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Real Root Isolation

Goal

Isolate the real roots of a zero-dimensional algebraic variety V c C"
given by a regular chain C.

Example

C={x?-2,xy2 -1}
EXACT REAL ROOTS:

{X‘l = \/§7y1 = \/?} and {XQ = \@aYZ = _\/?}

ISOLATED ROOTS:
{x; € [1.41,1.42], y; € [0.84,0.85]} and
{x> € [1.41,1.42], y, € [-0.85,—0.84]}

ENCODED ROOTS:
boxy = [C, [1.41,1.42],[0.84,0.85]] and
box, = [C, [1.41,1.42],[-0.84, —0.85]].
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Root Isolation

Box

A n-box is of the form B = I; x --- x I, where each /; is
@ either |a, b[ for some a, b € Q with a < b; then |/;| :== b — a,
@ or {a} for some a € Q; then |/;| = 0.

The width of B, denoted by |B|, is the max of the |/;|.

Isolation

Let V ¢ C" be a zero-dimensional variety. A list By, ..., B; of n-boxes
is a box-decomposition of V N R" if

@ each point of V N R" lies in exactly one B;,
@ B;n B; = () whenever i # j,
@ |B;| can be made arbitrary small for all .
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Zero-dimensional Regular Chains

Definition

T C Q[x1 <--- < xa] \ Q is a zero-dimensional regular chain if
°oT= {T1(X1)7 TQ(X‘IaXZ),' R Tn(Xh- o 7XI7)}:
@ 1c(Tj, x;) is invertible modulo (Ty,..., Tj_1) for1 <i<n,

Additional Properties
@ Reduced: deg(T;, x;) < deg(T;,x;) for1 <j<i<n.
@ Squarefree: T; and g—; are relatively prime modulo (Ty,..., Tj_1)
for1 <i<n,
© Normalized: 1c(Tj, x;) =1for1 <i<n.

Comment
We require squarefreeness to ensure termination of our isolation
process and speed-up sub-algorithms.

v
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Three Fundamental Theorems

Descartes

Let f = agx? + --- + ay € R[x] with a; # 0. Let v be the number of
sign changes in aq, ..., 8y and let r be the number of positive real
roots of f. Then, there exists m > 0 such that we have r = v — 2m.

Sturm

Let f € R[x] be a square-free polynomial and let a,b € R s.t. a < band
f(a)f(b) #0. Letfy =1, fi,...,fs be a Sturm sequence for f on [a, b].
Then, the number of distinct roots of f in [a, b] is given by V(a) — V(b).

Yang, Hou and Zeng

Let f = agx? + --- + ap € R[x] with ag # 0. Let D = Dy, D,,--- , Dy be
the discriminant sequence of f and L its revised sign list. Let v be the

number of sign changes in L and /¢ that of non-zero entries in L. Then,
the number of distinct real roots of f equals ¢ — 2v.

4
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Real Root Isolation Algorithms (1/2)

For polynomials in Q[x]
@ The (independent) works of Vincent and Uspensky turn Descartes
rule of signs into an algorithm for RRI.

@ Rouillier and Zimmermann (2003) have designed a
memory-efficient of it.

@ Akritas et al. (2006, 2007) have further develop Vincent’s work.

4

For univariate with real algebraic number coefficients
@ Rioboo (1992) using Sturm Sequences and isolation intervals.

@ Collins, Krandick, Johnson (2002, 1887) using Descartes rule of
signs and interval arithmetic.
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Real Root Isolation Algorithms (2/2)

For zero-dimensional multivariate systems
Various techniques are employed to reduce to the univariate case
@ RUR: (Rouillier, AAECC 1999)

© Polyhedron Algebra: (Mourrain & Pavone, Tech. Rep. 2005)
© Triangular Sets:

@ (Cheng, Gao & Yap, ISSAC 2007)

o (Lu, He, Luo & Pan, SNC 2005)

e (Xia & Zhang, Comput Math Appl 2006)

These methods:

o rely on sleeve of polynomials on an interval,

@ use big floats or interval arithmetic,

e do not use algebraic operations (invertibility test, GCD

computation) modulo a regular chain.
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Our approach

Main idea

@ Adapt Vincent-Collins-Akritas to (Q[x1, ..., xi]/(T))[Xi+1] where T
is a 0-dim. squarefree regular chain.

@ Deduce a RealRootlsolate command for 0-dim. regular chains.

Challenge
@ L;:=Q[xq,...,X]/(T) may not be a field and
@ we need to evaluate signs of elements in L;

Solution
@ Combine interval arithmetic and invertibility test modulo (T).
@ invertibility test shoots troubles in sign determination.

@ (Rioboo 1992) uses a similar technique but in for univariate
polynomials and with Sturm sequences.

v
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The classical Vincent-Collins-Akritas Algorithm

© The classical Vincent-Collins-Akritas Algorithm
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VCA algorithm

Algorithm 1 VCA(p, ]a, b|)

Input: p € Q[x] squarefree and a < b rational.
Output: an interval decomposition of V(p)N]a, b|.
1: nsv — RootNumberBound(p, ]a, b[)
2: if nsv = 0 then return ()
3: else if nsv = 1 then return ]a, b|
4: else
5. m<—(a+b)/2 res—10
6 if p(m) = 0 then res — {{m}}
7 {Next line ensures the roots are sorted increasingly}
8 return VCA(p, ]a, m[) U res U VCA(p,|m, bl)
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The RootNumberBound Algorithm

Algorithm 2 RootNumberBound(p, ]a, bl)

Input: p e Q[x] and a < b rational
Output: a bound on the number of roots of p in the interval |a, b|

1:p — (x+1)%p (ax’ﬁjb> where d is the degree of p, and denote

p=31,ax

2: &,...,a, — the sequence obtained from ag,..., a9 by removing
zero coefficients

3: return the number of sign variations in the sequence a, .. ., &,
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The Vincent-Collins-Akritas Algorithm modulo a regular chain

e The Vincent-Collins-Akritas Algorithm modulo a regular chain
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Invertibility Test

Algorithm 3 CheckZeroDivisor(p, T)

Input: T C Q[xq,...,Xn] a0-dim regular chain and p € Q[xy, ..., Xa]
Output: If pis invertible modulo T, then the algorithm terminates nor-
mally. Otherwise, an exception is thrown exhibiting t > 2 regu-
lar chains Ty,..., T; such that (T) = N(T;) and Y, deg(T;) =
deg(T).
1: Tq,..., Tt — Regularize(p, T)
2: if p belongs to at least one (T;) then throw exception(Ty,..., T;)
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DC Condition and Task

DC Condition

LetB=1/ x---x ltbeans-boxand T = {py,...,ps} C Q[x1,...,Xg]
be a 0-dim reg. chain. (B, T) satisfies the Dichotomy Condition (DC) if

@ one and only one real root of T lies in B

e if Iy =]a, b[ then pi(x; = a)p1(xy = b) < 0 holds

e if Ix =]a, b[, then EvalBox(pk(xx = a), B), EvalBox(px(xx = b), B) do
not meet 0 and have opposite signs, forall 2 < k < s.

Task
Let T and B be as before such that (B, T) satisfies DC. Let
p € Q[xy,...,Xsr1] suchthat T U pis a regular chain. Let a < bbe in

Q. Then M = TASK(p, ]a, b[, B, T) is called a task.
The solution of M denoted by V;(M) is defined as
V(T uU{p}) n(Bx]a,b|) (i.e. the real solutions of T U {p} which

prolong the real root in B and whose xg, 1-component lies in ]a, b|).
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VCA Algorithm Modulo a Regular Chain

Algorithm 4 SolveTask(M)

Input: atask M = TASK(p,]a, b[, B, T) where T is a 0-dim squarefree
regular chain of Q[x, ..., Xg].

1: nsv, B' — RootNumberBound(M)

2: if nsv = 0 then return ()

3: else if nsv = 1 then

4 B’ — B'x]a, b|

5. refine B” until (B", T U {p}) satisfies DC

6:  return {B"}

7

8

9

0

. else
m—(a+b)/2 res—0 p — p(xsy1=m)
if o € (T) then res — {B' x {m}} else CheckZeroDivisor(p', T)

10:  return res U {TASK(p,]a, m[,B', T), TASK(p,]m,b[,B', T)}
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The RootNumberBound Algorithm

Algorithm 5 RootNumberBound(AM)

Input: atask M = TASK(p,]a, b[, B, T) where T C Q[x,..., Xs].

Output: (nsv,B') suchthat B' C B, (B', T) satisfies DC, and nsv is a
bound on the cardinal of V;(M). The bound is exact if nsv € {0, 1}.

aXsy1+b

1: P (xep1 +1)9p (xs+1 = St ) with d = mdeg(p)

2: denote p = 27 o aix.,

3: &,...,a, < the sequence obtained from ag,...,ap by removing
the a; belonging to (T)

4: for all & do CheckZeroDivisor(&;, T)

5: B «— B

6: while there is an & such that 0 € EvalBox(&},B’) do B =
RefineBox(B', T)

7: return the number of sign variations of the sequence

EvalBox(ay, B'), EvalBox(a,, 4, 8'), ..., EvalBox(a;, B')
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Implementation Issues

Tricks currently used
@ Fast Taylor Shift (von zur Gathen & Gerhard, ISSAC 2007)
@ Horner’s rule for evaluating a polynomial on a box

Work in progress
@ fast arithmetic techniques for CheckZeroDivisor(p, T) and testing
pe(T).
@ Subproduct tree techniques for multiple calls to CheckZeroDivisor
@ Greedy algorithms for optimizing Horner’s rule

@ Using floating-point number arithmetic (MPFR library) for interval
arithmetic.
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Special examples

nqgl-n-d examples
@ Suggested by Fabrice Rouillier
o x/-2=0, x,.‘7’+x,.d/2 — Xxj_1 = 0for2 < i < nfor some even
degree d.
@ This is a zero-dimensional regular chain.

@ The algorithm RealRootlsolate solves it easily since the degrees
are distributed evenly among the equations.

@ A similar example is simple-ngl-n-d defined by x¢ — 2 = 0,
x,.d — Xxj_1 = 0for 2 < < n. The degree of the rational univariate
representation is also roughly d”. For the example
simple-nql-20-30, d" is around 10%°.
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Experimentation

nld-d-n examples

@ nequations of the form
X144 Xy +de+Xi+1 —I—---—|—Xn—1 =0 for 1 §I§ n.

@ Triangularize tend to split it into many branches, even though the
equiprojectable decomposition consists of a few components
(generally 2 or 3).

@ For System nld-9-3, which has degree 729, the command
Triangularize produces 16 components where the largest
coefficient has size 20 digits.

@ Whereas there are 3 equiprojectable components where most
coefficients have more than 1,000 digits.
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Experimentation

Comparison with RootFinding[lsolate]

Sys v/els Rf-1 Rf-2 Tr | Is/10
1 4-body-homog 3/3/7 0.31 0.32 1.6 11
2 5-body-homog 3/3/11 0.31 0.36 3.1 32
3 Caprasse 4/4/18 0.13 0.12 1.2 29
4 circles 2/2/22 0.89 0.9 055 | 26
5 cyclic-5 5/5/10 0.4 0.4 24 | 4.6
6 neural-network 4/4/22 1 1 0.81 18
7 nld-9-3 3/3/7 1785 1777 39 43
8 nld-10-3 3/3/8 | >2000 | >2000 | 26 148
9 ngl-10-4 10/10/2 | >2000 | >2000 | 0.33 | 3.2
10 ngl-15-2 15/15/2 | >2000 | >2000 | 0.36 | 5.8
11 p3p-special 5/5/24 0.41 046 | 023 | 23
12 r-5 5/5/1 1.6 1.6 0.43 | <0.1
13 r-6 6/6/1 >2000 | >2000 | 0.96 | <0.1
14 Rose 3/3/18 0.63 067 | 072 | 39
15 | simple-nql-20-30 | 20/20/2 | >2000 | >2000 | 0.57 | 28
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Experimentation

Different Strategies

Strategy 1 Strategy 2 Strategy 3

Sys | Tr | 1Is/10 | Tr/No | Is/10 | Tr Is/oo | oo/5 | 5/10
1 1.6 11 6.2 11 1.5 | 34 4 4.1
2 3.1 32 38 43 32 | 94 11 12
3 1.2 | 29 1.5 2 12 | 052 | 1.6 1.4
4 0.55 26 1.1 26 0.59 16 4.6 4.5
5 2.4 4.6 3.6 1.4 25 | 0.67 3.9 1.8
6 | 0.81 18 1.2 15 | 0.87 | 4.5 7.7 7
7 39 43 121 70 40 45 | 0.34 | 0.29
8 26 148 | 370 | 308 | 25 148 | 8.1 8.1
9 |033| 3.2 | 0.61 3.3 [ 034|092 | 062 | 0.83
10 | 036 | 58 | 065 | 57 | 033 | 3.1 1.3 1.9
11 | 0.28 23 0.69 31 024 | 6.4 8.2 9
12 | 043 | <0.1 | 0.49 | <0.1 | 0.37 | <0.1 | <0.1 | <0.1
13 | 0.96 | <0.1 1.2 | <0.1 | 098 | <0.1 | <0.1 | <0.1
14 | 0.72 39 1.1 59 0.71 5 22 20
15 | 0.57 | 28 0.88 28 | 063 | 65 2.8 | 0.33
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Conclusion

@ We have adapted the Vincent-Collins-Akritas Algorithm to work
modulo a zero-dimensional regular chain

@ This provides a way for isolating the real roots of zero-dimensional
systems.

@ In our context, it is easy to prescribe the values of some variables
and take it into account during the isolation process.

@ We have realized a preliminary, non-optimized implementation in
Maple interpreted code.

@ For certain degree configurations (non Shape Lemma systems) it
can outperform optimized implementation written in C.

@ There is a large room for optimizing our VCA algorithm and its
implementation.
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