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Abstract

Discussion of the considerations involved in high-performance FFT implementations, which center
largely on memory access and other non-arithmetic concerns, as illustrated by a case study of the FFTW
library.
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1 Introduction

Although there are a wide range of fast Fourier transform (FFT) algorithms, involving a wealth of mathe-
matics from number theory to polynomial algebras, the vast majority of FFT implementations in practice
employ some variation on the Cooley-Tukey algorithm [7]. The Cooley-Tukey algorithm can be derived in
two or three lines of elementary algebra. It can be implemented almost as easily, especially if only power-of-
two sizes are desired; numerous popular textbooks list short FFT subroutines for power-of-two sizes, written
in the language du jour. The implementation of the Cooley-Tukey algorithm, at least, would therefore seem
to be a long-solved problem. In this chapter, however, we will argue that matters are not as straightforward
as they might appear.

For many years, the primary route to improving upon the Cooley-Tukey FFT seemed to be reductions
in the count of arithmetic operations, which often dominated the execution time prior to the ubiquity of
fast �oating-point hardware (at least on non-embedded processors). Therefore, great e�ort was expended
towards �nding new algorithms with reduced arithmetic counts [12], from Winograd's method to achieve
Θ (n) multiplications1 (at the cost of many more additions) [55], [24], [13], [12] to the split-radix variant on
Cooley-Tukey that long achieved the lowest known total count of additions and multiplications for power-of-
two sizes [57], [11], [54], [33], [12] (but was recently improved upon [28], [32]). The question of the minimum
possible arithmetic count continues to be of fundamental theoretical interest�it is not even known whether
better than Θ (nlogn) complexity is possible, since Ω (nlogn) lower bounds on the count of additions have
only been proven subject to restrictive assumptions about the algorithms [34], [37], [38]. Nevertheless, the
di�erence in the number of arithmetic operations, for power-of-two sizes n, between the 1965 radix-2 Cooley-
Tukey algorithm (∼ 5nlog2n[7]) and the currently lowest-known arithmetic count (∼ 34

9 nlog2n[28], [32])
remains only about 25%.

∗Version 1.14: Sep 18, 2009 4:37 pm GMT-5
†http://creativecommons.org/licenses/by/2.0/
1We employ the standard asymptotic notation of O for asymptotic upper bounds, Θ for asymptotic tight bounds, and Ω for

asymptotic lower bounds [31].
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Figure 1: The ratio of speed (1/time) between a highly optimized FFT (FFTW 3.1.2 [18], [19]) and a
typical textbook radix-2 implementation (Numerical Recipes in C[39]) on a 3 GHz Intel Core Duo with
the Intel C compiler 9.1.043, for single-precision complex-data DFTs of size n, plotted versus log2n. Top
line (squares) shows FFTW with SSE SIMD instructions enabled, which perform multiple arithmetic
operations at once (see section ); bottom line (circles) shows FFTW with SSE disabled, which thus
requires a similar number of arithmetic instructions to the textbook code. (This is not intended as
a criticism of Numerical Recipes�simple radix-2 implementations are reasonable for pedagogy�but
it illustrates the radical di�erences between straightforward and optimized implementations of FFT
algorithms, even with similar arithmetic costs.) For n & 219, the ratio increases because the textbook
code becomes much slower (this happens when the DFT size exceeds the level-2 cache).

And yet there is a vast gap between this basic mathematical theory and the actual practice�highly
optimized FFT packages are often an order of magnitude faster than the textbook subroutines, and the
internal structure to achieve this performance is radically di�erent from the typical textbook presentation
of the �same� Cooley-Tukey algorithm. For example, Figure 1 plots the ratio of benchmark speeds between
a highly optimized FFT [18], [19] and a typical textbook radix-2 implementation [39], and the former is
faster by a factor of 5�40 (with a larger ratio as n grows). Here, we will consider some of the reasons
for this discrepancy, and some techniques that can be used to address the di�culties faced by a practical
high-performance FFT implementation.2

In particular, in this chapter we will discuss some of the lessons learned and the strategies adopted
in the FFTW library. FFTW [18], [19] is a widely used free-software library that computes the dis-
crete Fourier transform (DFT) and its various special cases. Its performance is competitive even with
manufacturer-optimized programs [19], and this performance is portable thanks the structure of the algo-
rithms employed, self-optimization techniques, and highly optimized kernels (FFTW's codelets) generated
by a special-purpose compiler.

This chapter is structured as follows. First "Review of the Cooley-Tukey FFT" (Section 2: Review of
the Cooley-Tukey FFT), we brie�y review the basic ideas behind the Cooley-Tukey algorithm and de�ne
some common terminology, especially focusing on the many degrees of freedom that the abstract algorithm
allows to implementations. Next, in "Goals and Background of the FFTW Project" (Section 3: Goals
and Background of the FFTW Project), we provide some context for FFTW's development and stress that

2We won't address the question of parallelization on multi-processor machines, which adds even greater di�culty to FFT
implementation�although multi-processors are increasingly important, achieving good serial performance is a basic prerequisite
for optimized parallel code, and is already hard enough!
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performance, while it receives the most publicity, is not necessarily the most important consideration in the
implementation of a library of this sort. Third, in "FFTs and the Memory Hierarchy" (Section 4: FFTs and
the Memory Hierarchy), we consider a basic theoretical model of the computer memory hierarchy and its
impact on FFT algorithm choices: quite general considerations push implementations towards large radices
and explicitly recursive structure. Unfortunately, general considerations are not su�cient in themselves,
so we will explain in "Adaptive Composition of FFT Algorithms" (Section 5: Adaptive Composition of
FFT Algorithms) how FFTW self-optimizes for particular machines by selecting its algorithm at runtime
from a composition of simple algorithmic steps. Furthermore, "Generating Small FFT Kernels" (Section 6:
Generating Small FFT Kernels) describes the utility and the principles of automatic code generation used to
produce the highly optimized building blocks of this composition, FFTW's codelets. Finally, we will brie�y
consider an important non-performance issue, in "Numerical Accuracy in FFTs" (Section 7: Numerical
Accuracy in FFTs).

2 Review of the Cooley-Tukey FFT

The (forward, one-dimensional) discrete Fourier transform (DFT) of an array X of n complex numbers is
the array Y given by

Y [k] =
n−1∑
`=0

X [`]ω`kn , (1)

where 0 ≤ k < n and ωn = exp (−2πi/n) is a primitive root of unity. Implemented directly, (1) would
require Θ

(
n2
)
operations; fast Fourier transforms are O (nlogn) algorithms to compute the same result. The

most important FFT (and the one primarily used in FFTW) is known as the �Cooley-Tukey� algorithm, after
the two authors who rediscovered and popularized it in 1965 [7], although it had been previously known as
early as 1805 by Gauss as well as by later re-inventors [23]. The basic idea behind this FFT is that a DFT
of a composite size n = n1n2 can be re-expressed in terms of smaller DFTs of sizes n1 and n2�essentially,
as a two-dimensional DFT of size n1 × n2 where the output is transposed. The choices of factorizations
of n, combined with the many di�erent ways to implement the data re-orderings of the transpositions, have
led to numerous implementation strategies for the Cooley-Tukey FFT, with many variants distinguished by
their own names [12], [53]. FFTW implements a space of many such variants, as described in "Adaptive
Composition of FFT Algorithms" (Section 5: Adaptive Composition of FFT Algorithms), but here we
derive the basic algorithm, identify its key features, and outline some important historical variations and
their relation to FFTW.

The Cooley-Tukey algorithm can be derived as follows. If n can be factored into n = n1n2, (1) can be
rewritten by letting ` = `1n2 + `2 and k = k1 + k2n1. We then have:

Y [k1 + k2n1] =
n2−1∑
`2=0

[(
n1−1∑
`1=0

X [`1n2 + `2]ω`1k1n1

)
ω`2k1n

]
ω`2k2n2

, (2)

where k1,2 = 0, ..., n1,2 − 1. Thus, the algorithm computes n2 DFTs of size n1 (the inner sum), multiplies
the result by the so-called [21]twiddle factorsω`2k1n , and �nally computes n1 DFTs of size n2 (the outer
sum). This decomposition is then continued recursively. The literature uses the term radix to describe an
n1 or n2 that is bounded (often constant); the small DFT of the radix is traditionally called a butter�y.

Many well-known variations are distinguished by the radix alone. A decimation in time (DIT) al-
gorithm uses n2 as the radix, while a decimation in frequency (DIF) algorithm uses n1 as the radix.
If multiple radices are used, e.g. for n composite but not a prime power, the algorithm is called mixed
radix. A peculiar blending of radix 2 and 4 is called split radix, which was proposed to minimize the count
of arithmetic operations [57], [11], [54], [33], [12] although it has been superseded in this regard [28], [32].
FFTW implements both DIT and DIF, is mixed-radix with radices that are adapted to the hardware, and
often uses much larger radices (e.g. radix 32) than were once common. On the other end of the scale, a
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�radix� of roughly
√
n has been called a four-step FFT algorithm (or six-step, depending on how many

transposes one performs) [2]; see "FFTs and the Memory Hierarchy" (Section 4: FFTs and the Memory
Hierarchy) for some theoretical and practical discussion of this algorithm.

A key di�culty in implementing the Cooley-Tukey FFT is that the n1 dimension corresponds to discon-
tiguous inputs `1 in X but contiguous outputs k1 in Y, and vice-versa for n2. This is a matrix transpose for
a single decomposition stage, and the composition of all such transpositions is a (mixed-base) digit-reversal
permutation (or bit-reversal, for radix 2). The resulting necessity of discontiguous memory access and
data re-ordering hinders e�cient use of hierarchical memory architectures (e.g., caches), so that the optimal
execution order of an FFT for given hardware is non-obvious, and various approaches have been proposed.

Figure 2: Schematic of traditional breadth-�rst (left) vs. recursive depth-�rst (right) ordering for
radix-2 FFT of size 8: the computations for each nested box are completed before doing anything else
in the surrounding box. Breadth-�rst computation performs all butter�ies of a given size at once, while
depth-�rst computation completes one subtransform entirely before moving on to the next (as in the
algorithm below).

One ordering distinction is between recursion and iteration. As expressed above, the Cooley-Tukey
algorithm could be thought of as de�ning a tree of smaller and smaller DFTs, as depicted in Figure 2; for
example, a textbook radix-2 algorithm would divide size n into two transforms of size n/2, which are divided
into four transforms of size n/4, and so on until a base case is reached (in principle, size 1). This might
naturally suggest a recursive implementation in which the tree is traversed �depth-�rst� as in Figure 2(right)
and the algorithm of p. ??�one size n/2 transform is solved completely before processing the other one,
and so on. However, most traditional FFT implementations are non-recursive (with rare exceptions [47])
and traverse the tree �breadth-�rst� [53] as in Figure 2(left)�in the radix-2 example, they would perform n
(trivial) size-1 transforms, then n/2 combinations into size-2 transforms, then n/4 combinations into size-
4 transforms, and so on, thus making log2n passes over the whole array. In contrast, as we discuss in
"Discussion" (Section 5.2.6: Discussion), FFTW employs an explicitly recursive strategy that encompasses
both depth-�rst and breadth-�rst styles, favoring the former since it has some theoretical and practical
advantages as discussed in "FFTs and the Memory Hierarchy" (Section 4: FFTs and the Memory Hierarchy).
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Y [0, ..., n− 1]← recfft2 (n,X, ι ):
IF n=1 THEN

Y [0]← X [0]
ELSE

Y [0, ..., n/2− 1]← recfft2 (n/2,X, 2ι )
Y [n/2, ..., n− 1]← recfft2 (n/2,X + ι , 2ι )
FOR k_1 = 0 TO (n/2)− 1 DO

t← Y [k_1]
Y [k_1]← t+ ω _nˆk_1Y [k_1 + n/2]
Y [k_1 + n/2]← t− ω _nˆk_1Y [k_1 + n/2]

END FOR

END IF

Listing 1: A depth-�rst recursive radix-2 DIT Cooley-Tukey FFT to compute a DFT of a power-of-two
size n = 2m. The input is an array X of length n with stride ι (i.e., the inputs are X [`ι] for ` = 0, ..., n−1)
and the output is an array Y of length n (with stride 1), containing the DFT of X [Equation 1]. X + ι
denotes the array beginning with X [ι]. This algorithm operates out-of-place, produces in-order output,
and does not require a separate bit-reversal stage.

A second ordering distinction lies in how the digit-reversal is performed. The classic approach is a single,
separate digit-reversal pass following or preceding the arithmetic computations; this approach is so common
and so deeply embedded into FFT lore that many practitioners �nd it di�cult to imagine an FFT without
an explicit bit-reversal stage. Although this pass requires only O (n) time [30], it can still be non-negligible,
especially if the data is out-of-cache; moreover, it neglects the possibility that data reordering during the
transform may improve memory locality. Perhaps the oldest alternative is the Stockham auto-sort FFT
[48], [53], which transforms back and forth between two arrays with each butter�y, transposing one digit each
time, and was popular to improve contiguity of access for vector computers [49]. Alternatively, an explicitly
recursive style, as in FFTW, performs the digit-reversal implicitly at the �leaves� of its computation when
operating out-of-place (see section "Discussion" (Section 5.2.6: Discussion)). A simple example of this style,
which computes in-order output using an out-of-place radix-2 FFT without explicit bit-reversal, is shown in
the algorithm of p. ?? [corresponding to Figure 2(right)]. To operate in-place with O (1) scratch storage,
one can interleave small matrix transpositions with the butter�ies [27], [52], [41], [22], and a related strategy
in FFTW [19] is brie�y described by "Discussion" (Section 5.2.6: Discussion).

Finally, we should mention that there are many FFTs entirely distinct from Cooley-Tukey. Three notable
such algorithms are the prime-factor algorithm for gcd (n1, n2) = 1[36], along with Rader's [43] and
Bluestein's [4], [42], [36] algorithms for prime n. FFTW implements the �rst two in its codelet generator for
hard-coded n"Generating Small FFT Kernels" (Section 6: Generating Small FFT Kernels) and the latter
two for general prime n (sections "Plans for prime sizes" (Section 5.2.5: Plans for prime sizes) and "Goals
and Background of the FFTW Project" (Section 3: Goals and Background of the FFTW Project)). There
is also the Winograd FFT [55], [24], [13], [12], which minimizes the number of multiplications at the expense
of a large number of additions; this trade-o� is not bene�cial on current processors that have specialized
hardware multipliers.

3 Goals and Background of the FFTW Project

The FFTW project, begun in 1997 as a side project of the authors Frigo and Johnson as graduate students
at MIT, has gone through several major revisions, and as of 2008 consists of more than 40,000 lines of code.
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It is di�cult to measure the popularity of a free-software package, but (as of 2008) FFTW has been cited
in over 500 academic papers, is used in hundreds of shipping free and proprietary software packages, and
the authors have received over 10,000 emails from users of the software. Most of this chapter focuses on
performance of FFT implementations, but FFTW would probably not be where it is today if that were the
only consideration in its design. One of the key factors in FFTW's success seems to have been its �exibility
in addition to its performance. In fact, FFTW is probably the most �exible DFT library available:

• FFTW is written in portable C and runs well on many architectures and operating systems.
• FFTW computes DFTs in O (nlogn) time for any length n. (Most other DFT implementations are

either restricted to a subset of sizes or they become Θ
(
n2
)
for certain values of n, for example when

n is prime.)
• FFTW imposes no restrictions on the rank (dimensionality) of multi-dimensional transforms. (Most

other implementations are limited to one-dimensional, or at most two- and three-dimensional data.)
• FFTW supports multiple and/or strided DFTs; for example, to transform a 3-component vector �eld or

a portion of a multi-dimensional array. (Most implementations support only a single DFT of contiguous
data.)

• FFTW supports DFTs of real data, as well as of real symmetric/anti-symmetric data (also called
discrete cosine/sine transforms).

Our design philosophy has been to �rst de�ne the most general reasonable functionality, and then to obtain
the highest possible performance without sacri�cing this generality. In this section, we o�er a few thoughts
about why such �exibility has proved important, and how it came about that FFTW was designed in this
way.

FFTW's generality is partly a consequence of the fact the FFTW project was started in response to the
needs of a real application for one of the authors (a spectral solver for Maxwell's equations [29]), which from
the beginning had to run on heterogeneous hardware. Our initial application required multi-dimensional
DFTs of three-component vector �elds (magnetic �elds in electromagnetism), and so right away this meant:
(i) multi-dimensional FFTs; (ii) user-accessible loops of FFTs of discontiguous data; (iii) e�cient support
for non-power-of-two sizes (the factor of eight di�erence between n× n× n and 2n× 2n× 2n was too much
to tolerate); and (iv) saving a factor of two for the common real-input case was desirable. That is, the
initial requirements already encompassed most of the features above, and nothing about this application is
particularly unusual.

Even for one-dimensional DFTs, there is a common misperception that one should always choose power-
of-two sizes if one cares about e�ciency. Thanks to FFTW's code generator (described in "Generating Small
FFT Kernels" (Section 6: Generating Small FFT Kernels)), we could a�ord to devote equal optimization
e�ort to any n with small factors (2, 3, 5, and 7 are good), instead of mostly optimizing powers of two like
many high-performance FFTs. As a result, to pick a typical example on the 3 GHz Core Duo processor of
Figure 1, n = 3600 = 24 · 32 · 52 and n = 3840 = 28 · 3 · 5 both execute faster than n = 4096 = 212. (And if
there are factors one particularly cares about, one can generate code for them too.)

One initially missing feature was e�cient support for large prime sizes; the conventional wisdom was
that large-prime algorithms were mainly of academic interest, since in real applications (including ours)
one has enough freedom to choose a highly composite transform size. However, the prime-size algorithms
are fascinating, so we implemented Rader's O (nlogn) prime-n algorithm [43] purely for fun, including it in
FFTW 2.0 (released in 1998) as a bonus feature. The response was astonishingly positive�even though users
are (probably) never forced by their application to compute a prime-size DFT, it is rather inconvenient to
always worry that collecting an unlucky number of data points will slow down one's analysis by a factor of
a million. The prime-size algorithms are certainly slower than algorithms for nearby composite sizes, but
in interactive data-analysis situations the di�erence between 1 ms and 10 ms means little, while educating
users to avoid large prime factors is hard.

Another form of �exibility that deserves comment has to do with a purely technical aspect of computer
software. FFTW's implementation involves some unusual language choices internally (the FFT-kernel gen-
erator, described in "Generating Small FFT Kernels" (Section 6: Generating Small FFT Kernels), is written
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in Objective Caml, a functional language especially suited for compiler-like programs), but its user-callable
interface is purely in C with lowest-common-denominator datatypes (arrays of �oating-point values). The
advantage of this is that FFTW can be (and has been) called from almost any other programming language,
from Java to Perl to Fortran 77. Similar lowest-common-denominator interfaces are apparent in many other
popular numerical libraries, such as LAPACK [1]. Language preferences arouse strong feelings, but this
technical constraint means that modern programming dialects are best hidden from view for a numerical
library.

Ultimately, very few scienti�c-computing applications should have performance as their top priority.
Flexibility is often far more important, because one wants to be limited only by one's imagination, rather
than by one's software, in the kinds of problems that can be studied.

4 FFTs and the Memory Hierarchy

There are many complexities of computer architectures that impact the optimization of FFT implementa-
tions, but one of the most pervasive is the memory hierarchy. On any modern general-purpose computer,
memory is arranged into a hierarchy of storage devices with increasing size and decreasing speed: the fastest
and smallest memory being the CPU registers, then two or three levels of cache, then the main-memory
RAM, then external storage such as hard disks.3 Most of these levels are managed automatically by the
hardware to hold the most-recently-used data from the next level in the hierarchy.4 There are many compli-
cations, however, such as limited cache associativity (which means that certain locations in memory cannot
be cached simultaneously) and cache lines (which optimize the cache for contiguous memory access), which
are reviewed in numerous textbooks on computer architectures. In this section, we focus on the simplest
abstract principles of memory hierarchies in order to grasp their fundamental impact on FFTs.

Because access to memory is in many cases the slowest part of the computer, especially compared to
arithmetic, one wishes to load as much data as possible in to the faster levels of the hierarchy, and then
perform as much computation as possible before going back to the slower memory devices. This is called
temporal locality: if a given datum is used more than once, we arrange the computation so that these
usages occur as close together as possible in time.

4.1 Understanding FFTs with an ideal cache

To understand temporal-locality strategies at a basic level, in this section we will employ an idealized model
of a cache in a two-level memory hierarchy, as de�ned in [20]. This ideal cache stores Z data items from
main memory (e.g. complex numbers for our purposes): when the processor loads a datum from memory,
the access is quick if the datum is already in the cache (a cache hit) and slow otherwise (a cache miss,
which requires the datum to be fetched into the cache). When a datum is loaded into the cache,5 it must
replace some other datum, and the ideal-cache model assumes that the optimal replacement strategy is used
[3]: the new datum replaces the datum that will not be needed for the longest time in the future; in practice,
this can be simulated to within a factor of two by replacing the least-recently used datum [20], but ideal
replacement is much simpler to analyze. Armed with this ideal-cache model, we can now understand some
basic features of FFT implementations that remain essentially true even on real cache architectures. In
particular, we want to know the cache complexity, the number Q (n;Z) of cache misses for an FFT of size
n with an ideal cache of size Z, and what algorithm choices reduce this complexity.

3A hard disk is utilized by �out-of-core� FFT algorithms for very large n[53], but these algorithms appear to have been
largely superseded in practice by both the gigabytes of memory now common on personal computers and, for extremely large
n, by algorithms for distributed-memory parallel computers.

4This includes the registers: on current �x86� processors, the user-visible instruction set (with a small number of �oating-point
registers) is internally translated at runtime to RISC-like �µ-ops� with a much larger number of physical rename registers

that are allocated automatically.
5More generally, one can assume that a cache line of L consecutive data items are loaded into the cache at once, in order

to exploit spatial locality. The ideal-cache model in this case requires that the cache be tall: Z = Ω
`
L2

´
[20].
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First, consider a textbook radix-2 algorithm, which divides n by 2 at each stage and operates breadth-�rst
as in Figure 2(left), performing all butter�ies of a given size at a time. If n > Z, then each pass over the
array incurs Θ (n) cache misses to reload the data, and there are log2n passes, for Θ (nlog2n) cache misses
in total�no temporal locality at all is exploited!

One traditional solution to this problem is blocking: the computation is divided into maximal blocks
that �t into the cache, and the computations for each block are completed before moving on to the next
block. Here, a block of Z numbers can �t into the cache6 (not including storage for twiddle factors and so
on), and thus the natural unit of computation is a sub-FFT of size Z. Since each of these blocks involves
Θ (ZlogZ) arithmetic operations, and there are Θ (nlogn) operations overall, there must be Θ

(
n
Z logZn

)
such blocks. More explicitly, one could use a radix-Z Cooley-Tukey algorithm, breaking n down by factors
of Z [or Θ (Z)] until a size Z is reached: each stage requires n/Z blocks, and there are logZn stages, again
giving Θ

(
n
Z logZn

)
blocks overall. Since each block requires Z cache misses to load it into cache, the cache

complexity Qb of such a blocked algorithm is

Qb (n;Z) = Θ (nlogZn) . (3)

In fact, this complexity is rigorously optimal for Cooley-Tukey FFT algorithms [26], and immediately
points us towards large radices (not radix 2!) to exploit caches e�ectively in FFTs.

However, there is one shortcoming of any blocked FFT algorithm: it is cache aware, meaning that
the implementation depends explicitly on the cache size Z. The implementation must be modi�ed (e.g.
changing the radix) to adapt to di�erent machines as the cache size changes. Worse, as mentioned above,
actual machines have multiple levels of cache, and to exploit these one must perform multiple levels of
blocking, each parameterized by the corresponding cache size. In the above example, if there were a smaller
and faster cache of size z < Z, the size-Z sub-FFTs should themselves be performed via radix-z Cooley-Tukey
using blocks of size z. And so on. There are two paths out of these di�culties: one is self-optimization,
where the implementation automatically adapts itself to the hardware (implicitly including any cache sizes),
as described in "Adaptive Composition of FFT Algorithms" (Section 5: Adaptive Composition of FFT
Algorithms); the other is to exploit cache-oblivious algorithms. FFTW employs both of these techniques.

The goal of cache-obliviousness is to structure the algorithm so that it exploits the cache without having
the cache size as a parameter: the same code achieves the same asymptotic cache complexity regardless of
the cache size Z. An optimal cache-oblivious algorithm achieves the optimal cache complexity (that is,
in an asymptotic sense, ignoring constant factors). Remarkably, optimal cache-oblivious algorithms exist for
many problems, such as matrix multiplication, sorting, transposition, and FFTs [20]. Not all cache-oblivious
algorithms are optimal, of course�for example, the textbook radix-2 algorithm discussed above is �pessimal�
cache-oblivious (its cache complexity is independent of Z because it always achieves the worst case!).

For instance, Figure 2(right) and the algorithm of p. ?? shows a way to obliviously exploit the cache
with a radix-2 Cooley-Tukey algorithm, by ordering the computation depth-�rst rather than breadth-�rst.
That is, the DFT of size n is divided into two DFTs of size n/2, and one DFT of size n/2 is completely
�nished before doing any computations for the second DFT of size n/2. The two subtransforms are then
combined using n/2 radix-2 butter�ies, which requires a pass over the array and (hence n cache misses if
n > Z). This process is repeated recursively until a base-case (e.g. size 2) is reached. The cache complexity
Q2 (n;Z) of this algorithm satis�es the recurrence

Q2 (n;Z) = {
n n ≤ Z

2Q2 (n/2;Z) + Θ (n) otherwise
. (4)

The key property is this: once the recursion reaches a size n ≤ Z, the subtransform �ts into the cache and no
further misses are incurred. The algorithm does not �know� this and continues subdividing the problem, of

6Of course, O (n) additional storage may be required for twiddle factors, the output data (if the FFT is not in-place), and
so on, but these only a�ect the n that �ts into cache by a constant factor and hence do not impact cache-complexity analysis.
We won't worry about such constant factors in this section.
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course, but all of those further subdivisions are in-cache because they are performed in the same depth-�rst
branch of the tree. The solution of (4) is

Q2 (n;Z) = Θ (nlog [n/Z]) . (5)

This is worse than the theoretical optimum Qb (n;Z) from (3), but it is cache-oblivious (Z never entered
the algorithm) and exploits at least some temporal locality.7 On the other hand, when it is combined with
FFTW's self-optimization and larger radices in "Adaptive Composition of FFT Algorithms" (Section 5:
Adaptive Composition of FFT Algorithms), this algorithm actually performs very well until n becomes
extremely large. By itself, however, the algorithm of p. ?? must be modi�ed to attain adequate performance
for reasons that have nothing to do with the cache. These practical issues are discussed further in "Cache-
obliviousness in practice" (Section 4.2: Cache-obliviousness in practice).

There exists a di�erent recursive FFT that is optimal cache-oblivious, however, and that is the radix-
√
n

�four-step� Cooley-Tukey algorithm (again executed recursively, depth-�rst) [20]. The cache complexity Qo
of this algorithm satis�es the recurrence:

Qo (n;Z) = {
n n ≤ Z

2
√
nQo (

√
n;Z) + Θ (n) otherwise

. (6)

That is, at each stage one performs
√
n DFTs of size

√
n (recursively), then multiplies by the Θ (n) twiddle

factors (and does a matrix transposition to obtain in-order output), then �nally performs another
√
n DFTs

of size
√
n. The solution of (6) is Qo (n;Z) = Θ (nlogZn), the same as the optimal cache complexity (3)!

These algorithms illustrate the basic features of most optimal cache-oblivious algorithms: they employ
a recursive divide-and-conquer strategy to subdivide the problem until it �ts into cache, at which point
the subdivision continues but no further cache misses are required. Moreover, a cache-oblivious algorithm
exploits all levels of the cache in the same way, so an optimal cache-oblivious algorithm exploits a multi-level
cache optimally as well as a two-level cache [20]: the multi-level �blocking� is implicit in the recursion.

4.2 Cache-obliviousness in practice

Even though the radix-
√
n algorithm is optimal cache-oblivious, it does not follow that FFT implementation

is a solved problem. The optimality is only in an asymptotic sense, ignoring constant factors, O (n) terms,
etcetera, all of which can matter a great deal in practice. For small or moderate n, quite di�erent algorithms
may be superior, as discussed in "Memory strategies in FFTW" (Section 4.3: Memory strategies in FFTW).
Moreover, real caches are inferior to an ideal cache in several ways. The unsurprising consequence of all
this is that cache-obliviousness, like any complexity-based algorithm property, does not absolve one from the
ordinary process of software optimization. At best, it reduces the amount of memory/cache tuning that one
needs to perform, structuring the implementation to make further optimization easier and more portable.

Perhaps most importantly, one needs to perform an optimization that has almost nothing to do with
the caches: the recursion must be �coarsened� to amortize the function-call overhead and to enable compiler
optimization. For example, the simple pedagogical code of the algorithm in p. ?? recurses all the way down
to n = 1, and hence there are ≈ 2n function calls in total, so that every data point incurs a two-function-call
overhead on average. Moreover, the compiler cannot fully exploit the large register sets and instruction-level
parallelism of modern processors with an n = 1 function body.8 These problems can be e�ectively erased,
however, simply by making the base cases larger, e.g. the recursion could stop when n = 32 is reached, at
which point a highly optimized hard-coded FFT of that size would be executed. In FFTW, we produced
this sort of large base-case using a specialized code-generation program described in "Generating Small FFT
Kernels" (Section 6: Generating Small FFT Kernels).

7This advantage of depth-�rst recursive implementation of the radix-2 FFT was pointed out many years ago by Singleton
(where the �cache� was core memory) [47].

8In principle, it might be possible for a compiler to automatically coarsen the recursion, similar to how compilers can partially
unroll loops. We are currently unaware of any general-purpose compiler that performs this optimization, however.
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One might get the impression that there is a strict dichotomy that divides cache-aware and cache-oblivious
algorithms, but the two are not mutually exclusive in practice. Given an implementation of a cache-oblivious
strategy, one can further optimize it for the cache characteristics of a particular machine in order to improve
the constant factors. For example, one can tune the radices used, the transition point between the radix-

√
n

algorithm and the bounded-radix algorithm, or other algorithmic choices as described in "Memory strategies
in FFTW" (Section 4.3: Memory strategies in FFTW). The advantage of starting cache-aware tuning with a
cache-oblivious approach is that the starting point already exploits all levels of the cache to some extent, and
one has reason to hope that good performance on one machine will be more portable to other architectures
than for a purely cache-aware �blocking� approach. In practice, we have found this combination to be very
successful with FFTW.

4.3 Memory strategies in FFTW

The recursive cache-oblivious strategies described above form a useful starting point, but FFTW supplements
them with a number of additional tricks, and also exploits cache-obliviousness in less-obvious forms.

We currently �nd that the general radix-
√
n algorithm is bene�cial only when n becomes very large, on

the order of 220 ≈ 106. In practice, this means that we use at most a single step of radix-
√
n (two steps

would only be used for n & 240). The reason for this is that the implementation of radix
√
n is less e�cient

than for a bounded radix: the latter has the advantage that an entire radix butter�y can be performed in
hard-coded loop-free code within local variables/registers, including the necessary permutations and twiddle
factors.

Thus, for more moderate n, FFTW uses depth-�rst recursion with a bounded radix, similar in spirit to
the algorithm of p. ?? but with much larger radices (radix 32 is common) and base cases (size 32 or 64
is common) as produced by the code generator of "Generating Small FFT Kernels" (Section 6: Generat-
ing Small FFT Kernels). The self-optimization described in "Adaptive Composition of FFT Algorithms"
(Section 5: Adaptive Composition of FFT Algorithms) allows the choice of radix and the transition to the
radix-

√
n algorithm to be tuned in a cache-aware (but entirely automatic) fashion.

For small n (including the radix butter�ies and the base cases of the recursion), hard-coded FFTs
(FFTW's codelets) are employed. However, this gives rise to an interesting problem: a codelet for (e.g.)
n = 64 is ∼ 2000 lines long, with hundreds of variables and over 1000 arithmetic operations that can be
executed in many orders, so what order should be chosen? The key problem here is the e�cient use of
the CPU registers, which essentially form a nearly ideal, fully associative cache. Normally, one relies on the
compiler for all code scheduling and register allocation, but but the compiler needs help with such long blocks
of code (indeed, the general register-allocation problem is NP-complete). In particular, FFTW's generator
knows more about the code than the compiler�the generator knows it is an FFT, and therefore it can use
an optimal cache-oblivious schedule (analogous to the radix-

√
n algorithm) to order the code independent of

the number of registers [16]. The compiler is then used only for local �cache-aware� tuning (both for register
allocation and the CPU pipeline).9 As a practical matter, one consequence of this scheduler is that FFTW's
machine-independent codelets are no slower than machine-speci�c codelets generated by an automated search
and optimization over many possible codelet implementations, as performed by the SPIRAL project [56].

(When implementing hard-coded base cases, there is another choice because a loop of small transforms is
always required. Is it better to implement a hard-coded FFT of size 64, for example, or an unrolled loop of
four size-16 FFTs, both of which operate on the same amount of data? The former should be more e�cient
because it performs more computations with the same amount of data, thanks to the logn factor in the
FFT's nlogn complexity.)

In addition, there are many other techniques that FFTW employs to supplement the basic recursive
strategy, mainly to address the fact that cache implementations strongly favor accessing consecutive data�
thanks to cache lines, limited associativity, and direct mapping using low-order address bits (accessing data at

9One practical di�culty is that some �optimizing� compilers will tend to greatly re-order the code, destroying FFTW's
optimal schedule. With GNU gcc, we circumvent this problem by using compiler �ags that explicitly disable certain stages of
the optimizer.
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power-of-two intervals in memory, which is distressingly common in FFTs, is thus especially prone to cache-
line con�icts). Unfortunately, the known FFT algorithms inherently involve some non-consecutive access
(whether mixed with the computation or in separate bit-reversal/transposition stages). There are many
optimizations in FFTW to address this. For example, the data for several butter�ies at a time can be copied
to a small bu�er before computing and then copied back, where the copies and computations involve more
consecutive access than doing the computation directly in-place. Or, the input data for the subtransform can
be copied from (discontiguous) input to (contiguous) output before performing the subtransform in-place (see
"Indirect plans" (Section 5.2.4: Indirect plans)), rather than performing the subtransform directly out-of-
place (as in algorithm 1 (p. ??)). Or, the order of loops can be interchanged in order to push the outermost
loop from the �rst radix step [the `2 loop in (2)] down to the leaves, in order to make the input access more
consecutive (see "Discussion" (Section 5.2.6: Discussion)). Or, the twiddle factors can be computed using
a smaller look-up table (fewer memory loads) at the cost of more arithmetic (see "Numerical Accuracy in
FFTs" (Section 7: Numerical Accuracy in FFTs)). The choice of whether to use any of these techniques,
which come into play mainly for moderate n (213 < n < 220), is made by the self-optimizing planner as
described in the next section.

5 Adaptive Composition of FFT Algorithms

As alluded to several times already, FFTW implements a wide variety of FFT algorithms (mostly rearrange-
ments of Cooley-Tukey) and selects the �best� algorithm for a given n automatically. In this section, we
describe how such self-optimization is implemented, and especially how FFTW's algorithms are structured as
a composition of algorithmic fragments. These techniques in FFTW are described in greater detail elsewhere
[19], so here we will focus only on the essential ideas and the motivations behind them.

An FFT algorithm in FFTW is a composition of algorithmic steps called a plan. The algorithmic steps
each solve a certain class of problems (either solving the problem directly or recursively breaking it into
sub-problems of the same type). The choice of plan for a given problem is determined by a planner that
selects a composition of steps, either by runtime measurements to pick the fastest algorithm, or by heuristics,
or by loading a pre-computed plan. These three pieces: problems, algorithmic steps, and the planner, are
discussed in the following subsections.

5.1 The problem to be solved

In early versions of FFTW, the only choice made by the planner was the sequence of radices [17], and so each
step of the plan took a DFT of a given size n, possibly with discontiguous input/output, and reduced it (via
a radix r) to DFTs of size n/r, which were solved recursively. That is, each step solved the following problem:
given a size n, an input pointerI, an input strideι, an output pointerO, and an output strideo, it
computed the DFT of I [`ι] for 0 ≤ ` < n and stored the result in O [ko] for 0 ≤ k < n. However, we
soon found that we could not easily express many interesting algorithms within this framework; for example,
in-place (I = O) FFTs that do not require a separate bit-reversal stage [27], [52], [41], [22]. It became
clear that the key issue was not the choice of algorithms, as we had �rst supposed, but the de�nition of the
problem to be solved. Because only problems that can be expressed can be solved, the representation of
a problem determines an outer bound to the space of plans that the planner can explore, and therefore it
ultimately constrains FFTW's performance.

The di�culty with our initial (n, I, ι,O, o) problem de�nition was that it forced each algorithmic step
to address only a single DFT. In fact, FFTs break down DFTs into multiple smaller DFTs, and it is the
combination of these smaller transforms that is best addressed by many algorithmic choices, especially to
rearrange the order of memory accesses between the subtransforms. Therefore, we rede�ned our notion of a
problem in FFTW to be not a single DFT, but rather a loop of DFTs, and in fact multiple nested loops
of DFTs. The following sections describe some of the new algorithmic steps that such a problem de�nition
enables, but �rst we will de�ne the problem more precisely.
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DFT problems in FFTW are expressed in terms of structures called I/O tensors,10 which in turn are
described in terms of ancillary structures called I/O dimensions. An I/O dimensiond is a triple d = (n, ι, o),
where n is a non-negative integer called the length, ι is an integer called the input stride, and o is an
integer called the output stride. An I/O tensort = {d1, d2, ..., dρ} is a set of I/O dimensions. The non-
negative integer ρ = |t| is called the rank of the I/O tensor. A DFT problem, denoted by dft (N,V, I,O),
consists of two I/O tensors N and V, and of two pointersI and O. Informally, this describes |V| nested
loops of |N|-dimensional DFTs with input data starting at memory location I and output data starting at
O.

For simplicity, let us consider only one-dimensional DFTs, so that N = {(n, ι, o)} implies a DFT of
length n on input data with stride ι and output data with stride o, much like in the original FFTW as
described above. The main new feature is then the addition of zero or more �loops� V. More formally,
dft (N, {(n, ι, o)} ∪V, I,O) is recursively de�ned as a �loop� of n problems: for all 0 ≤ k < n, do all
computations in dft (N,V, I + k · ι,O + k · o). The case of multi-dimensional DFTs is de�ned more precisely
elsewhere [19], but essentially each I/O dimension in N gives one dimension of the transform.

We call N the size of the problem. The rank of a problem is de�ned to be the rank of its size (i.e.,
the dimensionality of the DFT). Similarly, we call V the vector size of the problem, and the vector rank
of a problem is correspondingly de�ned to be the rank of its vector size. Intuitively, the vector size can be
interpreted as a set of �loops� wrapped around a single DFT, and we therefore refer to a single I/O dimension
of V as a vector loop. (Alternatively, one can view the problem as describing a DFT over a |V|-dimensional
vector space.) The problem does not specify the order of execution of these loops, however, and therefore
FFTW is free to choose the fastest or most convenient order.

5.1.1 DFT problem examples

A more detailed discussion of the space of problems in FFTW can be found in [19] , but a simple under-
standing can be gained by examining a few examples demonstrating that the I/O tensor representation
is su�ciently general to cover many situations that arise in practice, including some that are not usually
considered to be instances of the DFT.

A single one-dimensional DFT of length n, with stride-1 input X and output Y, as in (1), is denoted by
the problem dft ({(n, 1, 1)}, {},X,Y) (no loops: vector-rank zero).

As a more complicated example, suppose we have an n1 × n2 matrix X stored as n1 consecutive blocks
of contiguous length-n2 rows (this is called row-major format). The in-place DFT of all the rows of this
matrix would be denoted by the problem dft ({(n2, 1, 1)}, {(n1, n2, n2)},X,X): a length-n1 loop of size-n2

contiguous DFTs, where each iteration of the loop o�sets its input/output data by a stride n2. Conversely, the
in-place DFT of all the columns of this matrix would be denoted by dft ({(n1, n2, n2)}, {(n2, 1, 1)},X,X):
compared to the previous example, N and V are swapped. In the latter case, each DFT operates on
discontiguous data, and FFTW might well choose to interchange the loops: instead of performing a loop of
DFTs computed individually, the subtransforms themselves could act on n2-component vectors, as described
in "The space of plans in FFTW" (Section 5.2: The space of plans in FFTW).

A size-1 DFT is simply a copy Y [0] = X [0], and here this can also be denoted by N = {} (rank zero, a
�zero-dimensional� DFT). This allows FFTW's problems to represent many kinds of copies and permutations
of the data within the same problem framework, which is convenient because these sorts of operations arise
frequently in FFT algorithms. For example, to copy n consecutive numbers from I to O, one would use the
rank-zero problem dft ({}, {(n, 1, 1)}, I,O). More interestingly, the in-place transpose of an n1×n2 matrix
X stored in row-major format, as described above, is denoted by dft ({}, {(n1, n2, 1) , (n2, 1, n1)},X,X) (rank
zero, vector-rank two).

10I/O tensors are unrelated to the tensor-product notation used by some other authors to describe FFT algorithms [53], [40].
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5.2 The space of plans in FFTW

Here, we describe a subset of the possible plans considered by FFTW; while not exhaustive [19], this subset
is enough to illustrate the basic structure of FFTW and the necessity of including the vector loop(s) in the
problem de�nition to enable several interesting algorithms. The plans that we now describe usually perform
some simple �atomic� operation, and it may not be apparent how these operations �t together to actually
compute DFTs, or why certain operations are useful at all. We shall discuss those matters in "Discussion"
(Section 5.2.6: Discussion).

Roughly speaking, to solve a general DFT problem, one must perform three tasks. First, one must reduce
a problem of arbitrary vector rank to a set of loops nested around a problem of vector rank 0, i.e., a single
(possibly multi-dimensional) DFT. Second, one must reduce the multi-dimensional DFT to a sequence of of
rank-1 problems, i.e., one-dimensional DFTs; for simplicity, however, we do not consider multi-dimensional
DFTs below. Third, one must solve the rank-1, vector rank-0 problem by means of some DFT algorithm
such as Cooley-Tukey. These three steps need not be executed in the stated order, however, and in fact,
almost every permutation and interleaving of these three steps leads to a correct DFT plan. The choice of
the set of plans explored by the planner is critical for the usability of the FFTW system: the set must be
large enough to contain the fastest possible plans, but it must be small enough to keep the planning time
acceptable.

5.2.1 Rank-0 plans

The rank-0 problem dft ({},V, I,O) denotes a permutation of the input array into the output array. FFTW
does not solve arbitrary rank-0 problems, only the following two special cases that arise in practice.

• When |V| = 1 and I 6= O, FFTW produces a plan that copies the input array into the output array.
Depending on the strides, the plan consists of a loop or, possibly, of a call to the ANSI C function
memcpy, which is specialized to copy contiguous regions of memory.

• When |V| = 2, I = O, and the strides denote a matrix-transposition problem, FFTW creates a plan
that transposes the array in-place. FFTW implements the square transposition dft ({}, {(n, ι, o) , (n, o, ι)}, I,O)
by means of the cache-oblivious algorithm from [20], which is fast and, in theory, uses the cache opti-
mally regardless of the cache size (using principles similar to those described in the section "FFTs and
the Memory Hierarchy" (Section 4: FFTs and the Memory Hierarchy)). A generalization of this idea
is employed for non-square transpositions with a large common factor or a small di�erence between
the dimensions, adapting algorithms from [10].

5.2.2 Rank-1 plans

Rank-1 DFT problems denote ordinary one-dimensional Fourier transforms. FFTW deals with most rank-1
problems as follows.

5.2.2.1 Direct plans

When the DFT rank-1 problem is �small enough� (usually, n ≤ 64), FFTW produces a direct plan that
solves the problem directly. These plans operate by calling a fragment of C code (a codelet) specialized
to solve problems of one particular size, whose generation is described in "Generating Small FFT Kernels"
(Section 6: Generating Small FFT Kernels). More precisely, the codelets compute a loop (|V| ≤ 1) of small
DFTs.

5.2.2.2 Cooley-Tukey plans

For problems of the form dft ({(n, ι, o)},V, I,O) where n = rm, FFTW generates a plan that implements a
radix-r Cooley-Tukey algorithm "Review of the Cooley-Tukey FFT" (Section 2: Review of the Cooley-Tukey
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FFT). Both decimation-in-time and decimation-in-frequency plans are supported, with both small �xed
radices (usually, r ≤ 64) produced by the codelet generator "Generating Small FFT Kernels" (Section 6:
Generating Small FFT Kernels) and also arbitrary radices (e.g. radix-

√
n).

The most common case is a decimation in time (DIT) plan, corresponding to a radixr = n2 (and
thus m = n1) in the notation of "Review of the Cooley-Tukey FFT" (Section 2: Review of the Cooley-Tukey
FFT): it �rst solves dft ({(m, r · ι, o)},V ∪ {(r, ι,m · o)}, I,O), then multiplies the output array O by the
twiddle factors, and �nally solves dft ({(r,m · o,m · o)},V ∪ {(m, o, o)},O,O). For performance, the last
two steps are not planned independently, but are fused together in a single �twiddle� codelet�a fragment of
C code that multiplies its input by the twiddle factors and performs a DFT of size r, operating in-place on
O.

5.2.3 Plans for higher vector ranks

These plans extract a vector loop to reduce a DFT problem to a problem of lower vector rank, which is
then solved recursively. Any of the vector loops of V could be extracted in this way, leading to a number of
possible plans corresponding to di�erent loop orderings.

Formally, to solve dft (N,V, I,O), where V = {(n, ι, o)} ∪ V1, FFTW generates a loop that, for all k
such that 0 ≤ k < n, invokes a plan for dft (N,V1, I + k · ι,O + k · o).

5.2.4 Indirect plans

Indirect plans transform a DFT problem that requires some data shu�ing (or discontiguous operation) into
a problem that requires no shu�ing plus a rank-0 problem that performs the shu�ing.

Formally, to solve dft (N,V, I,O) where |N| > 0, FFTW generates a plan that �rst solves dft ({},N ∪V, I,O),
and then solves dft (copy − o (N) , copy − o (V) ,O,O). Here we de�ne copy − o (t) to be the I/O tensor
{(n, o, o) | (n, ι, o) ∈ t}: that is, it replaces the input strides with the output strides. Thus, an indirect plan
�rst rearranges/copies the data to the output, then solves the problem in place.

5.2.5 Plans for prime sizes

As discussed in "Goals and Background of the FFTW Project" (Section 3: Goals and Background of the
FFTW Project), it turns out to be surprisingly useful to be able to handle large prime n (or large prime
factors). Rader plans implement the algorithm from [43] to compute one-dimensional DFTs of prime size
in Θ (nlogn) time. Bluestein plans implement Bluestein's �chirp-z� algorithm, which can also handle prime
n in Θ (nlogn) time [4], [42], [36]. Generic plans implement a naive Θ

(
n2
)
algorithm (useful for n . 100).

5.2.6 Discussion

Although it may not be immediately apparent, the combination of the recursive rules in "The space of plans
in FFTW" (Section 5.2: The space of plans in FFTW) can produce a number of useful algorithms. To
illustrate these compositions, we discuss three particular issues: depth- vs. breadth-�rst, loop reordering,
and in-place transforms.
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Figure 3: Two possible decompositions for a size-30 DFT, both for the arbitrary choice of DIT radices
3 then 2 then 5, and prime-size codelets. Items grouped by a "{" result from the plan for a single
sub-problem. In the depth-�rst case, the vector rank was reduced to zero as per "Plans for higher vector
ranks" (Section 5.2.3: Plans for higher vector ranks) before decomposing sub-problems, and vice-versa
in the breadth-�rst case.

As discussed previously in sections "Review of the Cooley-Tukey FFT" (Section 2: Review of the Cooley-
Tukey FFT) and "Understanding FFTs with an ideal cache" (Section 4.1: Understanding FFTs with an ideal
cache), the same Cooley-Tukey decomposition can be executed in either traditional breadth-�rst order or
in recursive depth-�rst order, where the latter has some theoretical cache advantages. FFTW is explicitly
recursive, and thus it can naturally employ a depth-�rst order. Because its sub-problems contain a vector
loop that can be executed in a variety of orders, however, FFTW can also employ breadth-�rst traversal. In
particular, a 1d algorithm resembling the traditional breadth-�rst Cooley-Tukey would result from applying
"Cooley-Tukey plans" (Section 5.2.2.2: Cooley-Tukey plans) to completely factorize the problem size before
applying the loop rule "Plans for higher vector ranks" (Section 5.2.3: Plans for higher vector ranks) to reduce
the vector ranks, whereas depth-�rst traversal would result from applying the loop rule before factorizing
each subtransform. These two possibilities are illustrated by an example in Figure 3.

Another example of the e�ect of loop reordering is a style of plan that we sometimes call vector recursion
(unrelated to �vector-radix� FFTs [12]). The basic idea is that, if one has a loop (vector-rank 1) of transforms,
where the vector stride is smaller than the transform size, it is advantageous to push the loop towards the
leaves of the transform decomposition, while otherwise maintaining recursive depth-�rst ordering, rather than
looping �outside� the transform; i.e., apply the usual FFT to �vectors� rather than numbers. Limited forms
of this idea have appeared for computing multiple FFTs on vector processors (where the loop in question
maps directly to a hardware vector) [49]. For example, Cooley-Tukey produces a unit input-stride vector
loop at the top-level DIT decomposition, but with a large output stride; this di�erence in strides makes it
non-obvious whether vector recursion is advantageous for the sub-problem, but for large transforms we often
observe the planner to choose this possibility.

In-place 1d transforms (with no separate bit reversal pass) can be obtained as follows by a combination
DIT and DIF plans "Cooley-Tukey plans" (Section 5.2.2.2: Cooley-Tukey plans) with transposes "Rank-0
plans" (Section 5.2.1: Rank-0 plans). First, the transform is decomposed via a radix-p DIT plan into a vector
of p transforms of size qm, then these are decomposed in turn by a radix-q DIF plan into a vector (rank 2)
of p× q transforms of size m. These transforms of size m have input and output at di�erent places/strides
in the original array, and so cannot be solved independently. Instead, an indirect plan "Indirect plans"
(Section 5.2.4: Indirect plans) is used to express the sub-problem as pq in-place transforms of size m,
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followed or preceded by an m × p × q rank-0 transform. The latter sub-problem is easily seen to be m
in-place p × q transposes (ideally square, i.e. p = q). Related strategies for in-place transforms based on
small transposes were described in [27], [52], [41], [22]; alternating DIT/DIF, without concern for in-place
operation, was also considered in [35], [45].

5.3 The FFTW planner

Given a problem and a set of possible plans, the basic principle behind the FFTW planner is straightforward:
construct a plan for each applicable algorithmic step, time the execution of these plans, and select the
fastest one. Each algorithmic step may break the problem into subproblems, and the fastest plan for each
subproblem is constructed in the same way. These timing measurements can either be performed at runtime,
or alternatively the plans for a given set of sizes can be precomputed and loaded at a later time.

A direct implementation of this approach, however, faces an exponential explosion of the number of
possible plans, and hence of the planning time, as n increases. In order to reduce the planning time to a
manageable level, we employ several heuristics to reduce the space of possible plans that must be compared.
The most important of these heuristics is dynamic programming[8]: it optimizes each sub-problem locally,
independently of the larger context (so that the �best� plan for a given sub-problem is re-used whenever that
sub-problem is encountered). Dynamic programming is not guaranteed to �nd the fastest plan, because the
performance of plans is context-dependent on real machines (e.g., the contents of the cache depend on the
preceding computations); however, this approximation works reasonably well in practice and greatly reduces
the planning time. Other approximations, such as restrictions on the types of loop-reorderings that are
considered "Plans for higher vector ranks" (Section 5.2.3: Plans for higher vector ranks), are described in
[19].

Alternatively, there is an estimate mode that performs no timing measurements whatsoever, but instead
minimizes a heuristic cost function. This can reduce the planner time by several orders of magnitude, but
with a signi�cant penalty observed in plan e�ciency; e.g., a penalty of 20% is typical for moderate n . 213,
whereas a factor of 2�3 can be su�ered for large n & 216[19]. Coming up with a better heuristic plan is an
interesting open research question; one di�culty is that, because FFT algorithms depend on factorization,
knowing a good plan for n does not immediately help one �nd a good plan for nearby n.

6 Generating Small FFT Kernels

The base cases of FFTW's recursive plans are its codelets, and these form a critical component of FFTW's
performance. They consist of long blocks of highly optimized, straight-line code, implementing many special
cases of the DFT that give the planner a large space of plans in which to optimize. Not only was it impractical
to write numerous codelets by hand, but we also needed to rewrite them many times in order to explore
di�erent algorithms and optimizations. Thus, we designed a special-purpose �FFT compiler� called gen�t
that produces the codelets automatically from an abstract description. gen�t is summarized in this section
and described in more detail by [16].

A typical codelet in FFTW computes a DFT of a small, �xed size n (usually, n ≤ 64), possibly with the
input or output multiplied by twiddle factors "Cooley-Tukey plans" (Section 5.2.2.2: Cooley-Tukey plans).
Several other kinds of codelets can be produced by gen�t , but we will focus here on this common case.

In principle, all codelets implement some combination of the Cooley-Tukey algorithm from (2) and/or
some other DFT algorithm expressed by a similarly compact formula. However, a high-performance imple-
mentation of the DFT must address many more concerns than (2) alone suggests. For example, (2) contains
multiplications by 1 that are more e�cient to omit. (2) entails a run-time factorization of n, which can be
precomputed if n is known in advance. (2) operates on complex numbers, but breaking the complex-number
abstraction into real and imaginary components turns out to expose certain non-obvious optimizations. Ad-
ditionally, to exploit the long pipelines in current processors, the recursion implicit in (2) should be unrolled
and re-ordered to a signi�cant degree. Many further optimizations are possible if the complex input is known
in advance to be purely real (or imaginary). Our design goal for gen�t was to keep the expression of the
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DFT algorithm independent of such concerns. This separation allowed us to experiment with various DFT
algorithms and implementation strategies independently and without (much) tedious rewriting.

gen�t is structured as a compiler whose input consists of the kind and size of the desired codelet, and
whose output is C code. gen�t operates in four phases: creation, simpli�cation, scheduling, and unparsing.

In the creation phase, gen�t produces a representation of the codelet in the form of a directed acyclic
graph (dag). The dag is produced according to well-known DFT algorithms: Cooley-Tukey (2), prime-factor
[36], split-radix [57], [11], [54], [33], [12], and Rader [43]. Each algorithm is expressed in a straightforward
math-like notation, using complex numbers, with no attempt at optimization. Unlike a normal FFT imple-
mentation, however, the algorithms here are evaluated symbolically and the resulting symbolic expression is
represented as a dag, and in particular it can be viewed as a linear network[9] (in which the edges represent
multiplication by constants and the vertices represent additions of the incoming edges).

In the simpli�cation phase, gen�t applies local rewriting rules to each node of the dag in order to
simplify it. This phase performs algebraic transformations (such as eliminating multiplications by 1) and
common-subexpression elimination. Although such transformations can be performed by a conventional com-
piler to some degree, they can be carried out here to a greater extent because gen�t can exploit the speci�c
problem domain. For example, two equivalent subexpressions can always be detected, even if the subex-
pressions are written in algebraically di�erent forms, because all subexpressions compute linear functions.
Also, gen�t can exploit the property that network transposition (reversing the direction of every edge)
computes the transposed linear operation [9], in order to transpose the network, simplify, and then transpose
back�this turns out to expose additional common subexpressions [16]. In total, these simpli�cations are
su�ciently powerful to derive DFT algorithms specialized for real and/or symmetric data automatically from
the complex algorithms. For example, it is known that when the input of a DFT is real (and the output
is hence conjugate-symmetric), one can save a little over a factor of two in arithmetic cost by specializing
FFT algorithms for this case�with gen�t , this specialization can be done entirely automatically, pruning
the redundant operations from the dag, to match the lowest known operation count for a real-input FFT
starting only from the complex-data algorithm [16], [28]. We take advantage of this property to help us
implement real-data DFTs [16], [19], to exploit machine-speci�c �SIMD� instructions "SIMD instructions"
(Section 6.1: SIMD instructions)[19], and to generate codelets for the discrete cosine (DCT) and sine (DST)
transforms [16], [28]. Furthermore, by experimentation we have discovered additional simpli�cations that
improve the speed of the generated code. One interesting example is the elimination of negative constants
[16]: multiplicative constants in FFT algorithms often come in positive/negative pairs, but every C compiler
we are aware of will generate separate load instructions for positive and negative versions of the same con-
stants.11 We thus obtained a 10�15% speedup by making all constants positive, which involves propagating
minus signs to change additions into subtractions or vice versa elsewhere in the dag (a daunting task if it
had to be done manually for tens of thousands of lines of code).

In the scheduling phase, gen�t produces a topological sort of the dag (a schedule). The goal of this
phase is to �nd a schedule such that a C compiler can subsequently perform a good register allocation. The
scheduling algorithm used by gen�t o�ers certain theoretical guarantees because it has its foundations in
the theory of cache-oblivious algorithms [20] (here, the registers are viewed as a form of cache), as described
in "Memory strategies in FFTW" (Section 4.3: Memory strategies in FFTW). As a practical matter, one
consequence of this scheduler is that FFTW's machine-independent codelets are no slower than machine-
speci�c codelets generated by SPIRAL [56].

In the stock gen�t implementation, the schedule is �nally unparsed to C. A variation from [15] implements
the rest of a compiler back end and outputs assembly code.

6.1 SIMD instructions

Unfortunately, it is impossible to attain nearly peak performance on current popular processors while using
only portable C code. Instead, a signi�cant portion of the available computing power can only be accessed

11Floating-point constants must be stored explicitly in memory; they cannot be embedded directly into the CPU instructions
like integer �immediate� constants.
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by using specialized SIMD (single-instruction multiple data) instructions, which perform the same operation
in parallel on a data vector. For example, all modern �x86� processors can execute arithmetic instructions on
�vectors� of four single-precision values (SSE instructions) or two double-precision values (SSE2 instructions)
at a time, assuming that the operands are arranged consecutively in memory and satisfy a 16-byte alignment
constraint. Fortunately, because nearly all of FFTW's low-level code is produced by gen�t , machine-
speci�c instructions could be exploited by modifying the generator�the improvements are then automatically
propagated to all of FFTW's codelets, and in particular are not limited to a small set of sizes such as powers
of two.

SIMD instructions are super�cially similar to �vector processors�, which are designed to perform the same
operation in parallel on an all elements of a data array (a �vector�). The performance of �traditional� vector
processors was best for long vectors that are stored in contiguous memory locations, and special algorithms
were developed to implement the DFT e�ciently on this kind of hardware [49], [22]. Unlike in vector
processors, however, the SIMD vector length is small and �xed (usually 2 or 4). Because microprocessors
depend on caches for performance, one cannot naively use SIMD instructions to simulate a long-vector
algorithm: while on vector machines long vectors generally yield better performance, the performance of a
microprocessor drops as soon as the data vectors exceed the capacity of the cache. Consequently, SIMD
instructions are better seen as a restricted form of instruction-level parallelism than as a degenerate �avor
of vector parallelism, and di�erent DFT algorithms are required.

The technique used to exploit SIMD instructions in gen�t is most easily understood for vectors of length
two (e.g., SSE2). In this case, we view a complex DFT as a pair of real DFTs:

DFT (A+ i ·B) = DFT (A) + i ·DFT (B) , (7)

where A and B are two real arrays. Our algorithm computes the two real DFTs in parallel using SIMD
instructions, and then it combines the two outputs according to (7). This SIMD algorithm has two important
properties. First, if the data is stored as an array of complex numbers, as opposed to two separate real and
imaginary arrays, the SIMD loads and stores always operate on correctly-aligned contiguous locations, even
if the the complex numbers themselves have a non-unit stride. Second, because the algorithm �nds two-way
parallelism in the real and imaginary parts of a single DFT (as opposed to performing two DFTs in parallel),
we can completely parallelize DFTs of any size, not just even sizes or powers of 2.

7 Numerical Accuracy in FFTs

An important consideration in the implementation of any practical numerical algorithm is numerical accu-
racy: how quickly do �oating-point roundo� errors accumulate in the course of the computation? Fortunately,
FFT algorithms for the most part have remarkably good accuracy characteristics. In particular, for a DFT of
length n computed by a Cooley-Tukey algorithm with �nite-precision �oating-point arithmetic, the worst-
case error growth is O (logn)[21], [50] and the mean error growth for random inputs is only O

(√
logn

)
[46],

[50]. This is so good that, in practical applications, a properly implemented FFT will rarely be a signi�cant
contributor to the numerical error.

The amazingly small roundo� errors of FFT algorithms are sometimes explained incorrectly as simply
a consequence of the reduced number of operations: since there are fewer operations compared to a naive
O
(
n2
)
algorithm, the argument goes, there is less accumulation of roundo� error. The real reason, however,

is more subtle than that, and has to do with the ordering of the operations rather than their number. For
example, consider the computation of only the output Y [0] in the radix-2 algorithm of p. ??, ignoring all of
the other outputs of the FFT. Y [0] is the sum of all of the inputs, requiring n− 1 additions. The FFT does
not change this requirement, it merely changes the order of the additions so as to re-use some of them for
other outputs. In particular, this radix-2 DIT FFT computes Y [0] as follows: it �rst sums the even-indexed
inputs, then sums the odd-indexed inputs, then adds the two sums; the even- and odd-indexed inputs are
summed recursively by the same procedure. This process is sometimes called cascade summation, and
even though it still requires n − 1 total additions to compute Y [0] by itself, its roundo� error grows much
more slowly than simply adding X [0], X [1], X [2] and so on in sequence. Speci�cally, the roundo� error
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when adding up n �oating-point numbers in sequence grows as O (n) in the worst case, or as O (
√
n) on

average for random inputs (where the errors grow according to a random walk), but simply reordering these
n-1 additions into a cascade summation yields O (logn) worst-case and O

(√
logn

)
average-case error growth

[25].
However, these encouraging error-growth rates only apply if the trigonometric �twiddle� factors in the

FFT algorithm are computed very accurately. Many FFT implementations, including FFTW and common
manufacturer-optimized libraries, therefore use precomputed tables of twiddle factors calculated by means
of standard library functions (which compute trigonometric constants to roughly machine precision). The
other common method to compute twiddle factors is to use a trigonometric recurrence formula�this saves
memory (and cache), but almost all recurrences have errors that grow as O (

√
n), O (n), or even O

(
n2
)
[51],

which lead to corresponding errors in the FFT. For example, one simple recurrence is ei(k+1)θ = eikθeiθ,
multiplying repeatedly by eiθ to obtain a sequence of equally spaced angles, but the errors when using this
process grow as O (n)[51]. A common improved recurrence is ei(k+1)θ = eikθ +eikθ

(
eiθ − 1

)
, where the small

quantity12eiθ − 1 = cos (θ) − 1 + isin (θ) is computed using cos (θ) − 1 = −2sin2 (θ/2)[47]; unfortunately,
the error using this method still grows as O (

√
n)[51], far worse than logarithmic.

There are, in fact, trigonometric recurrences with the same logarithmic error growth as the FFT, but
these seem more di�cult to implement e�ciently; they require that a table of Θ (logn) values be stored
and updated as the recurrence progresses [5], [51]. Instead, in order to gain at least some of the bene�ts of
a trigonometric recurrence (reduced memory pressure at the expense of more arithmetic), FFTW includes
several ways to compute a much smaller twiddle table, from which the desired entries can be computed
accurately on the �y using a bounded number (usually < 3) of complex multiplications. For example,
instead of a twiddle table with n entries ωkn, FFTW can use two tables with Θ (

√
n) entries each, so that ωkn

is computed by multiplying an entry in one table (indexed with the low-order bits of k) by an entry in the
other table (indexed with the high-order bits of k).

There are a few non-Cooley-Tukey algorithms that are known to have worse error characteristics, such as
the �real-factor� algorithm [44], [12], but these are rarely used in practice (and are not used at all in FFTW).
On the other hand, some commonly used algorithms for type-I and type-IV discrete cosine transforms [49],
[39], [6] have errors that we observed to grow as

√
n even for accurate trigonometric constants (although we

are not aware of any theoretical error analysis of these algorithms), and thus we were forced to use alternative
algorithms [19].

To measure the accuracy of FFTW, we compare against a slow FFT implemented in arbitrary-precision
arithmetic, while to verify the correctness we have found the O (nlogn) self-test algorithm of [14] very useful.

8 Concluding Remarks

It is unlikely that many readers of this chapter will ever have to implement their own fast Fourier transform
software, except as a learning exercise. The computation of the DFT, much like basic linear algebra or
integration of ordinary di�erential equations, is so central to numerical computing and so well-established
that robust, �exible, highly optimized libraries are widely available, for the most part as free/open-source
software. And yet there are many other problems for which the algorithms are not so �nalized, or for which
algorithms are published but the implementations are unavailable or of poor quality. Whatever new problems
one comes across, there is a good chance that the chasm between theory and e�cient implementation will
be just as large as it is for FFTs, unless computers become much simpler in the future. For readers who
encounter such a problem, we hope that these lessons from FFTW will be useful:

• Generality and portability should almost always come �rst.
• The number of operations, up to a constant factor, is less important than the order of operations.
• Recursive algorithms with large base cases make optimization easier.
• Optimization, like any tedious task, is best automated.
• Code generation reconciles high-level programming with low-level performance.

12In an FFT, the twiddle factors are powers of ωn, so θ is a small angle proportional to 1/n and eiθ is close to 1.

http://cnx.org/content/m16336/1.14/



Connexions module: m16336 20

We should also mention one �nal lesson that we haven't discussed in this chapter: you can't optimize in a
vacuum, or you end up congratulating yourself for making a slow program slightly faster. We started the
FFTW project after downloading a dozen FFT implementations, benchmarking them on a few machines,
and noting how the winners varied between machines and between transform sizes. Throughout FFTW's
development, we continued to bene�t from repeated benchmarks against the dozens of high-quality FFT
programs available online, without which we would have thought FFTW was �complete� long ago.
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