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Real Root Isolation and Regular Chains

Real Root Isolation

Goal
Isolate the real roots of a zero-dimensional algebraic variety V ⊂ Cn

given by a regular chain C.

Example

C = {x2 − 2, xy2 − 1}
EXACT REAL ROOTS:
{x1 =

√
2, y1 =

√√
2

2 } and {x2 =
√

2, y2 = −
√√

2
2 }

ISOLATED ROOTS:
{x1 ∈ [1.41,1.42], y1 ∈ [0.84,0.85]} and
{x2 ∈ [1.41,1.42], y2 ∈ [−0.85,−0.84]}

ENCODED ROOTS:
box1 = [C, [1.41,1.42], [0.84,0.85]] and
box2 = [C, [1.41,1.42], [−0.84,−0.85]].
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Real Root Isolation and Regular Chains

Root Isolation

Box
A n-box is of the form B = I1 × · · · × In where each Ii is

either ]a,b[ for some a,b ∈ Q with a < b; then |Ii | := b − a,
or {a} for some a ∈ Q; then |Ii | = 0.

The width of B, denoted by |B|, is the max of the |Ii |.

Isolation
Let V ⊂ Cn be a zero-dimensional variety. A list B1, . . . ,Bt of n-boxes
is a box-decomposition of V ∩ Rn if

each point of V ∩ Rn lies in exactly one Bi ,
Bi ∩ Bj = ∅ whenever i 6= j ,
|Bi | can be made arbitrary small for all i .
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Real Root Isolation and Regular Chains

Zero-dimensional Regular Chains

Definition
T ⊂ Q[x1 < · · · < xn] \Q is a zero-dimensional regular chain if

T = {T1(x1),T2(x1, x2), . . . ,Tn(x1, . . . , xn)},
lc(Ti , xi) is invertible modulo 〈T1, . . . ,Ti−1〉 for 1 < i ≤ n,

Additional Properties
1 Reduced: deg(Ti , xj) < deg(Tj , xj) for 1 ≤ j < i ≤ n.
2 Squarefree: Ti and ∂Ti

∂xi
are relatively prime modulo 〈T1, . . . ,Ti−1〉

for 1 ≤ i ≤ n,
3 Normalized: lc(Ti , xi) = 1 for 1 ≤ i ≤ n.

Comment
We require squarefreeness to ensure termination of our isolation
process and speed-up sub-algorithms.
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Real Root Isolation and Regular Chains

Three Fundamental Theorems

Descartes

Let f = adxd + · · ·+ a0 ∈ R[x ] with ad 6= 0. Let v be the number of
sign changes in ad , . . . ,a0 and let r be the number of positive real
roots of f . Then, there exists m ≥ 0 such that we have r = v − 2m.

Sturm
Let f ∈ R[x ] be a square-free polynomial and let a,b ∈ R s.t. a < b and
f (a)f (b) 6= 0. Let f0 = f , f1, . . . , fs be a Sturm sequence for f on [a,b].
Then, the number of distinct roots of f in [a,b] is given by V (a)− V (b).

Yang, Hou and Zeng

Let f = adxd + · · ·+ a0 ∈ R[x ] with ad 6= 0. Let D = D1,D2, · · · ,Dd be
the discriminant sequence of f and L its revised sign list. Let ν be the
number of sign changes in L and ` that of non-zero entries in L. Then,
the number of distinct real roots of f equals `− 2ν.
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Real Root Isolation and Regular Chains

Real Root Isolation Algorithms (1/2)

For polynomials in Q[x ]

The (independent) works of Vincent and Uspensky turn Descartes
rule of signs into an algorithm for RRI.
Rouillier and Zimmermann (2003) have designed a
memory-efficient of it.
Akritas et al. (2006, 2007) have further develop Vincent’s work.

For univariate with real algebraic number coefficients

Rioboo (1992) using Sturm Sequences and isolation intervals.
Collins, Krandick, Johnson (2002, 1887) using Descartes rule of
signs and interval arithmetic.
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Real Root Isolation and Regular Chains

Real Root Isolation Algorithms (2/2)

For zero-dimensional multivariate systems
Various techniques are employed to reduce to the univariate case

1 RUR: (Rouillier, AAECC 1999)
2 Polyhedron Algebra: (Mourrain & Pavone, Tech. Rep. 2005)
3 Triangular Sets:

(Cheng, Gao & Yap, ISSAC 2007)
(Lu, He, Luo & Pan, SNC 2005)
(Xia & Zhang, Comput Math Appl 2006)

These methods:
rely on sleeve of polynomials on an interval,
use big floats or interval arithmetic,
do not use algebraic operations (invertibility test, GCD
computation) modulo a regular chain.
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Real Root Isolation and Regular Chains

Our approach

Main idea
Adapt Vincent-Collins-Akritas to (Q[x1, . . . , xi ]/〈T 〉)[xi+1] where T
is a 0-dim. squarefree regular chain.
Deduce a RealRootIsolate command for 0-dim. regular chains.

Challenge

Li := Q[x1, . . . , xi ]/〈T 〉 may not be a field and
we need to evaluate signs of elements in Li

Solution
Combine interval arithmetic and invertibility test modulo 〈T 〉.
invertibility test shoots troubles in sign determination.
(Rioboo 1992) uses a similar technique but in for univariate
polynomials and with Sturm sequences.

(Boulier, Chen, Lemaire, Moreno Maza) Real Root Isolation ASCM 2009 10 / 27



The classical Vincent-Collins-Akritas Algorithm

Plan

1 Real Root Isolation and Regular Chains

2 The classical Vincent-Collins-Akritas Algorithm

3 The Vincent-Collins-Akritas Algorithm modulo a regular chain

4 Implementation Issues

5 Experimentation

6 Conclusion

(Boulier, Chen, Lemaire, Moreno Maza) Real Root Isolation ASCM 2009 11 / 27



The classical Vincent-Collins-Akritas Algorithm

VCA algorithm

Algorithm 1 VCA(p, ]a,b[)

Input: p ∈ Q[x ] squarefree and a < b rational.
Output: an interval decomposition of V (p)∩ ]a,b[.

1: nsv ← RootNumberBound(p, ]a,b[)
2: if nsv = 0 then return ∅
3: else if nsv = 1 then return ]a,b[
4: else
5: m← (a + b)/2 res ← ∅
6: if p(m) = 0 then res ← {{m}}
7: {Next line ensures the roots are sorted increasingly}
8: return VCA(p, ]a,m[) ∪ res ∪ VCA(p, ]m,b[)
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The classical Vincent-Collins-Akritas Algorithm

The RootNumberBound Algorithm

Algorithm 2 RootNumberBound(p, ]a,b[)

Input: p ∈ Q[x ] and a < b rational
Output: a bound on the number of roots of p in the interval ]a,b[

1: p̄ ← (x + 1)d p
(

a x+b
x+1

)
where d is the degree of p, and denote

p̄ =
∑d

i=0 aix i

2: a′e, . . . ,a′0 ← the sequence obtained from ad , . . . ,a0 by removing
zero coefficients

3: return the number of sign variations in the sequence a′e, . . . ,a′0
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The Vincent-Collins-Akritas Algorithm modulo a regular chain

Invertibility Test

Algorithm 3 CheckZeroDivisor(p,T )

Input: T ⊂ Q[x1, . . . , xn] a 0-dim regular chain and p ∈ Q[x1, . . . , xn]
Output: If p is invertible modulo T , then the algorithm terminates nor-

mally. Otherwise, an exception is thrown exhibiting t ≥ 2 regu-
lar chains T1, . . . ,Tt such that 〈T 〉 = ∩〈Ti〉 and

∑t
i=1 deg(Ti) =

deg(T ).
1: T1, . . . ,Tt ← Regularize(p,T )
2: if p belongs to at least one 〈Ti〉 then throw exception(T1, . . . ,Tt )
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The Vincent-Collins-Akritas Algorithm modulo a regular chain

DC Condition and Task

DC Condition
Let B = I1 × · · · × It be an s-box and T = {p1, . . . ,ps} ⊂ Q[x1, . . . , xs]
be a 0-dim reg. chain. (B,T ) satisfies the Dichotomy Condition (DC) if

one and only one real root of T lies in B
if I1 =]a,b[ then p1(x1 = a)p1(x1 = b) < 0 holds
if Ik =]a,b[, then EvalBox(pk (xk = a),B), EvalBox(pk (xk = b),B) do
not meet 0 and have opposite signs, for all 2 ≤ k ≤ s.

Task
Let T and B be as before such that (B,T ) satisfies DC. Let
p ∈ Q[x1, . . . , xs+1] such that T ∪ p is a regular chain. Let a < b be in
Q. ThenM = TASK(p, ]a,b[,B,T ) is called a task.
The solution ofM denoted by Vt (M) is defined as
V (T ∪ {p}) ∩ (B×]a,b[) (i.e. the real solutions of T ∪ {p} which
prolong the real root in B and whose xs+1-component lies in ]a,b[).
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The Vincent-Collins-Akritas Algorithm modulo a regular chain

VCA Algorithm Modulo a Regular Chain

Algorithm 4 SolveTask(M)

Input: a taskM = TASK(p, ]a,b[,B,T ) where T is a 0-dim squarefree
regular chain of Q[x1, . . . , xs].

1: nsv ,B′ ← RootNumberBound(M)
2: if nsv = 0 then return ∅
3: else if nsv = 1 then
4: B′′ ← B′×]a,b[
5: refine B′′ until (B′′,T ∪ {p}) satisfies DC
6: return {B′′}
7: else
8: m← (a + b)/2 res ← ∅ p′ ← p(xs+1 = m)
9: if p′ ∈ 〈T 〉 then res ← {B′ ×{m}} else CheckZeroDivisor(p′,T )

10: return res ∪ {TASK(p, ]a,m[,B′,T ), TASK(p, ]m,b[,B′,T )}
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The Vincent-Collins-Akritas Algorithm modulo a regular chain

The RootNumberBound Algorithm

Algorithm 5 RootNumberBound(M)

Input: a taskM = TASK(p, ]a,b[,B,T ) where T ⊂ Q[x1, . . . , xs].
Output: (nsv ,B′) such that B′ ⊂ B, (B′,T ) satisfies DC, and nsv is a

bound on the cardinal of Vt (M). The bound is exact if nsv ∈ {0,1}.
1: p̄ ← (xs+1 + 1)d p

(
xs+1 =

a xs+1 + b
xs+1 + 1

)
with d = mdeg(p)

2: denote p̄ =
∑d

i=0 aix i
s+1

3: a′e, . . . ,a′0 ← the sequence obtained from ad , . . . ,a0 by removing
the ai belonging to 〈T 〉

4: for all a′i do CheckZeroDivisor(a′i ,T )
5: B′ ← B
6: while there is an a′i such that 0 ∈ EvalBox(a′i ,B

′) do B′ =
RefineBox(B′,T )

7: return the number of sign variations of the sequence
EvalBox(a′e,B′),EvalBox(a′e−1,B

′), . . . , EvalBox(a′0,B
′)
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Implementation Issues

Implementation Issues

Tricks currently used
Fast Taylor Shift (von zur Gathen & Gerhard, ISSAC 2007)
Horner’s rule for evaluating a polynomial on a box

Work in progress

fast arithmetic techniques for CheckZeroDivisor(p,T ) and testing
p ∈ 〈T 〉.
Subproduct tree techniques for multiple calls to CheckZeroDivisor
Greedy algorithms for optimizing Horner’s rule
Using floating-point number arithmetic (MPFR library) for interval
arithmetic.
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Experimentation

Plan

1 Real Root Isolation and Regular Chains

2 The classical Vincent-Collins-Akritas Algorithm

3 The Vincent-Collins-Akritas Algorithm modulo a regular chain

4 Implementation Issues

5 Experimentation

6 Conclusion

(Boulier, Chen, Lemaire, Moreno Maza) Real Root Isolation ASCM 2009 21 / 27



Experimentation

Special examples

nql-n-d examples
Suggested by Fabrice Rouillier

xd
1 − 2 = 0, xd

i + xd/2
i − xi−1 = 0 for 2 ≤ i ≤ n for some even

degree d .
This is a zero-dimensional regular chain.
The algorithm RealRootIsolate solves it easily since the degrees
are distributed evenly among the equations.
A similar example is simple-nql-n-d defined by xd

1 − 2 = 0,
xd

i − xi−1 = 0 for 2 ≤ i ≤ n. The degree of the rational univariate
representation is also roughly dn. For the example
simple-nql-20-30, dn is around 1029.
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Experimentation

nld-d-n examples
n equations of the form
x1 + · · ·+ xi−1 + xd

i + xi+1 + · · ·+ xn − 1 = 0 for 1 ≤ i ≤ n.
Triangularize tend to split it into many branches, even though the
equiprojectable decomposition consists of a few components
(generally 2 or 3).
For System nld-9-3, which has degree 729, the command
Triangularize produces 16 components where the largest
coefficient has size 20 digits.
Whereas there are 3 equiprojectable components where most
coefficients have more than 1,000 digits.
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Experimentation

Comparison with RootFinding[Isolate]

Sys v/e/s Rf-1 Rf-2 Tr Is/10
1 4-body-homog 3/3/7 0.31 0.32 1.6 11
2 5-body-homog 3/3/11 0.31 0.36 3.1 32
3 Caprasse 4/4/18 0.13 0.12 1.2 2.9
4 circles 2/2/22 0.89 0.9 0.55 26
5 cyclic-5 5/5/10 0.4 0.4 2.4 4.6
6 neural-network 4/4/22 1 1 0.81 18
7 nld-9-3 3/3/7 1785 1777 39 43
8 nld-10-3 3/3/8 >2000 >2000 26 148
9 nql-10-4 10/10/2 >2000 >2000 0.33 3.2
10 nql-15-2 15/15/2 >2000 >2000 0.36 5.8
11 p3p-special 5/5/24 0.41 0.46 0.23 23
12 r-5 5/5/1 1.6 1.6 0.43 <0.1
13 r-6 6/6/1 >2000 >2000 0.96 <0.1
14 Rose 3/3/18 0.63 0.67 0.72 39
15 simple-nql-20-30 20/20/2 >2000 >2000 0.57 28
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Experimentation

Different Strategies

Strategy 1 Strategy 2 Strategy 3
Sys Tr Is/10 Tr/No Is/10 Tr Is/∞ ∞/5 5/10
1 1.6 11 6.2 11 1.5 3.4 4 4.1
2 3.1 32 38 43 3.2 9.4 11 12
3 1.2 2.9 1.5 2 1.2 0.52 1.6 1.4
4 0.55 26 1.1 26 0.59 16 4.6 4.5
5 2.4 4.6 3.6 1.4 2.5 0.67 3.9 1.8
6 0.81 18 1.2 15 0.87 4.5 7.7 7
7 39 43 121 70 40 45 0.34 0.29
8 26 148 370 308 25 148 8.1 8.1
9 0.33 3.2 0.61 3.3 0.34 0.92 0.62 0.83
10 0.36 5.8 0.65 5.7 0.33 3.1 1.3 1.9
11 0.23 23 0.69 31 0.24 6.4 8.2 9
12 0.43 <0.1 0.49 <0.1 0.37 <0.1 <0.1 <0.1
13 0.96 <0.1 1.2 <0.1 0.98 <0.1 <0.1 <0.1
14 0.72 39 1.1 59 0.71 5 22 20
15 0.57 28 0.88 28 0.63 65 2.8 0.33
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Conclusion

Conclusion

We have adapted the Vincent-Collins-Akritas Algorithm to work
modulo a zero-dimensional regular chain
This provides a way for isolating the real roots of zero-dimensional
systems.
In our context, it is easy to prescribe the values of some variables
and take it into account during the isolation process.
We have realized a preliminary, non-optimized implementation in
Maple interpreted code.
For certain degree configurations (non Shape Lemma systems) it
can outperform optimized implementation written in C.
There is a large room for optimizing our VCA algorithm and its
implementation.
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