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Introduction: code optimization

Optimizing for data locality

Computer cache memories have led to introduce a new complexity measure for
algorithms and new performance counters for code.
Optimizing for data locality brings large speedup factors, as we shall see.

Optimizing for parallelism

All recent home and office desktops/laptops are parallel machines; moreover
“GPU cards bring supercomputing to the masses,” (NVIDIA moto).
Optimizing for parallelism improves the use of computing resources (Green!)
And optimizing for data locality is often a first step!

Optimizing for algebraic complexity in this context

Consider a 1-level cache machine with a Z-word cache and L-word cache lines.
Consider a polynomial/matrix operation running within nα coefficient
operations, up to a small constant say 2 to 10.
A typical naive implementation will incur nα/L cache misses, which reduce to
nα/(

√
ZL) for a cache-friendly algorithm.

Moreover, execution and memory models (say multicore vs manycore) have an
impact on algorithm design.
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Introduction: hardware

Multicores

Cache coherency circuitry operate at higher rate than off-chip.
Cores on a multi-core implement the same architecture features as single-core
systems such as instruction pipeline parallelism (ILP), vector-processing,
hyper-threading.
Two processing cores sharing the same bus and memory bandwidth may limit
performances.
High levels of false or true sharing and synchronization can easily overwhelm the
advantage of parallelism.

Manycores

Hardware allocates resources to thread blocks and schedules threads, thus no
parallelization overhead, contrary to multicores.
No synchronization possible between thread blocks, which force to think differently,
but which provides automatic scaling as long as enough parallelism is exposed.
Shared memories and global memory offer a form of CRCW.
Shared memories are tiny and streaming processors have very limited architecture
features, contrary to the cores in a multicore.
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Et le calcul formel dans tout cela ?

Typical algorithms have high algebraic complexity, say nα for α > 1
and low span, say logβ(n) for some β ≥ 1. Thus, a lot of parallelism
opportunities, at least in theory.

Except some {\french empècheur de tourner en rond}, say the
Euclidean Algorithm over Z.

As mentioned before, the algebraic-complexity-to-cache-complexity
ratio is often a constant: bad!

Unless efforts are made to make algorithms cache optimal.

Polynomial/matrix algorithms are often divide-and-conquer which
helps avoiding data access competition among threads.

Of course, these lock-free approaches increase the span but so do
mutexes anyway!
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Hierarchical memories and cache complexity

Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms 
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte



Hierarchical memories and cache complexity

The (Z,L) ideal cache model (1/2)

The ideal (data) cache of Z words partitioned into Z/L cache lines.

Data moved between cache and main memory are always cache lines.

The cache is tall, that is, Z is much larger than L, say Z ∈ Ω(L2).

The processor can only reference words that reside in the cache.



Hierarchical memories and cache complexity

The (Z,L) ideal cache model (2/2)

If the CPU refers to a word not in cache, a cache miss occurs.

The ideal cache is fully associative: cache lines can be stored
anywhere in the cache.

The ideal cache uses the optimal off-line strategy of replacing the
cache line whose next access is furthest in the future.



Hierarchical memories and cache complexity

A typical naive matrix multiplication C code

#define IND(A, x, y, d) A[(x)*(d)+(y)]

uint64_t testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended;

float timeTaken;

int i, j, k;

srand(getSeed());

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

// A[i][j] += B[i][k] + C[k][j];

IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}



Hierarchical memories and cache complexity

Analyzing cache misses in the naive and transposed multiplication

A

=

B

C
x

Let A, B and C have format (m,n), (m, p) and (p, n) respectively.
A is scanned one, so mn/L cache misses if L is the number of
coefficients per cache line.
B is scanned n times, so mnp/L cache misses if the cache cannot
hold a row.
C is accessed “nearly randomly” (for m large enough) leading to mnp
cache misses.
Since 2mnp arithmetic operations are performed, this means roughly
one cache miss per flop!
If C is transposed, then the ratio improves to 1-for-L.



Hierarchical memories and cache complexity

Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C, k, j, y);

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

IND(A, i, j, y) += IND(B, i, k, z) *IND(Cx, j, k, z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}



Hierarchical memories and cache complexity

Analyzing cache misses in the tiled multiplication

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Let A, B and C have format (m,n), (m, p) and (p, n) respectively.

Assume all tiles are square of order B and three fit in cache.

If C is transposed, then loading three blocks in cache cost 3B2/L.

This process happens n3/B3 times, leading to 3n3/(BL) cache
misses.

Three blocks fit in cache for 3B2 < Z, if Z is the cache size.

So O(n3/(
√
ZL)) cache misses, if B is well chosen, which is optimal.



Hierarchical memories and cache complexity

Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,j0,k0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}



Hierarchical memories and cache complexity

Experimental results

Computing the product of two n× n matrices on my laptop (Core2 Duo
CPU P8600 @ 2.40GHz, L1 cache of 3072 KB, 4 GBytes of RAM)

n naive transposed speedup 64× 64-tiled speedup t. & t. speedup
128 7 3 7 2
256 26 43 155 23
512 1805 265 6.81 1928 0.936 187 9.65

1024 24723 3730 6.62 14020 1.76 1490 16.59
2048 271446 29767 9.11 112298 2.41 11960 22.69
4096 2344594 238453 9.83 1009445 2.32 101264 23.15

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) runs within
12978 and 106758 for n = 2048 and n = 4096 respectively.

More optimization tricks can be used, such as using vector parallelism
(SSE instructions).

Optimized C implementation of Strassen and Waksman algorithms are
at least one order of magnitude. Special thanks to Nazul Islam (UW).



Hierarchical memories and cache complexity

Other performance counters

Hardware count events

CPI Clock cycles Per Instruction: the number of clock cycles that
happen when an instruction is being executed. With pipelining we can
improve the CPI by exploiting instruction level parallelism

L1 and L2 Cache Miss Rate.

Instructions Retired: In the event of a misprediction, instructions that
were scheduled to execute along the mispredicted path must be
canceled.



Hierarchical memories and cache complexity

A matrix transposition cache-oblivious and cache-optimal algorithm

Given an m× n matrix A stored in a row-major layout, compute and
store AT into an n×m matrix B also stored in a row-major layout.

A naive approach would incur O(mn) cache misses, for n,m large
enough.
The algorithm Rec-Transpose below incurs Θ(1 +mn/L) cache
misses, which is optimal.

1 If n ≥ m, the Rec-Transpose algorithm partitions

A = (A1 A2) , B =

(
B1

B2

)
and recursively executes Rec-Transpose(A1, B1) and
Rec-Transpose(A2, B2).

2 If m > n, the Rec-Transpose algorithm partitions

A =

(
A1

A2

)
, B = (B1 B2)

and recursively executes Rec-Transpose(A1, B1) and
Rec-Transpose(A2, B2).



Hierarchical memories and cache complexity

Cache-oblivious matrix transposition into practice

void DC_matrix_transpose(int *A, int lda, int i0, int i1,

int j0, int dj0, int j1 /*, int dj1 = 0 */){

const int THRESHOLD = 16; // tuned for the target machine

tail:

int di = i1 - i0, dj = j1 - j0;

if (dj >= 2 * di && dj > THRESHOLD) {

int dj2 = dj / 2;

cilk_spawn DC_matrix_transpose(A, lda, i0, i1, j0, dj0, j0 + dj2);

j0 += dj2; dj0 = 0; goto tail;

} else if (di > THRESHOLD) {

int di2 = di / 2;

cilk_spawn DC_matrix_transpose(A, lda, i0, i0 + di2, j0, dj0, j1);

i0 += di2; j0 += dj0 * di2; goto tail;

} else {

for (int i = i0; i < i1; ++i) {

for (int j = j0; j < j1; ++j) {

int x = A[j * lda + i];

A[j * lda + i] = A[i * lda + j];

A[i * lda + j] = x;

}

j0 += dj0;

}

}

}



Hierarchical memories and cache complexity

Cache-oblivious matrix transposition works in practice!

size Naive Cache-oblivious ratio

5000x5000 126 79 1.59
10000x10000 627 311 2.02
20000x20000 4373 1244 3.52
30000x30000 23603 2734 8.63
40000x40000 62432 4963 12.58

Intel(R) Xeon(R) CPU E7340 @ 2.40GHz

L1 data 32 KB, L2 4096 KB, cache line size 64bytes

Both codes run on 1 core on a node with 128GB.

The ration comes simply from an optimal memory access pattern.
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A cache-oblivious matrix multiplication algorithm

To multiply an m× n matrix A and an n× p matrix B, the Rec-Mult
algorithm halves the largest of the three dimensions and recurs according to
one of the following three cases:(

A1

A2

)
B =

(
A1B
A2B

)
, (1)

(
A1 A2

)(B1

B2

)
= A1B1 +A2B2 , (2)

A
(
B1 B2

)
=

(
AB1 AB2

)
. (3)

In case (1), we have m ≥ max {n, p}. Matrix A is split horizontally, and both
halves are multiplied by matrix B.
In case (2), we have n ≥ max {m, p}. Both matrices are split, and the two
halves are multiplied.
In case (3), we have p ≥ max {m,n}. Matrix B is split vertically, and each
half is multiplied by A.
The base case occurs when m = n = p = 1.
The algorithm Rec-Mult above incurs
Θ(m+ n+ p+ (mn+ np+mp)/L+mnp/(L

√
Z)) cache misses, which is

optimal.
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Summary and notes

The ideal cache model and cache complexity, despite of their strong
assumptions, are practically verified in most cases I have studied.

Cache complexity improvements can be verified in practice even on
algorithms whose algebraic complexity is linear: transposition,
counting sort.

Cache-naive plain univariate polynomial multiplication incurs
Θ(n2/L) cache misses while cache-optimal plain univariate
polynomial multiplication incurs only Θ(n2/(ZL)) cache misses.

However this latter algorithm is tricky to implement efficiently and I
am not happy yet with my experimental results.
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Balanced polynomial arithmetic on multicores

FFTs over finite fields on multicores

Background

Computing 1D FFTs of size 1000 or less is common.

For those, there is not enough work to obtain good speedup.

In addition, we have obtained over the years highly optimized serial C
code for 1D FFTs (based on TFT techniques)

Assumptions and goals

1-D FFTs are computed by a black box program which could be serial
code.

We want FFT-based dense multivariate arithmetic routines that are
cache friendly and targeting multicores.



Balanced polynomial arithmetic on multicores

FFT-based multivariate multiplication

Let K be a finite field and f , g ∈ K[x1 < · · · < xn] be polynomials
with n ≥ 2.

Define di = deg(f, xi) and d′i = deg(g, xi), for all i.

Assume there exists a primitive si-th root of unity ωi ∈ K, for all i,
where si is a power of 2 satisfying si ≥ di + d′i + 1.

Then fg can be computed as follows.

Step 1. Evaluate f and g at each point P (i.e. f(P ), g(P )) of the
n-dimensional grid
((ωe1

1 , . . . , ω
en
n ), 0 ≤ e1 < s1, . . . , 0 ≤ en < sn) via n-D FFT.

Step 2. Evaluate fg at each point P of the grid, simply by
computing f(P )g(P ),

Step 3. Interpolate fg (from its values on the grid) via n-D FFT.



Balanced polynomial arithmetic on multicores

Speedup factors of bivariate interpolation (d1 = d2)
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Special thanks to Matteo Frigo for his cache-efficient code for matrix

transposition!
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Speedup factors of bivariate multiplication (d1 = d2 = d′1 = d′2)
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Balanced polynomial arithmetic on multicores

Challenges: irregular input data
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Performance analysis with VTune

No. Size of Product
Two Input Size
Polynomials

1 8191×8191 268402689
2 259575×258 268401067
3 63×63×63×63 260144641
4 8 vars. of deg. 5 214358881

No. INST Clocks per L2 Cache Modified Data Time on
RETIRED. Instruction Miss Rate Sharing Ratio 8 Cores
ANY×109 Retired (×10−3) (×10−3) (s)

1 659.555 0.810 0.333 0.078 16.15
2 713.882 0.890 0.735 0.192 19.52
3 714.153 0.854 1.096 0.635 22.44
4 1331.340 1.418 1.177 0.576 72.99



Balanced polynomial arithmetic on multicores

Complexity analysis (1/2)

Let s = s1 · · · sn. The number of operations in K for computing fg
via n-D FFT is

9

2

n∑
i=1

(
∏
j 6=i

sj)si lg(si) + (n+ 1)s =
9

2
s lg(s) + (n+ 1)s.

Under our 1-D FFT black box assumption, the span of Step 1 is
9
2 (s1 lg(s1) + · · ·+ sn lg(sn)),

and the parallelism of Step 1 is lower bounded by

s/max(s1, . . . , sn). (4)

Let L be the size of a cache line. For some constant c > 0, the
number of cache misses of Step 1 is upper bounded by

n
cs

L
+ cs(

1

s1
+ · · ·+ 1

sn
). (5)



Balanced polynomial arithmetic on multicores

Complexity analysis (2/2)

Let Q(s1, . . . , sn) denotes the total number of cache misses for the
whole algorithm, for some constant c we obtain

redQ(s1, . . . , sn) ≤ csn+ 1

L
+ cs(

1

s1
+ · · ·+ 1

sn
) (6)

Observe we have n
s1/n
≤ 1

s1
+ · · ·+ 1

sn

When si = s1/n holds for all i, we have

Q(s1, . . . , sn) ≤ ncs( 2

L
+

1

s1/n
) (7)

For n ≥ 2, Expr. (7) is minimized at n = 2 and s1 = s2 =
√
s.

Moreover, when n = 2, for a fixed s = s1s2, the parallelism is maximized
at s1 = s2 =

√
s.



Balanced polynomial arithmetic on multicores

Balanced multiplication

Definition. A pair of bivariate polynomials p, q ∈ K[u, v] is balanced if
deg(p, u) + deg(q, u) = deg(p, v) + deg(q, v).

Algorithm. Let f, g ∈ K[x1 < . . . < xn]. W.l.o.g. one can assume
d1 � di and d1

′ � di for 2 ≤ i ≤ n (up to variable re-ordering and
contraction). Then we obtain fbgb ∈ K[u, v] by

Step 1. Inverse Kronecker substitution x1 to {u, v}

Step 2. Direct Kronecker substitution {v, x2, . . . , xn} to v.

such that

the pair fb, gb is (nearly) a balanced pair and fbgb has dense size at
most twice that of fg.

we can recover the product fg from the product fbgb

M3, Yuzhen Xie: Balanced Dense Polynomial Multiplication on
Multi-Cores. Int. J. Found. Comput. Sci., 2011.
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Speedup factors of balanced multiplication (d2 = d2 = d3 = 2)
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Time

Ext.+Contr. of 4-D to 2-D TFT on 1 core (7.6-15.7 s)
Kronecker substitution of 4-D to 1-D TFT on 1 core (6.8-14.1 s)

Ext.+Contr. of 4-D to 2-D TFT on 2 cores (1.96x speedup, 1.75x net gain)
Ext.+Contr. of 4-D to 2-D TFT on 16 cores (7.0-11.3x speedup, 6.2-10.3x net gain)

d1 (d2=d3=d4=2)
d1’ (d2’=d3’=d4’=2)

Time
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Quizz for Joris (1/3)
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Time(s)

2-D FFT method on 1 core (5.85-6.60 s)
2-D TFT method on 1 core (2.27-8.13 s)

d1+d1’+1
d2+d2’+1

Time(s)

Bivariate multiplication for input degree range of [1024, 2048) on 1 core.
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Quizz for Joris (2/3)
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Time(s)

2-D FFT method on 8 cores (0.806-0.902 s, 7.2-7.3x speedup)
2-D TFT method on 8 cores (0.309-1.08 s, 6.8-7.6x speedup)

d1+d1’+1
d2+d2’+1

Time(s)

Bivariate multiplication for input degree range of [1024, 2048) on 8 cores.
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Quizz for Joris (3/3)
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Time(s)

2-D FFT method on 16 cores (0.588-0.661 s, 9.6-10.8x speedup)
2-D TFT method on 16 cores (0.183-0.668 s, 7.8-14.1x speedup)

d1+d1’+1
d2+d2’+1

Time(s)

Bivariate multiplication for input degree range of [1024, 2048) on 16 cores.
Question: why TFT always beats FFT on 16 cores?



Balanced polynomial arithmetic on multicores

Summary and notes

Balanced data traversal provides work load balancing.

But more importantly it minimizes cache misses and thus helps
reducing memory traffic

Other operations can be balanced: normal form computations and
subresultant chain computation.

And yes, considering fast polynomial arithmetic independently of data
locality and parallelism makes no sense today!

M3, Yuzhen Xie: FFT-based Dense Polynomial Arithmetic on
Multi-cores in Proc. HPCS’2009.
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Bivariate polynomial systems on the GPU

Background

Background

No parallelization overheads on the GPU since the hardware schedules
the threads.

Most FFTs on GPUs are for floats, such as the NVIDIA CUFFT
library.

What about finite fields?

Testing in GB/s

log2 n memset Main Mem to GPU GPU to Main Mem GPU Kernel
23 1.56 1.33 1.52 61.6
24 1.56 1.34 1.52 69.9
25 1.39 1.35 1.53 75.0
26 1.39 1.28 1.50 77.4
27 1.43 1.35 1.49 79.0

Intel Core 2 Quad Q9400 @ 2.66GHz, 6GB memory, memory interface width
128 bits

GeForce GTX 285, 1GB global memory, 30× 8 cores, memory interface
width 512 bits
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Extract parallelism from structural formulas

In ⊗A: block parallelism

I4 ⊗DFT2 =



1 1
1 −1

1 1
1 −1

1 1
1 −1

1 1
1 −1


How To Write Fast Numerical Code: A Small Introduction by Srinivas
Chellappa, Franz Franchetti, and Markus Pueschel.
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Extract parallelism from structural formulas

A⊗ In: vector parallelism

DFT2 ⊗ I4 =



1
1

1
1

1
1

1
1

1
1

1
1

−1
−1

−1
−1


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Stockham FFT

DFT2k =

k−1∏
i=0

(DFT2 ⊗ I2k−1)︸ ︷︷ ︸
butterfly

(D2,2k−i−1 ⊗ I2i)︸ ︷︷ ︸
twiddling

(L2k−i

2 ⊗ I2i)︸ ︷︷ ︸
reordering

void stockham_dev(int *X_d, int n, int k, const int *W_d, int p)

{

int *Y_d;

cudaMalloc((void **)&Y_d, sizeof(int) * n);

butterfly_dev(Y_d, X_d, k, p);

for (int i = k - 2; i >= 0; --i) {

stride_transpose2_dev(X_d, Y_d, k, i);

stride_twiddle2_dev(X_d, W_d, k, i, p);

butterfly_dev(Y_d, X_d, k, p);

}

cudaMemcpy(X_d, Y_d, sizeof(int)*n, cudaMemcpyDeviceToDevice);

cudaFree(Y_d);

}



Bivariate polynomial systems on the GPU

Cooley-Tukey FFT

DFT2k =

(
k∏
i=1

(I2i−1 ⊗DFT2 ⊗ I2k−i)Tn,i

)
Rn

with the twiddle factor matrix Tn,i = I2i−1 ⊗D2,2k−i and the bit-reversal
permutation matrix

Rn = (In/2 ⊗ L2
2)(In/22 ⊗ L4

2) · · · (I1 ⊗ Ln2 ).
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Timing FFT in milliseconds

e modpn Cooley-Tukey C-T + Mem Stockham S + Mem
time ratio time ratio time ratio time ratio

12 1 1 1.0 1 1.0 2 0.5 2 0.5
13 1 2 0.5 2 0.5 2 0.5 3 0.3
14 3 1 3.0 2 1.5 2 1.5 3 1.0
15 4 2 2.0 2 2.0 3 2.0 3 1.3
16 10 3 3.3 3 3.3 3 3.3 4 3.3
17 16 4 4.0 5 3.2 3 5.3 5 3.2
18 37 6 6.2 9 4.1 4 9.3 7 5.3
19 71 11 6.5 15 6.5 6 11.8 10 7.1
20 174 22 7.9 28 6.2 9 19.3 16 10.9
21 470 44 10.7 56 8.4 16 29.4 28 16.8
22 997 83 12.0 105 9.5 29 34.4 52 19.2
23 2070 165 12.5 210 9.9 56 37.0 101 20.5
24 4194 330 12.7 418 10.0 113 37.0 201 20.9
25 8611 667 12.9 842 10.2 230 37.4 405 21.2
26 17617 1338 13.2 1686 10.4 473 37.2 822 21.4

The GPU is GTX 285.



Bivariate polynomial systems on the GPU

Solving polynomial systems with GPU support

Main idea

Solving P (x, y) = Q(x, y) = 0 is essentially done as follows:

1 Determine necessary conditions on x for P (x)(y) and Q(x)(y) to
have common roots; such x’s are roots of the resultant R(x) of P,Q
w.r.t. y.

2 For x = x0 such that x0 is a root of R determine the common
solutions of P (x0)(y) = 0 and Q(x0)(y) = 0; this is essentially a
GCD computation.

Both steps can be easily done in one Subresultant Chain Computation



Bivariate polynomial systems on the GPU

Subresultant chain computation



Bivariate polynomial systems on the GPU

Subresultant chain by evaluation/interpolation

Issues with different strategies

FFT based technique. Sticky points:
• Fourier prime limitation
• valid grid construction

Subproduct tree technique: a backup solution . . .

FFT scube on the GPU. Two approaches:

Coarse-grained construction:
• each thread computes a specialized subresultant chain.
• Low parallelism, but always works.

Fine-grained construction:
• Assumes all specialized subresultant chains have the same degree

sequence
• Parallelize the pseudo-divisions
• Each thread block does a bunch of pieces of pseudo-divisions.



Bivariate polynomial systems on the GPU

Profiling coarse-grained implementation
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Profiling fine-grained implementation
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Computing resultants

d t0 t1 t1/t0
30 0.23 0.29 1.3
40 0.23 0.43 1.9
50 0.27 1.14 4.2
60 0.27 1.53 5.7
70 0.31 3.95 12.7
80 0.32 4.88 15.3
90 0.35 5.95 17.0

100 0.50 19.10 38.2
110 0.53 17.89 33.8
120 0.58 19.72 34.0

Bivariate dense polynomials of total
degree d.

d t0 t1 t1/t0
8 0.23 0.76 3.3
9 0.24 0.85 3.5

10 0.25 0.98 3.9
11 0.24 1.10 4.6
12 0.30 4.96 16.5
13 0.31 5.52 17.8
14 0.32 6.07 19.0
15 0.78 8.95 11.5
16 0.65 31.65 48.7
17 0.66 34.55 52.3
18 3.46 47.54 13.7
19 0.73 51.04 69.9
20 0.75 43.12 57.5

Trivariate dense polynomials of total
degree d.

t0, GPU fft code

t1, CPU fft code

Nvidia Tesla C2050
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Bivariate solver
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Bivariate solver on the CPU
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Bivariate solver on the GPU
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Solving bivariate systems: timings

d t0(gpu) t1(total) t2 (cpu) t3 (total) t2/t0 t3/t1
30 0.25 0.35 0.14 0.25 0.6 0.7
40 0.25 0.46 0.42 0.64 1.7 1.4
50 0.28 0.67 1.14 1.56 4.1 2.3
60 0.29 0.88 1.54 2.20 5.3 2.5
70 0.31 1.20 3.94 4.94 12.7 4.1
80 0.32 1.42 4.84 6.06 15.1 4.3
90 0.33 1.80 5.94 7.54 18.0 4.2

100 0.48 2.56 14.23 16.66 29.7 6.5
110 0.52 2.93 16.78 19.58 32.1 6.7
120 0.55 3.80 24.41 28.60 44.4 7.5

d : total degree of the input polynomial

t0 : GPU FFT based scube construction

t1 : total time for solving with GPU code

t2 : CPU FFT based scube construction

t3 : total time for solving without GPU code
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Summary and notes

The Stockham FFT achieves a speedup factor of 21 for large FFT
degrees, comparing to the modpn serial implementation.

The subresultant chain construction has been improved by a factor of
(up to) 44 on the GPU.

For the bivariate solver, more code has to be ported to GPU (mainly
univariate polynomial GCDs)

Nevertheless the GPU-based code solves within a second, polynomial
systems for which pure serial code takes 7.5 sec.

The goal is to make bivariate and trivariate system solvers as fast as a
univariate GCD routine in Maple.

Joint work with Wei Pan:
• Fast polynomial multiplication on a GPU. Journal of Physics,

Conference Series, 2010.
• Solving bivariate polynomial systems on a GPU. HPCS’2011.
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Status of our libraries

The RegularChains library in Maple

Specifications

Solving polynomial systems with coefficients in K or K(t1, . . . , tm) for
K = Q or K = Fp.
Solves over K with Triangularize and over R with
RealTriangularize, SamplePoints, RealRootClassification, etc.
Parametric system solving: ComprehensiveTriangularize and
RealComprehensiveTriangularize.
Operations on constructible sets and semi-algebraic sets: set-theoretic
operations, projection, etc.

Features

Use of types for algebraic structures: regular chain,
constructible set, regular semi algebraic system.
semi algebraic set, etc.
Growing support with C and CUDA libraries.
> 100,000 lines of code and 140 UI commands.



Status of our libraries

C, Cilk++ and CDUA supporting libraries

modpn (opaque module in Maple)

FTT-based dense multivariate arithmetic and SLPs
Two UI’s: one in AXIOM and one in Maple: RegularChains:-

FastArithmeticTools

40,000 lines of code, not documented.

cumdp (in progress)

CUDA-based, so targeting GPUs
Similar specification as modpn plus dense linear algebra.
20,000 lines of code, documented.
Wei Pan, Anis Sardar Haque and Jiajiang Yang.

BPAS (in progress)

Relies on modpn, cumdp and Spiral.
Similar specification as modpn.
Written in Cilk++, targeting multicores.
Yuzhen Xie, Changbo Chen, Mohsin Ali, Zunaid Haque.
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