
On the Parallelization of Subproduct Tree
Techniques Targeting Many-core

Architectures

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno Maza

University of Western Ontario, Canada

HPCS 2013 – University of Ottawa
June 18, 2013

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Content

Problem Definition

Subproduct Tree

Implementation

Experimentation

Conclusion

Reference

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Problem Definition

Polynomial Interpolation

Given distinct points u0, u1, . . . , un−1 in a field K and arbitrary
values v0, v1, . . . , vn−1 ∈ K, compute the unique polynomial P ∈
K[x] of degree less than n that takes the value vi at the point ui for
all i. For convenience, we will assume that n = 2k holds for some k.

((u0, v0), . . . , (un−1, vn−1)) P where P (ui) = vi for 0 ≤ i < n
?

Application: polynomial system solvers (numerical and
symbolic), cryptography, etc.

Advantages: creates opportunities to use asymptotically fast
algorithms (FFT-based) and concurrent execution.

Rationale: FFT-based techniques require special evaluation
points (consecutive powers of a primitive root of unity).

Work-around: using subproduct-tree techniques relax this latter
point, but are hard to parallelize!

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Subproduct Tree

Polynomial Interpolation (Recall)

Given distinct points u0, u1, . . . , un−1 in a field K and arbitrary
values v0, v1, . . . , vn−1 ∈ K, compute the unique polynomial P ∈
K[x] of degree less than n that takes the value vi at the point ui for
all i. For convenience, we will assume that n = 2k holds for some k.

Definition

Split the point set U = {u0, . . . , un−1} into two parts of equal
cardinality and proceed recursively with each part until each of
them has only one element.

This leads to a binary tree of depth k having the points
u0, . . . , un−1 as leaves.

Let mi = x− ui and for 0 ≤ i ≤ k and 0 ≤ j < 2k−j define

Mi,j = mj·2i ·mj·2i+1 . . .mj·2i+(2i−1) =
∏

0≤l<2i mj·2i+l

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Subproduct Tree

Definition (Recall)

Let mi = x− ui and for 0 ≤ i ≤ k and 0 ≤ j < 2k−j define

Mi,j = mj·2i ·mj·2i+1 . . .mj·2i+(2i−1) =
∏

0≤l<2i mj·2i+l

u0, . . . , un−1

u0, . . . , un/2−1 un/2, . . . , un−1

u0, u1 u2, u3 un−2, un−1

u0 u1 u2 u3 un−2 un−1

Mk,0

Mk−1,0 Mk−1,1

M1,0 M1,1 M1,n/2−1

M0,0 M0,1 M0,2 M0,3
M0,n−2 M0,n−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

i = k

i = k − 1

i = 1

i = 0

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Subproduct Tree

Applications

Once the subproduct tree on U = {u0, . . . , un−1} is computed,

then one can evaluate f ∈ K[x] of degree n− 1 at every u ∈ U
essentially in linear time (up to log factors) thanks to FFT.

One can also interpolate on U with values V = v0, . . . , vn−1}
essentially in linear time (up to log factors).

All the corresponding algorithms are divide-and-conquer and
reduce all arithmetic computations to polynomial multiplication.

Challenges toward parallelization

This d-n-c formulation does not provide enough parallelism

Thus one must also parallelize polynomial multiplication.

Algorithms based on FFT (such as subproduct tree techniques)
have ratio of work to memory access which is essentially
constant, thus not well suited for multi-core architectures.

During the execution of subproduct tree operation work load of
the tasks varies greatly, not well suited for many-core GPUs.

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Contributions of this work

Summary

We propose parallel algorithms for performing subproduct tree
construction, evaluation and interpolation and report on their
implementation on many-core GPUs

We enhance the traditional algorithms for polynomial evaluation
and interpolation based on subproduct-tree trees, by introducing
the notion of a subinverse tree.

For subproduct-tree operations, we demonstrate the importance
of adaptive algorithms. That is, algorithms that adapt their
behavior to the available computing resources.

In particular, we combine parallel plain arithmetic and parallel
fast arithmetic.

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

FFT-based multiplication

Computing H = FG

Let F,G ∈ K[x] with degree n
2 − 1.

Compute DFT (F, n), DFT (G,n) using a n-th primitive root of
unity.

Perform point-wise multiplication of the vectors
DFT (F, n), DFT (G,n)

Obtain H by inverse FFT.

Algebraic complexity = c1n log(n) + c2n

In theory c1 = 4.5 and c2 = 4

In our implementation c1 = 15 and c2 = 2

Performance Issues

High Algebraic Complexity for small n

Constant ratio work to memory access, challenging for small n
again.

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Plain polynomial arithmetic

md−1 . . . m0 id−1 . . . i0 ? ? . . . ? ?

d = 2i−1 + 1 d = 2i−1 d = 2i

Kernel Specifications

Runs in quadratic time, but can be parallelized efficiently as we
saw this morning.

We use in low degree, thus on thread block can do one
multiplication in shared memory.

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Subproduct Tree Construction

Adaptive Algorithm

Let H be a fixed integer with 1 ≤ H ≤ k. We call adaptive algorithm
for computing the subproduct tree Mn on U with threshold H the
following procedure:

1 For each level 1 ≤ h ≤ H, we compute the subproducts using
plain multiplication.

2 Then, for each level H + 1 ≤ h ≤ k, we compute the subproducts
using FFT-based multiplication.

Algebraic Complexity

15

2
n log2(n)2 +

19

2
n log2(n) + f(H)n

with f(H) ∈ O(2H + H2).

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Polynomial Evaluation

Polynomial Evaluating

1 r0 = P rem Mk−1,0 and r1 = P rem Mk−1,1
2 Recursively compute

r0(u0), . . . , r0(un/2−1), r1(un/2), . . . , r1(un−1)

Adaptive Top Down Traversing

Do the remaindering of the polynomials over subproducts, we fix a
threshold H:

1 1 ≤ h ≤ H: use plain arithmetic

2 H + 1 ≤ h ≤ k: use fast division (through Newton iteration and
subinverse tree)

Algebraic Complexity

15nlog2(n)
2

+ 49n log2(n) + f(H)n

with f(H) ∈ O(2H + H2).

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Using Subinverse Tree

What is Subinverse Tree?

For the subproduct tree Mn := SubproductTree(u0, . . . , un−1), the
corresponding subinverse tree InvM is a complete binary tree with the
same height as Mn and such that, at level i of InvM contains an
univariate polynomial InvMi,j of degree 2i − 1 such that for all
0 ≤ j < 2k−i. we have

InvMi,j rev2i+1(Mi,j) ≡ 1 mod x2i .

Remarks

1 It is used to speedup multi-point evaluation in the degrees where
fast division (based on Newton iteration) applies.

2 However, subinverse tree is not used in lower degrees.

Algebraic Complexity

10n log(n) + 30n log(n)2 + f(H)n

with f(H) ∈ O(2H + H2).
Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Polynomial Interpolation

Lagrange interpolation

1 we have ((u0, v0), . . . , (un−1, vn−1))

2 m =
∏

0≤i<n(x− ui), si =
∏

i 6=j 1/(ui − uj)

3 f =
∑n

i=0 visim/(x− ui)

Note: 1/si = m′(ui), P = Mk−1,0P0 + Mk−1,1P1

Adaptive Algorithm

For computing intermediate results, we fix a threshold H:

1 1 ≤ h ≤ H: use plain multiplication

2 H + 1 ≤ h ≤ k: use FFT-based multiplication

Algebraic Complexities

135

2
n log2(n)2 +

177

2
n log2(n) + f(H)n

with f(H) ∈ O(2H + H2).

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Lagrange Coefficients

P (u0) = v0P (u1) = v1. . .P (un−1) = vn−1 m =
∏

0≤i<n(x− ui)

Evaluate m′ on u0, . . . , un−1

si =
∏

i6=j 1/(ui − uj)c0 = s0.v0c1 = s1.v1. . . cn−1 = sn−1.vn−1

generate

subproduct tree

derivate m

generate

coefficient

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Linear Combination

M, i− 1 : . . . Mi−1,2j Mi−1,2j+1 . . .

I, i− 1 : . . .
Ii−1,2j Ii−1,2j+1

. . .

Ii,j = Mi−1,2j × Ii−1,2j+1 + Mi−1,2j+1 × Ii−1,2j

I, 0 : c0 cn−1

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Experimentation, Runtimes

Evaluation Interpolation

Deg. GPU FLINT SpeedUp GPU FLINT SpeedUp

8 0.0310 0 0 0.0328 0 0
9 0.0623 0 0 0.0669 0 0
10 0.0843 0 0 0.0968 0.01 0.1032
11 0.1012 0.01 0.0987 0.1202 0.01 0.0831
12 0.1361 0.02 0.1468 0.1671 0.03 0.1794
13 0.1580 0.07 0.4429 0.1963 0.09 0.4584
14 0.2034 0.17 0.8354 0.2548 0.22 0.8631
15 0.2415 0.41 1.6971 0.3073 0.53 1.7242
16 0.3126 0.99 3.1666 0.4026 1.26 3.1294
17 0.4285 2.33 5.4375 0.5677 2.94 5.1780
18 0.7106 5.43 7.6404 0.9034 6.81 7.5379
19 1.0936 12.63 11.5484 1.3931 15.85 11.3768
20 1.9412 29.2 15.0420 2.4363 36.61 15.0268
21 3.6927 67.18 18.1923 4.5965 83.98 18.2702
22 7.4855 153.07 20.4486 9.2940 191.32 20.5851
23 15.796 346.44 21.9321 19.6923 432.13 21.9441

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Experimentation, Plots

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 4 6 8 10 12 14 16

GPU

FLINT

(a) Lower Degrees

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 16 17 18 19 20 21 22 23

GPU

FLINT

(b) Higher Degrees

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Effective Memory Bandwidth

Degree Interpolation (GB/S)
10 0.1228
11 0.3403
12 0.7054
13 1.6182
14 3.1445
15 6.3464
16 11.4143
17 18.7800
18 26.7590
19 38.7674
20 49.0012
21 57.0978
22 62.4516
23 64.2464

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Experimentation, Multiplications

Deg. GPU FLINT SpeedUp

9 0.001 0.001 0.602
10 0.002 0 0
11 0.002 0.002 1.02
12 0.003 0.003 0.91
13 0.002 0.008 3.44
14 0.003 0.013 3.34
15 0.003 0.023 7.21
16 0.006 0.045 6.94
17 0.008 0.088 10.47
18 0.012 0.227 18.46
19 0.019 0.471 23.73
20 0.026 1.011 27.58
21 0.071 2.086 29.03
22 0.145 4.419 30.45
23 0.304 9.043 29.71

(c) Execution Times of
Multiplication (s)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 9 10 11 12 13 14

GPU

FLINT

(d) Our GPU implementation versus
FLINT

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

Conclusion

First successfull parallelization of subproduct tree techniques

Using adapting algorithm

Implementating plain arithmetic

Our polynomial multiplication in the range (29 to 213) can still
be improved.

References on next page

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

References

J. Gathen and J. Gerhard. Modern Computer Algebra.
Cambridge University Press, 1999.

S. A. Haque and M. Moreno Maza. Plain polynomial arithmetic
on GPU. In J. of Physics: Conf. Series, volume 385, page 12014.
IOP Publishing, 2012.

William Hart, Fredrik Johansson, and Sebastian Pancratz. Flint
fast library for number theory, 2011.

M. Moreno Maza and W. Pan. Fast polynomial arithmetic on a
GPU. J. of Physics: Conference Series, 256, 2010.

J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
parallel programming with CUDA. Queue, 6(2):4053, 2008.

Sardar Anisul Haque, Farnam Mansouri, Marc Moreno MazaOn the Parallelization of Subproduct Tree Techniques Targeting Many-core Architectures

