposition theorem, and observing that the
only bounded cone is {0}, we deduce that P is a polytope.

Decomposition theorem for polyhedron (6/6)

Corollary 22
Let P ⊆ Rd . Then, P is a polytope if and only if it is a bounded
polyhedron.

Proof.
1 Assume P is a polytope.

a Then, it is bounded as the it is the convex hull of finitely many
points.

b Applying the decomposition theorem, and using the trivial cone
(reduced to {0}, P is also a polyhedron.

2 Assume P is a bounded polyhedron.

a Then, applying the decomposition theorem, and observing that the
only bounded cone is {0}, we deduce that P is a polytope.

Decomposition theorem for polyhedron (6/6)

Corollary 22
Let P ⊆ Rd . Then, P is a polytope if and only if it is a bounded
polyhedron.

Proof.
1 Assume P is a polytope.

a Then, it is bounded as the it is the convex hull of finitely many
points.

b Applying the decomposition theorem, and using the trivial cone
(reduced to {0}, P is also a polyhedron.

2 Assume P is a bounded polyhedron.

a Then, applying the decomposition theorem, and observing that the
only bounded cone is {0}, we deduce that P is a polytope.

Decomposition theorem for polyhedron (6/6)

Corollary 22
Let P ⊆ Rd . Then, P is a polytope if and only if it is a bounded
polyhedron.

Proof.
1 Assume P is a polytope.

a Then, it is bounded as the it is the convex hull of finitely many
points.

b Applying the decomposition theorem, and using the trivial cone
(reduced to {0}, P is also a polyhedron.

2 Assume P is a bounded polyhedron.

a Then, applying the decomposition theorem, and observing that the
only bounded cone is {0}, we deduce that P is a polytope.

Decomposition theorem for polyhedron (6/6)

Corollary 22
Let P ⊆ Rd . Then, P is a polytope if and only if it is a bounded
polyhedron.

Proof.
1 Assume P is a polytope.

a Then, it is bounded as the it is the convex hull of finitely many
points.

b Applying the decomposition theorem, and using the trivial cone
(reduced to {0}, P is also a polyhedron.

2 Assume P is a bounded polyhedron.

a Then, applying the decomposition theorem, and observing that the
only bounded cone is {0}, we deduce that P is a polytope.

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

−x3 ≤1
−x1 − x2 − x3 ≤2
−x1 + x2 − x3 ≤2
x1 − x2 − x3 ≤2
x1 + x2 − x3 ≤2

x30 ≤1
−x1 − x2 + x3 ≤2
−x1 + x2 + x3 ≤2
x1 − x2 + x3 ≤2
x1 + x2 + x3 ≤2

−x20 ≤1
x2 ≤1
−x1 ≤1
x10 ≤1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤1 + x2
0 ≤1 − x2
0 ≤x1 + 1
0 ≤1 − x1

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .

skip slide

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

Dependence analysis yields:
(t,p) ∶= (n − j , i + j).

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .

skip slide

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

Dependence analysis yields:
(t,p) ∶= (n − j , i + j).

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .

skip slide

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

Dependence analysis yields:
(t,p) ∶= (n − j , i + j).

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .
skip slide

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

Dependence analysis yields:
(t,p) ∶= (n − j , i + j).

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .
skip slide

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

Dependence analysis yields:
(t,p) ∶= (n − j , i + j).

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .
skip slide

Application of FME: code generation

f o r (i =0; i<=n ; i ++){
c [i] = 0 ; c [i+n] = 0 ;
f o r (j =0; j<=n ; j++)

c [i+j] += a [i]∗ b [j] ;
}

p a r a l l e l f o r (p=0; p<=2∗n ; p++){
c [p] = 0 ;
f o r (t=max (0 , n−p) ;

t<=min (n ,2∗ n−p) ; t++)
c [p] += A[t+p−n] ∗ B[n−t] ;

}

Dependence analysis yields:
(t,p) ∶= (n − j , i + j).

The new representation allows us to
generate the multithreaded code.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

0 ≤ i

i ≤ n

0 ≤ j

j ≤ n

t = n − j

p = i + j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

i = p + t − n

j = −t + n

t ≥ max(0,−p + n)
t ≤ min(n,−p + 2n)
0 ≤ p

p ≤ 2n

0 ≤ n.

FME reorders p > t > i > j > n to i > j > t > p > n, thus eliminating i , j .
skip slide

Polyhedral sets
1 A polyhedral set P ⊆ Qn is any {x ∈ Qn ∣ Ax ≤ b}, where A ∈ Qm×n

and b ∈ Qm. Such a linear system is called an H-representation of P.

2 P is full-dimensional whenever dim(P) = n
3 An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for
all x ∈ P.

4 Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5 The polyhedron P is said pointed, if A is full column rank.

6 From now, P is full-dimensional and pointed.

7 Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8 A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).

9 The characteristic cone of P is the polyhedral cone CharCone(P)
represented by {Ax ≤ 0}.

10 Every polyhedral cone has a unique representation as a conical hull
of its extremal generators, called the extreme rays of P.

11 Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12 Let V and R denote the set of vertices and extreme rays of P.
Then, the pair Dual(F) ∶= (V ,R) is called a V-representation of P.

Polyhedral sets
1 A polyhedral set P ⊆ Qn is any {x ∈ Qn ∣ Ax ≤ b}, where A ∈ Qm×n

and b ∈ Qm. Such a linear system is called an H-representation of P.

2 P is full-dimensional whenever dim(P) = n

3 An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for
all x ∈ P.

4 Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5 The polyhedron P is said pointed, if A is full column rank.

6 From now, P is full-dimensional and pointed.

7 Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8 A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).

9 The characteristic cone of P is the polyhedral cone CharCone(P)
represented by {Ax ≤ 0}.

10 Every polyhedral cone has a unique representation as a conical hull
of its extremal generators, called the extreme rays of P.

11 Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12 Let V and R denote the set of vertices and extreme rays of P.
Then, the pair Dual(F) ∶= (V ,R) is called a V-representation of P.

Polyhedral sets
1 A polyhedral set P ⊆ Qn is any {x ∈ Qn ∣ Ax ≤ b}, where A ∈ Qm×n

and b ∈ Qm. Such a linear system is called an H-representation of P.

2 P is full-dimensional whenever dim(P) = n
3 An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for
all x ∈ P.

4 Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5 The polyhedron P is said pointed, if A is full column rank.

6 From now, P is full-dimensional and pointed.

7 Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8 A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).

9 The characteristic cone of P is the polyhedral cone CharCone(P)
represented by {Ax ≤ 0}.

10 Every polyhedral cone has a unique representation as a conical hull
of its extremal generators, called the extreme rays of P.

11 Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12 Let V and R denote the set of vertices and extreme rays of P.
Then, the pair Dual(F) ∶= (V ,R) is called a V-representation of P.

Polyhedral sets
1 A polyhedral set P ⊆ Qn is any {x ∈ Qn ∣ Ax ≤ b}, where A ∈ Qm×n

and b ∈ Qm. Such a linear system is called an H-representation of P.

2 P is full-dimensional whenever dim(P) = n
3 An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for
all x ∈ P.

4 Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5 The polyhedron P is said pointed, if A is full column rank.

6 From now, P is full-dimensional and pointed.

7 Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8 A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).

9 The characteristic cone of P is the polyhedral cone CharCone(P)
represented by {Ax ≤ 0}.

10 Every polyhedral cone has a unique representation as a conical hull
of its extremal generators, called the extreme rays of P.

11 Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12 Let V and R denote the set of vertices and extreme rays of P.
Then, the pair Dual(F) ∶= (V ,R) is called a V-representation of P.

Polyhedral sets
1 A polyhedral set P ⊆ Qn is any {x ∈ Qn ∣ Ax ≤ b}, where A ∈ Qm×n

and b ∈ Qm. Such a linear system is called an H-representation of P.

2 P is full-dimensional whenever dim(P) = n
3 An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for
all x ∈ P.

4 Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5 The polyhedron P is said pointed, if A is full column rank.

6 From now, P is full-dimensional and pointed.

7 Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8 A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).

9 The characteristic cone of P is the polyhedral cone CharCone(P)
represented by {Ax ≤ 0}.

10 Every polyhedral cone has a unique representation as a conical hull
of its extremal generators, called the extreme rays of P.

11 Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12 Let V and R denote the set of vertices and extreme rays of P.
Then, the pair Dual(F) ∶= (V ,R) is called a V-representation of P.

Polyhedral sets
1 A polyhedral set P ⊆ Qn is any {x ∈ Qn ∣ Ax ≤ b}, where A ∈ Qm×n

and b ∈ Qm. Such a linear system is called an H-representation of P.

2 P is full-dimensional whenever dim(P) = n
3 An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for
all x ∈ P.

4 Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5 The polyhedron P is said pointed, if A is full column rank.

6 From now, P is full-dimensional and pointed.

7 Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8 A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).

9 The characteristic cone of P is the polyhedral cone CharCone(P)
represented by {Ax ≤ 0}.

10 Every polyhedral cone has a unique representation as a conical hull
of its extremal generators, called the extreme rays of P.

11 Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12 Let V and R denote the set of vertices and extreme rays of P.
Then, the pair Dual(F) ∶= (V ,R) is called a V-representation of P.

Polyhedral sets
1 A polyhedral set P ⊆ Qn is any {x ∈ Qn ∣ Ax ≤ b}, where A ∈ Qm×n

and b ∈ Qm. Such a linear system is called an H-representation of P.

2 P is full-dimensional whenever dim(P) = n
3 An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for
all x ∈ P.

4 Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5 The polyhedron P is said pointed, if A is full column rank.

6 From now, P is full-dimensional and pointed.

7 Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8 A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).

9 The characteristic cone of P is the polyhedral cone CharCone(P)
represented by {Ax ≤ 0}.

10 Every polyhedral cone has a unique representation as a conical hull
of its extremal generators, called the extreme rays of P.

11 Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12 Let V and R denote the set of vertices and extreme rays of P.
Then, the pair Dual(F) ∶= (V ,R) is called a V-representation of P.

Polyhedral sets
1 A polyhedral set P ⊆ Qn is any {x ∈ Qn ∣ Ax ≤ b}, where A ∈ Qm×n

and b ∈ Qm. Such a linear system is called an H-representation of P.

2 P is full-dimensional whenever dim(P) = n
3 An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for
all x ∈ P.

4 Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5 The polyhedron P is said pointed, if A is full column rank.

6 From now, P is full-dimensional and pointed.

7 Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8 A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).

9 The characteristic cone of P is the polyhedral cone CharCone(P)
represented by {Ax ≤ 0}.

10 Every polyhedral cone has a unique representation as a conical hull
of its extremal generators, called the extreme rays of P.

11 Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12 Let V and R denote the set of vertices and extreme rays of P.
Then, the pair Dual(F) ∶= (V ,R) is called a V-representation of P.

Polyhedral sets
1 A polyhedral set P ⊆ Qn is any {x ∈ Qn ∣ Ax ≤ b}, where A ∈ Qm×n

and b ∈ Qm. Such a linear system is called an H-representation of P.

2 P is full-dimensional whenever dim(P) = n
3 An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for
all x ∈ P.

4 Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5 The polyhedron P is said pointed, if A is full column rank.

6 From now, P is full-dimensional and pointed.

7 Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8 A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).

9 The characteristic cone of P is the polyhedral cone CharCone(P)
represented by {Ax ≤ 0}.

10 Every polyhedral cone has a unique representation as a conical hull
of its extremal generators, called the extreme rays of P.

11 Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12 Let V and R denote the set of vertices and extreme rays of P.
Then, the pair Dual(F) ∶= (V ,R) is called a V-representation of P.

Polyhedral sets
1 A polyhedral set P ⊆ Qn is any {x ∈ Qn ∣ Ax ≤ b}, where A ∈ Qm×n

and b ∈ Qm. Such a linear system is called an H-representation of P.

2 P is full-dimensional whenever dim(P) = n
3 An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for
all x ∈ P.

4 Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5 The polyhedron P is said pointed, if A is full column rank.

6 From now, P is full-dimensional and pointed.

7 Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8 A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).

9 The characteristic cone of P is the polyhedral cone CharCone(P)
represented by {Ax ≤ 0}.

10 Every polyhedral cone has a unique representation as a conical hull
of its extremal generators, called the extreme rays of P.

11 Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12 Let V and R denote the set of vertices and extreme rays of P.
Then, the pair Dual(F) ∶= (V ,R) is called a V-representation of P.

Polyhedral sets
1 A polyhedral set P ⊆ Qn is any {x ∈ Qn ∣ Ax ≤ b}, where A ∈ Qm×n

and b ∈ Qm. Such a linear system is called an H-representation of P.

2 P is full-dimensional whenever dim(P) = n
3 An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for
all x ∈ P.

4 Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5 The polyhedron P is said pointed, if A is full column rank.

6 From now, P is full-dimensional and pointed.

7 Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8 A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).

9 The characteristic cone of P is the polyhedral cone CharCone(P)
represented by {Ax ≤ 0}.

10 Every polyhedral cone has a unique representation as a conical hull
of its extremal generators, called the extreme rays of P.

11 Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12 Let V and R denote the set of vertices and extreme rays of P.
Then, the pair Dual(F) ∶= (V ,R) is called a V-representation of P.

Polyhedral sets
1 A polyhedral set P ⊆ Qn is any {x ∈ Qn ∣ Ax ≤ b}, where A ∈ Qm×n

and b ∈ Qm. Such a linear system is called an H-representation of P.

2 P is full-dimensional whenever dim(P) = n
3 An inequality ℓ of Ax ≤ b is an implicit equation if atx = b holds for
all x ∈ P.

4 Thus, P is full-dimensional iff Ax ≤ b has no implicit equation.

5 The polyhedron P is said pointed, if A is full column rank.

6 From now, P is full-dimensional and pointed.

7 Fixing F ∶ Ax ≤ b an H-representation of P, a face of P is any
intersection of P with the solution set of sub-system of F .

8 A vertex (resp. facet) is a face of dimension 0 (resp. n − 1).

9 The characteristic cone of P is the polyhedral cone CharCone(P)
represented by {Ax ≤ 0}.

10 Every polyhedral cone has a unique representation as a conical hull
of its extremal generators, called the extreme rays of P.

11 Since P is pointed, an extreme ray of P is a one-dimensional face of
CharCone(P).

12 Let V and R denote the set of vertices and extreme rays of P.
Then, the pair Dual(F) ∶= (V ,R) is called a V-representation of P.

An unbounded polyhedral set and its representations

The open cube P ∶= {(x , y , z) ∣ − z ≤ 1,0 ≤ x ≤ 1,0 ≤ y ≤ 1} shown above
has 4 vertices v1,v2,v3,v4 and extreme ray r.

Redundant inequalities, the saturation matrix
1 Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.

2 Fix an inequality ℓ ∶ atx ≤ b of F
3 Denote by Hℓ the hyperplane atx = b.
4 Recall V and R are the vertices and rays of P. Let k ∶=#Dual(F).

Definition 23
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,
▸ strongly redundant in F , if atx < b holds for all x ∈ P,
▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition 24

▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that
is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of Dual(F) saturates the i-th inequality of F .

Redundant inequalities, the saturation matrix
1 Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.
2 Fix an inequality ℓ ∶ atx ≤ b of F

3 Denote by Hℓ the hyperplane atx = b.
4 Recall V and R are the vertices and rays of P. Let k ∶=#Dual(F).

Definition 23
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,
▸ strongly redundant in F , if atx < b holds for all x ∈ P,
▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition 24

▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that
is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of Dual(F) saturates the i-th inequality of F .

Redundant inequalities, the saturation matrix
1 Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.
2 Fix an inequality ℓ ∶ atx ≤ b of F
3 Denote by Hℓ the hyperplane atx = b.

4 Recall V and R are the vertices and rays of P. Let k ∶=#Dual(F).

Definition 23
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,
▸ strongly redundant in F , if atx < b holds for all x ∈ P,
▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition 24

▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that
is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of Dual(F) saturates the i-th inequality of F .

Redundant inequalities, the saturation matrix
1 Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.
2 Fix an inequality ℓ ∶ atx ≤ b of F
3 Denote by Hℓ the hyperplane atx = b.
4 Recall V and R are the vertices and rays of P. Let k ∶=#Dual(F).

Definition 23
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,
▸ strongly redundant in F , if atx < b holds for all x ∈ P,
▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition 24

▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that
is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of Dual(F) saturates the i-th inequality of F .

Redundant inequalities, the saturation matrix
1 Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.
2 Fix an inequality ℓ ∶ atx ≤ b of F
3 Denote by Hℓ the hyperplane atx = b.
4 Recall V and R are the vertices and rays of P. Let k ∶=#Dual(F).

Definition 23
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,
▸ strongly redundant in F , if atx < b holds for all x ∈ P,
▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition 24

▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that
is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of Dual(F) saturates the i-th inequality of F .

Redundant inequalities, the saturation matrix
1 Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.
2 Fix an inequality ℓ ∶ atx ≤ b of F
3 Denote by Hℓ the hyperplane atx = b.
4 Recall V and R are the vertices and rays of P. Let k ∶=#Dual(F).

Definition 23
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,

▸ strongly redundant in F , if atx < b holds for all x ∈ P,
▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition 24

▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that
is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of Dual(F) saturates the i-th inequality of F .

Redundant inequalities, the saturation matrix
1 Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.
2 Fix an inequality ℓ ∶ atx ≤ b of F
3 Denote by Hℓ the hyperplane atx = b.
4 Recall V and R are the vertices and rays of P. Let k ∶=#Dual(F).

Definition 23
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,
▸ strongly redundant in F , if atx < b holds for all x ∈ P,

▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition 24

▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that
is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of Dual(F) saturates the i-th inequality of F .

Redundant inequalities, the saturation matrix
1 Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.
2 Fix an inequality ℓ ∶ atx ≤ b of F
3 Denote by Hℓ the hyperplane atx = b.
4 Recall V and R are the vertices and rays of P. Let k ∶=#Dual(F).

Definition 23
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,
▸ strongly redundant in F , if atx < b holds for all x ∈ P,
▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition 24

▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that
is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of Dual(F) saturates the i-th inequality of F .

Redundant inequalities, the saturation matrix
1 Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.
2 Fix an inequality ℓ ∶ atx ≤ b of F
3 Denote by Hℓ the hyperplane atx = b.
4 Recall V and R are the vertices and rays of P. Let k ∶=#Dual(F).

Definition 23
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,
▸ strongly redundant in F , if atx < b holds for all x ∈ P,
▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition 24

▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that
is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of Dual(F) saturates the i-th inequality of F .

Redundant inequalities, the saturation matrix
1 Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.
2 Fix an inequality ℓ ∶ atx ≤ b of F
3 Denote by Hℓ the hyperplane atx = b.
4 Recall V and R are the vertices and rays of P. Let k ∶=#Dual(F).

Definition 23
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,
▸ strongly redundant in F , if atx < b holds for all x ∈ P,
▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition 24
▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that

is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of Dual(F) saturates the i-th inequality of F .

Redundant inequalities, the saturation matrix
1 Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.
2 Fix an inequality ℓ ∶ atx ≤ b of F
3 Denote by Hℓ the hyperplane atx = b.
4 Recall V and R are the vertices and rays of P. Let k ∶=#Dual(F).

Definition 23
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,
▸ strongly redundant in F , if atx < b holds for all x ∈ P,
▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition 24
▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that

is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of Dual(F) saturates the i-th inequality of F .

Redundant inequalities, the saturation matrix
1 Recall F ∶ Ax ≤ b is an H-representation of our polyhedral set P.
2 Fix an inequality ℓ ∶ atx ≤ b of F
3 Denote by Hℓ the hyperplane atx = b.
4 Recall V and R are the vertices and rays of P. Let k ∶=#Dual(F).

Definition 23
The inequality ℓ of F is

▸ redundant in F , if F ∖ {ℓ} still defines P,
▸ strongly redundant in F , if atx < b holds for all x ∈ P,
▸ weakly redundant if it is redundant and atx = b holds for some x ∈ P.

Definition 24
▸ A vertex v ∈ V of P saturates the inequality ℓ if v lies on Hℓ, that

is, if atv = b holds.

▸ A ray r ∈ R of P saturates the inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if a

tr = 0 holds.

The saturation matrix of F is the 0− 1 matrix S ∈ Qm×k , where Si,j = 1 iff
the j-th element of Dual(F) saturates the i-th inequality of F .

A bounded polyhedral set and its the saturation matrix

null

F

ℓ1 ∶ x + y ≤ 1
ℓ2 ∶ −x − y ≤ 1
ℓ3 ∶ x − y ≤ 1
ℓ4 ∶ −x + y ≤ 1

null

Dual(F)
v1 ∶ (0,1)
v2 ∶ (1,0)
v3 ∶ (−1,0)
v4 ∶ (0,−1)

satM(F)
v1 v2 v3 v4

ℓ1 1 1 0 0
ℓ2 0 0 1 1
ℓ3 0 1 0 1
ℓ4 1 0 1 0

Basic redundancy check

1 Denote by Dual(F) ∩Hℓ the vertices and rays in Dual(F)
saturating the hyperplane Hℓ.

2 Write Dual(F) ∩Hℓ ∶= ({v1,v2, . . . ,vt},{r1, r2, . . . , rs}), where vi ’s
are vertices and rj ’s are rays.

3 The affine rank of Dual(F) ∩Hℓ is the rank of the matrix

[v2 − v1,v3 − v1, . . . ,vt − v1, r1, r2, . . . , rs].

With these notations, we have the following lemma. We note that any
permutation (v1,v2, . . . ,vt) would leave this result unchanged.

Lemma

Assume the inequalities of F define hyperplanes that are pairwise
different. Then, the following conditions are equivalent:

1 The inequality ℓ ∈ F is irredundant,

2 Hℓ ∩ P is a facet of the polyhedron P.

3 The affine rank of Dual(F) ∩Hℓ equals to n − 1.

Basic redundancy check

1 Denote by Dual(F) ∩Hℓ the vertices and rays in Dual(F)
saturating the hyperplane Hℓ.

2 Write Dual(F) ∩Hℓ ∶= ({v1,v2, . . . ,vt},{r1, r2, . . . , rs}), where vi ’s
are vertices and rj ’s are rays.

3 The affine rank of Dual(F) ∩Hℓ is the rank of the matrix

[v2 − v1,v3 − v1, . . . ,vt − v1, r1, r2, . . . , rs].

With these notations, we have the following lemma. We note that any
permutation (v1,v2, . . . ,vt) would leave this result unchanged.

Lemma

Assume the inequalities of F define hyperplanes that are pairwise
different. Then, the following conditions are equivalent:

1 The inequality ℓ ∈ F is irredundant,

2 Hℓ ∩ P is a facet of the polyhedron P.

3 The affine rank of Dual(F) ∩Hℓ equals to n − 1.

Basic redundancy check

1 Denote by Dual(F) ∩Hℓ the vertices and rays in Dual(F)
saturating the hyperplane Hℓ.

2 Write Dual(F) ∩Hℓ ∶= ({v1,v2, . . . ,vt},{r1, r2, . . . , rs}), where vi ’s
are vertices and rj ’s are rays.

3 The affine rank of Dual(F) ∩Hℓ is the rank of the matrix

[v2 − v1,v3 − v1, . . . ,vt − v1, r1, r2, . . . , rs].

With these notations, we have the following lemma. We note that any
permutation (v1,v2, . . . ,vt) would leave this result unchanged.

Lemma

Assume the inequalities of F define hyperplanes that are pairwise
different. Then, the following conditions are equivalent:

1 The inequality ℓ ∈ F is irredundant,

2 Hℓ ∩ P is a facet of the polyhedron P.

3 The affine rank of Dual(F) ∩Hℓ equals to n − 1.

Basic redundancy check

1 Denote by Dual(F) ∩Hℓ the vertices and rays in Dual(F)
saturating the hyperplane Hℓ.

2 Write Dual(F) ∩Hℓ ∶= ({v1,v2, . . . ,vt},{r1, r2, . . . , rs}), where vi ’s
are vertices and rj ’s are rays.

3 The affine rank of Dual(F) ∩Hℓ is the rank of the matrix

[v2 − v1,v3 − v1, . . . ,vt − v1, r1, r2, . . . , rs].

With these notations, we have the following lemma. We note that any
permutation (v1,v2, . . . ,vt) would leave this result unchanged.

Lemma

Assume the inequalities of F define hyperplanes that are pairwise
different. Then, the following conditions are equivalent:

1 The inequality ℓ ∈ F is irredundant,

2 Hℓ ∩ P is a facet of the polyhedron P.

3 The affine rank of Dual(F) ∩Hℓ equals to n − 1.

Basic redundancy check

1 Denote by Dual(F) ∩Hℓ the vertices and rays in Dual(F)
saturating the hyperplane Hℓ.

2 Write Dual(F) ∩Hℓ ∶= ({v1,v2, . . . ,vt},{r1, r2, . . . , rs}), where vi ’s
are vertices and rj ’s are rays.

3 The affine rank of Dual(F) ∩Hℓ is the rank of the matrix

[v2 − v1,v3 − v1, . . . ,vt − v1, r1, r2, . . . , rs].

With these notations, we have the following lemma. We note that any
permutation (v1,v2, . . . ,vt) would leave this result unchanged.

Lemma
Assume the inequalities of F define hyperplanes that are pairwise
different. Then, the following conditions are equivalent:

1 The inequality ℓ ∈ F is irredundant,

2 Hℓ ∩ P is a facet of the polyhedron P.

3 The affine rank of Dual(F) ∩Hℓ equals to n − 1.

Basic redundancy check

1 Denote by Dual(F) ∩Hℓ the vertices and rays in Dual(F)
saturating the hyperplane Hℓ.

2 Write Dual(F) ∩Hℓ ∶= ({v1,v2, . . . ,vt},{r1, r2, . . . , rs}), where vi ’s
are vertices and rj ’s are rays.

3 The affine rank of Dual(F) ∩Hℓ is the rank of the matrix

[v2 − v1,v3 − v1, . . . ,vt − v1, r1, r2, . . . , rs].

With these notations, we have the following lemma. We note that any
permutation (v1,v2, . . . ,vt) would leave this result unchanged.

Lemma
Assume the inequalities of F define hyperplanes that are pairwise
different. Then, the following conditions are equivalent:

1 The inequality ℓ ∈ F is irredundant,

2 Hℓ ∩ P is a facet of the polyhedron P.

3 The affine rank of Dual(F) ∩Hℓ equals to n − 1.

Basic redundancy check

1 Denote by Dual(F) ∩Hℓ the vertices and rays in Dual(F)
saturating the hyperplane Hℓ.

2 Write Dual(F) ∩Hℓ ∶= ({v1,v2, . . . ,vt},{r1, r2, . . . , rs}), where vi ’s
are vertices and rj ’s are rays.

3 The affine rank of Dual(F) ∩Hℓ is the rank of the matrix

[v2 − v1,v3 − v1, . . . ,vt − v1, r1, r2, . . . , rs].

With these notations, we have the following lemma. We note that any
permutation (v1,v2, . . . ,vt) would leave this result unchanged.

Lemma
Assume the inequalities of F define hyperplanes that are pairwise
different. Then, the following conditions are equivalent:

1 The inequality ℓ ∈ F is irredundant,

2 Hℓ ∩ P is a facet of the polyhedron P.

3 The affine rank of Dual(F) ∩Hℓ equals to n − 1.

Basic redundancy check

1 Denote by Dual(F) ∩Hℓ the vertices and rays in Dual(F)
saturating the hyperplane Hℓ.

2 Write Dual(F) ∩Hℓ ∶= ({v1,v2, . . . ,vt},{r1, r2, . . . , rs}), where vi ’s
are vertices and rj ’s are rays.

3 The affine rank of Dual(F) ∩Hℓ is the rank of the matrix

[v2 − v1,v3 − v1, . . . ,vt − v1, r1, r2, . . . , rs].

With these notations, we have the following lemma. We note that any
permutation (v1,v2, . . . ,vt) would leave this result unchanged.

Lemma
Assume the inequalities of F define hyperplanes that are pairwise
different. Then, the following conditions are equivalent:

1 The inequality ℓ ∈ F is irredundant,

2 Hℓ ∩ P is a facet of the polyhedron P.

3 The affine rank of Dual(F) ∩Hℓ equals to n − 1.

Redundancy tests (1/2)

1 For any inequality ℓ, the set SVR(ℓ) collects all the vertices and rays
saturating ℓ.

2 For any ray or vertex u, the set SH(u) collects all the hyperplanes
saturated by u.

3 Fix an inequality ℓ of F .

4 Hence, the set
SH(SVR(ℓ)) ∶= ⋂

u∈SVR(ℓ)
SH(u),

is the set of all inequalities saturated by all the vertices or rays
saturating ℓ.

Theorem 25
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

Redundancy tests (1/2)

1 For any inequality ℓ, the set SVR(ℓ) collects all the vertices and rays
saturating ℓ.

2 For any ray or vertex u, the set SH(u) collects all the hyperplanes
saturated by u.

3 Fix an inequality ℓ of F .

4 Hence, the set
SH(SVR(ℓ)) ∶= ⋂

u∈SVR(ℓ)
SH(u),

is the set of all inequalities saturated by all the vertices or rays
saturating ℓ.

Theorem 25
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

Redundancy tests (1/2)

1 For any inequality ℓ, the set SVR(ℓ) collects all the vertices and rays
saturating ℓ.

2 For any ray or vertex u, the set SH(u) collects all the hyperplanes
saturated by u.

3 Fix an inequality ℓ of F .

4 Hence, the set
SH(SVR(ℓ)) ∶= ⋂

u∈SVR(ℓ)
SH(u),

is the set of all inequalities saturated by all the vertices or rays
saturating ℓ.

Theorem 25
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

Redundancy tests (1/2)

1 For any inequality ℓ, the set SVR(ℓ) collects all the vertices and rays
saturating ℓ.

2 For any ray or vertex u, the set SH(u) collects all the hyperplanes
saturated by u.

3 Fix an inequality ℓ of F .

4 Hence, the set
SH(SVR(ℓ)) ∶= ⋂

u∈SVR(ℓ)
SH(u),

is the set of all inequalities saturated by all the vertices or rays
saturating ℓ.

Theorem 25
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

Redundancy tests (1/2)

1 For any inequality ℓ, the set SVR(ℓ) collects all the vertices and rays
saturating ℓ.

2 For any ray or vertex u, the set SH(u) collects all the hyperplanes
saturated by u.

3 Fix an inequality ℓ of F .

4 Hence, the set
SH(SVR(ℓ)) ∶= ⋂

u∈SVR(ℓ)
SH(u),

is the set of all inequalities saturated by all the vertices or rays
saturating ℓ.

Theorem 25
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

Redundancy tests (1/2)

1 For any inequality ℓ, the set SVR(ℓ) collects all the vertices and rays
saturating ℓ.

2 For any ray or vertex u, the set SH(u) collects all the hyperplanes
saturated by u.

3 Fix an inequality ℓ of F .

4 Hence, the set
SH(SVR(ℓ)) ∶= ⋂

u∈SVR(ℓ)
SH(u),

is the set of all inequalities saturated by all the vertices or rays
saturating ℓ.

Theorem 25
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

Redundancy tests (1/2)

1 For any inequality ℓ, the set SVR(ℓ) collects all the vertices and rays
saturating ℓ.

2 For any ray or vertex u, the set SH(u) collects all the hyperplanes
saturated by u.

3 Fix an inequality ℓ of F .

4 Hence, the set
SH(SVR(ℓ)) ∶= ⋂

u∈SVR(ℓ)
SH(u),

is the set of all inequalities saturated by all the vertices or rays
saturating ℓ.

Theorem 25
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

Redundancy tests (1/2)

1 For any inequality ℓ, the set SVR(ℓ) collects all the vertices and rays
saturating ℓ.

2 For any ray or vertex u, the set SH(u) collects all the hyperplanes
saturated by u.

3 Fix an inequality ℓ of F .

4 Hence, the set
SH(SVR(ℓ)) ∶= ⋂

u∈SVR(ℓ)
SH(u),

is the set of all inequalities saturated by all the vertices or rays
saturating ℓ.

Theorem 25
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

Redundancy tests (2/2)
Theorem 26 (Recall from previous slide)
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

▸ Denote by satM(F) the saturation matrix of F .
▸ satM(F)[ℓ] is the row in satM(F) corresponding to ℓ, for ℓ ∈ F .

Corollary
The following properties hold:

1 If satM(F)[ℓ] contains zeros only, then ℓ is strongly redundant.

2 If the number of nonzeros of satM(F)[ℓ] is positive and less than
the dimension n, then ℓ is weakly redundant.

3 If satM(F)[ℓ] is contained in satM(F)[ℓ1] for some ℓ1 ∈ F ∖ {ℓ},
then ℓ is weakly redundant.

Redundancy tests (2/2)
Theorem 26 (Recall from previous slide)
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

▸ Denote by satM(F) the saturation matrix of F .

▸ satM(F)[ℓ] is the row in satM(F) corresponding to ℓ, for ℓ ∈ F .

Corollary
The following properties hold:

1 If satM(F)[ℓ] contains zeros only, then ℓ is strongly redundant.

2 If the number of nonzeros of satM(F)[ℓ] is positive and less than
the dimension n, then ℓ is weakly redundant.

3 If satM(F)[ℓ] is contained in satM(F)[ℓ1] for some ℓ1 ∈ F ∖ {ℓ},
then ℓ is weakly redundant.

Redundancy tests (2/2)
Theorem 26 (Recall from previous slide)
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

▸ Denote by satM(F) the saturation matrix of F .
▸ satM(F)[ℓ] is the row in satM(F) corresponding to ℓ, for ℓ ∈ F .

Corollary
The following properties hold:

1 If satM(F)[ℓ] contains zeros only, then ℓ is strongly redundant.

2 If the number of nonzeros of satM(F)[ℓ] is positive and less than
the dimension n, then ℓ is weakly redundant.

3 If satM(F)[ℓ] is contained in satM(F)[ℓ1] for some ℓ1 ∈ F ∖ {ℓ},
then ℓ is weakly redundant.

Redundancy tests (2/2)
Theorem 26 (Recall from previous slide)
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

▸ Denote by satM(F) the saturation matrix of F .
▸ satM(F)[ℓ] is the row in satM(F) corresponding to ℓ, for ℓ ∈ F .

Corollary
The following properties hold:

1 If satM(F)[ℓ] contains zeros only, then ℓ is strongly redundant.

2 If the number of nonzeros of satM(F)[ℓ] is positive and less than
the dimension n, then ℓ is weakly redundant.

3 If satM(F)[ℓ] is contained in satM(F)[ℓ1] for some ℓ1 ∈ F ∖ {ℓ},
then ℓ is weakly redundant.

Redundancy tests (2/2)
Theorem 26 (Recall from previous slide)
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

▸ Denote by satM(F) the saturation matrix of F .
▸ satM(F)[ℓ] is the row in satM(F) corresponding to ℓ, for ℓ ∈ F .

Corollary
The following properties hold:

1 If satM(F)[ℓ] contains zeros only, then ℓ is strongly redundant.

2 If the number of nonzeros of satM(F)[ℓ] is positive and less than
the dimension n, then ℓ is weakly redundant.

3 If satM(F)[ℓ] is contained in satM(F)[ℓ1] for some ℓ1 ∈ F ∖ {ℓ},
then ℓ is weakly redundant.

Redundancy tests (2/2)
Theorem 26 (Recall from previous slide)
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

▸ Denote by satM(F) the saturation matrix of F .
▸ satM(F)[ℓ] is the row in satM(F) corresponding to ℓ, for ℓ ∈ F .

Corollary
The following properties hold:

1 If satM(F)[ℓ] contains zeros only, then ℓ is strongly redundant.

2 If the number of nonzeros of satM(F)[ℓ] is positive and less than
the dimension n, then ℓ is weakly redundant.

3 If satM(F)[ℓ] is contained in satM(F)[ℓ1] for some ℓ1 ∈ F ∖ {ℓ},
then ℓ is weakly redundant.

Redundancy tests (2/2)
Theorem 26 (Recall from previous slide)
Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F iff SVR(ℓ) is empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F iff the set
SH(SVR(ℓ)) ∖ {ℓ} is not empty.

▸ Denote by satM(F) the saturation matrix of F .
▸ satM(F)[ℓ] is the row in satM(F) corresponding to ℓ, for ℓ ∈ F .

Corollary
The following properties hold:

1 If satM(F)[ℓ] contains zeros only, then ℓ is strongly redundant.

2 If the number of nonzeros of satM(F)[ℓ] is positive and less than
the dimension n, then ℓ is weakly redundant.

3 If satM(F)[ℓ] is contained in satM(F)[ℓ1] for some ℓ1 ∈ F ∖ {ℓ},
then ℓ is weakly redundant.

Updating satM(F) after eliminating one variable

▸ Consider the elimination of a variable, say x , during FME.

▸ Let ℓpos ∶ a1x + ct1y ≤ b1 and ℓneg ∶ a2x + ct2y ≤ b2, be two inequalities
in x , where:

1 we have a1 > 0 and a2 < 0,
2 y is the vector of the remaining (n − 1) variables, and
3 c1, c2 are the corresponding coefficient vectors.

▸ Then, we have
proj({ℓpos , ℓneg},{x}) = {−a2ct1y + a1c

t
2y ≤ −a2b1 + a1b2}.

After computing all proj({ℓpos , ℓneg},{x})’s and eliminating the
redundant such inequalities, how to update the saturation matrix and
prepare for the next variable elimination?

Theorem 27
We have:
SVR(proj({ℓpos , ℓneg},{x})) = proj(SVR(ℓpos) ∩ SVR(ℓneg),{x}).

skip slide

Updating satM(F) after eliminating one variable

▸ Consider the elimination of a variable, say x , during FME.

▸ Let ℓpos ∶ a1x + ct1y ≤ b1 and ℓneg ∶ a2x + ct2y ≤ b2, be two inequalities
in x , where:

1 we have a1 > 0 and a2 < 0,
2 y is the vector of the remaining (n − 1) variables, and
3 c1, c2 are the corresponding coefficient vectors.

▸ Then, we have
proj({ℓpos , ℓneg},{x}) = {−a2ct1y + a1c

t
2y ≤ −a2b1 + a1b2}.

After computing all proj({ℓpos , ℓneg},{x})’s and eliminating the
redundant such inequalities, how to update the saturation matrix and
prepare for the next variable elimination?

Theorem 27
We have:
SVR(proj({ℓpos , ℓneg},{x})) = proj(SVR(ℓpos) ∩ SVR(ℓneg),{x}).

skip slide

Updating satM(F) after eliminating one variable

▸ Consider the elimination of a variable, say x , during FME.

▸ Let ℓpos ∶ a1x + ct1y ≤ b1 and ℓneg ∶ a2x + ct2y ≤ b2, be two inequalities
in x , where:

1 we have a1 > 0 and a2 < 0,

2 y is the vector of the remaining (n − 1) variables, and
3 c1, c2 are the corresponding coefficient vectors.

▸ Then, we have
proj({ℓpos , ℓneg},{x}) = {−a2ct1y + a1c

t
2y ≤ −a2b1 + a1b2}.

After computing all proj({ℓpos , ℓneg},{x})’s and eliminating the
redundant such inequalities, how to update the saturation matrix and
prepare for the next variable elimination?

Theorem 27
We have:
SVR(proj({ℓpos , ℓneg},{x})) = proj(SVR(ℓpos) ∩ SVR(ℓneg),{x}).

skip slide

Updating satM(F) after eliminating one variable

▸ Consider the elimination of a variable, say x , during FME.

▸ Let ℓpos ∶ a1x + ct1y ≤ b1 and ℓneg ∶ a2x + ct2y ≤ b2, be two inequalities
in x , where:

1 we have a1 > 0 and a2 < 0,
2 y is the vector of the remaining (n − 1) variables, and

3 c1, c2 are the corresponding coefficient vectors.

▸ Then, we have
proj({ℓpos , ℓneg},{x}) = {−a2ct1y + a1c

t
2y ≤ −a2b1 + a1b2}.

After computing all proj({ℓpos , ℓneg},{x})’s and eliminating the
redundant such inequalities, how to update the saturation matrix and
prepare for the next variable elimination?

Theorem 27
We have:
SVR(proj({ℓpos , ℓneg},{x})) = proj(SVR(ℓpos) ∩ SVR(ℓneg),{x}).

skip slide

Updating satM(F) after eliminating one variable

▸ Consider the elimination of a variable, say x , during FME.

▸ Let ℓpos ∶ a1x + ct1y ≤ b1 and ℓneg ∶ a2x + ct2y ≤ b2, be two inequalities
in x , where:

1 we have a1 > 0 and a2 < 0,
2 y is the vector of the remaining (n − 1) variables, and
3 c1, c2 are the corresponding coefficient vectors.

▸ Then, we have
proj({ℓpos , ℓneg},{x}) = {−a2ct1y + a1c

t
2y ≤ −a2b1 + a1b2}.

After computing all proj({ℓpos , ℓneg},{x})’s and eliminating the
redundant such inequalities, how to update the saturation matrix and
prepare for the next variable elimination?

Theorem 27
We have:
SVR(proj({ℓpos , ℓneg},{x})) = proj(SVR(ℓpos) ∩ SVR(ℓneg),{x}).

skip slide

Updating satM(F) after eliminating one variable

▸ Consider the elimination of a variable, say x , during FME.

▸ Let ℓpos ∶ a1x + ct1y ≤ b1 and ℓneg ∶ a2x + ct2y ≤ b2, be two inequalities
in x , where:

1 we have a1 > 0 and a2 < 0,
2 y is the vector of the remaining (n − 1) variables, and
3 c1, c2 are the corresponding coefficient vectors.

▸ Then, we have
proj({ℓpos , ℓneg},{x}) = {−a2ct1y + a1c

t
2y ≤ −a2b1 + a1b2}.

After computing all proj({ℓpos , ℓneg},{x})’s and eliminating the
redundant such inequalities, how to update the saturation matrix and
prepare for the next variable elimination?

Theorem 27
We have:
SVR(proj({ℓpos , ℓneg},{x})) = proj(SVR(ℓpos) ∩ SVR(ℓneg),{x}).

skip slide

Updating satM(F) after eliminating one variable

▸ Consider the elimination of a variable, say x , during FME.

▸ Let ℓpos ∶ a1x + ct1y ≤ b1 and ℓneg ∶ a2x + ct2y ≤ b2, be two inequalities
in x , where:

1 we have a1 > 0 and a2 < 0,
2 y is the vector of the remaining (n − 1) variables, and
3 c1, c2 are the corresponding coefficient vectors.

▸ Then, we have
proj({ℓpos , ℓneg},{x}) = {−a2ct1y + a1c

t
2y ≤ −a2b1 + a1b2}.

After computing all proj({ℓpos , ℓneg},{x})’s and eliminating the
redundant such inequalities, how to update the saturation matrix and
prepare for the next variable elimination?

Theorem 27
We have:
SVR(proj({ℓpos , ℓneg},{x})) = proj(SVR(ℓpos) ∩ SVR(ℓneg),{x}).

skip slide

Updating satM(F) after eliminating one variable

▸ Consider the elimination of a variable, say x , during FME.

▸ Let ℓpos ∶ a1x + ct1y ≤ b1 and ℓneg ∶ a2x + ct2y ≤ b2, be two inequalities
in x , where:

1 we have a1 > 0 and a2 < 0,
2 y is the vector of the remaining (n − 1) variables, and
3 c1, c2 are the corresponding coefficient vectors.

▸ Then, we have
proj({ℓpos , ℓneg},{x}) = {−a2ct1y + a1c

t
2y ≤ −a2b1 + a1b2}.

After computing all proj({ℓpos , ℓneg},{x})’s and eliminating the
redundant such inequalities, how to update the saturation matrix and
prepare for the next variable elimination?

Theorem 27
We have:
SVR(proj({ℓpos , ℓneg},{x})) = proj(SVR(ℓpos) ∩ SVR(ℓneg),{x}).

skip slide

Algorithm 1: CheckRedundancy

Input: 1. the inequality system F with m inequalities;
2. the saturation matrix satM.
Output: the minimal system Firred and the corresponding saturation

matrix satMirred.
1 Irredundant ∶= {seq(i , i = 1..m)}.
2 for i from 1 to m do
3 if the number of nonzero elements in satM[i] is less than n then
4 Irredundant ∶= Irredundant ∖ {i}.
5 next.

6 for j in Irredundant ∖ {i} do
7 if satM[i] = satM[i]&satM[j] then
8 Irredundant ∶= Irredundant ∖ {i}.
9 break.

10 Firred ∶= [seq(F [i], i in Irredundant)] and
satMirred ∶= [seq(satM[i], i in Irredundant)].

11 return Firred and satMirred.

Algorithm 2: Minimal projected representation

Input: 1. an inequality system F ;
2. a variable order x1 > x2 > . . . > xn.
Output: the minimal projected representation res of F .

1 Compute the V-representation V of F by DD method;
2 Set res ∶= table().
3 Sort the elements in V w.r.t. the reverse lexico order.
4 Compute the saturation matrix satM.
5 F , satM ∶= CheckRedundancy(F , satM(F)).
6 res[x1] ∶= F x1 .
7 for i from 1 to n − 1 do
8 (F p,F n,F 0) ∶= partition(F).
9 Vnew ∶= proj(V ,{xi}).

10 Merging: satM ∶=Merge(satM).
11 Let Fnew ∶= F 0 and satMnew ∶= satM[F 0].
12 foreach fp ∈ F p and fn ∈ F n do
13 Append proj((fp, fn),{xi}) to Fnew ,
14 Append satM[fp]&satM[fn] to satMnew .

15 F , satM ∶= CheckRedundancy(Fnew , satMnew).
16 V ∶= Vnew , res[xi+1] ∶= F xi+1 .

17 return res.

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Implementation techniques
1 Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).

2 We use bitarray, the bitarray library by Michael Dipperstein.
3 satM(F) is traversed both

▸ row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
▸ column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.

4 For cache complexity reasons, we maintain both satM(F) and
satM(F)t .

5 Moreover, these matrices should be represented by blocks.
6 Other key tasks Algorithm 2 are

▸ computing the V -representation of each successive projection
▸ updating the saturation matrix.

https://michaeldipperstein.github.io/bitarray

Implementation techniques
1 Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
2 We use bitarray, the bitarray library by Michael Dipperstein.

3 satM(F) is traversed both

▸ row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
▸ column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.

4 For cache complexity reasons, we maintain both satM(F) and
satM(F)t .

5 Moreover, these matrices should be represented by blocks.
6 Other key tasks Algorithm 2 are

▸ computing the V -representation of each successive projection
▸ updating the saturation matrix.

https://michaeldipperstein.github.io/bitarray

Implementation techniques
1 Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
2 We use bitarray, the bitarray library by Michael Dipperstein.
3 satM(F) is traversed both

▸ row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
▸ column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.

4 For cache complexity reasons, we maintain both satM(F) and
satM(F)t .

5 Moreover, these matrices should be represented by blocks.
6 Other key tasks Algorithm 2 are

▸ computing the V -representation of each successive projection
▸ updating the saturation matrix.

https://michaeldipperstein.github.io/bitarray

Implementation techniques
1 Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
2 We use bitarray, the bitarray library by Michael Dipperstein.
3 satM(F) is traversed both

▸ row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and

▸ column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.

4 For cache complexity reasons, we maintain both satM(F) and
satM(F)t .

5 Moreover, these matrices should be represented by blocks.
6 Other key tasks Algorithm 2 are

▸ computing the V -representation of each successive projection
▸ updating the saturation matrix.

https://michaeldipperstein.github.io/bitarray

Implementation techniques
1 Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
2 We use bitarray, the bitarray library by Michael Dipperstein.
3 satM(F) is traversed both

▸ row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
▸ column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.

4 For cache complexity reasons, we maintain both satM(F) and
satM(F)t .

5 Moreover, these matrices should be represented by blocks.
6 Other key tasks Algorithm 2 are

▸ computing the V -representation of each successive projection
▸ updating the saturation matrix.

https://michaeldipperstein.github.io/bitarray

Implementation techniques
1 Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
2 We use bitarray, the bitarray library by Michael Dipperstein.
3 satM(F) is traversed both

▸ row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
▸ column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.

4 For cache complexity reasons, we maintain both satM(F) and
satM(F)t .

5 Moreover, these matrices should be represented by blocks.
6 Other key tasks Algorithm 2 are

▸ computing the V -representation of each successive projection
▸ updating the saturation matrix.

https://michaeldipperstein.github.io/bitarray

Implementation techniques
1 Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
2 We use bitarray, the bitarray library by Michael Dipperstein.
3 satM(F) is traversed both

▸ row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
▸ column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.

4 For cache complexity reasons, we maintain both satM(F) and
satM(F)t .

5 Moreover, these matrices should be represented by blocks.

6 Other key tasks Algorithm 2 are

▸ computing the V -representation of each successive projection
▸ updating the saturation matrix.

https://michaeldipperstein.github.io/bitarray

Implementation techniques
1 Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
2 We use bitarray, the bitarray library by Michael Dipperstein.
3 satM(F) is traversed both

▸ row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
▸ column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.

4 For cache complexity reasons, we maintain both satM(F) and
satM(F)t .

5 Moreover, these matrices should be represented by blocks.
6 Other key tasks Algorithm 2 are

▸ computing the V -representation of each successive projection
▸ updating the saturation matrix.

https://michaeldipperstein.github.io/bitarray

Implementation techniques
1 Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
2 We use bitarray, the bitarray library by Michael Dipperstein.
3 satM(F) is traversed both

▸ row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
▸ column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.

4 For cache complexity reasons, we maintain both satM(F) and
satM(F)t .

5 Moreover, these matrices should be represented by blocks.
6 Other key tasks Algorithm 2 are

▸ computing the V -representation of each successive projection

▸ updating the saturation matrix.

https://michaeldipperstein.github.io/bitarray

Implementation techniques
1 Clearly, satM(F) should be encoded with bit vectors (aka bit-arrays).
2 We use bitarray, the bitarray library by Michael Dipperstein.
3 satM(F) is traversed both

▸ row-wise (to compute bit-wise AND) Line 7 in Algorithm 1, and
▸ column-wise (to compute bit-wise OR) Line 10 in Algorithm 2.

4 For cache complexity reasons, we maintain both satM(F) and
satM(F)t .

5 Moreover, these matrices should be represented by blocks.
6 Other key tasks Algorithm 2 are

▸ computing the V -representation of each successive projection
▸ updating the saturation matrix.

https://michaeldipperstein.github.io/bitarray

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Cuboctahedron

1 strongly redundannt inequalities

2 weakly redundant inequalities eliminated by cardinality

3 weakly redundancies inequalities eliminated by containment

Snub disphenoid (triangular dodecahedron)

1 strongly redundannt inequalities

2 weakly redundant inequalities eliminated by cardinality

3 weakly redundancies inequalities eliminated by containment

Truncated octahedron

1 strongly redundant inequalities

2 weakly redundant inequalities eliminated by cardinality

3 weakly redundancies inequalities eliminated by containment

Random 3D polyhedron

1 strongly redundant inequalities

2 weakly redundant inequalities eliminated by cardinality

3 weakly redundancies inequalities eliminated by containment

Random 10D polyhedron

Random 10D polyhedron

Random 10D polyhedron

Comparative experimentation (1/3)
Four ways of eliminating all variables:
▸ MPR (this paper): one variable after another, uses both the

H-representation and V -representations, redundancy test via
saturation matrices

▸ BPAS ([9] by Authors 1 and 2, with Delaram Talaashrafi): one
variable after another, uses both the H-representation and
V -representations, redundancy test via redundancy test cones, thus
linear algebra over Q.

▸ cddlib [5] by Komei Fukuda: can eliminate several variables in one
step, can work with the H-representation only, redundancy test via
Linear Programming (LP).

▸ polylib [13] by Vincent Loechner and Doran K. Wilde: can eliminate
several variables in one step, can work with the V -representation
only, convert between H-rep and V -rep as needed.

We used the following sources for our test cases:

1. random non-empty polyhedra with n variables and m inequalities. The
coefficients rang in the interval [−10,10].

2. polyhedra coming from libraries polylib and BPAS.

All the experimental results were collected on a PC (Intel(R) Xeon(R) Gold

6258R CPU 2.70GHz, 503G RAM, Ubuntu 20.04.3).

Comparative experimentation (1/3)
Four ways of eliminating all variables:
▸ MPR (this paper): one variable after another, uses both the

H-representation and V -representations, redundancy test via
saturation matrices

▸ BPAS ([9] by Authors 1 and 2, with Delaram Talaashrafi): one
variable after another, uses both the H-representation and
V -representations, redundancy test via redundancy test cones, thus
linear algebra over Q.

▸ cddlib [5] by Komei Fukuda: can eliminate several variables in one
step, can work with the H-representation only, redundancy test via
Linear Programming (LP).

▸ polylib [13] by Vincent Loechner and Doran K. Wilde: can eliminate
several variables in one step, can work with the V -representation
only, convert between H-rep and V -rep as needed.

We used the following sources for our test cases:

1. random non-empty polyhedra with n variables and m inequalities. The
coefficients rang in the interval [−10,10].

2. polyhedra coming from libraries polylib and BPAS.

All the experimental results were collected on a PC (Intel(R) Xeon(R) Gold

6258R CPU 2.70GHz, 503G RAM, Ubuntu 20.04.3).

Comparative experimentation (1/3)
Four ways of eliminating all variables:
▸ MPR (this paper): one variable after another, uses both the

H-representation and V -representations, redundancy test via
saturation matrices

▸ BPAS ([9] by Authors 1 and 2, with Delaram Talaashrafi): one
variable after another, uses both the H-representation and
V -representations, redundancy test via redundancy test cones, thus
linear algebra over Q.

▸ cddlib [5] by Komei Fukuda: can eliminate several variables in one
step, can work with the H-representation only, redundancy test via
Linear Programming (LP).

▸ polylib [13] by Vincent Loechner and Doran K. Wilde: can eliminate
several variables in one step, can work with the V -representation
only, convert between H-rep and V -rep as needed.

We used the following sources for our test cases:

1. random non-empty polyhedra with n variables and m inequalities. The
coefficients rang in the interval [−10,10].

2. polyhedra coming from libraries polylib and BPAS.

All the experimental results were collected on a PC (Intel(R) Xeon(R) Gold

6258R CPU 2.70GHz, 503G RAM, Ubuntu 20.04.3).

Comparative experimentation (1/3)
Four ways of eliminating all variables:
▸ MPR (this paper): one variable after another, uses both the

H-representation and V -representations, redundancy test via
saturation matrices

▸ BPAS ([9] by Authors 1 and 2, with Delaram Talaashrafi): one
variable after another, uses both the H-representation and
V -representations, redundancy test via redundancy test cones, thus
linear algebra over Q.

▸ cddlib [5] by Komei Fukuda: can eliminate several variables in one
step, can work with the H-representation only, redundancy test via
Linear Programming (LP).

▸ polylib [13] by Vincent Loechner and Doran K. Wilde: can eliminate
several variables in one step, can work with the V -representation
only, convert between H-rep and V -rep as needed.

We used the following sources for our test cases:

1. random non-empty polyhedra with n variables and m inequalities. The
coefficients rang in the interval [−10,10].

2. polyhedra coming from libraries polylib and BPAS.

All the experimental results were collected on a PC (Intel(R) Xeon(R) Gold

6258R CPU 2.70GHz, 503G RAM, Ubuntu 20.04.3).

Comparative experimentation (1/3)
Four ways of eliminating all variables:
▸ MPR (this paper): one variable after another, uses both the

H-representation and V -representations, redundancy test via
saturation matrices

▸ BPAS ([9] by Authors 1 and 2, with Delaram Talaashrafi): one
variable after another, uses both the H-representation and
V -representations, redundancy test via redundancy test cones, thus
linear algebra over Q.

▸ cddlib [5] by Komei Fukuda: can eliminate several variables in one
step, can work with the H-representation only, redundancy test via
Linear Programming (LP).

▸ polylib [13] by Vincent Loechner and Doran K. Wilde: can eliminate
several variables in one step, can work with the V -representation
only, convert between H-rep and V -rep as needed.

We used the following sources for our test cases:

1. random non-empty polyhedra with n variables and m inequalities. The
coefficients rang in the interval [−10,10].

2. polyhedra coming from libraries polylib and BPAS.

All the experimental results were collected on a PC (Intel(R) Xeon(R) Gold

6258R CPU 2.70GHz, 503G RAM, Ubuntu 20.04.3).

Comparative experimentation (1/3)
Four ways of eliminating all variables:
▸ MPR (this paper): one variable after another, uses both the

H-representation and V -representations, redundancy test via
saturation matrices

▸ BPAS ([9] by Authors 1 and 2, with Delaram Talaashrafi): one
variable after another, uses both the H-representation and
V -representations, redundancy test via redundancy test cones, thus
linear algebra over Q.

▸ cddlib [5] by Komei Fukuda: can eliminate several variables in one
step, can work with the H-representation only, redundancy test via
Linear Programming (LP).

▸ polylib [13] by Vincent Loechner and Doran K. Wilde: can eliminate
several variables in one step, can work with the V -representation
only, convert between H-rep and V -rep as needed.

We used the following sources for our test cases:

1. random non-empty polyhedra with n variables and m inequalities. The
coefficients rang in the interval [−10,10].

2. polyhedra coming from libraries polylib and BPAS.

All the experimental results were collected on a PC (Intel(R) Xeon(R) Gold

6258R CPU 2.70GHz, 503G RAM, Ubuntu 20.04.3).

Comparative experimentation (2/3)

1 Four different random polyhedra with m = 15 and n = 10.
2 For 1 ≤ i ≤ 9, in the hor. axiss, the first i variables are eliminated.
3 The vert. axis in each figure shows the running time (in seconds).

test case (n,m, k) mpr (msec.) BPAS (msec.) cdd (msec.) polylib (msec.)

32hedron (6, 32, 11) 6.54 16.80 4183.08 1.92
64hedron (7,64,13) 13.05 52.42 >5min 1.67
francois (13,27,2304) 499.92 253.66 388.36 > 5min

francois2 (13,31,384) 41.80 140.34 55.17 80.63

herve.in (14,25,262) 34.42 140.34 294.01 30.08
c6.in (11,17,31) 9.85 12.72 84.11 5.56

c9.in (16,18,140) 25.08 65.54 151.17 131.53

c10.in (18,20,142) 22.10 98.68 249.02 16.06
S24 (24, 25,25) 23.50 58.80 748.67 17.47
S35 (35, 36,36) 46.55 182.14 3575.00 46.007
cube (10, 20,1024) 81.33 201.92 125.900 161.06

C56 (5, 6,6) 3.67 4.09 11.81 0.79
C1011 (10, 11,11) 24.99 115.68 1716.25 9.99
C510 (5, 42,10) 12.00 40.01 >5min 4.42
T1 (5, 10,38) 5.61 16.44 27.42 8.81

T3 (10,12,29) 21.29 141.64 288.07 12.07
T5 (5, 10,36) 8.12 15.62 22.92 4.76
T6 (10,20,390) 1142.9 23800.11 14937.61 >5min

T7 (5, 8,26) 5.81 10.79 13.96 4.00
T9 (10,12,36) 36.56 414.53 479.18 100.34

T10 (6, 8,24) 4.58 13.65 18.39 5.27

T12 (5, 11,42) 8.52 19.03 38.65 8.60

R 15 20 (15, 20,1328) 28430.40 336035.00 38037.21 >5min

Complexity estimates (1/2)
Recall the notations

1 m is the number of inequalities and n is the dimension of the
ambient space. If the input H-representation is irredundant, the m is
also the number of facets of P.

2 Let h ∶= height([A,b]), let θ be the coefficient of linear algebra and
ω the bit-size of a machine word.

Well-known bounds
1 The size k of the V-representation (V ,R) is at most
(m
n
) + (m

n−1) ≤
mn

n!
.

2 From [8, 9] for 1 ≤ i < n, after eliminating i variables during the
process of FME, the number of irredundant inequalities defining the
projection is at most (m

n−i−1) ≤ m
n.

Theorem 28
The costs for computing all the inequalities (redundant and irredundant)
and generating the initial saturation matrix are within O(m2nnθ+εh1+ε)
bit operations, while the costs for updating and operating on the

saturation matrices are bounded over by 3m3n−4

ω
word operations.

Complexity estimates (1/2)

Recall the notations
1 m is the number of inequalities and n is the dimension of the
ambient space. If the input H-representation is irredundant, the m is
also the number of facets of P.

2 Let h ∶= height([A,b]), let θ be the coefficient of linear algebra and
ω the bit-size of a machine word.

Bounds for FME
1 FME based on LP: O(n2m2n LP(n,2nhn2mn)) bit operations, where
LP(d ,H) is an upper bound for the number of bit operations
required for solving a linear program in d variables and with total bit
size H. For instance, in the case of Karmarkar’s algorithm [12], we
have LP(d ,H) ∈ O(d3.5H2 ⋅ logH ⋅ log logH).

2 FME based on redundancy test cone: O(m 5n
2 nθ+1+ϵh1+ϵ) bit

operations, for any ϵ > 0.
3 This paper: O(m2nnθ+εh1+ε) bit operations and 3m3n−4

ω
word

operations.

Concluding remarks

Summary and notes

1 We proposed a technique for removing redundant inequalities in
linear systems.

2 It relies on the analysis of 3 different types of redundancies

3 Our redundancy tests allow for efficient implementation based on
bit-vector arithmetic.

4 From the experimental results, our method works best on hard
problems.

5 This is promising to solve large scale problems in areas like
information theory, SMT and optimizing compilers.

Work in progress

1 Our implementation has room for improvements.

2 Indeed, our algorithms have opportunities for both multithreaded
parallelism and instruction-level parallelism.

3 The third criterion (redundancy test based on containment) needs
further study to discover the container.

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Dependence analysis

Cholesky’s LU decomposition:

1: for(i = 1; i <= n; i + +){
x = a[i][i];
for(k = 1; k < i ; k + +)

2: x = x − a[i][k] ∗ a[i][k];
3: p[i] = 1.0/sqrt(x);

for(j = i + 1; j <= n; j + +){
4: x = a[i][j];

for(k = 1; k < i ; k + +)
5: x = x − a[j][k] ∗ a[i][k];
6: a[j][i] = x ∗ p[i];

}
}

system 1:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

1 ≤ i ≤ n
i + 1 ≤ j ≤ n
1 ≤ k ≤ i − 1

1 ≤ i ′ ≤ n
i ′ + 1 ≤ j ′ ≤ n
j = j ′, k = i ′

i < i ′

system 2:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

1 ≤ i ≤ n
i + 1 ≤ j ≤ n
1 ≤ k ≤ i − 1

1 ≤ i ′ ≤ n
i ′ + 1 ≤ j ′ ≤ n
j = j ′, k = i ′

i = i ′, j < j ′

system 3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

1 ≤ i ≤ n
i + 1 ≤ j ≤ n
1 ≤ k ≤ i − 1

1 ≤ i ′ ≤ n
i ′ + 1 ≤ j ′ ≤ n
j = j ′, k = i ′

i = i ′, j = j ′

Dependence analysis

Cholesky’s LU decomposition:

1: for(i = 1; i <= n; i + +){
x = a[i][i];
for(k = 1; k < i ; k + +)

2: x = x − a[i][k] ∗ a[i][k];
3: p[i] = 1.0/sqrt(x);

for(j = i + 1; j <= n; j + +){
4: x = a[i][j];

for(k = 1; k < i ; k + +)
5: x = x − a[j][k] ∗ a[i][k];
6: a[j][i] = x ∗ p[i];

}
}

system 1:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

1 ≤ i ≤ n
i + 1 ≤ j ≤ n
1 ≤ k ≤ i − 1

1 ≤ i ′ ≤ n
i ′ + 1 ≤ j ′ ≤ n
j = j ′, k = i ′

i < i ′

system 2:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

1 ≤ i ≤ n
i + 1 ≤ j ≤ n
1 ≤ k ≤ i − 1

1 ≤ i ′ ≤ n
i ′ + 1 ≤ j ′ ≤ n
j = j ′, k = i ′

i = i ′, j < j ′

system 3:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null

1 ≤ i ≤ n
i + 1 ≤ j ≤ n
1 ≤ k ≤ i − 1

1 ≤ i ′ ≤ n
i ′ + 1 ≤ j ′ ≤ n
j = j ′, k = i ′

i = i ′, j = j ′

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Integer Hull
1 The integer hull of the polyhedron P ⊆ Qd , denoted by PI , is the
smallest convex polyhedron containing all the integer points of P.

2 In other words, PI is the intersection of all convex polyhedra
containing P ∩Zd .

3 Assume that P is pointed (that is, Ax = 0 ⇒ x = 0, for
P = Polyhedron(A,b)). Then, P = PI holds if and only if every
vertex of P is integral.

4 Thus, for P pointed, the convex hull of all the vertices of PI is PI

itself.

x

y

Integer Hull
1 The integer hull of the polyhedron P ⊆ Qd , denoted by PI , is the
smallest convex polyhedron containing all the integer points of P.

2 In other words, PI is the intersection of all convex polyhedra
containing P ∩Zd .

3 Assume that P is pointed (that is, Ax = 0 ⇒ x = 0, for
P = Polyhedron(A,b)). Then, P = PI holds if and only if every
vertex of P is integral.

4 Thus, for P pointed, the convex hull of all the vertices of PI is PI

itself.

x

y

Integer Hull
1 The integer hull of the polyhedron P ⊆ Qd , denoted by PI , is the
smallest convex polyhedron containing all the integer points of P.

2 In other words, PI is the intersection of all convex polyhedra
containing P ∩Zd .

3 Assume that P is pointed (that is, Ax = 0 ⇒ x = 0, for
P = Polyhedron(A,b)). Then, P = PI holds if and only if every
vertex of P is integral.

4 Thus, for P pointed, the convex hull of all the vertices of PI is PI

itself.

x

y

Integer Hull
1 The integer hull of the polyhedron P ⊆ Qd , denoted by PI , is the
smallest convex polyhedron containing all the integer points of P.

2 In other words, PI is the intersection of all convex polyhedra
containing P ∩Zd .

3 Assume that P is pointed (that is, Ax = 0 ⇒ x = 0, for
P = Polyhedron(A,b)). Then, P = PI holds if and only if every
vertex of P is integral.

4 Thus, for P pointed, the convex hull of all the vertices of PI is PI

itself.

x

y

Integer hull: simple example

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ x
0 ≤ y

3 x + 2 y ≤ 12
2 x + 3 y ≤ 12
−x + y ≤ 1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ x
0 ≤ y
y ≤ 2

x + y ≤ 4
−x + y ≤ 1 1 2 3 4

1

2

3

x

y

Figure

Lattices

1 A subset L ⊆ Zd is called an integer lattice (or simply a lattice) if

L = {x ∈ Zd ∣(∃t ∈ Zc) x = At + b}
holds, for a matrix A ∈ Zd×c and a vector b ∈ Zd , where c is a
positive integer.

2 It is convenient to see this lattice as the solution set of the systems
of congruence relations

x ≡ b mod A.

Lattices

1 A subset L ⊆ Zd is called an integer lattice (or simply a lattice) if

L = {x ∈ Zd ∣(∃t ∈ Zc) x = At + b}
holds, for a matrix A ∈ Zd×c and a vector b ∈ Zd , where c is a
positive integer.

2 It is convenient to see this lattice as the solution set of the systems
of congruence relations

x ≡ b mod A.

Hermite normal forms

1 Let C ∈ Zr×d and q ∈ Zr , with r ∈ Z>0 and r ≤ d .

2 Assume that C is a full row-rank matrix, thus the rank of C is r .

3 Then, there exists a unimodular matrix U ∈ Zd×d so that CU = [0H]
where

a 0 ∈ Zr×(d−r) is the null matrix, and
b H is the column-style Hermite normal form of C .

4 We write U = [ULUR] where UL ∈ Zd×(d−r) and UR ∈ Zd×r .

5 Therefore, the matrix H ∈ Zr×r is non-singular and the following
properties hold:

a {x ∈ Zd ∣ Cx = q} ≠ ∅ ⇐⇒ H−1q ∈ Zr ,
b {x ∈ Zd ∣ Cx = q} = {URH

−1q +ULv ∣ v ∈ Zd−r}.

6 These results generalize to the case where the rank of C is arbitrary,
see [21],

Hermite normal forms

1 Let C ∈ Zr×d and q ∈ Zr , with r ∈ Z>0 and r ≤ d .
2 Assume that C is a full row-rank matrix, thus the rank of C is r .

3 Then, there exists a unimodular matrix U ∈ Zd×d so that CU = [0H]
where

a 0 ∈ Zr×(d−r) is the null matrix, and
b H is the column-style Hermite normal form of C .

4 We write U = [ULUR] where UL ∈ Zd×(d−r) and UR ∈ Zd×r .

5 Therefore, the matrix H ∈ Zr×r is non-singular and the following
properties hold:

a {x ∈ Zd ∣ Cx = q} ≠ ∅ ⇐⇒ H−1q ∈ Zr ,
b {x ∈ Zd ∣ Cx = q} = {URH

−1q +ULv ∣ v ∈ Zd−r}.

6 These results generalize to the case where the rank of C is arbitrary,
see [21],

Hermite normal forms

1 Let C ∈ Zr×d and q ∈ Zr , with r ∈ Z>0 and r ≤ d .
2 Assume that C is a full row-rank matrix, thus the rank of C is r .

3 Then, there exists a unimodular matrix U ∈ Zd×d so that CU = [0H]
where

a 0 ∈ Zr×(d−r) is the null matrix, and
b H is the column-style Hermite normal form of C .

4 We write U = [ULUR] where UL ∈ Zd×(d−r) and UR ∈ Zd×r .

5 Therefore, the matrix H ∈ Zr×r is non-singular and the following
properties hold:

a {x ∈ Zd ∣ Cx = q} ≠ ∅ ⇐⇒ H−1q ∈ Zr ,
b {x ∈ Zd ∣ Cx = q} = {URH

−1q +ULv ∣ v ∈ Zd−r}.

6 These results generalize to the case where the rank of C is arbitrary,
see [21],

Hermite normal forms

1 Let C ∈ Zr×d and q ∈ Zr , with r ∈ Z>0 and r ≤ d .
2 Assume that C is a full row-rank matrix, thus the rank of C is r .

3 Then, there exists a unimodular matrix U ∈ Zd×d so that CU = [0H]
where

a 0 ∈ Zr×(d−r) is the null matrix, and

b H is the column-style Hermite normal form of C .

4 We write U = [ULUR] where UL ∈ Zd×(d−r) and UR ∈ Zd×r .

5 Therefore, the matrix H ∈ Zr×r is non-singular and the following
properties hold:

a {x ∈ Zd ∣ Cx = q} ≠ ∅ ⇐⇒ H−1q ∈ Zr ,
b {x ∈ Zd ∣ Cx = q} = {URH

−1q +ULv ∣ v ∈ Zd−r}.

6 These results generalize to the case where the rank of C is arbitrary,
see [21],

Hermite normal forms

1 Let C ∈ Zr×d and q ∈ Zr , with r ∈ Z>0 and r ≤ d .
2 Assume that C is a full row-rank matrix, thus the rank of C is r .

3 Then, there exists a unimodular matrix U ∈ Zd×d so that CU = [0H]
where

a 0 ∈ Zr×(d−r) is the null matrix, and
b H is the column-style Hermite normal form of C .

4 We write U = [ULUR] where UL ∈ Zd×(d−r) and UR ∈ Zd×r .

5 Therefore, the matrix H ∈ Zr×r is non-singular and the following
properties hold:

a {x ∈ Zd ∣ Cx = q} ≠ ∅ ⇐⇒ H−1q ∈ Zr ,
b {x ∈ Zd ∣ Cx = q} = {URH

−1q +ULv ∣ v ∈ Zd−r}.

6 These results generalize to the case where the rank of C is arbitrary,
see [21],

Hermite normal forms

1 Let C ∈ Zr×d and q ∈ Zr , with r ∈ Z>0 and r ≤ d .
2 Assume that C is a full row-rank matrix, thus the rank of C is r .

3 Then, there exists a unimodular matrix U ∈ Zd×d so that CU = [0H]
where

a 0 ∈ Zr×(d−r) is the null matrix, and
b H is the column-style Hermite normal form of C .

4 We write U = [ULUR] where UL ∈ Zd×(d−r) and UR ∈ Zd×r .

5 Therefore, the matrix H ∈ Zr×r is non-singular and the following
properties hold:

a {x ∈ Zd ∣ Cx = q} ≠ ∅ ⇐⇒ H−1q ∈ Zr ,
b {x ∈ Zd ∣ Cx = q} = {URH

−1q +ULv ∣ v ∈ Zd−r}.

6 These results generalize to the case where the rank of C is arbitrary,
see [21],

Hermite normal forms

1 Let C ∈ Zr×d and q ∈ Zr , with r ∈ Z>0 and r ≤ d .
2 Assume that C is a full row-rank matrix, thus the rank of C is r .

3 Then, there exists a unimodular matrix U ∈ Zd×d so that CU = [0H]
where

a 0 ∈ Zr×(d−r) is the null matrix, and
b H is the column-style Hermite normal form of C .

4 We write U = [ULUR] where UL ∈ Zd×(d−r) and UR ∈ Zd×r .

5 Therefore, the matrix H ∈ Zr×r is non-singular and the following
properties hold:

a {x ∈ Zd ∣ Cx = q} ≠ ∅ ⇐⇒ H−1q ∈ Zr ,
b {x ∈ Zd ∣ Cx = q} = {URH

−1q +ULv ∣ v ∈ Zd−r}.
6 These results generalize to the case where the rank of C is arbitrary,
see [21],

Hermite normal forms

1 Let C ∈ Zr×d and q ∈ Zr , with r ∈ Z>0 and r ≤ d .
2 Assume that C is a full row-rank matrix, thus the rank of C is r .

3 Then, there exists a unimodular matrix U ∈ Zd×d so that CU = [0H]
where

a 0 ∈ Zr×(d−r) is the null matrix, and
b H is the column-style Hermite normal form of C .

4 We write U = [ULUR] where UL ∈ Zd×(d−r) and UR ∈ Zd×r .

5 Therefore, the matrix H ∈ Zr×r is non-singular and the following
properties hold:

a {x ∈ Zd ∣ Cx = q} ≠ ∅ ⇐⇒ H−1q ∈ Zr ,

b {x ∈ Zd ∣ Cx = q} = {URH
−1q +ULv ∣ v ∈ Zd−r}.

6 These results generalize to the case where the rank of C is arbitrary,
see [21],

Hermite normal forms

1 Let C ∈ Zr×d and q ∈ Zr , with r ∈ Z>0 and r ≤ d .
2 Assume that C is a full row-rank matrix, thus the rank of C is r .

3 Then, there exists a unimodular matrix U ∈ Zd×d so that CU = [0H]
where

a 0 ∈ Zr×(d−r) is the null matrix, and
b H is the column-style Hermite normal form of C .

4 We write U = [ULUR] where UL ∈ Zd×(d−r) and UR ∈ Zd×r .

5 Therefore, the matrix H ∈ Zr×r is non-singular and the following
properties hold:

a {x ∈ Zd ∣ Cx = q} ≠ ∅ ⇐⇒ H−1q ∈ Zr ,
b {x ∈ Zd ∣ Cx = q} = {URH

−1q +ULv ∣ v ∈ Zd−r}.

6 These results generalize to the case where the rank of C is arbitrary,
see [21],

Hermite normal forms

1 Let C ∈ Zr×d and q ∈ Zr , with r ∈ Z>0 and r ≤ d .
2 Assume that C is a full row-rank matrix, thus the rank of C is r .

3 Then, there exists a unimodular matrix U ∈ Zd×d so that CU = [0H]
where

a 0 ∈ Zr×(d−r) is the null matrix, and
b H is the column-style Hermite normal form of C .

4 We write U = [ULUR] where UL ∈ Zd×(d−r) and UR ∈ Zd×r .

5 Therefore, the matrix H ∈ Zr×r is non-singular and the following
properties hold:

a {x ∈ Zd ∣ Cx = q} ≠ ∅ ⇐⇒ H−1q ∈ Zr ,
b {x ∈ Zd ∣ Cx = q} = {URH

−1q +ULv ∣ v ∈ Zd−r}.
6 These results generalize to the case where the rank of C is arbitrary,
see [21],

Z-polyhedron
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 This is a subset of the integer points of P, which can be empty.
3 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(4.1)

where
b ai (resp. bi) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei) (resp. min(ℓi,1 . . . ℓi,ei)), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that is,

by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

4 The algorithm IntegerPointDecomposition [11] decomposes any
Z-polyhedron into normalized Z-polyhedra.

Z-polyhedron
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 This is a subset of the integer points of P, which can be empty.

3 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(4.1)

where
b ai (resp. bi) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei) (resp. min(ℓi,1 . . . ℓi,ei)), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that is,

by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

4 The algorithm IntegerPointDecomposition [11] decomposes any
Z-polyhedron into normalized Z-polyhedra.

Z-polyhedron
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 This is a subset of the integer points of P, which can be empty.
3 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(4.1)

where
b ai (resp. bi) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei) (resp. min(ℓi,1 . . . ℓi,ei)), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that is,

by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

4 The algorithm IntegerPointDecomposition [11] decomposes any
Z-polyhedron into normalized Z-polyhedra.

Z-polyhedron
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 This is a subset of the integer points of P, which can be empty.
3 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(4.1)

where

b ai (resp. bi) is either −∞ (resp. +∞) or an expression of the form
max(ℓi,1 . . . ℓi,ei) (resp. min(ℓi,1 . . . ℓi,ei)), and

c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that is,

by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

4 The algorithm IntegerPointDecomposition [11] decomposes any
Z-polyhedron into normalized Z-polyhedra.

Z-polyhedron
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 This is a subset of the integer points of P, which can be empty.
3 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(4.1)

where
b ai (resp. bi) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei) (resp. min(ℓi,1 . . . ℓi,ei)), and

c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that is,

by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

4 The algorithm IntegerPointDecomposition [11] decomposes any
Z-polyhedron into normalized Z-polyhedra.

Z-polyhedron
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 This is a subset of the integer points of P, which can be empty.
3 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(4.1)

where
b ai (resp. bi) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei) (resp. min(ℓi,1 . . . ℓi,ei)), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that

d all the integer points of P are obtained by back substitution, that is,
by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

4 The algorithm IntegerPointDecomposition [11] decomposes any
Z-polyhedron into normalized Z-polyhedra.

Z-polyhedron
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 This is a subset of the integer points of P, which can be empty.
3 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(4.1)

where
b ai (resp. bi) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei) (resp. min(ℓi,1 . . . ℓi,ei)), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that is,

by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

4 The algorithm IntegerPointDecomposition [11] decomposes any
Z-polyhedron into normalized Z-polyhedra.

Z-polyhedron
1 A Z-polyhedron of Zd is the intersection (in Zd) of a polyhedron
P ⊆ Qd and a lattice L ⊆ Zd ; we denote it by ZPolyhedron(P,L).

2 This is a subset of the integer points of P, which can be empty.
3 Denote by x1 < x2 < ⋯ < xd the coordinates of Zd . We say that
ZPolyhedron(P,L) is normalized if

a it is non-empty, and P is given by a system of linear inequalities of
the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0 ≤ x1 ≤ b0
a1 ≤ x2 ≤ b1
⋮ ⋮ ⋮

an−1 ≤ xd ≤ bn−1,

(4.1)

where
b ai (resp. bi) is either −∞ (resp. +∞) or an expression of the form

max(ℓi,1 . . . ℓi,ei) (resp. min(ℓi,1 . . . ℓi,ei)), and
c each ℓi,j ∈ Q[x1, . . . , xi−1] with degree at most 1, so that
d all the integer points of P are obtained by back substitution, that is,

by specializing x1 to every integer value v1 in the interval (a0,b0),
then by specializing x2 to every integer value v2 in the interval
(a1(v1),b1(v1)), and so on.

4 The algorithm IntegerPointDecomposition [11] decomposes any
Z-polyhedron into normalized Z-polyhedra.

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Example (0/3)

Input
Let us look at a simple example first.
Vertices: (−44/5,408/25), (349/27,206/27), (85/57,109/57)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2x + 5y ≤ 64
7x + 5y ≥ 20
3x − 6y ≤ −7

x

y

Example (1/3)

Normalization
Replace the facets that could not have integer point
Vertices: (−44/5,408/25),(349/27,206/27),(85/57,109/57),
(113/9,70/9),(25/19,41/19)

3x − 6y ≤ −7
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2x + 5y ≤ 64
7x + 5y ≥ 20
3x − 6y ≤ −9

x

y

Example (2/3)

Partition
Vertices: (−44/5,408/25), (113/9,70/9), (25/19,41/19)
Find the triangles with vertices: [(−8,16), (−44/5,408/25), (−5,11)],
[(3,3), (25/19,41/19), (0,4)], [(12,8), (113/9,70/9), (11,7)]

⎧⎪⎪⎪⎨⎪⎪⎪⎩

5y ≤ −2x + 64
5y ≥ −7x + 20
2y ≥ x + 3

x

y

Example (3/3)

Merging
Vertices: (−8,16), (−7,14), (−5,11), (0,4), (1,3), (3,3), (11,7), (12,8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

5y ≤ −2x + 64
5y ≥ −7x + 20
2y ≥ x + 3

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y ≥ −2x
2y ≥ 3x + 7
y ≥ −x + 4
y ≥ 3
y ≥ x − 4

x

y

Main steps of our algorithm

Our algorithm has 3 main steps:

▸ Normalization: construct a new polyhedral set Q from P as
follows. Consider in turn each facet F of P:

1 if the hyperplane H supporting F contains an integer point, then H
is a hyperplane supporting a facet of Q,

2 otherwise we slide H towards the center of P along the normal vector
of F , stopping as soon as we hit a hyperplane H ′ containing an
integer point, then making H ′ a hyperplane supporting a facet of Q.

Clearly QI = PI .

▸ Partitioning: make each part of the partition a polyhedron R
which:

1 either has integer points as vertices so that RI = R,
2 or has a small volume so that any algorithm (including exhaustive

search) can be applied to compute RI .

▸ Merging: Once the integer hull of each part of the partition is
computed and given by the list of its vertices, an algorithm for
computing the convex hull of a set points, such as QuickHull, can
be applied to deduce PI .

Main steps of our algorithm

Our algorithm has 3 main steps:

▸ Normalization: construct a new polyhedral set Q from P as
follows. Consider in turn each facet F of P:

1 if the hyperplane H supporting F contains an integer point, then H
is a hyperplane supporting a facet of Q,

2 otherwise we slide H towards the center of P along the normal vector
of F , stopping as soon as we hit a hyperplane H ′ containing an
integer point, then making H ′ a hyperplane supporting a facet of Q.

Clearly QI = PI .

▸ Partitioning: make each part of the partition a polyhedron R
which:

1 either has integer points as vertices so that RI = R,
2 or has a small volume so that any algorithm (including exhaustive

search) can be applied to compute RI .

▸ Merging: Once the integer hull of each part of the partition is
computed and given by the list of its vertices, an algorithm for
computing the convex hull of a set points, such as QuickHull, can
be applied to deduce PI .

Main steps of our algorithm

Our algorithm has 3 main steps:

▸ Normalization: construct a new polyhedral set Q from P as
follows. Consider in turn each facet F of P:

1 if the hyperplane H supporting F contains an integer point, then H
is a hyperplane supporting a facet of Q,

2 otherwise we slide H towards the center of P along the normal vector
of F , stopping as soon as we hit a hyperplane H ′ containing an
integer point, then making H ′ a hyperplane supporting a facet of Q.

Clearly QI = PI .

▸ Partitioning: make each part of the partition a polyhedron R
which:

1 either has integer points as vertices so that RI = R,
2 or has a small volume so that any algorithm (including exhaustive

search) can be applied to compute RI .

▸ Merging: Once the integer hull of each part of the partition is
computed and given by the list of its vertices, an algorithm for
computing the convex hull of a set points, such as QuickHull, can
be applied to deduce PI .

The general algorithm on a 3D example

Normalization
The integer hull of the normalized polyhedral set should be the same as
that of the input

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−98877x1 − 189663x2 − 1798x3 ≤ 705915
−10109x1 − 5958x2 − 14601x3 ≤ 31333
−5405x1 + 4965x2 + 3870x3 ≤ 4303504

729x1 − 117x2 + 350x3 ≤ 4561
677x1 + 465x2 − 540x3 ≤ 3489

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−98877x1 − 189663x2 − 1798x3 ≤ 705915
−10109x1 − 5958x2 − 14601x3 ≤ 31333
−1081x1 + 993x2 + 774x3 ≤ 860700
729x1 − 117x2 + 350x3 ≤ 4561
677x1 + 465x2 − 540x3 ≤ 3489

skip slide

The general algorithm: building the partition

Partition
For each face f (of positive dimension) of P:

1 let F be the set of all facets that intersect at f

2 if there exist integer points on f (which implies that the closest
integer points on f to each of its vertices do exist as well), then for
each vertex v of f , a “corner” polyhedral is built as the convex hull
of:

a v ,
b the “closest integer point” to v on f ,
c all the “closest integer point” to v on F , for F ∈ F .

3 if there is no integer point on f , a single “corner” polyhedral set is
built for f as the convex hull of:

a the vertex set of f ,
b all the closest integer point to v on F , for each vertex v of f , for

each F ∈ F .

4 See [15] and the PhD thesis of Lin-Xiao Wang.

The general algorithm: building the partition

Partition
For each face f (of positive dimension) of P:

1 let F be the set of all facets that intersect at f

2 if there exist integer points on f (which implies that the closest
integer points on f to each of its vertices do exist as well), then for
each vertex v of f , a “corner” polyhedral is built as the convex hull
of:

a v ,
b the “closest integer point” to v on f ,
c all the “closest integer point” to v on F , for F ∈ F .

3 if there is no integer point on f , a single “corner” polyhedral set is
built for f as the convex hull of:

a the vertex set of f ,
b all the closest integer point to v on F , for each vertex v of f , for

each F ∈ F .

4 See [15] and the PhD thesis of Lin-Xiao Wang.

The general algorithm: building the partition

Partition
For each face f (of positive dimension) of P:

1 let F be the set of all facets that intersect at f

2 if there exist integer points on f (which implies that the closest
integer points on f to each of its vertices do exist as well), then for
each vertex v of f , a “corner” polyhedral is built as the convex hull
of:

a v ,

b the “closest integer point” to v on f ,
c all the “closest integer point” to v on F , for F ∈ F .

3 if there is no integer point on f , a single “corner” polyhedral set is
built for f as the convex hull of:

a the vertex set of f ,
b all the closest integer point to v on F , for each vertex v of f , for

each F ∈ F .

4 See [15] and the PhD thesis of Lin-Xiao Wang.

The general algorithm: building the partition

Partition
For each face f (of positive dimension) of P:

1 let F be the set of all facets that intersect at f

2 if there exist integer points on f (which implies that the closest
integer points on f to each of its vertices do exist as well), then for
each vertex v of f , a “corner” polyhedral is built as the convex hull
of:

a v ,
b the “closest integer point” to v on f ,

c all the “closest integer point” to v on F , for F ∈ F .
3 if there is no integer point on f , a single “corner” polyhedral set is
built for f as the convex hull of:

a the vertex set of f ,
b all the closest integer point to v on F , for each vertex v of f , for

each F ∈ F .

4 See [15] and the PhD thesis of Lin-Xiao Wang.

The general algorithm: building the partition

Partition
For each face f (of positive dimension) of P:

1 let F be the set of all facets that intersect at f

2 if there exist integer points on f (which implies that the closest
integer points on f to each of its vertices do exist as well), then for
each vertex v of f , a “corner” polyhedral is built as the convex hull
of:

a v ,
b the “closest integer point” to v on f ,
c all the “closest integer point” to v on F , for F ∈ F .

3 if there is no integer point on f , a single “corner” polyhedral set is
built for f as the convex hull of:

a the vertex set of f ,
b all the closest integer point to v on F , for each vertex v of f , for

each F ∈ F .

4 See [15] and the PhD thesis of Lin-Xiao Wang.

The general algorithm: building the partition

Partition
For each face f (of positive dimension) of P:

1 let F be the set of all facets that intersect at f

2 if there exist integer points on f (which implies that the closest
integer points on f to each of its vertices do exist as well), then for
each vertex v of f , a “corner” polyhedral is built as the convex hull
of:

a v ,
b the “closest integer point” to v on f ,
c all the “closest integer point” to v on F , for F ∈ F .

3 if there is no integer point on f , a single “corner” polyhedral set is
built for f as the convex hull of:

a the vertex set of f ,
b all the closest integer point to v on F , for each vertex v of f , for

each F ∈ F .
4 See [15] and the PhD thesis of Lin-Xiao Wang.

The general algorithm: building the partition

Partition
For each face f (of positive dimension) of P:

1 let F be the set of all facets that intersect at f

2 if there exist integer points on f (which implies that the closest
integer points on f to each of its vertices do exist as well), then for
each vertex v of f , a “corner” polyhedral is built as the convex hull
of:

a v ,
b the “closest integer point” to v on f ,
c all the “closest integer point” to v on F , for F ∈ F .

3 if there is no integer point on f , a single “corner” polyhedral set is
built for f as the convex hull of:

a the vertex set of f ,

b all the closest integer point to v on F , for each vertex v of f , for
each F ∈ F .

4 See [15] and the PhD thesis of Lin-Xiao Wang.

The general algorithm: building the partition

Partition
For each face f (of positive dimension) of P:

1 let F be the set of all facets that intersect at f

2 if there exist integer points on f (which implies that the closest
integer points on f to each of its vertices do exist as well), then for
each vertex v of f , a “corner” polyhedral is built as the convex hull
of:

a v ,
b the “closest integer point” to v on f ,
c all the “closest integer point” to v on F , for F ∈ F .

3 if there is no integer point on f , a single “corner” polyhedral set is
built for f as the convex hull of:

a the vertex set of f ,
b all the closest integer point to v on F , for each vertex v of f , for

each F ∈ F .

4 See [15] and the PhD thesis of Lin-Xiao Wang.

The general algorithm: building the partition

Partition
For each face f (of positive dimension) of P:

1 let F be the set of all facets that intersect at f

2 if there exist integer points on f (which implies that the closest
integer points on f to each of its vertices do exist as well), then for
each vertex v of f , a “corner” polyhedral is built as the convex hull
of:

a v ,
b the “closest integer point” to v on f ,
c all the “closest integer point” to v on F , for F ∈ F .

3 if there is no integer point on f , a single “corner” polyhedral set is
built for f as the convex hull of:

a the vertex set of f ,
b all the closest integer point to v on F , for each vertex v of f , for

each F ∈ F .
4 See [15] and the PhD thesis of Lin-Xiao Wang.

The general algorithm on a 3D example

Partition

The general algorithm on a 3D example

Merging
The integer hull has 139 vertices

“Closest integer points” on a facet to each of its vertices

Projection and recursive call
In Qd , for a facet F of dimension d − 1, and its vertex set V :

1 make a projection on a full-dimensional polyhedron G using Hermite
normal form c⃗ tU = [0H] (where U = [ULUR] and c⃗ tx = s is the
hyperplane supporting F)

2 we obtain a parametrization RF of F of the form:

RF ∶ {
Qd−1 → Qd

z z→ x = v +ULz.
(4.2)

3 thus RF (G) = F . Moreover, we have

RF (GI) = FI .

4 q recursive call to our integer hull algorithm computes the vertices
V ′I of the integer hull of G

5 we deduce the vertices VI of FI by RF (V ′I) = VI

6 finally, we find in VI the “closest integer points” to each v of V .

“Closest integer points” on a facet to each of its vertices

Projection and recursive call
In Qd , for a facet F of dimension d − 1, and its vertex set V :

1 make a projection on a full-dimensional polyhedron G using Hermite
normal form c⃗ tU = [0H] (where U = [ULUR] and c⃗ tx = s is the
hyperplane supporting F)

2 we obtain a parametrization RF of F of the form:

RF ∶ {
Qd−1 → Qd

z z→ x = v +ULz.
(4.2)

3 thus RF (G) = F . Moreover, we have

RF (GI) = FI .

4 q recursive call to our integer hull algorithm computes the vertices
V ′I of the integer hull of G

5 we deduce the vertices VI of FI by RF (V ′I) = VI

6 finally, we find in VI the “closest integer points” to each v of V .

“Closest integer points” on a facet to each of its vertices

Projection and recursive call
In Qd , for a facet F of dimension d − 1, and its vertex set V :

1 make a projection on a full-dimensional polyhedron G using Hermite
normal form c⃗ tU = [0H] (where U = [ULUR] and c⃗ tx = s is the
hyperplane supporting F)

2 we obtain a parametrization RF of F of the form:

RF ∶ {
Qd−1 → Qd

z z→ x = v +ULz.
(4.2)

3 thus RF (G) = F . Moreover, we have

RF (GI) = FI .

4 q recursive call to our integer hull algorithm computes the vertices
V ′I of the integer hull of G

5 we deduce the vertices VI of FI by RF (V ′I) = VI

6 finally, we find in VI the “closest integer points” to each v of V .

“Closest integer points” on a facet to each of its vertices

Projection and recursive call
In Qd , for a facet F of dimension d − 1, and its vertex set V :

1 make a projection on a full-dimensional polyhedron G using Hermite
normal form c⃗ tU = [0H] (where U = [ULUR] and c⃗ tx = s is the
hyperplane supporting F)

2 we obtain a parametrization RF of F of the form:

RF ∶ {
Qd−1 → Qd

z z→ x = v +ULz.
(4.2)

3 thus RF (G) = F . Moreover, we have

RF (GI) = FI .

4 q recursive call to our integer hull algorithm computes the vertices
V ′I of the integer hull of G

5 we deduce the vertices VI of FI by RF (V ′I) = VI

6 finally, we find in VI the “closest integer points” to each v of V .

“Closest integer points” on a facet to each of its vertices

Projection and recursive call
In Qd , for a facet F of dimension d − 1, and its vertex set V :

1 make a projection on a full-dimensional polyhedron G using Hermite
normal form c⃗ tU = [0H] (where U = [ULUR] and c⃗ tx = s is the
hyperplane supporting F)

2 we obtain a parametrization RF of F of the form:

RF ∶ {
Qd−1 → Qd

z z→ x = v +ULz.
(4.2)

3 thus RF (G) = F . Moreover, we have

RF (GI) = FI .

4 q recursive call to our integer hull algorithm computes the vertices
V ′I of the integer hull of G

5 we deduce the vertices VI of FI by RF (V ′I) = VI

6 finally, we find in VI the “closest integer points” to each v of V .

“Closest integer points” on a facet to each of its vertices

Projection and recursive call
In Qd , for a facet F of dimension d − 1, and its vertex set V :

1 make a projection on a full-dimensional polyhedron G using Hermite
normal form c⃗ tU = [0H] (where U = [ULUR] and c⃗ tx = s is the
hyperplane supporting F)

2 we obtain a parametrization RF of F of the form:

RF ∶ {
Qd−1 → Qd

z z→ x = v +ULz.
(4.2)

3 thus RF (G) = F . Moreover, we have

RF (GI) = FI .

4 q recursive call to our integer hull algorithm computes the vertices
V ′I of the integer hull of G

5 we deduce the vertices VI of FI by RF (V ′I) = VI

6 finally, we find in VI the “closest integer points” to each v of V .

“Closest integer points” on a facet to each of its vertices

Projection and recursive call
In Qd , for a facet F of dimension d − 1, and its vertex set V :

1 make a projection on a full-dimensional polyhedron G using Hermite
normal form c⃗ tU = [0H] (where U = [ULUR] and c⃗ tx = s is the
hyperplane supporting F)

2 we obtain a parametrization RF of F of the form:

RF ∶ {
Qd−1 → Qd

z z→ x = v +ULz.
(4.2)

3 thus RF (G) = F . Moreover, we have

RF (GI) = FI .

4 q recursive call to our integer hull algorithm computes the vertices
V ′I of the integer hull of G

5 we deduce the vertices VI of FI by RF (V ′I) = VI

6 finally, we find in VI the “closest integer points” to each v of V .

Closest integer points on a face to one of its vertices

Projection and recursive call

RF ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1 = 993x ′1 + 573x
′

2 − 67995300
x2 = 1081x ′1 + 623x

′

2 − 74020200
x3 = x ′2

The PolyhedralSets:-IntegerHull command in
Maple

The PolyhedralSets:-IntegerHull command in
Maple

The PolyhedralSets:-IntegerHull command in
Maple

Benchmarks 2D
E&C represents “enumeration and convex hull”, which in Maple is done by
ZPolyhedralSets:-EnumerateIntegerPoints and ConvexHull. Normaliz is
an open source tool for computations in affine monoids, vector configurations,
lattice polytopes, and rational cones.

Volume 27.95 null 111.79 null 11179.32 null

Algorithm IntegerHull E&C IntegerHull E&C IntegerHull E&C

Maple (ms) 172 410 244 890 159 58083

C/C++ (ms) 0.284 0.768 0.339 1.676 0.286 6.883

Normaliz (ms) 835.730 null 462.116 null 1559.401 null

Table: Integer hulls of triangles

Volume 58.21 null 5820.95 null 23283.82 null

Algorithm IntegerHull E&C IntegerHull E&C IntegerHull E&C

Maple (ms) 303 752 275 31357 304 123159

C/C++ (ms) 0.451 0.565 0.478 0.657 0.396 0.682

Normaliz (ms) 2.837 null 1216.238 null 740.559 null

Table: Integer hulls of hexagons

Benchmarks 3D

Volume 447.48 null 6991.89 null 55935.2 null
Algorithm IntegerHull E&C IntegerHull E&C IntegerHull E&C
Maple (ms) 977 7289 1223 74804 1378 531904
C/C++ (ms) 4.488 0.826 4.615 0.923 4.624 1.527
Normaliz (ms) 851.495 null 956.666 null 793.192 null

Table: Integer hulls of tetrahedrons (4 vertices, 4 facets and 6 edges)

Volume 412.58 null 7050.81 null 60417.63 null
Algorithm IntegerHull E&C IntegerHull E&C IntegerHull E&C
Maple (ms) 1476 5711 1573 60233 1728 512101
C/C++ (ms) 11.049 21.235 16.001 145.068 23.822 2082.559
Normaliz (ms) 7862.109 null N/A null N/A null

Table: Integer hulls of triangular bipyramids (5 vertices, 6 facets and 9 edges)

Conclusions

1 We implemented the proposed algorithm for in both Maple and
C/C++.

2 Our algorithm takes into consideration the geometric properties of
the input polyhedral set.

3 That is, if the input polyhedral set is close to be its own integer hull,
then computations are cheaper

4 Moreover, the cost of the computations depend mainly on the shape
of the input while the size of the input has little impact.

5 Doing a complexity analysis that would reflect that fact is an open
problem to us.

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Counting memory accesses in a for-loop nest (1/2)

Consider the well-known example SOR (Successive-Over Relaxation)
from the numerical solving of PDEs (Partial differential Equations).

for (i=2, i<N, i++) null
for (j=2, j <N, j++) null

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] + null
a[i][j-1] + a[i][j+1])/6; null

▸ The memory slots accessed by the for-loop nest are given by:

{(i +∆i , j +∆j) ∣ −1 ≤∆i −∆j ,∆i +∆j ,≤ 1,2 ≤ i , j ≤ N − 1}
▸ Using standard techniques from Linear Algebra, namely

Fourier-Motzkin elimination (FME), we can rewrite the above set as:
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x , y) ∣

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ≤ x , y ≤ N
3 ≤ x + y ≤ 2N − 1
2 −N ≤ x − y ≤ N − 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, for N ≥ 3.

▸ Hence the problem becomes counting the number of integer points
of a parametric polyhedral set PN .

Counting memory accesses in a for-loop nest (1/2)

Consider the well-known example SOR (Successive-Over Relaxation)
from the numerical solving of PDEs (Partial differential Equations).

for (i=2, i<N, i++) null
for (j=2, j <N, j++) null

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] + null
a[i][j-1] + a[i][j+1])/6; null

▸ The memory slots accessed by the for-loop nest are given by:

{(i +∆i , j +∆j) ∣ −1 ≤∆i −∆j ,∆i +∆j ,≤ 1,2 ≤ i , j ≤ N − 1}

▸ Using standard techniques from Linear Algebra, namely
Fourier-Motzkin elimination (FME), we can rewrite the above set as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x , y) ∣

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ≤ x , y ≤ N
3 ≤ x + y ≤ 2N − 1
2 −N ≤ x − y ≤ N − 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, for N ≥ 3.

▸ Hence the problem becomes counting the number of integer points
of a parametric polyhedral set PN .

Counting memory accesses in a for-loop nest (1/2)

Consider the well-known example SOR (Successive-Over Relaxation)
from the numerical solving of PDEs (Partial differential Equations).

for (i=2, i<N, i++) null
for (j=2, j <N, j++) null

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] + null
a[i][j-1] + a[i][j+1])/6; null

▸ The memory slots accessed by the for-loop nest are given by:

{(i +∆i , j +∆j) ∣ −1 ≤∆i −∆j ,∆i +∆j ,≤ 1,2 ≤ i , j ≤ N − 1}
▸ Using standard techniques from Linear Algebra, namely

Fourier-Motzkin elimination (FME), we can rewrite the above set as:
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x , y) ∣

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ≤ x , y ≤ N
3 ≤ x + y ≤ 2N − 1
2 −N ≤ x − y ≤ N − 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, for N ≥ 3.

▸ Hence the problem becomes counting the number of integer points
of a parametric polyhedral set PN .

Counting memory accesses in a for-loop nest (1/2)

Consider the well-known example SOR (Successive-Over Relaxation)
from the numerical solving of PDEs (Partial differential Equations).

for (i=2, i<N, i++) null
for (j=2, j <N, j++) null

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] + null
a[i][j-1] + a[i][j+1])/6; null

▸ The memory slots accessed by the for-loop nest are given by:

{(i +∆i , j +∆j) ∣ −1 ≤∆i −∆j ,∆i +∆j ,≤ 1,2 ≤ i , j ≤ N − 1}
▸ Using standard techniques from Linear Algebra, namely

Fourier-Motzkin elimination (FME), we can rewrite the above set as:
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x , y) ∣

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 ≤ x , y ≤ N
3 ≤ x + y ≤ 2N − 1
2 −N ≤ x − y ≤ N − 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, for N ≥ 3.

▸ Hence the problem becomes counting the number of integer points
of a parametric polyhedral set PN .

Counting memory accesses in a for-loop nest (2/2)

for (i=2, i<N, i++) null
for (j=2, j <N, j++) null

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] + null
a[i][j-1] + a[i][j+1])/6; null

The integer points of the parametric polyhedron PN for N = 5 and N = 10.
We will see later that ∣ P ∩Z2 ∣ = N2 − 4.

Counting memory accesses in a for-loop nest (2/2)

for (i=2, i<N, i++) null
for (j=2, j <N, j++) null

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] + null
a[i][j-1] + a[i][j+1])/6; null

The integer points of the parametric polyhedron PN for N = 5 and N = 10.

We will see later that ∣ P ∩Z2 ∣ = N2 − 4.

Counting memory accesses in a for-loop nest (2/2)

for (i=2, i<N, i++) null
for (j=2, j <N, j++) null

a[i][j] = (2*a[i][j] + a[i-1][j] + a[i+1][j] + null
a[i][j-1] + a[i][j+1])/6; null

The integer points of the parametric polyhedron PN for N = 5 and N = 10.
We will see later that ∣ P ∩Z2 ∣ = N2 − 4.

Objective and challenges

1 Given a parametric polyhedron P(b⃗), we want to count the number
of its integer points as a function c(b⃗) of the parameter b⃗.

2 One challenge is that the shape (vertices, facets, etc.) of the integer
hull of P(b⃗), that is, P(b⃗) ∩Zd , may vary with the values of b⃗.

3 Consider the parametric polyhedron PN given by:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ i , j
j ≤ 2i
2i + j ≤ N

4 The plots below show PN for N = 8,10,12.

5 Fortunately, Ehrhart Theory tells us that these variations are periodic

6 Hence, the function c(b⃗) is computable as a piece-wise function.

Objective and challenges

1 Given a parametric polyhedron P(b⃗), we want to count the number
of its integer points as a function c(b⃗) of the parameter b⃗.

2 One challenge is that the shape (vertices, facets, etc.) of the integer
hull of P(b⃗), that is, P(b⃗) ∩Zd , may vary with the values of b⃗.

3 Consider the parametric polyhedron PN given by:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ i , j
j ≤ 2i
2i + j ≤ N

4 The plots below show PN for N = 8,10,12.

5 Fortunately, Ehrhart Theory tells us that these variations are periodic

6 Hence, the function c(b⃗) is computable as a piece-wise function.

Objective and challenges

1 Given a parametric polyhedron P(b⃗), we want to count the number
of its integer points as a function c(b⃗) of the parameter b⃗.

2 One challenge is that the shape (vertices, facets, etc.) of the integer
hull of P(b⃗), that is, P(b⃗) ∩Zd , may vary with the values of b⃗.

3 Consider the parametric polyhedron PN given by:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ i , j
j ≤ 2i
2i + j ≤ N

4 The plots below show PN for N = 8,10,12.

5 Fortunately, Ehrhart Theory tells us that these variations are periodic

6 Hence, the function c(b⃗) is computable as a piece-wise function.

Objective and challenges

1 Given a parametric polyhedron P(b⃗), we want to count the number
of its integer points as a function c(b⃗) of the parameter b⃗.

2 One challenge is that the shape (vertices, facets, etc.) of the integer
hull of P(b⃗), that is, P(b⃗) ∩Zd , may vary with the values of b⃗.

3 Consider the parametric polyhedron PN given by:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ i , j
j ≤ 2i
2i + j ≤ N

4 The plots below show PN for N = 8,10,12.

5 Fortunately, Ehrhart Theory tells us that these variations are periodic

6 Hence, the function c(b⃗) is computable as a piece-wise function.

Objective and challenges

1 Given a parametric polyhedron P(b⃗), we want to count the number
of its integer points as a function c(b⃗) of the parameter b⃗.

2 One challenge is that the shape (vertices, facets, etc.) of the integer
hull of P(b⃗), that is, P(b⃗) ∩Zd , may vary with the values of b⃗.

3 Consider the parametric polyhedron PN given by:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ i , j
j ≤ 2i
2i + j ≤ N

4 The plots below show PN for N = 8,10,12.

5 Fortunately, Ehrhart Theory tells us that these variations are periodic

6 Hence, the function c(b⃗) is computable as a piece-wise function.

Objective and challenges

1 Given a parametric polyhedron P(b⃗), we want to count the number
of its integer points as a function c(b⃗) of the parameter b⃗.

2 One challenge is that the shape (vertices, facets, etc.) of the integer
hull of P(b⃗), that is, P(b⃗) ∩Zd , may vary with the values of b⃗.

3 Consider the parametric polyhedron PN given by:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ i , j
j ≤ 2i
2i + j ≤ N

4 The plots below show PN for N = 8,10,12.

5 Fortunately, Ehrhart Theory tells us that these variations are periodic

6 Hence, the function c(b⃗) is computable as a piece-wise function.

Related works

▸ Given a 2D polytope P, whose vertices are integer
points, Pick’s theorem relates the area A of P, the
number b of integer points on the border of P, and
the number i in the interior of P:

A = i + b

2
− 1

▸ No generalization of Pick’s theorem to higher
dimension.

▸ By studying the dilation
of polyhedral sets,
Eugène Ehrhart
discovered and studied
the periodic behaviour
of parametric polyhedral
sets.

▸ See Ehrhart polynomial.

▸ Images are from Wikipedia

(fair use category).

https://en.wikipedia.org/wiki/Ehrhart_polynomial

Related works

▸ Given a 2D polytope P, whose vertices are integer
points, Pick’s theorem relates the area A of P, the
number b of integer points on the border of P, and
the number i in the interior of P:

A = i + b

2
− 1

▸ No generalization of Pick’s theorem to higher
dimension.

▸ By studying the dilation
of polyhedral sets,
Eugène Ehrhart
discovered and studied
the periodic behaviour
of parametric polyhedral
sets.

▸ See Ehrhart polynomial.

▸ Images are from Wikipedia

(fair use category).

https://en.wikipedia.org/wiki/Ehrhart_polynomial

Related works

▸ Given a 2D polytope P, whose vertices are integer
points, Pick’s theorem relates the area A of P, the
number b of integer points on the border of P, and
the number i in the interior of P:

A = i + b

2
− 1

▸ No generalization of Pick’s theorem to higher
dimension.

▸ By studying the dilation
of polyhedral sets,
Eugène Ehrhart
discovered and studied
the periodic behaviour
of parametric polyhedral
sets.

▸ See Ehrhart polynomial.

▸ Images are from Wikipedia

(fair use category).

https://en.wikipedia.org/wiki/Ehrhart_polynomial

Related works

▸ Given a 2D polytope P, whose vertices are integer
points, Pick’s theorem relates the area A of P, the
number b of integer points on the border of P, and
the number i in the interior of P:

A = i + b

2
− 1

▸ No generalization of Pick’s theorem to higher
dimension.

▸ By studying the dilation
of polyhedral sets,
Eugène Ehrhart
discovered and studied
the periodic behaviour
of parametric polyhedral
sets.

▸ See Ehrhart polynomial.

▸ Images are from Wikipedia

(fair use category).

https://en.wikipedia.org/wiki/Ehrhart_polynomial

Related works

▸ Given a 2D polytope P, whose vertices are integer
points, Pick’s theorem relates the area A of P, the
number b of integer points on the border of P, and
the number i in the interior of P:

A = i + b

2
− 1

▸ No generalization of Pick’s theorem to higher
dimension.

▸ By studying the dilation
of polyhedral sets,
Eugène Ehrhart
discovered and studied
the periodic behaviour
of parametric polyhedral
sets.

▸ See Ehrhart polynomial.

▸ Images are from Wikipedia

(fair use category).

https://en.wikipedia.org/wiki/Ehrhart_polynomial

Related works

▸ Given a 2D polytope P, whose vertices are integer
points, Pick’s theorem relates the area A of P, the
number b of integer points on the border of P, and
the number i in the interior of P:

A = i + b

2
− 1

▸ No generalization of Pick’s theorem to higher
dimension.

▸ By studying the dilation
of polyhedral sets,
Eugène Ehrhart
discovered and studied
the periodic behaviour
of parametric polyhedral
sets.

▸ See Ehrhart polynomial.

▸ Images are from Wikipedia

(fair use category).

https://en.wikipedia.org/wiki/Ehrhart_polynomial

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Generating function of a polyhedral set (1/4)

▸ Consider a polyhedral set P ⊆ Qd .

▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial
xe = x1e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal Laurent series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0 =
n=∞
∑
n=0

xn = 1

1 − x
.

Generating function of a polyhedral set (1/4)

▸ Consider a polyhedral set P ⊆ Qd .

▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial
xe = x1e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal Laurent series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0 =
n=∞
∑
n=0

xn = 1

1 − x
.

Generating function of a polyhedral set (1/4)

▸ Consider a polyhedral set P ⊆ Qd .

▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial
xe = x1e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal Laurent series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0 =
n=∞
∑
n=0

xn = 1

1 − x
.

Generating function of a polyhedral set (1/4)

▸ Consider a polyhedral set P ⊆ Qd .

▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial
xe = x1e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal Laurent series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0 =
n=∞
∑
n=0

xn = 1

1 − x
.

Generating function of a polyhedral set (1/4)

▸ Consider a polyhedral set P ⊆ Qd .

▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial
xe = x1e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal Laurent series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0 =
n=∞
∑
n=0

xn = 1

1 − x
.

Generating function of a polyhedral set (1/4)

▸ Consider a polyhedral set P ⊆ Qd .

▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial
xe = x1e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal Laurent series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0 =
n=∞
∑
n=0

xn = 1

1 − x
.

Generating function of a polyhedral set (1/4)

▸ Consider a polyhedral set P ⊆ Qd .

▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial
xe = x1e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal Laurent series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =

n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0 =
n=∞
∑
n=0

xn = 1

1 − x
.

Generating function of a polyhedral set (1/4)

▸ Consider a polyhedral set P ⊆ Qd .

▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial
xe = x1e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal Laurent series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0 =
n=∞
∑
n=0

xn = 1

1 − x
.

Generating function of a polyhedral set (1/4)

▸ Consider a polyhedral set P ⊆ Qd .

▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial
xe = x1e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal Laurent series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0 =

n=∞
∑
n=0

xn = 1

1 − x
.

Generating function of a polyhedral set (1/4)

▸ Consider a polyhedral set P ⊆ Qd .

▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial
xe = x1e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal Laurent series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0 =
n=∞
∑
n=0

xn =

1

1 − x
.

Generating function of a polyhedral set (1/4)

▸ Consider a polyhedral set P ⊆ Qd .

▸ Each integer point e = (e1, . . . , ed) of P is mapped to the monomial
xe = x1e1⋯xd

ed

▸ When d = 2, we write (x , y) instead of (x1, x2).

Definition
The generating function of P is the formal Laurent series:

G(P,x) = ∑
e∈P∩Zd

xe.

▸ If P is bounded, then G(P, (1, . . . ,1)) counts the number of its
integer points.

▸ If P is not bounded, then G(P,x) is a formal power series and can
still be manipulated algorithmically.

▸ For d = 2, suppose P is the ray corresponding to y = 0 and x ≥ 0,
then:

G(P,x) =
n=∞
∑
n=0
(x , y)(n,0) =

n=∞
∑
n=0

xny0 =
n=∞
∑
n=0

xn = 1

1 − x
.

Generating function of a polyhedral set (2/4)

With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) =

∑
m,n≥0

xmyn = (
n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn) = 1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) =

(∑
m≥0

xm)(∑
n≤2

yn) = (∑
m≥0

xm) y2 (∑
n≥0
(y−1)n) = 1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)

With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) =

∑
m,n≥0

xmyn = (
n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn) = 1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) =

(∑
m≥0

xm)(∑
n≤2

yn) = (∑
m≥0

xm) y2 (∑
n≥0
(y−1)n) = 1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)

With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn =

(
n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn) = 1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) =

(∑
m≥0

xm)(∑
n≤2

yn) = (∑
m≥0

xm) y2 (∑
n≥0
(y−1)n) = 1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)

With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn = (
n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn) =

1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) =

(∑
m≥0

xm)(∑
n≤2

yn) = (∑
m≥0

xm) y2 (∑
n≥0
(y−1)n) = 1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)

With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn = (
n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn) = 1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) =

(∑
m≥0

xm)(∑
n≤2

yn) = (∑
m≥0

xm) y2 (∑
n≥0
(y−1)n) = 1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)

With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn = (
n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn) = 1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) =

(∑
m≥0

xm)(∑
n≤2

yn) = (∑
m≥0

xm) y2 (∑
n≥0
(y−1)n) = 1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)

With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn = (
n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn) = 1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) = (∑
m≥0

xm)(∑
n≤2

yn) =

(∑
m≥0

xm) y2 (∑
n≥0
(y−1)n) = 1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)

With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn = (
n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn) = 1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) = (∑
m≥0

xm)(∑
n≤2

yn) = (∑
m≥0

xm) y2 (∑
n≥0
(y−1)n) =

1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)

With d = 2, we will compute G(P,x) for the polyhedron P given as the
convex hull of the 12 points on the figure below.

Consider the bottom-left of P, that is, the first quadrant Q1, that is, the
points (x , , y) with x , y ≥ 0. Then, we have:

G(Q1,x) = ∑
m,n≥0

xmyn = (
n=∞
∑
m=0

xm)(
n=∞
∑
n=0

yn) = 1

1 − x

1

1 − y
.

Consider the top-left corner of P, that is, the vertex cone Q2 rooted at
(0,2) and with rays (0,1) and (1,0).

G(Q2,x) = (∑
m≥0

xm)(∑
n≤2

yn) = (∑
m≥0

xm) y2 (∑
n≥0
(y−1)n) = 1

1 − x

y2

1 − y−1

Generating function of a polyhedral set (2/4)

Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) =

x4y2 (∑
n≤m≤0

xmyn) = x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) =

x4y0 ⎛
⎝ ∑0≤n,m≤n

xmyn⎞
⎠
= x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) [3] we have:
G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)
= 1

1−x
1

1−y +
1

1−x
y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently
∣ P ∩Z2 ∣ = G(P, (1,1)))

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)

Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) =

x4y2 (∑
n≤m≤0

xmyn) = x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) =

x4y0 ⎛
⎝ ∑0≤n,m≤n

xmyn⎞
⎠
= x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) [3] we have:
G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)
= 1

1−x
1

1−y +
1

1−x
y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently
∣ P ∩Z2 ∣ = G(P, (1,1)))

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)

Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x4y2 (∑
n≤m≤0

xmyn) =

x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) =

x4y0 ⎛
⎝ ∑0≤n,m≤n

xmyn⎞
⎠
= x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) [3] we have:
G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)
= 1

1−x
1

1−y +
1

1−x
y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently
∣ P ∩Z2 ∣ = G(P, (1,1)))

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)

Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x4y2 (∑
n≤m≤0

xmyn) = x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) =

x4y0 ⎛
⎝ ∑0≤n,m≤n

xmyn⎞
⎠
= x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) [3] we have:
G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)
= 1

1−x
1

1−y +
1

1−x
y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently
∣ P ∩Z2 ∣ = G(P, (1,1)))

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)

Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x4y2 (∑
n≤m≤0

xmyn) = x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) =

x4y0 ⎛
⎝ ∑0≤n,m≤n

xmyn⎞
⎠
= x2y0

(1 − xy)(1 − x−1)
Applying a theorem of Michel Brion (1988) [3] we have:
G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)
= 1

1−x
1

1−y +
1

1−x
y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently
∣ P ∩Z2 ∣ = G(P, (1,1)))

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)

Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x4y2 (∑
n≤m≤0

xmyn) = x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x4y0 ⎛
⎝ ∑0≤n,m≤n

xmyn⎞
⎠
=

x2y0

(1 − xy)(1 − x−1)
Applying a theorem of Michel Brion (1988) [3] we have:
G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)
= 1

1−x
1

1−y +
1

1−x
y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently
∣ P ∩Z2 ∣ = G(P, (1,1)))

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)

Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x4y2 (∑
n≤m≤0

xmyn) = x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x4y0 ⎛
⎝ ∑0≤n,m≤n

xmyn⎞
⎠
= x2y0

(1 − xy)(1 − x−1)

Applying a theorem of Michel Brion (1988) [3] we have:
G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)
= 1

1−x
1

1−y +
1

1−x
y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently
∣ P ∩Z2 ∣ = G(P, (1,1)))

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)

Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x4y2 (∑
n≤m≤0

xmyn) = x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x4y0 ⎛
⎝ ∑0≤n,m≤n

xmyn⎞
⎠
= x2y0

(1 − xy)(1 − x−1)
Applying a theorem of Michel Brion (1988) [3] we have:
G(P,x) =

G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)
= 1

1−x
1

1−y +
1

1−x
y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently
∣ P ∩Z2 ∣ = G(P, (1,1)))

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)

Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x4y2 (∑
n≤m≤0

xmyn) = x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x4y0 ⎛
⎝ ∑0≤n,m≤n

xmyn⎞
⎠
= x2y0

(1 − xy)(1 − x−1)
Applying a theorem of Michel Brion (1988) [3] we have:
G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently
∣ P ∩Z2 ∣ = G(P, (1,1)))

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)

Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x4y2 (∑
n≤m≤0

xmyn) = x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x4y0 ⎛
⎝ ∑0≤n,m≤n

xmyn⎞
⎠
= x2y0

(1 − xy)(1 − x−1)
Applying a theorem of Michel Brion (1988) [3] we have:
G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)

= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.
Consequently

∣ P ∩Z2 ∣ = G(P, (1,1)))
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)

Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x4y2 (∑
n≤m≤0

xmyn) = x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x4y0 ⎛
⎝ ∑0≤n,m≤n

xmyn⎞
⎠
= x2y0

(1 − xy)(1 − x−1)
Applying a theorem of Michel Brion (1988) [3] we have:
G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently
∣ P ∩Z2 ∣ = G(P, (1,1)))

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Generating function of a polyhedral set (2/4)

Continuing with the other corners Q3 and Q4 of the polytope P

G(Q3,x) = x4y2 (∑
n≤m≤0

xmyn) = x4y2

(1 − x−1)(1 − x−1y−1)

G(Q4,x) = x4y0 ⎛
⎝ ∑0≤n,m≤n

xmyn⎞
⎠
= x2y0

(1 − xy)(1 − x−1)
Applying a theorem of Michel Brion (1988) [3] we have:
G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x) +G(Q4,x)

= 1
1−x

1
1−y +

1
1−x

y2

1−y−1 +
x4y2

(1−x−1)(1−x−1y−1) +
x2y0

(1−xy)(1−x−1)
= y2 + xy2 + x2y2 + x3y2 + x4y2 + y + xy + x2y + x3y + 1 + x + x2.

Consequently
∣ P ∩Z2 ∣ = G(P, (1,1)))

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 12.

Recall Brion’s formula

▸ This formula asserts that for a polytope P ⊆ Qd its generating
function is the sum of the generating functions of its corners (=
vertex cones)

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x)

▸ Our previous calculations used two facts

1 In dimension d = 2, every cone is simplicial that is, can be generated
by d rays,

2 The cones Q2,Q3,Q4 are unimodular, that is, the sums of the power
series G(Q2, x), G(Q3, x), G(Q4, x) can be deduced from that of
G(Q1, x) (the first quadrant) by means of unimodular
transformations (that is, mapping integer vectors to integer vectors).

Recall Brion’s formula

▸ This formula asserts that for a polytope P ⊆ Qd its generating
function is the sum of the generating functions of its corners (=
vertex cones)

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x)
▸ Our previous calculations used two facts

1 In dimension d = 2, every cone is simplicial that is, can be generated
by d rays,

2 The cones Q2,Q3,Q4 are unimodular, that is, the sums of the power
series G(Q2, x), G(Q3, x), G(Q4, x) can be deduced from that of
G(Q1, x) (the first quadrant) by means of unimodular
transformations (that is, mapping integer vectors to integer vectors).

Recall Brion’s formula

▸ This formula asserts that for a polytope P ⊆ Qd its generating
function is the sum of the generating functions of its corners (=
vertex cones)

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x)
▸ Our previous calculations used two facts

1 In dimension d = 2, every cone is simplicial that is, can be generated
by d rays,

2 The cones Q2,Q3,Q4 are unimodular, that is, the sums of the power
series G(Q2, x), G(Q3, x), G(Q4, x) can be deduced from that of
G(Q1, x) (the first quadrant) by means of unimodular
transformations (that is, mapping integer vectors to integer vectors).

Recall Brion’s formula

▸ This formula asserts that for a polytope P ⊆ Qd its generating
function is the sum of the generating functions of its corners (=
vertex cones)

G(P,x) = G(Q1,x) +G(Q2,x) +G(Q3,x)
▸ Our previous calculations used two facts

1 In dimension d = 2, every cone is simplicial that is, can be generated
by d rays,

2 The cones Q2,Q3,Q4 are unimodular, that is, the sums of the power
series G(Q2, x), G(Q3, x), G(Q4, x) can be deduced from that of
G(Q1, x) (the first quadrant) by means of unimodular
transformations (that is, mapping integer vectors to integer vectors).

Barvinok’s algorithm
▸ In dimension d , one can decompose any cone into simplicial cones

(= cones generated by d rays),

▸ Alexander Barvinok (1994) [2] proposed an algorithm to decompose
any simplicial cones into unimodular cones,

▸ consequently, Barvinok has found the first algorithm to compute
G(P,x),

▸ Moreover, Barvinok’s algorithm runs in polynomial time for a
fixed d . More references on the subject: [1, 10, 14, 19, 22]

skip slide

Barvinok’s algorithm
▸ In dimension d , one can decompose any cone into simplicial cones

(= cones generated by d rays),

▸ Alexander Barvinok (1994) [2] proposed an algorithm to decompose
any simplicial cones into unimodular cones,

▸ consequently, Barvinok has found the first algorithm to compute
G(P,x),

▸ Moreover, Barvinok’s algorithm runs in polynomial time for a
fixed d . More references on the subject: [1, 10, 14, 19, 22]

skip slide

Barvinok’s algorithm
▸ In dimension d , one can decompose any cone into simplicial cones

(= cones generated by d rays),

▸ Alexander Barvinok (1994) [2] proposed an algorithm to decompose
any simplicial cones into unimodular cones,

▸ consequently, Barvinok has found the first algorithm to compute
G(P,x),

▸ Moreover, Barvinok’s algorithm runs in polynomial time for a
fixed d . More references on the subject: [1, 10, 14, 19, 22]

skip slide

Barvinok’s algorithm
▸ In dimension d , one can decompose any cone into simplicial cones

(= cones generated by d rays),

▸ Alexander Barvinok (1994) [2] proposed an algorithm to decompose
any simplicial cones into unimodular cones,

▸ consequently, Barvinok has found the first algorithm to compute
G(P,x),

▸ Moreover, Barvinok’s algorithm runs in polynomial time for a
fixed d . More references on the subject: [1, 10, 14, 19, 22]

skip slide

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Sanity-check examples

Example 29 (1)
Input:

{1 ≤ i ,1 ≤ j , i ≤ n, j ≤ n}

Output:

[[{n2}, [0 ≤ n − 1]]]

Example 30 (3)
Input:

{1 ≤ i ,1 ≤ j , i + j ≤ n,0 ≤ n}

Output:

[[{ n2
2
− n

2
}, [0 ≤ n − 2]]]

Sanity-check examples

Example 29 (1)
Input:

{1 ≤ i ,1 ≤ j , i ≤ n, j ≤ n}

Output:

[[{n2}, [0 ≤ n − 1]]]

Example 30 (3)
Input:

{1 ≤ i ,1 ≤ j , i + j ≤ n,0 ≤ n}

Output:

[[{ n2
2
− n

2
}, [0 ≤ n − 2]]]

Examples with several parameters
Example 31 (4)
Input:

{1 ≤ i , i ≤ n, i ≤ m,1 ≤ j , j ≤ i}

Output:

[[{1}, [m − 1 = 0,0 ≤ n − 2]],
[{ n2

2
+ n

2
}, [0 ≤ m − n,0 ≤ n − 1]],

[{m2

2
+ m

2
}, [0 ≤ m − 2,0 ≤ n − 3,0 ≤ −m + n − 1]]]

Example 32 (5)
Input:

{1 ≤ i , i ≤ n, i ≤ m,1 ≤ j , j ≤ p}

Output:

[[{pm}, [n −m ≥ 1,p − 2 ≥ 0,m − 1 ≥ 0]],
[{pn}, [m − n ≥ 0,n − 2 ≥ 0,p − 1 ≥ 0]],
[{1}, [n − 1 = 0,p − 1 = 0,0 ≤ m − 1]],
[{p}, [m − 1 = 0,0 ≤ −2 + n,0 ≤ p − 1]]]

Examples with several parameters
Example 31 (4)
Input:

{1 ≤ i , i ≤ n, i ≤ m,1 ≤ j , j ≤ i}

Output:

[[{1}, [m − 1 = 0,0 ≤ n − 2]],
[{ n2

2
+ n

2
}, [0 ≤ m − n,0 ≤ n − 1]],

[{m2

2
+ m

2
}, [0 ≤ m − 2,0 ≤ n − 3,0 ≤ −m + n − 1]]]

Example 32 (5)
Input:

{1 ≤ i , i ≤ n, i ≤ m,1 ≤ j , j ≤ p}

Output:

[[{pm}, [n −m ≥ 1,p − 2 ≥ 0,m − 1 ≥ 0]],
[{pn}, [m − n ≥ 0,n − 2 ≥ 0,p − 1 ≥ 0]],
[{1}, [n − 1 = 0,p − 1 = 0,0 ≤ m − 1]],
[{p}, [m − 1 = 0,0 ≤ −2 + n,0 ≤ p − 1]]]

Examples with quasi-polynomials

Example 33 (6)
Input:

{1 ≤ i , j ≤ n,2i ≤ 3j}

Output:

[[{Q([n,2, [3n2
4
+ n

2
,−1/4 + 3n2

4
+ n

2
]])}, [1 ≤ n]]]

Example 34 (7)
Input:

{0 ≤ i ,0 ≤ j , j ≤ 2i ,2i + j ≤ n}

Output:

[[{Q([n,4, [1 + n
2
+ n2

8
,3/8 + n

2
+ n2

8
,1/2 + n

2
+ n2

8
,3/8 + n

2
+ n2

8
]])},

[0 ≤ n − 1]],
[{1}, [n = 0]]]

Examples with quasi-polynomials

Example 33 (6)
Input:

{1 ≤ i , j ≤ n,2i ≤ 3j}

Output:

[[{Q([n,2, [3n2
4
+ n

2
,−1/4 + 3n2

4
+ n

2
]])}, [1 ≤ n]]]

Example 34 (7)
Input:

{0 ≤ i ,0 ≤ j , j ≤ 2i ,2i + j ≤ n}

Output:

[[{Q([n,4, [1 + n
2
+ n2

8
,3/8 + n

2
+ n2

8
,1/2 + n

2
+ n2

8
,3/8 + n

2
+ n2

8
]])},

[0 ≤ n − 1]],
[{1}, [n = 0]]]

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1 Vertices(P(b⃗)) determines the vertices of P(b⃗)

a Yields to solve a (large) number of parametric linear systems, which
are independent problems

b Their results need to be merged into a single case discussion

2 Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

a Same challenges!
b And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3 GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

a since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

b thanks the periodicity of things, quasi-polynomials solve the issue.

4 NumberOfIntegerPoints(P(b⃗))

a Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1 Vertices(P(b⃗)) determines the vertices of P(b⃗)
a Yields to solve a (large) number of parametric linear systems, which

are independent problems

b Their results need to be merged into a single case discussion

2 Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

a Same challenges!
b And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3 GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

a since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

b thanks the periodicity of things, quasi-polynomials solve the issue.

4 NumberOfIntegerPoints(P(b⃗))

a Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1 Vertices(P(b⃗)) determines the vertices of P(b⃗)
a Yields to solve a (large) number of parametric linear systems, which

are independent problems
b Their results need to be merged into a single case discussion

2 Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

a Same challenges!
b And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3 GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

a since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

b thanks the periodicity of things, quasi-polynomials solve the issue.

4 NumberOfIntegerPoints(P(b⃗))

a Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1 Vertices(P(b⃗)) determines the vertices of P(b⃗)
a Yields to solve a (large) number of parametric linear systems, which

are independent problems
b Their results need to be merged into a single case discussion

2 Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)

a Same challenges!
b And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3 GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

a since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

b thanks the periodicity of things, quasi-polynomials solve the issue.

4 NumberOfIntegerPoints(P(b⃗))

a Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1 Vertices(P(b⃗)) determines the vertices of P(b⃗)
a Yields to solve a (large) number of parametric linear systems, which

are independent problems
b Their results need to be merged into a single case discussion

2 Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)
a Same challenges!

b And, at the end, many sets of cases of the case discussion can be
replaced by a single case, that is, doing recombination.

3 GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

a since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

b thanks the periodicity of things, quasi-polynomials solve the issue.

4 NumberOfIntegerPoints(P(b⃗))

a Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1 Vertices(P(b⃗)) determines the vertices of P(b⃗)
a Yields to solve a (large) number of parametric linear systems, which

are independent problems
b Their results need to be merged into a single case discussion

2 Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)
a Same challenges!
b And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3 GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

a since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

b thanks the periodicity of things, quasi-polynomials solve the issue.

4 NumberOfIntegerPoints(P(b⃗))

a Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1 Vertices(P(b⃗)) determines the vertices of P(b⃗)
a Yields to solve a (large) number of parametric linear systems, which

are independent problems
b Their results need to be merged into a single case discussion

2 Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)
a Same challenges!
b And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3 GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))

a since the linear changes of coordinates involve the vertices, the
parameters appear in the exponents of the generating functions,

b thanks the periodicity of things, quasi-polynomials solve the issue.

4 NumberOfIntegerPoints(P(b⃗))

a Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1 Vertices(P(b⃗)) determines the vertices of P(b⃗)
a Yields to solve a (large) number of parametric linear systems, which

are independent problems
b Their results need to be merged into a single case discussion

2 Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)
a Same challenges!
b And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3 GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))
a since the linear changes of coordinates involve the vertices, the

parameters appear in the exponents of the generating functions,

b thanks the periodicity of things, quasi-polynomials solve the issue.

4 NumberOfIntegerPoints(P(b⃗))

a Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1 Vertices(P(b⃗)) determines the vertices of P(b⃗)
a Yields to solve a (large) number of parametric linear systems, which

are independent problems
b Their results need to be merged into a single case discussion

2 Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)
a Same challenges!
b And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3 GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))
a since the linear changes of coordinates involve the vertices, the

parameters appear in the exponents of the generating functions,
b thanks the periodicity of things, quasi-polynomials solve the issue.

4 NumberOfIntegerPoints(P(b⃗))

a Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1 Vertices(P(b⃗)) determines the vertices of P(b⃗)
a Yields to solve a (large) number of parametric linear systems, which

are independent problems
b Their results need to be merged into a single case discussion

2 Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)
a Same challenges!
b And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3 GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))
a since the linear changes of coordinates involve the vertices, the

parameters appear in the exponents of the generating functions,
b thanks the periodicity of things, quasi-polynomials solve the issue.

4 NumberOfIntegerPoints(P(b⃗))

a Putting everything together requires computing with multivariate
quasi-polynomials.

Integer point counting for parametric polyhedra

Given a parametric polyhedron P(b⃗), the procedures:

1 Vertices(P(b⃗)) determines the vertices of P(b⃗)
a Yields to solve a (large) number of parametric linear systems, which

are independent problems
b Their results need to be merged into a single case discussion

2 Cones(P(b⃗)) determines the vertex cones (= corners) of P(b⃗)
a Same challenges!
b And, at the end, many sets of cases of the case discussion can be

replaced by a single case, that is, doing recombination.

3 GeneratingFunction(P(b⃗)) determines the generating functions of

each cone Cones(P(b⃗))
a since the linear changes of coordinates involve the vertices, the

parameters appear in the exponents of the generating functions,
b thanks the periodicity of things, quasi-polynomials solve the issue.

4 NumberOfIntegerPoints(P(b⃗))
a Putting everything together requires computing with multivariate

quasi-polynomials.

Generic case discussion (1/3)

1 Let A,B,V be 3 non-empty sets

2 Let F be a non-empty set of functions from A to B.
3 Let P be a non-empty set of predicates on B. closed under negation.

4 A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (5.1)
while its negation is ¬c ∶= (f ,¬p).

5 The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6 A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (5.2)

7 A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8 A value-constraints pair is any pair (V ,C) where V ⊆ V and C is a
system of constraints.

Generic case discussion (1/3)

1 Let A,B,V be 3 non-empty sets

2 Let F be a non-empty set of functions from A to B.

3 Let P be a non-empty set of predicates on B. closed under negation.

4 A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (5.1)
while its negation is ¬c ∶= (f ,¬p).

5 The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6 A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (5.2)

7 A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8 A value-constraints pair is any pair (V ,C) where V ⊆ V and C is a
system of constraints.

Generic case discussion (1/3)

1 Let A,B,V be 3 non-empty sets

2 Let F be a non-empty set of functions from A to B.
3 Let P be a non-empty set of predicates on B. closed under negation.

4 A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (5.1)
while its negation is ¬c ∶= (f ,¬p).

5 The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6 A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (5.2)

7 A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8 A value-constraints pair is any pair (V ,C) where V ⊆ V and C is a
system of constraints.

Generic case discussion (1/3)

1 Let A,B,V be 3 non-empty sets

2 Let F be a non-empty set of functions from A to B.
3 Let P be a non-empty set of predicates on B. closed under negation.

4 A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (5.1)
while its negation is ¬c ∶= (f ,¬p).

5 The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6 A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (5.2)

7 A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8 A value-constraints pair is any pair (V ,C) where V ⊆ V and C is a
system of constraints.

Generic case discussion (1/3)

1 Let A,B,V be 3 non-empty sets

2 Let F be a non-empty set of functions from A to B.
3 Let P be a non-empty set of predicates on B. closed under negation.

4 A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (5.1)
while its negation is ¬c ∶= (f ,¬p).

5 The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6 A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (5.2)

7 A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8 A value-constraints pair is any pair (V ,C) where V ⊆ V and C is a
system of constraints.

Generic case discussion (1/3)

1 Let A,B,V be 3 non-empty sets

2 Let F be a non-empty set of functions from A to B.
3 Let P be a non-empty set of predicates on B. closed under negation.

4 A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (5.1)
while its negation is ¬c ∶= (f ,¬p).

5 The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6 A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (5.2)

7 A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8 A value-constraints pair is any pair (V ,C) where V ⊆ V and C is a
system of constraints.

Generic case discussion (1/3)

1 Let A,B,V be 3 non-empty sets

2 Let F be a non-empty set of functions from A to B.
3 Let P be a non-empty set of predicates on B. closed under negation.

4 A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (5.1)
while its negation is ¬c ∶= (f ,¬p).

5 The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6 A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (5.2)

7 A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8 A value-constraints pair is any pair (V ,C) where V ⊆ V and C is a
system of constraints.

Generic case discussion (1/3)

1 Let A,B,V be 3 non-empty sets

2 Let F be a non-empty set of functions from A to B.
3 Let P be a non-empty set of predicates on B. closed under negation.

4 A constraint is any pair c = (f ,p) where f ∈ F and p ∈ P and its
zero set is

Z(c) = {a ∈ A ∣ p(f (a))} (5.1)
while its negation is ¬c ∶= (f ,¬p).

5 The constraint c = (f ,p) is consistent whenever Z(C) ≠ ∅ holds.

6 A system of constraints is any finite set C of constraints and its
zero set is

Z(C) = ⋂c∈C Z(c). (5.2)

7 A constraint γ /∈ C is redundant w.r.t. C , whenever we have
Z(C ∪ {γ}) = Z(C).

8 A value-constraints pair is any pair (V ,C) where V ⊆ V and C is a
system of constraints.

Generic case discussion (2/3)

1 Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2 S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3 S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4 Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5 We say that T refines S whenever the following 3 properties all
hold:

a we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
b we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

c (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6 We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7 Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1 Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2 S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3 S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4 Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5 We say that T refines S whenever the following 3 properties all
hold:

a we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
b we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

c (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6 We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7 Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1 Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2 S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3 S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4 Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5 We say that T refines S whenever the following 3 properties all
hold:

a we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
b we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

c (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6 We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7 Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1 Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2 S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3 S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4 Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5 We say that T refines S whenever the following 3 properties all
hold:

a we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
b we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

c (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6 We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7 Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1 Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2 S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3 S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4 Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5 We say that T refines S whenever the following 3 properties all
hold:

a we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),

b we have: ⋃e
i=1 Vi = ⋃f

i=1Wi ,
c (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6 We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7 Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1 Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2 S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3 S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4 Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5 We say that T refines S whenever the following 3 properties all
hold:

a we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
b we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

c (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6 We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7 Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1 Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2 S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3 S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4 Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5 We say that T refines S whenever the following 3 properties all
hold:

a we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
b we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

c (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6 We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7 Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1 Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2 S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3 S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4 Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5 We say that T refines S whenever the following 3 properties all
hold:

a we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
b we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

c (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6 We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7 Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

Generic case discussion (2/3)

1 Let S = (V1,C1), . . . , (Ve ,Ce) be a sequence of val.-constr. pairs.

2 S is irredundant, if, for all 1 ≤ i , j ≤ e, we have
i ≠ j Ô⇒ Z(Ci) /⊆ Z(Cj).

3 S is non-overlapping, if, for all 1 ≤ i < j ≤ e, we have
Z(Ci) ∩ Z(Cj) = ∅.

4 Let T = (W1,D1), . . . , (Wf ,Df) be a second sequence of
value-constraint pairs.

5 We say that T refines S whenever the following 3 properties all
hold:

a we have: ⋃e
i=1 Z(Ci) = ⋃f

i=1 Z(Di),
b we have: ⋃e

i=1 Vi = ⋃f
i=1Wi ,

c (∀i , 1 ≤ i ≤ f) (∃j ,1 ≤ j ≤ e) Z(Di) ⊆ Z(Cj) and Vj ⊆Wi .

6 We assume that we have a procedure that, for any system of
constraints C , decides whether C is consistent or not.

7 Then, there exists an algorithm that, for the sequence S computes a
non-overlapping sequence T refining S .

“Generic” case discussion (3/3)

1 Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.

2 Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3 Consider two systems of constraints C1 and C2

4 For each constraint γ ∶ p(x) ≥ 0 of C1

a γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
b γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
c γ is cut over C2 if γ neither valid nor separating over C2.
d If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5 Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1 Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.
2 Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3 Consider two systems of constraints C1 and C2

4 For each constraint γ ∶ p(x) ≥ 0 of C1

a γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
b γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
c γ is cut over C2 if γ neither valid nor separating over C2.
d If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5 Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1 Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.
2 Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3 Consider two systems of constraints C1 and C2

4 For each constraint γ ∶ p(x) ≥ 0 of C1

a γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
b γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
c γ is cut over C2 if γ neither valid nor separating over C2.
d If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5 Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1 Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.
2 Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3 Consider two systems of constraints C1 and C2

4 For each constraint γ ∶ p(x) ≥ 0 of C1

a γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
b γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
c γ is cut over C2 if γ neither valid nor separating over C2.
d If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5 Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1 Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.
2 Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3 Consider two systems of constraints C1 and C2

4 For each constraint γ ∶ p(x) ≥ 0 of C1

a γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)

b γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
c γ is cut over C2 if γ neither valid nor separating over C2.
d If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5 Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1 Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.
2 Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3 Consider two systems of constraints C1 and C2

4 For each constraint γ ∶ p(x) ≥ 0 of C1

a γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
b γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)

c γ is cut over C2 if γ neither valid nor separating over C2.
d If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5 Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1 Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.
2 Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3 Consider two systems of constraints C1 and C2

4 For each constraint γ ∶ p(x) ≥ 0 of C1

a γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
b γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
c γ is cut over C2 if γ neither valid nor separating over C2.

d If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a
constraint of C2, then (p,u) is a pair of adjacent inequalities.

5 Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1 Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.
2 Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3 Consider two systems of constraints C1 and C2

4 For each constraint γ ∶ p(x) ≥ 0 of C1

a γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
b γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
c γ is cut over C2 if γ neither valid nor separating over C2.
d If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5 Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

“Generic” case discussion (3/3)

1 Assume A = B = Z and P = {≤,≥,≤,≥,=,≠}.
2 Because A = B = Z, we can normalize systems of constraints to use
≥ only.

3 Consider two systems of constraints C1 and C2

4 For each constraint γ ∶ p(x) ≥ 0 of C1

a γ is valid over C2 if p(x) ≥ 0 for all x ∈ Z(C2)
b γ is separating over C2 if p(x) ≤ −1 for all x ∈ Z(C2)
c γ is cut over C2 if γ neither valid nor separating over C2.
d If for γ ∶ p(x) ≥ 0 of C1 we have p(x) = −1 − u(x) and u(x) ≥ 0 is a

constraint of C2, then (p,u) is a pair of adjacent inequalities.

5 Theorem: If (p,u) is a pair of adjacent inequalities, and if all other
constraints of C1 (resp. C2) are valid on C2 (resp. C1) then the
system of constraints C3 consisting of all those valid constraints
satisfies Z(C3) = Z(C1) ∪ Z(C2).

Concluding remarks

Summary and notes

1 We have presented Brion’s formula and Barvinok’s algorithm for
computing the number of integer points of a polytope.

2 We have discussed our adaptation of those works to the case of
parametric polyhedra and its implementation in Maple.

3 Another adaptation to this parametric case, tailored to compiler
optimization, was led by Sven Verdoolaege and is part of a C library
called barvinok.

Work in progress

1 Our Maple implementation aims at supporting Presburger
arithmetic

2 This implementation is designed to extend to parametric polyhedra
Ax⃗ ≤ b⃗ where parameters appear not only in b⃗ but also in A.

3 Our current work focuses on minimizing the number of cases in the
discussion and controlling expression swell.

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Presburger arithmetic (1/2)

Definition 35
The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.
For a more formal definition, see Wikipedia’s Presburger arithmetic.

Remark 3
A Presburger formula F in prenex normal form has the form:

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn), (6.1)
where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula,

3 y1, . . . , yn are free (or unbounded) variables.

https://en.wikipedia.org/wiki/Presburger_arithmetic

Presburger arithmetic (1/2)

Definition 35
The language of Presburger arithmetic is:

1 the first-order theory of the integers with addition, equality and order

2 extended by the divisibility predicates Dk ∶ x z→ k ∣ x , for all k ∈ Z>0.
For a more formal definition, see Wikipedia’s Presburger arithmetic.

Remark 3
A Presburger formula F in prenex normal form has the form:

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn), (6.1)
where:

1 Q1x1⋯Qmxm is a sequence of quantifiers (existential or universal)
and bound variables,

2 ϕ(x1, . . . , xm, y1, . . . , yn) is a quantifier-free formula,

3 y1, . . . , yn are free (or unbounded) variables.

https://en.wikipedia.org/wiki/Presburger_arithmetic

Presburger arithmetic (1/2)
Remark 4

1 We shall assume that any quantifier-free formula
F (x1, . . . , xm, y1, . . . , yn) is in disjunctive normal form (DNF).

2 Hence, it has the form:
ϕ(x1, . . . , xm, y1, . . . , yn) = ⋁

i
⋀
j

Φij(x1, . . . , xm, y1, . . . , yn), (6.2)

where:

a each Φij(x1, . . . , xm, y1, . . . , yn) is an atomic formula (or atom),
b thus a formula free of quantifiers and connectives.

Remark 5
We can assume that each atom is either

1 a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
2 or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where

1 ℓ(x1, . . . , xm, y1, . . . , yn) is a linear polynomial, that is, with total
degree at most 1, in the variables x1, . . . , xm, y1, . . . , yn, and with
integer coefficients.

2 Of course, each variable is meant to take values in Z.

Presburger arithmetic (1/2)
Remark 4

1 We shall assume that any quantifier-free formula
F (x1, . . . , xm, y1, . . . , yn) is in disjunctive normal form (DNF).

2 Hence, it has the form:
ϕ(x1, . . . , xm, y1, . . . , yn) = ⋁

i
⋀
j

Φij(x1, . . . , xm, y1, . . . , yn), (6.2)

where:

a each Φij(x1, . . . , xm, y1, . . . , yn) is an atomic formula (or atom),
b thus a formula free of quantifiers and connectives.

Remark 5
We can assume that each atom is either

1 a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
2 or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where

1 ℓ(x1, . . . , xm, y1, . . . , yn) is a linear polynomial, that is, with total
degree at most 1, in the variables x1, . . . , xm, y1, . . . , yn, and with
integer coefficients.

2 Of course, each variable is meant to take values in Z.

Presburger arithmetic (1/2)
Remark 4

1 We shall assume that any quantifier-free formula
F (x1, . . . , xm, y1, . . . , yn) is in disjunctive normal form (DNF).

2 Hence, it has the form:
ϕ(x1, . . . , xm, y1, . . . , yn) = ⋁

i
⋀
j

Φij(x1, . . . , xm, y1, . . . , yn), (6.2)

where:

a each Φij(x1, . . . , xm, y1, . . . , yn) is an atomic formula (or atom),
b thus a formula free of quantifiers and connectives.

Remark 5
We can assume that each atom is either

1 a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
2 or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where

1 ℓ(x1, . . . , xm, y1, . . . , yn) is a linear polynomial, that is, with total
degree at most 1, in the variables x1, . . . , xm, y1, . . . , yn, and with
integer coefficients.

2 Of course, each variable is meant to take values in Z.

Presburger arithmetic (1/2)
Remark 4

1 We shall assume that any quantifier-free formula
F (x1, . . . , xm, y1, . . . , yn) is in disjunctive normal form (DNF).

2 Hence, it has the form:
ϕ(x1, . . . , xm, y1, . . . , yn) = ⋁

i
⋀
j

Φij(x1, . . . , xm, y1, . . . , yn), (6.2)

where:

a each Φij(x1, . . . , xm, y1, . . . , yn) is an atomic formula (or atom),
b thus a formula free of quantifiers and connectives.

Remark 5
We can assume that each atom is either

1 a non-strict inequality ℓ(x1, . . . , xm, y1, . . . , yn) ≤ 0,
2 or a divisibility relation k ∣ ℓ(x1, . . . , xm, y1, . . . , yn),

where

1 ℓ(x1, . . . , xm, y1, . . . , yn) is a linear polynomial, that is, with total
degree at most 1, in the variables x1, . . . , xm, y1, . . . , yn, and with
integer coefficients.

2 Of course, each variable is meant to take values in Z.

Quantifier elimination (1/2)

Theorem 36
Presburger arithmetic admits quantifier elimination.

Proof.
1 See the thesis of Mojżesz Presburger [20] the paper of David
Cooper [4], and Christoph Haase’s
Survival Guide to Presburger Arithmetic [7].

2 See also our own proof in a few slides.

Remark 6
Therefore, our goal is to determine the set D(y1, . . . , yn) ⊆ Zn of ALL
integer tuples of (y1, . . . , yn) for which the formula
F (x1, . . . , xm, y1, . . . , yn) is true.

Quantifier elimination (1/2)

Theorem 36
Presburger arithmetic admits quantifier elimination.

Proof.
1 See the thesis of Mojżesz Presburger [20] the paper of David
Cooper [4], and Christoph Haase’s
Survival Guide to Presburger Arithmetic [7].

2 See also our own proof in a few slides.

Remark 6
Therefore, our goal is to determine the set D(y1, . . . , yn) ⊆ Zn of ALL
integer tuples of (y1, . . . , yn) for which the formula
F (x1, . . . , xm, y1, . . . , yn) is true.

Quantifier elimination (2/2)

Remark 7
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),

2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),
c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (6.3)

where

1 C ∈ Zr×m is a matrix, and
2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.

Quantifier elimination (2/2)

Remark 7
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),
c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (6.3)

where

1 C ∈ Zr×m is a matrix, and
2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.

Quantifier elimination (2/2)

Remark 7
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),
c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (6.3)

where

1 C ∈ Zr×m is a matrix, and
2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.

Quantifier elimination (2/2)

Remark 7
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),
c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (6.3)

where

1 C ∈ Zr×m is a matrix, and
2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.

Quantifier elimination (2/2)

Remark 7
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),

c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (6.3)

where

1 C ∈ Zr×m is a matrix, and
2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.

Quantifier elimination (2/2)

Remark 7
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),
c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (6.3)

where

1 C ∈ Zr×m is a matrix, and

2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.

Quantifier elimination (2/2)

Remark 7
1 Recall

F = Q1x1⋯Qmxm ϕ(x1, . . . , xm, y1, . . . , yn),
2 If m = 0, then it “suffices” to determine the tuples of integer values
(y1, . . . , yn) for which ϕ(x1, . . . , xm, y1, . . . , yn) is true.

3 Suppose m > 0. By induction, assume also F = Qx1F ′, where F ′ is
quantifier-free.

a If Q = ∃, then we are now dealing with integer projection, see next
section.

b If Q = ∀, then we can replace ∀x1 F ′ with ¬(∃x1 ¬(F ′)),
c Whenever possible, we should make use of rules like:

∀x1⋯∀xm C
⎛
⎜
⎝

x1
⋮
xm

⎞
⎟
⎠
= q ⇒ C = 0 ⋀ q = 0, (6.3)

where

1 C ∈ Zr×m is a matrix, and
2 q ∈ (Z[y1, . . . , ym])r is a vector of linear polynomials.

Coarsening the atoms

Remark 8
In Cooper’s algorithm, when processing ∃x1 F ′, the formula F ′ uses the
following four types of atoms:

Ay < ax1, ax1 < Ay , k ∣ (ax1 +Ay), and ¬(k ∣ (ax1 +Ay)) , (6.4)
where a ∈ Z and Ay ∈ Z[y1, . . . , yn] is a linear polynomial.

Remark 9
We can rearrange our quantifier-free formula to:

ϕ(x1, . . . , xm, y1, . . . , yn) = ⋁
i

Zi(x1, . . . , xm, y1, . . . , yn), (6.5)

where each Zi is a predicate of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1
⋮
xm
y1
⋮
ym

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ ZPolyhedron(Pi ,Li), (6.6)

for some polyhedra Pi and integer lattices Li .
We call such a predicate a Z-polyhedron predicate.

Coarsening the atoms

Remark 8
In Cooper’s algorithm, when processing ∃x1 F ′, the formula F ′ uses the
following four types of atoms:

Ay < ax1, ax1 < Ay , k ∣ (ax1 +Ay), and ¬(k ∣ (ax1 +Ay)) , (6.4)
where a ∈ Z and Ay ∈ Z[y1, . . . , yn] is a linear polynomial.

Remark 9
We can rearrange our quantifier-free formula to:

ϕ(x1, . . . , xm, y1, . . . , yn) = ⋁
i

Zi(x1, . . . , xm, y1, . . . , yn), (6.5)

where each Zi is a predicate of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1
⋮
xm
y1
⋮
ym

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ ZPolyhedron(Pi ,Li), (6.6)

for some polyhedra Pi and integer lattices Li .
We call such a predicate a Z-polyhedron predicate.

Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,

2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (6.7)

Theorem 37 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.

Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (6.7)

Theorem 37 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.

Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (6.7)

Theorem 37 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.

Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (6.7)

Theorem 37 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.

Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (6.7)

Theorem 37 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.

Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .

7 Consider the system
N z ≡ q mod m. (6.7)

Theorem 37 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.

Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (6.7)

Theorem 37 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.

Solving parametric systems of linear congruences
1 Let r ,n ∈ Z>0,
2 let N ∈ Zr×n be an integer matrix,

3 let z be an n-dimensional column vector whose coordinates are n
independent integral variables z1, . . . , zn,

4 let q be an r -dimensional column vector whose coordinates are linear
polynomials q1, . . . ,qr ∈ Z[w1, . . . ,wν],

5 we regard the variables w = w1, . . . ,wν as parameters,

6 let m ∈ Z>0r .
7 Consider the system

N z ≡ q mod m. (6.7)

Theorem 37 (parametric multivariate CRT)
The values of (w1, . . . ,wν) for which the above system has solutions
form a lattice of Zν . Moreover, for each value of (w1, . . . ,wν), the
z-solutions form a lattice of Zn.

Proof.
Compute the Hermite normal forms of the appropriate matrices.

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

Integer projection: n = 1

Remark 10
1 From the above section, we consider the formula
∃x ϕ(x , y1, . . . , yn), where ϕ(x , y1, . . . , yn) = ⋁

i

ϕi(x , y1, . . . , yn),

(6.8)
where ϕi(x , y1, . . . , yn) is a conjunction of congruence relations and
non-strict inequalities.

2 We want the values of y = y1, . . . yn so that ∃x ϕ(x , y1, . . . , yn) holds.
3 We can further reduce the problem as follows.

Remark 11

1 Let f1, . . . , fs , g1, . . . ,gr ∈ Z[x ,y] be linear and let k1, . . . , kr ∈ Z>0.
2 Consider the formula:

F (y) ∶ (∃x ∈ Z)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 ≤ 0
⋮ ⋮ ⋮
fs ≤ 0

∧
g1 ≡ 0 mod k1
⋮ ⋮ ⋮

gr ≡ 0 mod kr

(6.9)

3 We shall determine the set D(y) of integer tuples (y1, . . . yn) for
which F (y) holds. We call D(y) the integer projection of F (y).

Integer projection: n = 1

Remark 10
1 From the above section, we consider the formula
∃x ϕ(x , y1, . . . , yn), where ϕ(x , y1, . . . , yn) = ⋁

i

ϕi(x , y1, . . . , yn),

(6.8)
where ϕi(x , y1, . . . , yn) is a conjunction of congruence relations and
non-strict inequalities.

2 We want the values of y = y1, . . . yn so that ∃x ϕ(x , y1, . . . , yn) holds.

3 We can further reduce the problem as follows.

Remark 11

1 Let f1, . . . , fs , g1, . . . ,gr ∈ Z[x ,y] be linear and let k1, . . . , kr ∈ Z>0.
2 Consider the formula:

F (y) ∶ (∃x ∈ Z)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 ≤ 0
⋮ ⋮ ⋮
fs ≤ 0

∧
g1 ≡ 0 mod k1
⋮ ⋮ ⋮

gr ≡ 0 mod kr

(6.9)

3 We shall determine the set D(y) of integer tuples (y1, . . . yn) for
which F (y) holds. We call D(y) the integer projection of F (y).

Integer projection: n = 1

Remark 10
1 From the above section, we consider the formula
∃x ϕ(x , y1, . . . , yn), where ϕ(x , y1, . . . , yn) = ⋁

i

ϕi(x , y1, . . . , yn),

(6.8)
where ϕi(x , y1, . . . , yn) is a conjunction of congruence relations and
non-strict inequalities.

2 We want the values of y = y1, . . . yn so that ∃x ϕ(x , y1, . . . , yn) holds.
3 We can further reduce the problem as follows.

Remark 11

1 Let f1, . . . , fs , g1, . . . ,gr ∈ Z[x ,y] be linear and let k1, . . . , kr ∈ Z>0.
2 Consider the formula:

F (y) ∶ (∃x ∈ Z)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 ≤ 0
⋮ ⋮ ⋮
fs ≤ 0

∧
g1 ≡ 0 mod k1
⋮ ⋮ ⋮

gr ≡ 0 mod kr

(6.9)

3 We shall determine the set D(y) of integer tuples (y1, . . . yn) for
which F (y) holds. We call D(y) the integer projection of F (y).

Integer projection: n = 1

Remark 10
1 From the above section, we consider the formula
∃x ϕ(x , y1, . . . , yn), where ϕ(x , y1, . . . , yn) = ⋁

i

ϕi(x , y1, . . . , yn),

(6.8)
where ϕi(x , y1, . . . , yn) is a conjunction of congruence relations and
non-strict inequalities.

2 We want the values of y = y1, . . . yn so that ∃x ϕ(x , y1, . . . , yn) holds.
3 We can further reduce the problem as follows.

Remark 11
1 Let f1, . . . , fs , g1, . . . ,gr ∈ Z[x ,y] be linear and let k1, . . . , kr ∈ Z>0.

2 Consider the formula:

F (y) ∶ (∃x ∈ Z)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 ≤ 0
⋮ ⋮ ⋮
fs ≤ 0

∧
g1 ≡ 0 mod k1
⋮ ⋮ ⋮

gr ≡ 0 mod kr

(6.9)

3 We shall determine the set D(y) of integer tuples (y1, . . . yn) for
which F (y) holds. We call D(y) the integer projection of F (y).

Integer projection: n = 1

Remark 10
1 From the above section, we consider the formula
∃x ϕ(x , y1, . . . , yn), where ϕ(x , y1, . . . , yn) = ⋁

i

ϕi(x , y1, . . . , yn),

(6.8)
where ϕi(x , y1, . . . , yn) is a conjunction of congruence relations and
non-strict inequalities.

2 We want the values of y = y1, . . . yn so that ∃x ϕ(x , y1, . . . , yn) holds.
3 We can further reduce the problem as follows.

Remark 11
1 Let f1, . . . , fs , g1, . . . ,gr ∈ Z[x ,y] be linear and let k1, . . . , kr ∈ Z>0.
2 Consider the formula:

F (y) ∶ (∃x ∈ Z)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 ≤ 0
⋮ ⋮ ⋮
fs ≤ 0

∧
g1 ≡ 0 mod k1
⋮ ⋮ ⋮

gr ≡ 0 mod kr

(6.9)

3 We shall determine the set D(y) of integer tuples (y1, . . . yn) for
which F (y) holds. We call D(y) the integer projection of F (y).

Integer projection: n = 1

Remark 10
1 From the above section, we consider the formula
∃x ϕ(x , y1, . . . , yn), where ϕ(x , y1, . . . , yn) = ⋁

i

ϕi(x , y1, . . . , yn),

(6.8)
where ϕi(x , y1, . . . , yn) is a conjunction of congruence relations and
non-strict inequalities.

2 We want the values of y = y1, . . . yn so that ∃x ϕ(x , y1, . . . , yn) holds.
3 We can further reduce the problem as follows.

Remark 11
1 Let f1, . . . , fs , g1, . . . ,gr ∈ Z[x ,y] be linear and let k1, . . . , kr ∈ Z>0.
2 Consider the formula:

F (y) ∶ (∃x ∈ Z)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1 ≤ 0
⋮ ⋮ ⋮
fs ≤ 0

∧
g1 ≡ 0 mod k1
⋮ ⋮ ⋮

gr ≡ 0 mod kr

(6.9)

3 We shall determine the set D(y) of integer tuples (y1, . . . yn) for
which F (y) holds. We call D(y) the integer projection of F (y).

Integer projection: n = 1, removing congruences

Remark 12
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We apply Theorem 37 null.

3 Now some of x , y1, . . . , yn are given by a lattice.

4 We should also check for implicit equations.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least the same number of variables from our system

of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
integer hull algorithm.

8 If that process does not solve for x, then go to next slide.

Integer projection: n = 1, removing congruences

Remark 12
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We apply Theorem 37 null.

3 Now some of x , y1, . . . , yn are given by a lattice.

4 We should also check for implicit equations.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least the same number of variables from our system

of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
integer hull algorithm.

8 If that process does not solve for x, then go to next slide.

Integer projection: n = 1, removing congruences

Remark 12
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We apply Theorem 37 null.

3 Now some of x , y1, . . . , yn are given by a lattice.

4 We should also check for implicit equations.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least the same number of variables from our system

of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
integer hull algorithm.

8 If that process does not solve for x, then go to next slide.

Integer projection: n = 1, removing congruences

Remark 12
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We apply Theorem 37 null.

3 Now some of x , y1, . . . , yn are given by a lattice.

4 We should also check for implicit equations.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least the same number of variables from our system

of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
integer hull algorithm.

8 If that process does not solve for x, then go to next slide.

Integer projection: n = 1, removing congruences

Remark 12
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We apply Theorem 37 null.

3 Now some of x , y1, . . . , yn are given by a lattice.

4 We should also check for implicit equations.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least the same number of variables from our system

of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
integer hull algorithm.

8 If that process does not solve for x, then go to next slide.

Integer projection: n = 1, removing congruences

Remark 12
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We apply Theorem 37 null.

3 Now some of x , y1, . . . , yn are given by a lattice.

4 We should also check for implicit equations.

5 This process

a introduces new variables (in order to define the lattice),

b but eliminates at least the same number of variables from our system
of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
integer hull algorithm.

8 If that process does not solve for x, then go to next slide.

Integer projection: n = 1, removing congruences

Remark 12
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We apply Theorem 37 null.

3 Now some of x , y1, . . . , yn are given by a lattice.

4 We should also check for implicit equations.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least the same number of variables from our system

of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
integer hull algorithm.

8 If that process does not solve for x, then go to next slide.

Integer projection: n = 1, removing congruences

Remark 12
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We apply Theorem 37 null.

3 Now some of x , y1, . . . , yn are given by a lattice.

4 We should also check for implicit equations.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least the same number of variables from our system

of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
integer hull algorithm.

8 If that process does not solve for x, then go to next slide.

Integer projection: n = 1, removing congruences

Remark 12
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We apply Theorem 37 null.

3 Now some of x , y1, . . . , yn are given by a lattice.

4 We should also check for implicit equations.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least the same number of variables from our system

of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
integer hull algorithm.

8 If that process does not solve for x, then go to next slide.

Integer projection: n = 1, removing congruences

Remark 12
1 Suppose that r > 0 holds, that is, we do have congruences.

2 We apply Theorem 37 null.

3 Now some of x , y1, . . . , yn are given by a lattice.

4 We should also check for implicit equations.

5 This process

a introduces new variables (in order to define the lattice),
b but eliminates at least the same number of variables from our system

of linear inequalities

6 As a result, we now have a Z-polyhedron predicate.

7 If that process solves for x, then our problem becomes that of
describing the points of a Z-polyhedron, which can be done by our
integer hull algorithm.

8 If that process does not solve for x, then go to next slide.

Integer projection: n = 1, no congruences, 2 inequalities

Remark 13
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (6.10)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (6.9 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (6.11)

7 We present a first formula for D(y) based on Harris Williams [23, 24]

8 Then, we present a second one based on William Pugh’s Omega
test [16, 17].

Integer projection: n = 1, no congruences, 2 inequalities

Remark 13
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (6.10)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (6.9 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (6.11)

7 We present a first formula for D(y) based on Harris Williams [23, 24]

8 Then, we present a second one based on William Pugh’s Omega
test [16, 17].

Integer projection: n = 1, no congruences, 2 inequalities

Remark 13
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (6.10)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (6.9 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (6.11)

7 We present a first formula for D(y) based on Harris Williams [23, 24]

8 Then, we present a second one based on William Pugh’s Omega
test [16, 17].

Integer projection: n = 1, no congruences, 2 inequalities

Remark 13
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (6.10)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (6.9 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (6.11)

7 We present a first formula for D(y) based on Harris Williams [23, 24]

8 Then, we present a second one based on William Pugh’s Omega
test [16, 17].

Integer projection: n = 1, no congruences, 2 inequalities

Remark 13
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (6.10)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (6.9 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (6.11)

7 We present a first formula for D(y) based on Harris Williams [23, 24]

8 Then, we present a second one based on William Pugh’s Omega
test [16, 17].

Integer projection: n = 1, no congruences, 2 inequalities

Remark 13
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (6.10)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (6.9 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (6.11)

7 We present a first formula for D(y) based on Harris Williams [23, 24]

8 Then, we present a second one based on William Pugh’s Omega
test [16, 17].

Integer projection: n = 1, no congruences, 2 inequalities

Remark 13
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (6.10)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (6.9 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (6.11)

7 We present a first formula for D(y) based on Harris Williams [23, 24]

8 Then, we present a second one based on William Pugh’s Omega
test [16, 17].

Integer projection: n = 1, no congruences, 2 inequalities

Remark 13
1 We have used the congruences and we can focus on the inequalities.

2 We start with the case s = 2 and rename f1, f2 to A,B.

3 We also write:
A = Ay − a x , and B = −By + b x , (6.10)

where a,b ∈ Z are non-zero and where Ay,By ∈ Z[y] are linear

4 We further assume that a > 0 and b > 0 both hold.

5 With these assumptions, we call the inequalities A ≤ 0 and B ≤ 0,
respectively a lower bound and an upper bound for x.

6 Observe that Formula (6.9 null) simplifies to:
F (y) ∶ (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By), (6.11)

7 We present a first formula for D(y) based on Harris Williams [23, 24]

8 Then, we present a second one based on William Pugh’s Omega
test [16, 17].

Williams-style Projection

Theorem 38
Let ℓ = lcm(a,b), b′ = ℓ/a and a′ = ℓ/b. For 0 ≤ k < b, define

Ek ∶= {y ∣ rem(By,b) = k}.

Then, the following two formulas are equivalent:

1 F(y): (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By),
2 ⋁k=b−1

k=0 (y ∈ Ek) ∧ (a′k ≤ a′By − b′Ay).

Proof.

1 If a = 1 or b = 1 holds, then: F (y) ⇐⇒ b′Ay ≤ a′By.

2 From now on, assume a > 1 and b > 1 both hold. Observe that

F (y) ⇐⇒ (∃x ∈ Z) (b′Ay ≤ ℓ x) ∧ (ℓ x ≤ a′By).
3 Hence, F (y) says that a multiple of ℓ lies between b′Ay and a′By).
4 Thus, F (y) ⇐⇒ b′Ay ≤ a′By − rem(a′By, ℓ).
5 That is, F (y) ⇐⇒ b′Ay ≤ a′(By − rem(By,b)).

Williams-style Projection

Theorem 38
Let ℓ = lcm(a,b), b′ = ℓ/a and a′ = ℓ/b. For 0 ≤ k < b, define

Ek ∶= {y ∣ rem(By,b) = k}.

Then, the following two formulas are equivalent:

1 F(y): (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By),
2 ⋁k=b−1

k=0 (y ∈ Ek) ∧ (a′k ≤ a′By − b′Ay).

Proof.
1 If a = 1 or b = 1 holds, then: F (y) ⇐⇒ b′Ay ≤ a′By.

2 From now on, assume a > 1 and b > 1 both hold. Observe that

F (y) ⇐⇒ (∃x ∈ Z) (b′Ay ≤ ℓ x) ∧ (ℓ x ≤ a′By).
3 Hence, F (y) says that a multiple of ℓ lies between b′Ay and a′By).
4 Thus, F (y) ⇐⇒ b′Ay ≤ a′By − rem(a′By, ℓ).
5 That is, F (y) ⇐⇒ b′Ay ≤ a′(By − rem(By,b)).

Williams-style Projection

Theorem 38
Let ℓ = lcm(a,b), b′ = ℓ/a and a′ = ℓ/b. For 0 ≤ k < b, define

Ek ∶= {y ∣ rem(By,b) = k}.

Then, the following two formulas are equivalent:

1 F(y): (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By),
2 ⋁k=b−1

k=0 (y ∈ Ek) ∧ (a′k ≤ a′By − b′Ay).

Proof.
1 If a = 1 or b = 1 holds, then: F (y) ⇐⇒ b′Ay ≤ a′By.

2 From now on, assume a > 1 and b > 1 both hold. Observe that

F (y) ⇐⇒ (∃x ∈ Z) (b′Ay ≤ ℓ x) ∧ (ℓ x ≤ a′By).

3 Hence, F (y) says that a multiple of ℓ lies between b′Ay and a′By).
4 Thus, F (y) ⇐⇒ b′Ay ≤ a′By − rem(a′By, ℓ).
5 That is, F (y) ⇐⇒ b′Ay ≤ a′(By − rem(By,b)).

Williams-style Projection

Theorem 38
Let ℓ = lcm(a,b), b′ = ℓ/a and a′ = ℓ/b. For 0 ≤ k < b, define

Ek ∶= {y ∣ rem(By,b) = k}.

Then, the following two formulas are equivalent:

1 F(y): (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By),
2 ⋁k=b−1

k=0 (y ∈ Ek) ∧ (a′k ≤ a′By − b′Ay).

Proof.
1 If a = 1 or b = 1 holds, then: F (y) ⇐⇒ b′Ay ≤ a′By.

2 From now on, assume a > 1 and b > 1 both hold. Observe that

F (y) ⇐⇒ (∃x ∈ Z) (b′Ay ≤ ℓ x) ∧ (ℓ x ≤ a′By).
3 Hence, F (y) says that a multiple of ℓ lies between b′Ay and a′By).

4 Thus, F (y) ⇐⇒ b′Ay ≤ a′By − rem(a′By, ℓ).
5 That is, F (y) ⇐⇒ b′Ay ≤ a′(By − rem(By,b)).

Williams-style Projection

Theorem 38
Let ℓ = lcm(a,b), b′ = ℓ/a and a′ = ℓ/b. For 0 ≤ k < b, define

Ek ∶= {y ∣ rem(By,b) = k}.

Then, the following two formulas are equivalent:

1 F(y): (∃x ∈ Z) (Ay ≤ a x) ∧ (b x ≤ By),
2 ⋁k=b−1

k=0 (y ∈ Ek) ∧ (a′k ≤ a′By − b′Ay).

Proof.
1 If a = 1 or b = 1 holds, then: F (y) ⇐⇒ b′Ay ≤ a′By.

2 From now on, assume a > 1 and b > 1 both hold. Observe that

F (y) ⇐⇒ (∃x ∈ Z) (b′Ay ≤ ℓ x) ∧ (ℓ x ≤ a′By).
3 Hence, F (y) says that a multiple of ℓ lies between b′Ay and a′By).
4 Thus, F (y) ⇐⇒ b′Ay ≤ a′By − rem(a′By, ℓ).
5 That is, F (y) ⇐⇒ b′Ay ≤ a′(By − rem(By,b)).

Pugh’s omega test (1/2)
Lemma 39 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (6.12)
then F (y) holds.

Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (6.13)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (6.14)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (6.15)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.

Pugh’s omega test (1/2)
Lemma 39 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (6.12)
then F (y) holds.
Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (6.13)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (6.14)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (6.15)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.

Pugh’s omega test (1/2)
Lemma 39 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (6.12)
then F (y) holds.
Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (6.13)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (6.14)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (6.15)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.

Pugh’s omega test (1/2)
Lemma 39 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (6.12)
then F (y) holds.
Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (6.13)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (6.14)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (6.15)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.

Pugh’s omega test (1/2)
Lemma 39 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (6.12)
then F (y) holds.
Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (6.13)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (6.14)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (6.15)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.

Pugh’s omega test (1/2)
Lemma 39 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (6.12)
then F (y) holds.
Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (6.13)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (6.14)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (6.15)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.

Pugh’s omega test (1/2)
Lemma 39 (William Pugh)
If we have:

aBy − bAy ≥ (a − 1)(b − 1) (6.12)
then F (y) holds.
Proof.

1 Consider the closed interval: I ∶= (Ay

a
,
By

b
).

2 If I does not contain an integer, then we have:

i < Ay

a
≤ By

b
< i + 1, where i = ⌊Ay

a
⌋ . (6.13)

3 Let ρ ∶= rem(Ay, a). Since i < Ay

a
holds, we have:

Ay = i a + ρ and 0 < ρ < a, (6.14)

4 from which we deduce:
Ay

a
− i ≥ 1

a
.

5 Similarly, we obtain: i + 1 − By

b
≥ 1

b
.

6 From the above two inequalities, elementary manipulations yield:
aBy − bAy ≤ ab − a − b. (6.15)

7 Therefore, if the above inequality does not hold, that is, if
aBy − bAy ≥ (a − 1)(b − 1) does hold, then I contains an integer.

Pugh’s omega test (2/2)

Theorem 40
Define κ(a,b) ∶= ⌈ (a−1)(b−1)

a′
⌉. Then, Formula F (y) is equivalent to:

((a − 1)(b − 1) ≤ aBy − bAy)
k=b−1
⋁

k=κ(a,b)
(y ∈ Ek) ∧ (a′k ≤ a′By − b′Ay) .

(6.16)

Proof.
This is a direct consequence of William Pugh’s lemma and Harris
Williams’ projection formula

Remark 14
1 William Pugh’s lemma reduces significantly the number of “cuts”

2 To take a concrete example, say with a = 7 and b = 11:
a with Williams’ projection alone k ranges from 0 to 10,
b with William Pugh’s lemma, k ranges from 8 to 10.

Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).

1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (6.17)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y, and

b C1, . . . ,Ce are systems of congruences, for B ranging through the
upper bounds of x .

c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .

Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (6.17)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y, and

b C1, . . . ,Ce are systems of congruences, for B ranging through the
upper bounds of x .

c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .

Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (6.17)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y, and

b C1, . . . ,Ce are systems of congruences, for B ranging through the
upper bounds of x .

c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .

Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (6.17)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y, and

b C1, . . . ,Ce are systems of congruences, for B ranging through the
upper bounds of x .

c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .

Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (6.17)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y, and

b C1, . . . ,Ce are systems of congruences, for B ranging through the
upper bounds of x .

c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .

Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (6.17)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y, and

b C1, . . . ,Ce are systems of congruences, for B ranging through the
upper bounds of x .

c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .

Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (6.17)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y, and

b C1, . . . ,Ce are systems of congruences, for B ranging through the
upper bounds of x .

c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .

Integer projection: n = 1, s inequalities

We now describe a procedure Projection(f1, . . . , fs ; x) computing D(y).
1 If f1, . . . , fs only count lower (resp. upper) bounds for x , then return
true.

2 Initialize D(y) to true.

3 For each pair (A,B) consisting of a lower bound and an upper
bound of x , replace D(y) with D(y) ∧ Projection(A,B), where
Projection(A,B) is given by Pugh’s omega test.

4 Convert D(y) to DNF yielding a formula of the form
S0 ∨ (C1 ∧ S1) ∨⋯ ∨ (Ce ∧ Se) (6.17)

where

a S0,S1, . . . ,Se are systems of non-strict linear inequalities in the
variables y, and

b C1, . . . ,Ce are systems of congruences, for B ranging through the
upper bounds of x .

c S0 is the conjunction of the ((a − 1)(b − 1) ≤ aBy − bAy), for all pairs
(A,B) of lower and upper bounds of x .

Plan
1. Overview
2. Basic concepts
2.1 Linear, affine, convex and conical hulls
2.2 Polyhedral sets
2.3 Farkas–Minkowsi–Weyl theorem
3. Solving systems of linear inequalities
3.1 Efficient removal of redundant inequalities
3.2 Implementation techniques
3.3 Experimentation and complexity estimates
4. Integer hulls of polyhedra
4.1 Motivations
4.2 Integer hulls, lattices and Z-polyhedra
4.3 An integer hull algorithm
5. Integer point counting for parametric polyhedra
5.1 Motivations and objectives
5.2 Generating functions of non-parametric polyhedral sets
5.3 Integer point counting for parametric polyhedra
6. Quantifier elimination over the integers
6.1 Presburger arithmetic
6.2 Integer projection and quantifier elimination
7. Concluding remarks

References

[1] A. Barvinok and J. E. Pommersheim. “An algorithmic theory of
lattice points in polyhedra”. In:
New perspectives in algebraic combinatorics 38 (1999),
pp. 91–147.

[2] A. I. Barvinok. “A Polynomial Time Algorithm for Counting
Integral Points in Polyhedra When the Dimension is Fixed”. In:
Math. Oper. Res. 19.4 (1994), pp. 769–779.

[3] M. Brion. “Points entiers dans les polyedres convexes”. In:
Annales scientifiques de l’École normale supérieure. Vol. 21. 4.
1988, pp. 653–663.

[4] D. C. Cooper. “Theorem proving in arithmetic without
multiplication”. In: Machine intelligence 7.91-99 (1972), p. 300.

[5] K. Fukuda. The CDD and CDDplus Homepage.
https://www.inf.ethz.ch/personal/fukudak/cdd_home/.

[6] B. Grünbaum. Convex Polytops. New York, NY, USA: Springer,
2003.

[7] C. Haase. “A survival guide to Presburger arithmetic”. In:
ACM SIGLOG News 5.3 (2018), pp. 67–82.

https://www.inf.ethz.ch/personal/fukudak/cdd_home/

[8] R. J. Jing and M. Moreno Maza. “Computing the Integer Points
of a Polyhedron, I: Algorithm”. In: Proceedings of CASC. 2017,
pp. 225–241.

[9] R. J. Jing, M. Moreno-Maza, and D. Talaashrafi. “Complexity
estimates for Fourier-Motzkin elimination”. In:
Proceedings of CASC. Springer. 2020, pp. 282–306.

[10] R. Jing, Y. Lei, C. F. S. Maligec, and M. Moreno Maza.
“Counting the Integer Points of Parametric Polytopes: A Maple
Implementation”. In:
Computer Algebra in Scientific Computing - 26th International Workshop, CASC 2024, Rennes, France, September 2-6, 2024, Proceedings.
Ed. by F. Boulier, C. Mou, T. M. Sadykov, and
E. V. Vorozhtsov. Vol. 14938. Lecture Notes in Computer
Science. Springer, 2024, pp. 140–160. url:
https://doi.org/10.1007/978-3-031-69070-9%5C_9.

[11] R. Jing and M. Moreno Maza. “Computing the Integer Points
of a Polyhedron, I: Algorithm”. In: CASC 2017, Proceedings.
Vol. 10490. LNCS. Springer, 2017, pp. 225–241.

https://doi.org/10.1007/978-3-031-69070-9%5C_9

[12] N. Karmarkar. “A new polynomial-time algorithm for linear
programming”. In:
Proceedings of the sixteenth annual ACM symposium on Theory of computing.
STOC ’84. New York, NY, USA: ACM, 1984, pp. 302–311.
isbn: 0-89791-133-4. doi: 10.1145/800057.808695. url:
http://doi.acm.org/10.1145/800057.808695.

[13] V. Loechner.
PolyLib: A library for manipulating parameterized polyhedra.
1999.

[14] J. A. D. Loera, R. Hemmecke, J. Tauzer, and R. Yoshida.
“Effective lattice point counting in rational convex polytopes”.
In: J. Symb. Comput. 38.4 (2004), pp. 1273–1302.

[15] M. Moreno Maza and L. Wang. “Computing the Integer Hull of
Convex Polyhedral Sets”. In: CASC 2022, Proceedings. Ed. by
F. Boulier, M. England, T. M. Sadykov, and E. V. Vorozhtsov.
Vol. 13366. Lecture Notes in Computer Science. Springer, 2022,
pp. 246–267.

[16] W. Pugh. “A Practical Algorithm for Exact Array Dependence
Analysis”. In: Commun. ACM 35.8 (1992), pp. 102–114.

https://doi.org/10.1145/800057.808695
http://doi.acm.org/10.1145/800057.808695

[17] W. W. Pugh. “The Omega test: a fast and prac-
tical integer programming algorithm for dependence analysis”. In:
Proceedings Supercomputing ’91, Albuquerque, NM, USA, November 18-22, 1991.
ACM, 1991, pp. 4–13.

[18] A. Schrijver. Theory of linear and integer programming.
Wiley-Interscience series in discrete mathematics and
optimization. Wiley, 1999.

[19] R. Seghir, V. Loechner, and B. Meister. “Integer affine
transformations of parametric Z-polytopes and applications to
loop nest optimization”. In: ACM Trans. Archit. Code Optim.
9.2 (2012), 8:1–8:27.

[20] R. Stansifer.
Presburger’s article on integer arithmetic: Remarks and translation.
Tech. rep. Cornell University, 1984.

[21] A. Storjohann. “Algorithms for matrix canonical forms”.
PhD thesis. Swiss Federal Institute of Technology Zurich, 2000.

[22] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe. “Counting Integer Points in Parametric
Polytopes Using Barvinok’s Rational Functions”. In:
Algorithmica 48.1 (2007), pp. 37–66.

[23] H. P. Williams. “Fourier-Motzkin elimination extension to
integer programming problems”. In:
Journal of combinatorial theory, series A 21.1 (1976),
pp. 118–123.

[24] H. Williams and J. Hooker. “Integer programming as
projection”. In: Discrete Optimization 22 (2016), pp. 291–311.
issn: 1572-5286.

	Overview
	Basic concepts
	Linear, affine, convex and conical hulls
	Polyhedral sets
	Farkas–Minkowsi–Weyl theorem

	Solving systems of linear inequalities
	Efficient removal of redundant inequalities
	Implementation techniques
	Experimentation and complexity estimates

	Integer hulls of polyhedra
	Motivations
	Integer hulls, lattices and Z-polyhedra
	An integer hull algorithm

	Integer point counting for parametric polyhedra
	Motivations and objectives
	Generating functions of non-parametric polyhedral sets
	Integer point counting for parametric polyhedra

	Quantifier elimination over the integers
	Presburger arithmetic
	Integer projection and quantifier elimination

	Concluding remarks

