Real Root Isolation of Regular Chains.

François Boulier¹, Changbo Chen², François Lemaire¹, Marc Moreno Maza²

¹University of Lille I (France)

²University of London, Ontario (Canada)

ASCM 2009

- Real Root Isolation and Regular Chains
- 2 The classical Vincent-Collins-Akritas Algorithm
- 3 The Vincent-Collins-Akritas Algorithm modulo a regular chain
 - Implementation Issues
- 5 Experimentation

Real Root Isolation and Regular Chains

- 2 The classical Vincent-Collins-Akritas Algorithm
- 3 The Vincent-Collins-Akritas Algorithm modulo a regular chain
- 4 Implementation Issues
- 5 Experimentation
- 6 Conclusion

Real Root Isolation

Goal

Isolate the real roots of a zero-dimensional algebraic variety $V \subset \mathbb{C}^n$ given by a **regular chain** *C*.

Example

$$C = \{x^2 - 2, xy^2 - 1\}$$

EXACT REAL ROOTS:
 $\{x_1 = \sqrt{2}, y_1 = \sqrt{\frac{\sqrt{2}}{2}}\}$ and $\{x_2 = \sqrt{2}, y_2 = -\sqrt{\frac{\sqrt{2}}{2}}\}$

ISOLATED ROOTS: $\{x_1 \in [1.41, 1.42], y_1 \in [0.84, 0.85]\}$ and

$$\{x_2 \in [1.41, 1.42], y_2 \in [-0.85, -0.84]\}$$

ENCODED ROOTS: box₁ = [C, [1.41, 1.42], [0.84, 0.85]] and box₂ = [C, [1.41, 1.42], [-0.84, -0.85]].

Root Isolation

Box

A *n*-box is of the form $B = I_1 \times \cdots \times I_n$ where each I_i is

- either]a, b[for some $a, b \in \mathbb{Q}$ with a < b; then $|I_i| := b a$,
- or $\{a\}$ for some $a \in \mathbb{Q}$; then $|I_i| = 0$.

The *width* of *B*, denoted by |B|, is the max of the $|I_i|$.

Isolation

Let $V \subset \mathbb{C}^n$ be a zero-dimensional variety. A list B_1, \ldots, B_t of *n*-boxes is a *box-decomposition* of $V \cap \mathbb{R}^n$ if

- each point of $V \cap \mathbb{R}^n$ lies in exactly one B_i ,
- $B_i \cap B_j = \emptyset$ whenever $i \neq j$,
- $|B_i|$ can be made arbitrary small for all *i*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Zero-dimensional Regular Chains

Definition

- $T \subset \mathbb{Q}[x_1 < \cdots < x_n] \setminus \mathbb{Q}$ is a zero-dimensional regular chain if
 - $T = \{T_1(x_1), T_2(x_1, x_2), \ldots, T_n(x_1, \ldots, x_n)\},\$
 - $lc(T_i, x_i)$ is invertible modulo $\langle T_1, \ldots, T_{i-1} \rangle$ for $1 < i \le n$,

Additional Properties

- Reduced: deg $(T_i, x_j) < deg(T_j, x_j)$ for $1 \le j < i \le n$.
- **2** Squarefree: T_i and $\frac{\partial T_i}{\partial x_i}$ are relatively prime modulo $\langle T_1, \ldots, T_{i-1} \rangle$ for $1 \le i \le n$,
- Solution Normalized: $lc(T_i, x_i) = 1$ for $1 \le i \le n$.

Comment

We require squarefreeness to ensure termination of our isolation process and speed-up sub-algorithms.

(Boulier, Chen, Lemaire, Moreno Maza)

Real Root Isolation

Three Fundamental Theorems

Descartes

Let $f = a_d x^d + \cdots + a_0 \in R[x]$ with $a_d \neq 0$. Let v be the number of sign changes in a_d, \ldots, a_0 and let r be the number of positive real roots of f. Then, there exists $m \ge 0$ such that we have r = v - 2m.

Sturm

Let $f \in \mathbb{R}[x]$ be a square-free polynomial and let $a, b \in \mathbb{R}$ s.t. a < b and $f(a)f(b) \neq 0$. Let $f_0 = f, f_1, \ldots, f_s$ be a Sturm sequence for f on [a, b]. Then, the number of distinct roots of f in [a, b] is given by V(a) - V(b).

Yang, Hou and Zeng

Let $f = a_d x^d + \cdots + a_0 \in R[x]$ with $a_d \neq 0$. Let $D = D_1, D_2, \cdots, D_d$ be the discriminant sequence of f and L its revised sign list. Let ν be the number of sign changes in L and ℓ that of non-zero entries in L. Then, the number of distinct real roots of f equals $\ell - 2\nu$.

(Boulier, Chen, Lemaire, Moreno Maza)

Real Root Isolation Algorithms (1/2)

For polynomials in $\mathbb{Q}[x]$

- The (independent) works of Vincent and Uspensky turn Descartes rule of signs into an algorithm for RRI.
- Rouillier and Zimmermann (2003) have designed a memory-efficient of it.
- Akritas et al. (2006, 2007) have further develop Vincent's work.

For univariate with real algebraic number coefficients

- Rioboo (1992) using Sturm Sequences and isolation intervals.
- Collins, Krandick, Johnson (2002, 1887) using Descartes rule of signs and interval arithmetic.

< ロ > < 同 > < 回 > < 回 >

Real Root Isolation Algorithms (2/2)

For zero-dimensional multivariate systems

Various techniques are employed to reduce to the univariate case

- RUR: (Rouillier, AAECC 1999)
- Polyhedron Algebra: (Mourrain & Pavone, Tech. Rep. 2005)
- Triangular Sets:
 - (Cheng, Gao & Yap, ISSAC 2007)
 - (Lu, He, Luo & Pan, SNC 2005)
 - (Xia & Zhang, Comput Math Appl 2006)

These methods:

- rely on sleeve of polynomials on an interval,
- use big floats or interval arithmetic,
- do not use algebraic operations (invertibility test, GCD computation) modulo a regular chain.

Our approach

Main idea

- Adapt Vincent-Collins-Akritas to (ℚ[x₁,...,x_i]/⟨T⟩)[x_{i+1}] where T is a 0-dim. squarefree regular chain.
- Deduce a RealRootIsolate command for 0-dim. regular chains.

Challenge

- $L_i := \mathbb{Q}[x_1, \dots, x_i] / \langle T \rangle$ may not be a field and
- we need to evaluate signs of elements in L_i

Solution

- Combine interval arithmetic and invertibility test modulo $\langle T \rangle$.
- invertibility test shoots troubles in sign determination.
- (Rioboo 1992) uses a similar technique but in for univariate polynomials and with Sturm sequences.

(Boulier, Chen, Lemaire, Moreno Maza)

Real Root Isolation

The classical Vincent-Collins-Akritas Algorithm

- 3 The Vincent-Collins-Akritas Algorithm modulo a regular chain
- Implementation Issues
- 5 Experimentation
- 6 Conclusion

VCA algorithm

Algorithm 1 VCA(p,]a, b[)

- **Input:** $p \in \mathbb{Q}[x]$ squarefree and a < b rational.
- **Output:** an interval decomposition of $V(p) \cap]a, b[$.
 - 1: $nsv \leftarrow RootNumberBound(p,]a, b[)$
 - 2: if nsv = 0 then return \emptyset
 - 3: else if nsv = 1 then return]a, b[

4: **else**

- 5: $m \leftarrow (a+b)/2$ res $\leftarrow \emptyset$
- 6: if p(m) = 0 then $res \leftarrow \{\{m\}\}\$
- 7: {Next line ensures the roots are sorted increasingly}
- 8: return VCA(p,]a, m[) \cup res \cup VCA(p,]m, b[)

The RootNumberBound Algorithm

Algorithm 2 RootNumberBound(p,]a, b[)

Input: $p \in \mathbb{Q}[x]$ and a < b rational **Output:** a bound on the number of roots of p in the interval]a, b[

- 1: $\bar{p} \leftarrow (x+1)^d p\left(\frac{ax+b}{x+1}\right)$ where *d* is the degree of *p*, and denote $\bar{p} = \sum_{i=0}^d a_i x^i$
- 2: $a'_e, \ldots, a'_0 \leftarrow$ the sequence obtained from a_d, \ldots, a_0 by removing zero coefficients
- 3: **return** the number of sign variations in the sequence a'_e, \ldots, a'_0

- Real Root Isolation and Regular Chains
- 2) The classical Vincent-Collins-Akritas Algorithm
- 3 The Vincent-Collins-Akritas Algorithm modulo a regular chain
- Implementation Issues
- 5 Experimentation
- 6 Conclusion

Invertibility Test

Algorithm 3 CheckZeroDivisor(p, T)

Input: $T \subset \mathbb{Q}[x_1, \ldots, x_n]$ a 0-dim regular chain and $p \in \mathbb{Q}[x_1, \ldots, x_n]$ **Output:** If *p* is invertible modulo *T*, then the algorithm terminates normally. Otherwise, an exception is thrown exhibiting $t \ge 2$ regular chains T_1, \ldots, T_t such that $\langle T \rangle = \cap \langle T_i \rangle$ and $\sum_{i=1}^t \text{deg}(T_i) = \text{deg}(T)$.

- 1: $T_1, \ldots, T_t \leftarrow \text{Regularize}(p, T)$
- 2: if *p* belongs to at least one $\langle T_i \rangle$ then throw exception (T_1, \ldots, T_t)

DC Condition and Task

DC Condition

Let $B = I_1 \times \cdots \times I_t$ be an *s*-box and $T = \{p_1, \dots, p_s\} \subset \mathbb{Q}[x_1, \dots, x_s]$ be a 0-dim reg. chain. (*B*, *T*) satisfies the *Dichotomy Condition* (**DC**) if

- one and only one real root of T lies in B
- if $I_1 =]a, b[$ then $p_1(x_1 = a)p_1(x_1 = b) < 0$ holds
- if *I_k* =]*a*, *b*[, then EvalBox(*p_k*(*x_k* = *a*), *B*), EvalBox(*p_k*(*x_k* = *b*), *B*) do not meet 0 and have opposite signs, for all 2 ≤ *k* ≤ *s*.

Task

Let *T* and *B* be as before such that (B, T) satisfies **DC**. Let $p \in \mathbb{Q}[x_1, \ldots, x_{s+1}]$ such that $T \cup p$ is a regular chain. Let a < b be in \mathbb{Q} . Then $\mathcal{M} = \mathsf{TASK}(p,]a, b[, B, T)$ is called a task. The solution of \mathcal{M} denoted by $V_t(\mathcal{M})$ is defined as $V(T \cup \{p\}) \cap (B \times]a, b[)$ (i.e. the real solutions of $T \cup \{p\}$ which prolong the real root in *B* and whose x_{s+1} -component lies in]a, b[).

(Boulier, Chen, Lemaire, Moreno Maza)

Real Root Isolation

VCA Algorithm Modulo a Regular Chain

Algorithm 4 SolveTask(\mathcal{M})

- **Input:** a task $\mathcal{M} = \text{TASK}(p,]a, b[, B, T)$ where T is a 0-dim squarefree regular chain of $\mathbb{Q}[x_1, \ldots, x_s]$.
 - 1: $nsv, B' \leftarrow RootNumberBound(\mathcal{M})$
 - 2: if nsv = 0 then return \emptyset
 - 3: else if nsv = 1 then
 - 4: $B'' \leftarrow B' \times]a, b[$
 - 5: refine B'' until $(B'', T \cup \{p\})$ satisfies **DC**
 - 6: **return** {*B*''}

7: **else**

- 8: $m \leftarrow (a+b)/2$ res $\leftarrow \emptyset$ $p' \leftarrow p(x_{s+1} = m)$
- 9: if $p' \in \langle T \rangle$ then $res \leftarrow \{B' \times \{m\}\}$ else CheckZeroDivisor(p', T)
- 10: return $res \cup \{TASK(p,]a, m[, B', T), TASK(p,]m, b[, B', T)\}$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The RootNumberBound Algorithm

Algorithm 5 RootNumberBound(\mathcal{M})

Input: a task $\mathcal{M} = \mathsf{TASK}(\rho,]a, b[, B, T)$ where $T \subset \mathbb{Q}[x_1, \dots, x_s]$.

Output: (*nsv*, *B'*) such that $B' \subset B$, (*B'*, *T*) satisfies **DC**, and *nsv* is a bound on the cardinal of $V_t(\mathcal{M})$. The bound is exact if $nsv \in \{0, 1\}$.

1:
$$\bar{p} \leftarrow (x_{s+1}+1)^d p\left(x_{s+1} = \frac{ax_{s+1}+b}{x_{s+1}+1}\right)$$
 with $d = \text{mdeg}(p)$

2: denote
$$\bar{p} = \sum_{i=0}^{d} a_i x_{s+1}^i$$

- 3: $a'_e, \ldots, a'_0 \leftarrow$ the sequence obtained from a_d, \ldots, a_0 by removing the a_i belonging to $\langle T \rangle$
- 4: for all a'_i do CheckZeroDivisor (a'_i, T)
- 5: $B' \leftarrow B$
- 6: while there is an a'_i such that $0 \in \text{EvalBox}(a'_i, B')$ do B' = RefineBox(B', T)
- 7: **return** the number of sign variations of the sequence $EvalBox(a'_e, B')$, $EvalBox(a'_{e-1}, B')$, ..., $EvalBox(a'_0, B')$

- Real Root Isolation and Regular Chains
- 2 The classical Vincent-Collins-Akritas Algorithm
- 3 The Vincent-Collins-Akritas Algorithm modulo a regular chain

Implementation Issues

5 Experimentation

6 Conclusion

Implementation Issues

Tricks currently used

- Fast Taylor Shift (von zur Gathen & Gerhard, ISSAC 2007)
- Horner's rule for evaluating a polynomial on a box

Work in progress

- fast arithmetic techniques for CheckZeroDivisor(p, T) and testing p ∈ ⟨T⟩.
- Subproduct tree techniques for multiple calls to CheckZeroDivisor
- Greedy algorithms for optimizing Horner's rule
- Using floating-point number arithmetic (MPFR library) for interval arithmetic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Real Root Isolation and Regular Chains
- 2 The classical Vincent-Collins-Akritas Algorithm
- 3 The Vincent-Collins-Akritas Algorithm modulo a regular chain
- Implementation Issues
- 5 Experimentation
- 6 Conclusion

Special examples

nql-n-d examples

- Suggested by Fabrice Rouillier
- $x_1^d 2 = 0$, $x_i^d + x_i^{d/2} x_{i-1} = 0$ for $2 \le i \le n$ for some even degree *d*.
- This is a zero-dimensional regular chain.
- The algorithm RealRootIsolate solves it easily since the degrees are distributed evenly among the equations.
- A similar example is simple-nql-*n*-*d* defined by x₁^d − 2 = 0, x_i^d − x_{i-1} = 0 for 2 ≤ i ≤ n. The degree of the rational univariate representation is also roughly dⁿ. For the example simple-nql-20-30, dⁿ is around 10²⁹.

nld-d-n examples

• *n* equations of the form

 $x_1 + \dots + x_{i-1} + x_i^d + x_{i+1} + \dots + x_n - 1 = 0$ for $1 \le i \le n$.

- Triangularize tend to split it into many branches, even though the equiprojectable decomposition consists of a few components (generally 2 or 3).
- For System nld-9-3, which has degree 729, the command Triangularize produces 16 components where the largest coefficient has size 20 digits.
- Whereas there are 3 equiprojectable components where most coefficients have more than 1,000 digits.

Comparison with RootFinding[Isolate]

	Sys	v/e/s	Rf-1	Rf-2	Tr	ls/10
1	4-body-homog	3/3/7	0.31	0.32	1.6	11
2	5-body-homog	3/3/11	0.31	0.36	3.1	32
3	Caprasse	4/4/18	0.13	0.12	1.2	2.9
4	circles	2/2/22	0.89	0.9	0.55	26
5	cyclic-5	5/5/10	0.4	0.4	2.4	4.6
6	neural-network	4/4/22	1	1	0.81	18
7	nld-9-3	3/3/7	1785	1777	39	43
8	nld-10-3	3/3/8	>2000	>2000	26	148
9	nql-10-4	10/10/2	>2000	>2000	0.33	3.2
10	nql-15-2	15/15/2	>2000	>2000	0.36	5.8
11	p3p-special	5/5/24	0.41	0.46	0.23	23
12	r-5	5/5/1	1.6	1.6	0.43	<0.1
13	r-6	6/6/1	>2000	>2000	0.96	<0.1
14	Rose	3/3/18	0.63	0.67	0.72	39
15	simple-nql-20-30	20/20/2	>2000	>2000	0.57	28

(Boulier, Chen, Lemaire, Moreno Maza)

Different Strategies

	Strategy 1		Strategy 2		Strategy 3			
Sys	Tr	ls/10	Tr/No	ls/10	Tr	ls/∞	$\infty/5$	5/10
1	1.6	11	6.2	11	1.5	3.4	4	4.1
2	3.1	32	38	43	3.2	9.4	11	12
3	1.2	2.9	1.5	2	1.2	0.52	1.6	1.4
4	0.55	26	1.1	26	0.59	16	4.6	4.5
5	2.4	4.6	3.6	1.4	2.5	0.67	3.9	1.8
6	0.81	18	1.2	15	0.87	4.5	7.7	7
7	39	43	121	70	40	45	0.34	0.29
8	26	148	370	308	25	148	8.1	8.1
9	0.33	3.2	0.61	3.3	0.34	0.92	0.62	0.83
10	0.36	5.8	0.65	5.7	0.33	3.1	1.3	1.9
11	0.23	23	0.69	31	0.24	6.4	8.2	9
12	0.43	<0.1	0.49	<0.1	0.37	<0.1	<0.1	<0.1
13	0.96	<0.1	1.2	<0.1	0.98	<0.1	<0.1	<0.1
14	0.72	39	1.1	59	0.71	5	22	20
15	0.57	28	0.88	28	0.63	65	2.8	0.33

(Boulier, Chen, Lemaire, Moreno Maza)

æ

- Real Root Isolation and Regular Chains
- 2 The classical Vincent-Collins-Akritas Algorithm
- 3 The Vincent-Collins-Akritas Algorithm modulo a regular chain
- Implementation Issues
- 5 Experimentation

< ロ > < 同 > < 回 > < 回 >

Conclusion

- We have adapted the Vincent-Collins-Akritas Algorithm to work modulo a zero-dimensional regular chain
- This provides a way for isolating the real roots of zero-dimensional systems.
- In our context, it is easy to prescribe the values of some variables and take it into account during the isolation process.
- We have realized a preliminary, non-optimized implementation in Maple interpreted code.
- For certain degree configurations (non Shape Lemma systems) it can outperform optimized implementation written in C.
- There is a large room for optimizing our VCA algorithm and its implementation.