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Input:

1. A plane analytic curve known locally, say at the origin, by:

f (x) =
∞

∑
i=1

cix
i

2. a positive integer d .

Note that c0 = 0.

Output:

1. A polynomial F (x , y): of degree d

F (x , y) = ∑
1≤i+j≤d

aijx
iy j

2. So that we have

F (x , f (x)) ≡ 0 mod x j for j = 1, . . . ,Nd ,

where:

Nd = (
d + 2

2
) − 1

Note that a00 = 0 and F has Nd unknown coefficients.
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Recall input/output

1. Input: d > 0 and f (x) = ∑
∞

i=1 cix
i

2. Output: F (x , y) = ∑
1≤i+j≤d

aijx
iy j

so that: F (x , f (x)) ≡ 0 mod x j for j = 1, . . . ,Nd .

Intuition

1. V (F ) is the best possible local approximation to the input analytic
curve at the specified point

2. In particular, V (F ) matches the curvature of y = f (x) at that point.
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Related works and applications

1. Arthur Cayley’s pioneer work on osculating circles and conics focus
on d = 2

2. Our work extends that of Cayley for arbitrary d

3. We simply use linear algebra over polynomials.

4. Osculating curves have applications in CAD (Computer-Aided
Design), CNC (Computer Numerically Controlled) machines and 3D
Printing.
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Contact Order

Definition
We say that the curve F (x , y) has contact order k with the graph Γ of
x ↦ f (x) at the origin if

F (x , f (x)) ≡ 0mod x j for j = 1, . . . , k

F (x , f (x)) /≡ 0mod xk+1

This means that the function F (x , f (x)) vanishes up to order k at x = 0.



Approximant of f = x + x2 + x3 + x4 + x5 of order 1



Approximant of x + x2 + x3 + x4 + x5 of order 2



Approximant of x + x2 + x3 + x4 + x5 of order 3



Approximant of x + x2 + x3 + x4 + x5 of order 4



Approximant of x + x2 + x3 + x4 + x5 of order 5
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Structure of the polynomial system to solve
The equations from the contact order conditions

1. Recall F (x , f (x)) ≡ 0 mod x j for 1 ≤ j ≤ Nd .
2. The equation for j = 1 is trivial
3. Denote by hk(a, c) the coefficient of xk in F (x , f (x)), that is,

F (x , f (x)) = ∑
k≥1

hk(a, c)x
k .

4. The hk(a, c) are polynomials of Q[c][a], linear in the a variables.

Coefficients of the linear system hk(a,c) = 0

1. For j , δ,n ∈ N, let Rn
j,δ be all (n)-tuples of natural numbers

r = (r1, . . . , rn) such that ∑
n
t=1 rt = j and ∑

n
t=1 t ⋅ rt = δ.

2. Writing c = (c1, . . . , cn), define
qj,δ(c1, . . . , cn) = ∑r∈Rn

j,δ
cr,

where cr = c r11 ⋅ c
r2
2 ⋯c

rn
n .

3. Applying Faà di Bruno’s formula, we have:

∂hk
∂aij
= ∑

r∈R
Nd−1

j,k−i

cr = qj,k−i(c1, . . . , cNd−1).
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Approximant of degree 2

1. Consider f (x) = c1x + c2x
2 + c3x

3 + . . . and d = 2.

2. Then, we have F (x , y) = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2

and Nd = 5.

3. Substituting gives:

a00 = [x0]F (x , f (x))

a10 + a01c1 = [x1]F (x , f (x))

a01c2 + a20 + a11c1 + a02c
2
1 = [x2]F (x , f (x))

a01c3 + a11c2 + 2a02c1c2 = [x3]F (x , f (x))

a02c
2
2 + 2a02c1c3 + a11c3 + a01c4 = [x4]F (x , f (x))

4. In practice, to determine a single F , we add a constraint of the form
a00 + a10 + a01 + a20 + a11 + a02 = r , for some random r .
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Approximant of degree 2

1. Consider f (x) = c1x + c2x
2 + c3x

3 + . . . and d = 2.

2. Then, we have F (x , y) = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2

and Nd = 5.

3. Substituting gives:

a00 = [x0]F (x , f (x))

a10 + a01c1 = [x1]F (x , f (x))

a01c2 + a20 + a11c1 + a02c
2
1 = [x2]F (x , f (x))

a01c3 + a11c2 + 2a02c1c2 = [x3]F (x , f (x))

a02c
2
2 + 2a02c1c3 + a11c3 + a01c4 = [x4]F (x , f (x))

4. In practice, to determine a single F , we add a constraint of the form
a00 + a10 + a01 + a20 + a11 + a02 = r , for some random r .



Approximant of degree 2 (cntd)

In matrix notation:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1
1 0 0 0 0 0
0 1 0 c1 0 0
0 0 1 c2 c1 c21
0 0 0 c3 c2 2c1c2
0 0 0 c4 c3 2c1c3 + c

2
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a00
a10
a20
a01
a11
a02

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦



Approximant of degree 2 (cntd cntd)

a0,0 = 0

a1,0 =
c1c

3
2

c21 c2c4 − c
2
1 c

2
3 + c1c

3
2 − c1c

2
2c3 + c

4
2 − 2c1c2c4 + 2c1c

2
3 − c

3
2 + c

2
2c3 + c2c4 − c

2
3

a0,1 =
−c32

c21 c2c4 − c
2
1 c

2
3 + c1c

3
2 − c1c

2
2c3 + c

4
2 − 2c1c2c4 + 2c1c

2
3 − c

3
2 + c

2
2c3 + c2c4 − c

2
3

a1,1 =
−2c1c2c4 + 2c1c

2
3 + c

2
2 c3

c21 c2c4 − c
2
1 c

2
3 + c1c

3
2 − c1c

2
2c3 + c

4
2 − 2c1c2c4 + 2c1c

2
3 − c

3
2 + c

2
2c3 + c2c4 − c

2
3

a2,0 =
c21 c2c4 − c

2
1c

2
3 − c1c

2
2c3 + c

4
2

c21 c2c4 − c
2
1 c

2
3 + c1c

3
2 − c1c

2
2c3 + c

4
2 − 2c1c2c4 + 2c1c

2
3 − c

3
2 + c

2
2c3 + c2c4 − c

2
3

a0,2 =
c2c4 − c

2
3

c21 c2c4 − c
2
1 c

2
3 + c1c

3
2 − c1c

2
2c3 + c

4
2 − 2c1c2c4 + 2c1c

2
3 − c

3
2 + c

2
2c3 + c2c4 − c

2
3



Matrix representation for a cubic approximant

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 c1 0 0 0 0 0
0 0 1 0 c2 c1 0 c21 0 0
0 0 0 1 c3 c2 c1 2c1c2 c21 c31
0 0 0 0 c4 c3 c2 2c1c3 + c

2
2 2c1c2 3c21c2

0 0 0 0 c5 c4 c3 2c1c4 + 2c2c3 2c1c3 + c
2
2 3c21 c3 + 3c1c

2
2

0 0 0 0 c6 c5 c4 2c1c5 + 2c2c4 + c
2
3 2c1c4 + 2c2c3 3c21c4 + 6c1c2c3 + c

3
2

0 0 0 0 c7 c6 c5 2c1c6 + 2c2c5 + 2c3c4 2c1c5 + 2c2c4 + c
2
3 3c21c5 + 6c1c2c4 + 3c1c

2
3 + 3c

2
2 c3

0 0 0 0 c8 c7 c6 2c1c7 + 2c2c6 + 2c3c5 + c
2
4 2c1c6 + 2c2c5 + 2c3c4 3c21c6 + 6c1c2c5 + 6c1c3c4 + 3c

2
2 c4 + 3c2c

2
3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Osculating Spaces

Definition
The osculating space of the analytic curve X of order k, degree d at
the origin is the C-vector space

Vd,k = {F ∈ C[x , y] ∣ deg(F ) ≤ d , C(F ,X ) ≥ k},

where C(F ,X ) denotes the contact order of F and X at the origin.

Obvious properties

1. As a vector space, Vd,k has at least zero as a member.

2. Recall F (x , f (x)) = ∑
∞

j=0 hj(a, c)x
j .

3. Hence, we have: F ∈ Vd,k Ô⇒ hj(a, c) = 0,1 ≤ j ≤ k.

4. Therefore, we have:
Vd,k+1 ⊆ Vd,k .



Osculating Spaces

Definition
The osculating space of the analytic curve X of order k, degree d at
the origin is the C-vector space

Vd,k = {F ∈ C[x , y] ∣ deg(F ) ≤ d , C(F ,X ) ≥ k},

where C(F ,X ) denotes the contact order of F and X at the origin.

Obvious properties

1. As a vector space, Vd,k has at least zero as a member.

2. Recall F (x , f (x)) = ∑
∞

j=0 hj(a, c)x
j .

3. Hence, we have: F ∈ Vd,k Ô⇒ hj(a, c) = 0,1 ≤ j ≤ k.

4. Therefore, we have:
Vd,k+1 ⊆ Vd,k .



Osculating curves

Definition
1. Let X be an analytic curve passant through the origin, let

F (x , y) ∈ C[x , y] be an irreducible polynomial without constant
term and let d a positive integer.

2. If Vd,m = span(F (x , y)) for some m ∈ N then we call F (x , y) the
degree d osculating curve of X at the origin.

Remark
As we shall see:

1. an osculating curve of degree d may not exist,

2. but generically, it does exist.
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Generically, osculating curves exist
Theorem
The following properties hold:

1. The vector space Vd,k is non-trivial for k ≤ Nd .

2. Generically, dim(Vd,k) = Nd + 1 − k = ( d
d+2
) − k.

3. For generic f and any d , an osculating curve of degree d exists.

Sketch of proof

1. Indeed, Vd,k is a homogeneous system in k equations and Nd + 1
unknowns (counting a00).

2. To prove dim(Vd,k) = Nd + 1 − k,

2.1 we note that we clearly have dim(Vd,1) = Nd , and
2.2 we prove by induction on 1 ≤ k that we have

dim(Vd,k) = dim(Vd,k+1) + 1.

3. To prove that latter property:

3.1 Up to a change of coordinates, we can assume a01 ≠ 0.
3.2 Recall the system:

a00 = 0

a10 + a01c1 = 0

a01c2 + a20 + a11c1 + a02c
2
1 = 0

3.3 Increasing k by 1 adds a new equation which involves the parameter
ck , which does not appear in hj(a, c) for 1 ≤ j < k.

3.4 Hence, increasing k by 1, adds a new constraint which is, generically,
linearly independent of the previous ones.
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Algorithm 1: computing osculating spaces

Input: The positive integers d , k and the polynomial part of the power
series f (x) = ∑

∞

i=1 cix
i of degree k − 1.

Output: A representation of theosculatingspaceVd,k of f (x).

1. Let Fd(x , y) = ∑1≤i+j≤d aij x
iy j with the aij left as indeterminants

2. Obtain the first k coefficients hj(a, c) of
Fd(x , fk−1(x)) = ∑

∞

j=1 hj(a, c)x
j .

3. write the matrix M of the system h1(a, c) = ⋯ = hk(a, c) = 0.

4. Compute and return the nullspace of M.



Algorithm 2: computing osculating curves

Input: The positive integer d and the power series f (x) = ∑
∞

i=1 cix
i

Output: If it exists, the osculating curve of degree d for X at the origin.

1. Set k = Nd and compute V = Vd,k

2. while dim(V ) > 1 do

2.1 Let k = k + 1
2.2 Compute Vd,k

2.3 Let V = Vd,k

3. return a basis F (x , y) for V



The inclusion Vd ,k+1 ⊆ Vd ,k need not be strict.

1. Consider y = f (x) = x + x2 + 2x3 + 3x4 + 2x5 and d = 2.

2. We have Nd = 5

3. It turns out that both V2,4 and V2,5 are equal and that the algorithm
needs a second iteration, terminating with V2,6 generated by

F (x , y) = −x + y + 2x2 − 4xy + y2.

4. Whereas, generically, we expect: dim(Vd,k) = dim(Vd,k+1) + 1.

5. For that reason, we say that V (F ) a sextactic contact with the
graph of f (x).
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Osculating curves of degree d may not exist

1. Consider f (x) = sin(x) = x − x3

3!
+ x5

5!
− x7

7!
+⋯.

2. The point p = (0,0) on this graph is an inflection point. The
tangent line defined by F (x , y) = x − y meets the graph to order 3.

3. It turns out that V2,5 = span(G(x , y)) with G(x , y) = (x − y)2.

4. Hence, no osculating conic at the origin.

5. Considering d = 3, thus Nd = 9, we have:

V3,9 = span((x−y)
3,−42000x+42000y+4437x3+3159x2y−729xy2

+133y3
)

and
V3,10 = span(−42000x+42000y +4437x

3+3159x2y −729xy2+133y3).
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Concluding remarks

Summary and notes
For a complex analytic curve X defined around a point (the origin) by a
power series expansion, and for a degree d :

1. We define the osculating curve of degree d for X at that point as
the algebraic curve of degree d that has maximum contact order
with X at that point.

2. We demonstrate that, generically, this osculating curve exists.

3. We propose an algorithm to compute this osculating curve, provided
it exists.

Work in progress

1. Osculating curves for analytic space curves

2. Osculating surfaces
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