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Abstract

We present a user-level thread scheduler for shared-memaoltyprocessors, and we analyze its
performance under multiprogramming. We model multipragrang with two scheduling levels: our
scheduler runs at user-level and schedules threads ontedcddllection of processes, while below,
the operating system kernel schedules processes onto actikedtion of processors. We consider the
kernel to be an adversary, and our goal is to schedule thmadgprocesses such that we make efficient
use of whatever processor resources are provided by thelkern

Our thread scheduler is a non-blocking implementation @ftbrk-stealing algorithm. For any mul-
tithreaded computation with work; and critical-path lengtfl,,, and for any numbeP of processes,
our scheduler executes the computation in expected@(1& /P4 + T P/P4), WherePy is the av-
erage number of processors allocated to the computatiohéeblgernel. This time bound is optimal to
within a constant factor, and achieves linear speedup wieerfe is small relative to the parallelism
T /Teo.

1 Introduction

Operating systems for shared-memory multiprocessorsostppltiprogrammed workloads in which a mix
of serial and parallel applications may execute concugreRbr example, on a multiprocessor workstation,
a parallel design verifier may execute concurrently witheotkerial and parallel applications, such as the
design tool’'s user interface, compilers, editors, and wielnits. For parallel applications, operating systems
provide system calls for the creation and synchronizatiomultiple threads, and they provide high-level
multithreaded programming support with parallelizing gilers and threads libraries. In addition, pro-
gramming languages, such as Cilk [7, 21] and Java [3], stppoitithreading with linguistic abstractions.
A major factor in the performance of such multithreaded prapplications is the operation of the thread
scheduler.

Prior work on thread scheduling [4, 5, 8, 13, 14] has dealtusieely with non-multiprogrammed en-
vironments in which a multithreaded computation executeg’aledicated processors. Such scheduling
algorithms dynamically map threads onto the processofstht goal of achieving’-fold speedup. Though
such algorithms will work in some multiprogrammed envir@nts, in particular those that employ static
space partitioning [15, 30] or coscheduling [18, 30, 333ytdo not work in the multiprogrammed environ-
ments being supported by modern shared-memory multippocesnd operating systems [9, 15, 17, 23].
The problem lies in the assumption that a fixed collectionro€pssors are fully available to perform a given
computation.
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0150 from the U.S. Air Force Research Laboratory. In addjti®reg Plaxton is supported by the National Science Foiordat
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Figure 1: An example computation dag. This dag Hasnodeszi, zs,...,2z11 and2 threads indicated by the
shading.

In a multiprogrammed environment, a parallel computatiorsron a collection of processors that grows
and shrinks over time. Initially the computation may be théy@mne running, and it may use dll proces-
sors. A moment later, someone may launch another computagtassibly a serial computation, that runs
on some processor. In this case, the parallel computaties gip one processor and continues running on
the remainingP — 1 processors. Later, if the serial computation terminatewaits for 1/0, the parallel
computation can resume its use of all processors. In germhar serial and parallel computations may use
processors in a time-varying manner that is beyond our abrithus, we assume that an adversary controls
the set of processors on which a parallel computation runs.

Specifically, rather than mapping threads to processonsthoead scheduler maps threads to a fixed
collection of P processes, and an adversary maps processes to procedsansghbut this paper, we use
the word “process” to denote a kernel-level thread (alseda light-weight process), and we reserve the
word “thread” to denote a user-level thread. We model a pragrammed environment with two levels of
scheduling. A user-level scheduler — our scheduler — magsitls to processes, and below this level, the
kernel — an adversary — maps processes to processors. kentrirenment, we cannot expect to achieve
P-fold speedups, because the kernel may run our computatideveer thanP processors. Rather, we let
P4 denote the time-average number of processors on which tinellkexecutes our computation, and we
strive to achieve &4-fold speedup.

As with much previous work, we model a multithreaded comiiariaas a directed acyclic graph, or
dag An example is shown in Figure 1. Each node in the dag repiesesingle instruction, and the edges
represent ordering constraints. The nodes of a threadrikedliby edges that form a chain corresponding
to the dynamic instruction execution order of the threace &ample in Figure 1 has two threads indicated
by the shaded regions. When an instruction in one threadrgpawmew child thread, then the dag has an
edge from the “spawning” node in the parent thread to the fiosle in the new child thread. The edge
(z2,x4) IS such an edge. Likewise, whenever threads synchronize that an instruction in one thread
cannot be executed until after some instruction in anottieyad, then the dag contains an edge from the
node representing the latter instruction to the node reptex) the former instruction. For example, edge
(z7, z10) represents the joining of the two threads, and gdgezs) represents a synchronization that could
arise from the use of semaphores [16] — naedeepresents th®& (wait) operation, and node; represents
theV (signal) operation on a semaphore whose initial valuie is

We make two assumptions related to the structure of the dagt, e assume that each node has
out-degree at moz. This assumption is consistent with our convention that den@presents a single
instruction. Second, we assume that the dag has exactlypoheodewith in-degreed and ondinal node
with out-degred. The root node is the first node of theot thread

We characterize the computation with two measures: workcatidal-path length. Thevork T; of the
computation is the number of nodes in the dag, andcthieal-path length T, is the length of a longest
(directed) path in the dag. The rafle /T, is called theparallelism The example computation of Figure 1
has workT; = 11, critical-path lengtil,, = 8, and parallelisn?} /T, = 11/8.

We present a non-blocking implementation of the work-#tgadlgorithm [8], and we analyze the per-



formance of this non-blocking work stealer in multiprograed environments. In this implementation, all
concurrent data structures are non-blocking [26, 27] sbitithe kernel preempts a process, it does not
hinder other processes, for example by holding locks. Maedhis implementation makes use of “yield”
system calls that constrain the kernel adversary in a mahaemodels the behavior ¢fi el d system
calls found in current multiprocessor operating systembel\a process calis el d, it informs the kernel
that it wishes to yield the processor on which it is runningmmther process. Our results demonstrate the
surprising power o¥i el d as a scheduling primitive. In particular, we show that foy anultithreaded
computation with workl; and critical-path lengtll,,, the non-blocking work stealer runs in expected time
O(T1/P4 + TP/ P4). This bound is optimal to within a constant factor and aaksenear speedup —
that is, execution timé& (71 /P4) — wheneverP = O(T1 /T ). We also show that for any > 0, with
probability at leasl — ¢, the execution time i® (71 /P4 + (Too + 1g(1/€)) P/ P4).

This result improves on previous results [8] in two ways.sEiwe consider arbitrary multithreaded
computations as opposed to the special case of “fully Stminputations. Second, we consider multi-
programmed environments as opposed to dedicated envirdemA multiprogrammed environment is a
generalization of a dedicated environment, because we iesna/dedicated environment as a multipro-
grammed environment in which the kernel executes the caatipntonP dedicated processors. Moreover,
note that in this case, we hav®&y = P, and our bound for multiprogrammed environments spe€islip
match theO(T1 /P + T ) bound established earlier for fully strict computationg@a@xing in dedicated
environments.

Our non-blocking work stealer has been implemented in sopé C++ threads library calletHood
[10], and numerous performance studies have been condigté€@]. These studies show that application
performance conforms to th@(71 /P4 + T P/P4) bound and that the constant hidden in the big-Oh
notation is small, roughly 1. Moreover, these studies sh@at mon-blocking data structures and the use of
yields are essential in practice. If any of these implent@ranechanisms are omitted, then performance
degrades dramatically fd?y < P.

The remainder of this paper is organized as follows. In 8a@j, we formalize our model of multipro-
grammed environments. We also prove a lower bound imphhiag) the performance of the non-blocking
work stealer is optimal to within a constant factor. We pntgbe non-blocking work stealer in Section 3,
and we prove an important structural lemma that is needetiéamnalysis. In Section 4 we establish optimal
upper bounds on the performance of the work stealer underugaassumptions with respect to the kernel.
In Section 5, we consider related work. In Section 6 we offens concluding remarks.

2 Multiprogramming

We model a multiprogrammed environment with a kernel thatlies as an adversary. Whereas a user-level
scheduler maps threads onto a fixed collectio®Pgirocesses, the kernel maps processes onto processors.
In this section, we define execution schedules, and we prpperuand lower bounds on the length of
execution schedules. These bounds are straightforwardrandcluded primarily to give the reader a better
understanding of the model of computation and the centsaieis that we intend to address. The lower
bound demonstrates the optimality of téT} / P4 + T P/ P4) upper bound that we will establish for our
non-blocking work stealer.

The kernel operates in discretteps numbered from 1, as follows. At each stgphe kernel chooses
any subset of thé processes, and then these chosen processes are allowetiteex single instruction.
We letp; denote the number of chosen processes, and we say thapihpseesses argcheduledat stepi.

The kernel may choose to schedule any number of processesdrétand P, so0 < p; < P. We can view
the kernel as producingkernel schedulghat maps each positive integer to a subset of the proceElsas.
is, a kernel schedule maps each stépthe set of processes that are scheduled at staplp; is the size of
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(a) Kernel schedule. (b) Execution schedule.

Figure 2: An example kernel schedule and an example execution sthedth P = 3 processes(a) The first10
steps of a kernel schedule. Each row represents a time stdgaeh column represents a process. A check mark
in row ¢ and columry indicates that the process is scheduled at step (b) An execution schedule for the kernel
schedule in (a) and the computation dag in Figure 1. The ¢xecschedule shows the activity of each process at each
step for which it is scheduled. Each entry is either a nodi case the process executes nager “I” in case the
process does not execute a node.

that set. The first0 steps of an example kernel schedule Boe= 3 processes are shown in Figure 2(a). (In
general, kernel schedules are infinite.) Tinecessor averag®, overT steps is defined as

1 T
Pa==> pi- 1)
=

In the kernel schedule of Figure 2(a), the processor averegel 0 steps isP4 = 20/10 = 2.

Though our analysis is based on this step-by-step, synochsoaxecution model, our work stealer is
asynchronous and does not depend on synchrony for corssctii@e synchronous model admits the pos-
sibility that at a step, two or more processes may execute instructions that refera common memory
location. We assume that the effect of stép equivalent to some serial execution of fhenstructions ex-
ecuted by they; scheduled processes, where the order of execution is datatnim some arbitrary manner
by the kernel.

Given a kernel schedule and a computation daggxactution schedulespecifies, for each stejp the
particular subset of at mog; ready nodes to be executed by thescheduled processes at stepWe
define thdength of an execution schedule to be the number of steps in the slgheéigure 2(b) shows an
example execution schedule for the kernel schedule in Eig(a) and the dag in Figure 1. This schedule
has lengthl0. An execution schedule observes the dependencies refgédmnthe dag. That is, every
node is executed, and for every edgev), nodeu is executed at a step prior to the step at which node
executed.

The following theorem shows th&t /P4 and T« P/ P4 are both lower bounds on the length of any
execution schedule. The lower bound®f/ P4 holds regardless of the kernel schedule, while the lower
bound of T, P/ P4 holds only for some kernel schedules. That is, there existekeschedules such that
any execution schedule has length at |&agtP/ P4. Moreover, there exist such kernel schedules \iAth
ranging fromP down to values arbitrarily close tb These lower bounds imply corresponding lower bounds
on the performance of any user-level scheduler.



Theorem 1 Consider any multithreaded computation with w@tkand critical-path lengthly,, and any
numberP of processes. Then for any kernel schedule, every exeadimdule has length at leaBt/ Py,
where P, is the processor average over the length of the schedule.ddiitian, for any number®), of
the formT P/(k + Two) Wherek is a nonnegative integer, there exists a kernel schedulle that every
execution schedule has length at le@stP/ P4, wherePy4 is the processor average over the length of the
schedule and is in the rande? | < P4 < P}.

Proof: The processor average over the lergthf the schedule is defined by Equation (1), so we have

T—LET; - 7
- PA 1:1p1 .-

For both lower bounds, we bourid by boundingz;frz1 pi. The lower bound of’} /P4 is immediate from
the lower boundzjf:1 p; > Ti, which follows from the fact that any execution scheduleeguired to
execute all of the nodes in the multithreaded computatiam.the lower bound of,, P/ P4, we prove the
lower boundy>~ ;| p; > T, P.

We construct a kernel schedule that forces every executibedsile to satisfy this bound as follows.
Let k& be as defined in the statement of the lemma. The kernel s&hedtdp; = 0 for 1 < i < k, sets
pi=Pfork+1<i<k+ Ty, andsety;, = |P}] for k + T < i. Any execution schedule has length
T > k+Tw, SO we have the lower bou@;fr:1 pi > Too P. It remains only to show tha®, is in the desired
range. The processor average for the firgt T, steps islo P/ (k + T ) = P}. For all subsequent steps
i > k + T, we havep; = | P |. Thus,Py4 falls within the desired range. m

In the off-line user-level scheduling problem, we are gieekernel schedule and a computation dag,
and the goal is to compute an execution schedule with thermaimi possible length. Though the related
decision problem is NP-complete [37], a factor2ofpproximation algorithm is quite easy. In particular,
for some kernel schedules, any level-by-level (Brent [EXg¢cution schedule or any “greedy” execution
schedule is within a factor & of optimal. In addition, though we shall not prove it, for dmgrnel schedule,
some greedy execution schedule is optimal. We say that augoe schedule igreedyif at each step
the number of ready nodes executed is equal to the minimupg ahd the number of ready nodes. The
execution schedule in Figure 2(b) is greedy. The followimgorem about greedy execution schedules also
holds for level-by-level execution schedules, with onlyitd changes to the proof.

Theorem 2 (Greedy Schedules) Consider any multithreaded computation with w@rkand critical-
path lengthT,,, any numberP of processes, and any kernel schedule. Any greedy exeaati@aule has
length at most’ /P4 + T (P — 1)/ P4, whereP, is the processor average over the length of the schedule.

Proof: Consider any greedy execution schedule, an@ ldénote its length. As in the proof of Theorem 1,
we boundT by boundingEZ-T:1 pi. Foreach step=1,...,T, we collectp; tokens, one from each process
that is scheduled at stépand then we bound the total number of tokens collected. M@ we collect the
tokens in two buckets: work bucketand anidle bucket Consider a stepand a process that is scheduled
at stepi. If the process executes a node of the computation, thenstifsutoken into the work bucket, and
otherwise we say that the process is idle and it puts its takenthe idle bucket. After the last step, the
work bucket contains exactll; tokens — one token for each node of the computation. It resnairy to
prove that the idle bucket contains at m@st(P — 1) tokens.

Consider a step during which some process places a tokem idlthbucket. We refer to such a step
as anidle step For example, the greedy execution schedule of Figure 2(®J idle steps. At an idle step
we have an idle process and since the schedule is greedipvséahat every ready node is executed at an
idle step. This observation leads to two further obseruatid-irst, at every step there is at least one ready
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node, so of the; processes scheduled at an idle stegt mostp; — 1 < P — 1 could be idle. Second, for
each step, let G; denote the sub-dag of the computation consisting of juste¢hmdes that have not yet
been executed after steplf step: is an idle step, then every node with in-degée@ G;_; gets executed
at stepi, so a longest path i&¥; is one node shorter than a longest patldzin;. Since the longest path in
Gy has lengtil,, there can be at mo%t,, idle steps. Putting these two observations together, welcda
that after the last step, the idle bucket contains at figgtP — 1) tokens. [

The concern of this paper is on-line user-level schedulamgl an on-line user-level scheduler cannot
always produce greedy execution schedules. In the on-fiaelavel scheduling problem, at each stepe
know the kernel schedule only up through stepnd we know of only those nodes in the dag that are ready
or have previously been executed. Moreover, in analyziegrformance of on-line user-level schedulers,
we need to account for scheduling overheads. Neverthedess, though it is an on-line scheduler, and
even accounting for all of its overhead, the non-blockingknsiealer satisfies the same bound, to within a
constant factor, as was shown in Theorem 2 for greedy exgrsathedules.

3 Non-blocking work stealing

In this section we describe our non-blocking implementatibthe work-stealing algorithm. We first review
the work-stealing algorithm [8], and then we describe our-hlmcking implementation, which involves the
use of a yield system call and a non-blocking implementatidhe concurrent data structures. We conclude
this section with an important “structural lemma” that ieds$n our analysis.

3.1 The work-stealing algorithm

In the work-stealing algorithm, each process maintainevits pool of ready threads from which it obtains
work. A node in the computation dagrisadyif all of its ancestors have been executed, and correspglydin

a thread is ready if it contains a ready node. Note that becalisof the nodes in a thread are totally
ordered, a thread can have at most one ready node at a timeadf tieread’s ready node represents the
next instruction to be executed by that thread, as detedrigehe current value of that thread’s program
counter. Each pool of ready threads is maintained as a deuloled queue, ateque which has a bottom
and a top. A deque contains only ready threads. If the deq@eppbcess becomes empty, that process
becomes a thief and steals a thread from the deque of a victioegs chosen at random.

To obtain work, a process pops the ready thread from theratfats deque and commences executing
that thread, starting with that thread’s ready node andimmoingy in sequence, as determined by the control
flow of the code being executed by that thread. We refer tohheat that a process is executing as the
process'sassigned thread The process continues to execute nodes in its assigneattordil that thread
invokes a synchronization action (typically via a call i@ threads library). The synchronization actions
fall into the following four categories, and they are hauiddes follows.

e Die: When the process executes its assigned thread’s last nadethtead dies. In this case, the
process gets a new assigned thread by popping one off th@boftits deque.

e Block: If the process reaches a node in its assigned thread that ieady, then that thread blocks.
For example, consider a process that is executing the rosdadiof Figure 1. If the process executes
x3 and then goes to executg before noders has been executed, then the root thread blocks. In this
case, as in the case of the thread dying, the process getsasamgmed thread by popping one off the
bottom of its deque.

e Enable: If the process executes a node in its assigned thread thegsamnother thread — a thread
that previously was blocked — to be ready, then, of the twdyedhareads (the assigned thread and
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the newly ready thread), the process pushes one onto tlwrboftits deque and continues executing
the other. That other thread becomes the process’s asdigrezal. For example, if the root thread

of Figure 1 is blocked atg, waiting for x5 to be executed, then when a process that is executing
the child thread finally executes;, the root thread becomes ready and the process performds one o
the following two actions. Either it pushes the root threadtoe bottom of its deque and continues
executing the child thread a4, or it pushes the child thread on the bottom of its deque asrdsst
executing the root thread ag. The bounds proven in this paper hold for either choice.

e Spawn: If the process executes a node in its assigned thread thahsgachild thread, then, as in
the enabling case, of the two ready threads (in this casessigned thread and its newly spawned
child), the process pushes one onto the bottom of its degdie@mntinues executing the other. That
other thread becomes the process’s assigned thread. Foplexavhen a process that is executing
the root thread of Figure 1 executes the process performs one of the following two actions. &ith
it pushes the child thread on the bottom of its deque andmoesi executing the root threadagt, or
it pushes the root thread on the bottom of its deque and &=etsuting the child thread at;. The
bounds proven in this paper hold for either choice. Theratteice is often used [21, 22, 31], because
it follows the natural depth-first single-processor ex&cubrder.

Itis possible that a thread may enable another thread arsihdigtaneously. An example is the join between
the root thread and the child thread in Figure 1. If the roo¢dl is blocked at1, then when a process
executesey; in the child, the child enables the root and dies simultaslyoun this case, the root thread
becomes the process’s new assigned thread, and the praresgences executing the root threadcaj.
Effectively, the process performs the action for enablilgpived by the action for dying.

When a process goes to get an assigned thread by poppingfdhe lobttom of its deque, if it finds that
its deque is empty, then the process becomigsed. It picks avictim process at random (using a uniform
distribution) and attempts to steal a thread from the vidiinpopping a thread off the top of the victim’s
deque. The steal attempt will fail if the victim’s deque isggn In addition, the steal attempt may fail due
to contention when multiple thieves attempt to steal from $hme victim simultaneously. The next two
sections cover this issue in detail. If the steal attems,féien the thief picks another victim process and
tries again. The thief repeatedly attempts to steal frordoarty chosen victims until it succeeds, at which
point the thief “reforms” (i.e., ceases to be a thief). Thaest thread becomes the process’s new assigned
thread, and the process commences executing its new assigead, as described above.

In our non-blocking implementation of the work-stealingaithm, each process performs a yield sys-
tem call between every pair of consecutive steal attempésd&¥cribe the semantics of the yield system call
later in Section 4.4. These system calls are not needed faratness, but as we shall see in Section 4.4, the
yields are sometimes needed in order to prevent the kel $tarving a process.

Execution begins with all deques empty and the root threaidjaad to one process. This one process
begins by executing its assigned thread, starting with dloé mode. All other processes begin as thieves.
Execution ends when some process executes the final nods sdts a global flag, thereby terminating the
scheduling loop.

For our analysis, we ignore threads. We treat the dequedlasyitontain ready nodes instead of ready
threads, and we treat the scheduler as if it operates on restesd of threads. In particular, we replace
each ready thread in a deque with its currently ready nodaddiition, if a process has an assigned thread,
then we define the processissigned nodé¢o be the currently ready node of its assigned thread.

The scheduler operates as shown in Figure 3. The root nodsignad to one process, and all other
processes start with no assigned node (lines 1 through &geldither processes will become thieves. Each
process executes the scheduling loop, which terminates sdmae process executes the final node and sets
a global flag (line 4). At each iteration of the schedulingdpeach process performs as follows.
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Figure 3 : The non-blocking work stealer. AP processes execute this scheduling loop. Each processésesyed

by aPr ocess data structure, stored in shared memory, that containsgheeadof the process, and each process has a
private variablesel f that refers to it$or ocess structure. Initially, all deques are empty and ttenput at i on-

Done flag, which is stored in shared memoryHALSE. The root node is assigned to an arbitrary process, designat
pr ocessZer o, prior to entering the main scheduling loop. The schedubog terminates when a process executes

the final node and sets tie@nput at i onDone flag.




If the process has an assigned node, then it executes tigressode (lines 5 and 6). The execution
of the assigned node will enable — that is, make ready — 0, 2,atiild nodes. Specifically, it will enable
0 children in case the assigned thread dies or blocks; item#ible 1 child in case the assigned thread
performs no synchronization, merely advancing to the negenand it will enable 2 children in case the
assigned thread enables another, previously blockedadhwe spawns a child thread. If the execution of
the assigned node enables 0 children, then the processtmopmsaty node off the bottom of its deque, and
this node becomes the process’s new assigned node (line$ 8).aif the process’s deque is empty, then
the pop invocation returnisll L, so the process does not get a new assigned node and beconnefs H t
the execution of the assigned node enables 1 child, theohhitsbecomes the process’s new assigned node
(lines 9 and 10). If the the execution of the assigned nodbles2 children, then the process pushes one
of the children onto the bottom of its deque, and the othdddiécomes the process’s new assigned node
(lines 11 through 13).

If a process has no assigned node, then its deque is emptjpestoimes a thief. The thief picks a victim
at random and attempts to pop a node off the top of the victiteique, making that node its new assigned
node (lines 16 and 17). If the steal attempt is unsuccestfah the pop invocation returid L, so the
thief does not get an assigned node and continues to be a Ihibé steal attempt is successful, then the
pop invocation returns a node, so the thief gets an assigoge and reforms. Between consecutive steal
attempts, the thief callgi el d (line 15).

3.2 Specification of the deque methods

In this section we develop a specification for the deque objiscussed informally above. The deque
supports three methodgushBot t ompopBot t om andpopTop. A pushTop method is not supported,
because it is not needed by the work-stealing algorithm. gudeémplementation is defined to benstant-
time if and only if each of the three methods terminates within astant number of instructions. Below
we define the “ideal” semantics of these methods. Any coh$itae deque implementation meeting the
ideal semantics is wait-free [27]. Unfortunately, we are¢ aware of any constant-time wait-free deque
implementation. For this reason, we go on to define a “refasedchantics for the deque methods. Any
constant-time deque implementation meeting the relaxe@stcs is non-blocking [26, 27] and is sufficient
for us to prove our performance bounds.

We now define the ideal deque semantics. To do so, we first defiether a given set of invocations
of the deque methods meets the ideal semantics. We view apaition of a deque method as a 4-tuple
specifying: (i) the name of the deque method invoked (pashBot t om popBot t om or popTop), (ii)
the initiation time, (iii) the completion time, and (iv) tl@gument (for the case @ushBot t onm) or the
return value (fopopBot t omandpopTop). A set of invocations meets the ideal semantics if and only
if there exists dinearization timefor each invocation such that: (i) the linearization timeslbetween the
initiation time and the completion time, (ii) no two linezation times coincide, and (iii) the return values
are consistent with a serial execution of the method invogatin the order given by the linearization times.
A deque implementation meets the ideal semantics if and ibiidy any execution, the associated set of
invocations meets the ideal semantics. We remark that eedetplementation meets the ideal semantics if
and only if each of the three deque methodkinisarizable as defined in [25].

It is convenient to define a set of invocations todgmodif and only if no twopushBot t omor pop-

Bot t ominvocations are concurrent. Note that any set of invocatessociated with some execution of the
work-stealing algorithm is good since the (unique) ownesaxth deque is the only process to ever perform
either apushBot t omor popBot t omon that deque. Thus, for present purposes, it is sufficiete$mn a
constant-time wait-free deque implementation that méetgdeal semantics on any good set of invocations.
Unfortunately, we do not know how to do this. On the positiideswe are able to establish optimal per-
formance bounds for the work-stealing algorithm even ifdeque implementation satisfies only a relaxed



version of the ideal semantics.

In the relaxed semantics, we allowpampTop invocation to returrNl L if at some point during the
invocation, either the deque is empty (this is the usual t@mdfor returningNl L) or the topmost item is
removed from the deque by another process. In the next sestigorovide a constant-time non-blocking
deque implementation that meets the relaxed semanticsyogoanl set of invocations. We do not consider
our implementation to be wait-free, because we do not viegryepopTop invocation that returndl L
as having successfully completed. Specifically, we comsageopTop invocation that returndll L to be
successful if and only if the deque is empty at some pointndutihe invocation. Note that a successful
popTop invocation is linearizable.

3.3 The deque implementation

The deques support concurrent method invocations, and plernent the deques using non-blocking syn-
chronization. Such an implementation requires the use oi\ersal primitive such as compare-and-swap
or load-linked/store-conditional [27]. Almost all modemmicroprocessors have such instructions. In our
deque implementation we employ a compare-and-swap itisinydut this instruction can be replaced with
a load-linked/store-conditional pair in a straightfordrananner [32].

The compare-and-swap instructioas operates as follows. It takes three operands: a recastdr
that holds an address and two other registefsl andnew, holding arbitrary values. The instructiaras
(addr, old, new) compares the value stored in memory locatamdr with ol d, and if they are
equal, the value stored in memory locatiaddr is swapped witmew. In this case, we say theas
succeeds Otherwise, it loads the value stored in memory locatioidr into new, without modifying the
memory locationaddr . In this case, we say theas fails. This whole operation — comparing and then
either swapping or loading — is performed atomically withgect to all other memory operations. We can
detect whether theas fails or succeeds by comparitng d with newafter thecas. If they are equal, then
thecas succeeded; otherwise, it failed.

In order to implement a deque of nodes (or threads) in a nocklsilg manner usingas, we employ
an array of nodes (or pointers to threads), and we store tlieeis of the top and bottom entries in the
variablest op andbot respectively, as shown in Figure 4. An additional variat# is required for
correct operation, as described below. Tl andt op variables are implemented as fields of a structure
age, and this structure is assumed to fit within a single wordclvhiie define as the maximum number of
bits that can be transfered to and from memory atomicallj vdad, st or e, andcas instructions. The
age structure fits easily within either a 32-bit or a 64-bit woizes

The tag field is needed to address the following potentiablera. Suppose that a thief process is
preempted after executing line 5 but before executing line@pTop. Subsequent operations may empty
the deque and then build it up again so that the top index pamthe same location. When the thief
process resumes and executes line 8cthe will succeed because the top index has been restored to its
previous value. But the node that the thief obtained at ling o longer the correct node. The tag field
eliminates this problem, because every time the top inderdst (line 11 ofpopBot t on), the tag is
changed. This changing of the tag will cause the thieBis to fail. For simplicity, in Figure 5 we show
the tag being manipulated as a counter, with a new tag belegted by incrementing the old tag (line 12
of popBot t om. Such a tag might wrap around, so in practice, we implenmeattag by adapting the
“bounded tags” algorithm [32].

We claim that the deque implementation presented abovesntieetrelaxed semantics on any good
set of invocations. Even though each of the deque method®jsftee and consists of a relatively small
number of instructions, proving this claim is not entiraliyial since we need to account for every possible
interleaving of the executions of the owner and thieves. Qurent proof of correctness is somewhat
lengthy as it reduces the problem to establishing the comess of a rather large number of sequential
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Deque

deq
age |tag
to |
p \ O
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bot [} o

Figure 4 : A Deque object contains an arrajeq of ready nodes, a variabbot that is the index below the bottom
node, and a variablgge that contains two fields op, the index of the top node, andg, a “uniquifier” needed to
ensure correct operation. The variaatge fits in a single word of memory that can be operated on with atbémad,
st or e, andcas instructions.

voi d pushBottom ( Node node) Node popBottom()
1 load | ocal Bot « bot 1 load | ocal Bot « bot
2 store node — deq[!l ocal Bot] 2 if localBot = 0
3 localBot «+ localBot + 1 3 return NI L
4 store local Bot — bot 4 |ocal Bot + localBot — 1
5 store local Bot — bot
6 |oad node « deq[l ocal Bot]
7 | oad ol dAge + age
Node popTop() 8 if localBot > ol dAge.top
1 |oad ol dAge « age 9 return node
2 load | ocal Bot «+ bot 10 store 0 — bot
3 if localBot < ol dAge.top 11 newAge.top «+ O
4 return N L 12 newAge.tag + oldAge.tag + 1
5 |l oad node « deq[ol dAge. top] 13 if local Bot = ol dAge.top
6 newAge <« ol dAge 14 cas (age, ol dAge, newAge)
7 newAge.top « newAge.top + 1 15 if ol dAge = newAge
8 cas (age, ol dAge, newAge) 16 return node
9 if ol dAge = newAge 17 store newAge — age
10 return node 18 return NIL
11 return NL

Figure 5 : The threeDeque methods. EacBeque object resides in shared memory along with its instanceetas
age, bot , anddeq; the remaining variables in this code are private (reg$térhel oad, st or e, andcas instruc-
tions operate atomically. On a multiprocessor that doesuapport sequential consistency, extra memory operation
ordering instructions may be needed.
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program fragments. Because program verification is not timegpy focus of the present article, the proof
of correctness is omitted. The reader interested in progranfication is referred to [11] for a detailed
presentation of the correctness proof.

The fact that our deque implementation meets the relaxecrsiza on any good set of invocations
greatly simplifies the performance analysis of the worlalgtg algorithm. For example, by ensuring the
linearizability of all owner invocations and all thief inwations that do not returl L, this fact allows us
to view such invocations as atomic. Under this view, the igeestate of the deque at any given point in the
execution has a clear definition in terms of the usual sesiaastics of the deque methoggshBot t om
popBot t om andpopTop. (Here we rely on the observation that a thief invocatiomnahg NI L does
not change the state of the shared memory, and hence dodsamggecthe state of the deque.)

3.4 A structural lemma

In this section we establish a key lemma that is used in thioqmeance analysis of our work-stealing
scheduler. Before stating the lemma, we provide a numbezobiical definitions.

To state the structural lemma, in addition to linearizing deque method invocations as described in the
previous section, we also need to linearize the assigndd-egecutions. If the execution of the assigned
node enables O children, then we view the execution and gubseé updating of the assigned node as
occurring atomically at the linearization point of the engupopBot t ominvocation. If the execution of
the assigned node enables 1 child, then we view the exearinpdating of the assigned node as occurring
atomically at the time the assigned node is executed. Iftaewgion of the assigned node enables 2 children,
then we view the execution and updating of the assigned ne@deurring atomically at the linearization
point of the ensuinggushBot t ominvocation. In each of the above cases, the choice of linagon point
is justified by the following simple observation: the exdéontof any local instruction (i.e., an instruction
that does not involve the shared memory) by some process aswith the execution of any instruction
by another process.

If the execution of node enables node, then we call the edgéu, v) anenabling edgeand we call
u thedesignated parentf v. Note that every node except the root node has exactly ongndésd parent,
so the subgraph of the dag consisting of only enabling edyessfa rooted tree that we call tkaabling
tree Note that each execution of the computation may have aréiffeenabling tree. (u) is the depth of
a nodeu in the enabling tree, then itgeightis defined asv(u) = T, — d(u). The root of the dag, which
is also the root of the enabling tree, has weight. Our analysis of Section 4 employs a potential function
based on the node weights.

As illustrated in Figure 6, the structural lemma statesfimadiny deque, at all times during the execution
of the work-stealing algorithm, the designated parente®hibdes in the deque lie on some root-to-leaf path
in the enabling tree. Moreover, the ordering of these desaghparents along this path corresponds to the
top-to-bottom ordering of the nodes in the deque. As a cnyllwe observe that the weights of the nodes
in the deque are strictly decreasing from top to bottom.

Lemma 3 (Structural Lemma) Letk be the number of nodes in a given deque at some time in the (lin-
earized) execution of the work-stealing algorithm, andvlet . . , v;, denote those nodes ordered from the
bottom of the deque to the top. gtdenote the assigned node if there is one. In addition; fel0, . . . , k,

let u; denote the designated parent®f Then fori = 1,...,k, nodew; is an ancestor o; ; in the
enabling tree. Moreover, though we may hame= ug, fori = 2,3,..., k, we haveu; # u;_1 — that is,

the ancestor relationship is proper.

Proof: Fix a particular deque. The deque state and assigned nodgeclualy when either the owner
executes its assigned node or a thief performs a successéll $Ve prove the claim by induction on the
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Figure 6 : The structure of the nodes in the deque of some process. dModethe assigned node. Nodes, vs,
andvs are the nodes in the deque ordered from bottom to tops Eob, 1, 2, 3, nodeu; is the designated parent of
nodev;. Then nodes, us, ur, andug lie (in that order) on a root-to-leaf path in the enablingtrés indicated in
the statement of Lemma 3, thg's are all distinct except it is possible thaf = ;.
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Figure 7 : The deque of a processor before and after the executior @fdfigned nodg, enables 0 children.

number of assigned-node executions and steals since the des last empty. In the base case, if the deque
is empty, then the claim holds vacuously. We now assumeltlatlaim holds before a given assigned-node
execution or successful steal, and we will show that it halier. Specifically, before the assigned-node
execution or successful steal, igtdenote the assigned node; dedenote the number of nodes in the deque;
letwvy, ..., v denote the nodes in the deque ordered from bottom to top;aridH 0, .. ., k, letu; denote
the designated parent of. We assume that eithér = 0, or fori = 1,...,k, nodew; is an ancestor of
u;_1 in the enabling tree, with the ancestor relationship beimper, except possibly for the case= 1.
After the assigned-node execution or successful stealylefenote the assigned node; kétdenote the
number of nodes in the deque; I, ..., v}, denote the nodes in the deque ordered from bottom to top;
and fori = 0,...,%, letu; denote the designated parentwpf We now show that eithet’ = 0, or for
i=1,...,k, nodeu,is an ancestor af;_; in the enabling tree, with the ancestor relationship benoger,
except possibly for the cage= 1.

Consider the execution of the assigned noglby the owner.

If the execution ofvg enables 0 children, then the owner pops the bottommost nibdks deque and
makes that node its new assigned nodek ¥ 0, then the deque is empty; the owner does not get a new
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Figure 8 : The deque of a processor before and after the executior@fdsigned nod® enables 1 child:.

assigned node; arid = 0. If £ > 0, then the bottommost nodg is popped and becomes the new assigned
node, andk’ = k — 1. If k = 1, thenk’ = 0. Otherwise, the result is as illustrated in Figure 7. We now
rename the nodes as follows. Foe 0, ..., k', we set; = v;+1 andu, = u;+1. We now observe that for
i=1,...,k, nodeu] is a proper ancestor af_, in the enabling tree.

If the execution ofvy enables 1 childe, then, as illustrated in Figure & becomes the new assigned
node; the designated parentaofs vo; andk’ = k. If k = 0, thenk’ = 0. Otherwise, we can rename the
nodes as follows. We sef, = z; we setuy = vg; and fori = 1,..., k', we set; = v; andu} = u;. We
now observe that fof = 1,..., %', nodeu! is a proper ancestor af,_, in the enabling tree. That] is a
proper ancestor afj, in the enabling tree follows from the fact th@iy, vg) is an enabling edge.

In the most interesting case, the execution of the assigndd #y enables 2 childrem andy, with
x being pushed onto the bottom of the deque grisecoming the new assigned node, as illustrated in
Figure 9. In this case(vg, z) and(vg,y) are both enabling edges, akti= k + 1. We now rename the
nodes as follows. We sef = y; we setuy = vg; we setv] = z; we setu) = vy; and fori = 2,... k',
we setv; = v;_1 andu} = u;_1. We now observe that; = ug, and fori = 2,...,k’, nodeu} is a proper
ancestor ofu; , in the enabling tree. That;, is a proper ancestor af; in the enabling tree follows from
the fact thai(ug, vg) is an enabling edge.

Finally, we consider a successful steal by a thief. In thisecahe thief pops the topmost nodg off
the deque, s&' = k — 1. If k = 1, thenk’ = 0. Otherwise, we can rename the nodes as follows. For
i=0,...,k", we set] = v; andu; = u;. We now observe that far= 1, ..., k', nodeu; is an ancestor of
u}_, in the enabling tree, with the ancestor relationship beioger, except possibly for the case- 1. =

Corollary 4 If vy, v1, ..., v are as defined in the statement of Lemma 3, then wedémg < w(v1) <
s < w(vgo1) < w(vg). ]

4 Analysis of the work stealer

In this section we establish optimal bounds on the runninge tof the non-blocking work stealer under
various assumptions about the kernel. It should be emphdmat the work stealer performs correctly for
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Figure 9 : The deque of a processor before and after the executior @fssigned nodg) enables 2 childrem andy.

any kernel. We consider various restrictions on kernel Wehan order to demonstrate environments in
which the running time of the work stealer is optimal.

The following definitions will prove to be useful in our angaly. An instruction in the sequence executed
by some processg is amilestoneif and only if one of the following two conditions holds: (ixecution of
a node by procesgoccurs at that instruction, or (i) @opTop invocation completes. From the scheduling
loop of Figure 3, we observe that a given process may exetaotest some constant number of instructions
between successive milestones. Throughout this sectiefet’ denote a sufficiently large constant such
that in any sequence @f consecutive instructions executed by a process, at leass@milestone.

The remainder of this section is organized as follows. $retil reduces the analysis to bounding the
number of “throws”. Section 4.2 defines a potential functioat is central to all of our upper-bound argu-
ments. Sections 4.3 and 4.4 present our upper bounds faradediand multiprogrammed environments.

4.1 Throws

In this section we show that the execution time of our worlalsteisO(T1 /P4 + S/Pa), whereS'is the
number of “throws”, that is, steal attempts satisfying antecal condition stated below. This goal cannot
be achieved without restricting the kernel, so in additioprioving this bound on execution time, we shall
state and justify certain kernel restrictions.

One fundamental obstacle prevents us from proving the etbgierformance bound within the (unre-
stricted) multiprogramming model of Section 2. The problisrthat the kernel may bias the random steal
attempts towards the empty deques. In particular, consgidesteal attempts initiated within some fixed
interval of steps. The adversary can bias these steal ataowards the empty deques by delaying those
steal attempts that choose nonempty deques as victimstatélyaoccur after the end of the interval.

To address this issue, we restrict the kernel to scheduleunds rather than steps. A process that is
scheduled in a particular round executes betw2@rand3C' instructions during the round, whe¢éis the
constant defined at the beginning of Section 4. The precisgau of instructions that a process executes
during a round is determined by the kernel in an arbitrary meanWe assume that the process executes
these2C to 3C instructions in serial order, but we allow the instructidreams of different processes to
be interleaved arbitrarily, as determined by the kernel. dfgém that our requirement that processes be
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scheduled in rounds &C to 3C instructions is a reasonable one. Because of the overheadiat®ed with
context-switching, practical kernels tend to assign pssee to processors for some nontrivial scheduling
guantum. In fact, a typical scheduling quantum is orders afmitude higher than the modest value(bf
needed to achieve our performance bounds.

We identify the completion of a steal attempt with the cortipteof its popTop invocation (line 17 of
the scheduling loop), and we define a steal attempt by a pgdesde athrow if it completes ag’s second
milestone in a round. Thus a process performs at most one thrany round. Such a throw completes
in the round in which the identity of the associated randoatimi is determined. This property is useful
because it ensures that the random victim distribution abe biased by the kernel. The following lemma
bounds the execution time in terms of the number of throws.

Lemma 5 Consider any multithreaded computation with w@kkbeing executed by the non-blocking work
stealer. Then the execution time is at mO$Ty /P4 + S/Pa), whereS denotes the number of throws.

Proof: As in the proof of Theorem 2, we bound the execution time bpgigiquation (2) and bounding
ZiT:1 pi- At each round, we collect a token from each scheduled psocege will show that the total
number of tokens collected is at m@gt+ S. Since each round consists of at mdét steps, this bound on
the number of tokens implies the desired time bound.

When a procesg is scheduled in a round, it executes at least two milesta@rabsthe process places its
token in one of two buckets, as determined by the second tinles There are two types of milestones. If
g’s second milestone marks the occurrence of a node execttieng places its token in thevork bucket
Clearly there are at mogt tokens in the work bucket. The second type of milestone niksompletion
of a steal attempt, and ifs second milestone is of this type, themlaces its token in theteal bucket In
this case, we observe that the steal attempt is a throw, so &ne exactl\5 tokens in the steal bucket. =

4.2 The potential function

As argued in the previous section, it remains only to anallggenumber of throws. We perform this analysis
using an amortization argument based on a potential fumttiat decreases as the algorithm progresses. Our
high-level strategy is to divide the execution into phasesshow that in each phase the potential decreases
by at least a constant fraction with constant probability.

We define the potential function in terms of node weights.aRekat each node has a weightv(u) =
T — d(u), whered(u) is the depth of node in the enabling tree. At any given rouridwe define the
potential by assigning potential to each ready node.R;atenote the set of ready nodes at the beginning of
round:. A ready node is either assigned to a process or it is in thaalefjsome process. For each ready
nodeu in R;, we define the associated potentig{u) as

32e(w)=1 jf y is assigned;
¢i(u) = { 32w(w)  otherwise.

Then the potential at rounds defined as

=Y iu).
u€ER;
When execution begins, the only ready node is the root noligfvhas weighfl'y, and is assigned to some
process, so we start withy = 327~~1, When execution terminates, there are no ready nodes, sméhe
potential is0.
Throughout the execution, the potential never increaskat i§, for each round we have®;,; < ;.
The work stealer performs only two actions that may changeptitential, and both of them decrease the
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potential. The first action that changes the potential isrédmoval of a noda: from a deque when

is assigned to a process (lines 8 and 17 of the scheduling.ldophis case, the potential decreases by
bi(u) — diy1(u) = 320 — 32w(W)—1 — (2/3)¢;(u), which is positive. The second action that changes the
potential is the execution of an assigned nadéf the execution ofiu enables two children, then one child
x is placed in the deque and the otlydrecomes the assigned node. Thus, the potential decreases by

¢i(w) — git1(x) — dit1(y)

_ 32w(u)—1 _ 32w(a:) _ 32w(y)—1
32w(u)71 _ 32('w(u)71) _ 32(w(u)71)71

1 1
—  2w(u)-1 1— - — _)
; ( 3 9

5

which is positive. If the execution af enables fewer than two children, then the potential deeseagen
more. Thus, the execution of a nodeat round: decreases the potential by at legit9) ¢; (u).

To facilitate the analysis, we partition the potential agtime processes, and we separately consider the
processes whose deque is empty and the processes whosdsdegnempty. At the beginning of rourig
for any procesg, let R;(¢) denote the set of ready nodes that arg’srdeque along with the ready node, if
any, that is assigned tp We say that each nodein R;(q) belongsto process). Then the potential that we

associate witly is
()= D ¢ilu).
u€R;(q)
In addition, let4; denote the set of processes whose deque is empty at the inggrimound:, and letD;
denote the set of all other processes. We patrtition the pakdn into two parts

®; = &;(A;) + ®i(D;)

where
P;(Ai)= > ®i(g) and By(Di) =) Pi(q),
qEA; q€D;
and we analyze the two parts separately.

We now wish to show that whenevEBror more throws take place over a sequence of rounds, theti@ten
decreases by a constant fraction with constant probabilfyprove this claim in two stages. First, we show
that3/4 of the potentiak®;(D;) is sitting “exposed” at the top of the deques where it is egibésto steal
attempts. Second, we use a “balls and weighted bins” argutoesiow thatl /2 of this exposed potential
is stolen with1/4 probability. The potentiad;(4;) is considered separately.

Lemma 6 (Top-Heavy Deques) Consider any round and any process in D;. The topmost node in
g's deque contributes at lea8f4 of the potential associated with That is, we have;(u) > (3/4)®i(q).

Proof: This lemma follows directly from the Structural Lemma (LemB), and in particular from Corol-
lary 4. Suppose the topmost noden ¢’s deque is also the only node s deque, and in additiony has
the same designated parent as the nptlat is assigned tg. In this case, we have

®i(q) = ¢i(u)+ ¢i(y)
— 32w(u) + 32w(y)—1
32w(u) + 32w(u)—1

4
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In all other casesy contributes an even larger fraction of the potential asgediwithg. [

Lemma 7 (Balls and Weighted Bins)  Suppose thaP balls are thrown independently and uniformly at
random intoP’ bins, where foti = 1, ..., P, bini has a weighW;. The total weight i$¥ = Ele W;. For
each bini, define the random variabl&; as

W; if some ball lands in bin;
X; = .
0 otherwise.

If X = °F | X;, then for anyg in the ranged < 8 < 1, we havePr {X > W} > 1 —1/((1 — B)e).

Proof: For each bin, consider the random variabl; — X;. It takes on the valu#; when no ball lands
in bin 7, and otherwise it i9. Thus, we have

EW,—X;] = W, (1—%)13

< Wz/e

It follows thatE [W — X| < W/e. From Markov’s Inequality we have that

E[W — X]

1-pw -

Thus, we conclud®r {X < W} < 1/((1 — B)e). ]

We now show that whenevd? or more throws occur, the potential decreases by a constatidn of
®,(D;) with constant probability.

Pr{W-X>Q1-pW}<

Lemma 8 Consider any round and any later round such that at leasP throws occur at rounds from
(inclusive) toj (exclusive). Then we have

1 1

Proof: We first use the Top-Heavy Deques Lemma to show that if a thavgets a process with a
nonempty deque as its victim, then the potential decreages leastl /2 of the potential associated with
that victim process. We then consider tRehrows as ball tosses, and we use the Balls and Weighted Bins
Lemma to show that with probability more thar4, the total potential decreases by4 of the potential
associated with all processes with a nonempty deque.

Consider any processgin D;, and letu denote the node at the top ¢6 deque at round. From the
Top-Heavy Deques Lemma (Lemma 6), we hay@:) > (3/4)®;(q). Now, consider any throw that occurs
at a roundk > ¢, and suppose this throw targets processs the victim. We consider two cases. In the
first case, the throw is successful wiplopTop returning a node. If the returned node is nagethen
after roundk, nodeu has been assigned and possibly already executed. At théeasty node: has been
assigned, and the potential has decreased by at(2éip;(u). If the returned node is not nodg then
nodewu has already been assigned and possibly already executedh, Alge potential has decreased by at
least(2/3)¢;(u). In the other case, the throw is unsuccessful itpTop returningNI L at either line 4
or line 11. IfpopTop returnsNI L, then at some time during rourideitherg’s deque was empty or some
otherpopTop or popBot t omreturned a topmost node. Either way, by the end of rokndodeu has
been assigned and possibly executed, so the potential beesaded by at lea$2/3)¢;(u). In all cases, the
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potential has decreased by at le@t3)#; (u). Thus, if a thief targets procegsas the victim at a round
k > i, then the potential drops by at 1ed8¥3)¢; (u) > (2/3)(3/4)®i(q) = (1/2)®;(q).

We now consider alP processes an@ throws that occur at or after rourid For each procesg in
D;, if one or more of theP throws targets as the victim, then the potential decreasegbi2)®;(q). If
we think of each throw as a ball toss, then we have an instahtgedalls and Weighted Bins Lemma
(Lemma 7). For each procegsn D;, we assign it a weighiV, = (1/2)®;(g), and for each other process
g in A;, we assign it a weight¥, = 0. The weights sum t&% = (1/2)®;(D;). Usings = 1/2 in
Lemma 7, we conclude that the potential decreases by atd&#st (1/4)®;(D;) with probability greater
thanl1 — 1/((1 — B)e) > 1/4. ]

4.3 Analysis for dedicated environments

In this section we analyze the performance of the non-bfarkvork stealer in dedicated environments. In
a dedicated (non-multiprogrammed) environmentPafirocesses are scheduled in each round, so we have
Py=P.

Theorem 9 Consider any multithreaded computation with wdrk and critical-path lengthT,, being
executed by the non-blocking work stealer wiRhprocesses in a dedicated environment. The expected
execution time i®)(T1 /P + Tw). Moreover, for any > 0, the execution time i©(T4 /P + Too + 1g(1/¢))

with probability at leastl — ¢.

Proof: Lemma 5 bounds the execution time in terms of the number ofwfr We shall prove that the ex-
pected number of throws @(T, P), and that the number of throwsa¥ (T, +1g(1/¢)) P) with probability
at leastl — e.

We analyze the number of throws by breaking the executianphasesof ©(P) throws. We show that
with constant probability, a phase causes the potentialdp by a constant factor, and since we know that
the potential starts aby, = 327~~! and ends at zero, we can use this fact to analyze the numbbasés.
The first phase begins at routyd= 1 and ends at the first rourtfl such that at leasP throws occur during
the interval of round$ty, t|]. The second phase begins at roapéd- ¢| + 1, and so on.

Consider a phase beginning at rounénd letj be the round at which the next phase begins. We will
show that we haver {®; < (3/4)®;} > 1/4. Recall that the potential can be partitionedbas= ®;(A4;) +
®;(D;). Since the phase contains at leRshrows, Lemma 8 implies thar {®; — ®; > (1/4)®;(D;)} >
1/4. We need to show that the potential also drops by a consttidn of®;(A;). Consider a processin
A;. If g does not have an assigned node, tiefy) = 0. If ¢ has an assigned noadethen®;(q) = ¢;(u).

In this case, procesgexecutes node at round: and the potential drops by at legd5/9)¢;(v). Summing
over each processin A;, we have®; — ®; > (5/9)®;(A;). Thus, no matter how; is partitioned between
@,(Az) and@i(Di), we havePr {‘I)z‘ — @j > (1/4)@1'} > 1/4.

We shall say that a phase ssiccessfulif it causes the potential to drop by at least & fraction. A
phase is successful with probability at leagt. Since the potential starts @ = 327~~! and ends a0
(and is always an integer), the number of successful phasasmost(27,, — 1)log4/33 < 8T. The
expected number of phases needed to ol#dig successful phases is at m88T,,. Thus, the expected
number of phases i9(T%, ), and because each phase contéli®) throws, the expected number of throws
is O(TP). We now turn to the high probability bound.

Suppose the execution takes= 32T, + m phases. Each phase succeeds with probability at least
p = 1/4, so the expected number of successes is attgeast 8T, +m /4. We now compute the probability
that the numbelX of successes is less th&i,,. We use the Chernoff bound [2, Theorem A.13],

2

Pr{X<np—a}<ef2£:1_P,
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with @ = m/4. Thus if we choosen = 32T« + 161In(1/¢), then we have

(m/4)
6_ 16To0 +m/2

Pr{X < 8Ts}

A

__(m/8)?
e m/2+m/2

IN

_m

= e 16
161n(1/e)
T 16

IN

e

= £.

Thus, the probability that the execution takdd',, + 16 In(1/<) phases or more is less thanWe conclude
that the number of throws B((T« + 1g(1/¢))P) with probability at leasl — e. ]

4.4 Analysis for multiprogrammed environments

We now generalize the analysis of the previous section tadbthe execution time of the non-blocking work
stealer in multiprogrammed environments. Recall that inudtiprogrammed environment, the kernel is an
adversary that may choose not to schedule some of the pescatissome or all rounds. In particular, at each
rounds, the kernel schedules processes of its choosing. We consider three differensetasf adversaries,
with each class being more powerful than the previous, andamsider increasingly powerful forms of the
yield system call. In all cases, we find that the expectedwi@ttime iSO(T1/Pa + Too P/ P4).

We prove our upper bounds for multiprogrammed environmesitsg the results of Section 4.2 and the
same general approach as is used to prove Theorem 9. Thelans/ip which the proof of Theorem 9
depends on the assumption of a dedicated environment i iarthlysis of progress being made by those
processes in the sdf. In particular, in proving Theorem 9, we considered a rouad any procesgin A4;,
and we showed that at routigthe potential decreases by at le@std) ®;(q), because procegsexecutes its
assigned node, if any. This conclusion is not valid in a muligrammed environment, because the kernel
may choose not to schedule process round:. For this reason, we need the yield system calls.

The use of yield system calls never constrains the kernés ichioice of the numbey; of processes that
it schedules at a stap Yield calls constrain the kernel only in its choicewatiichp; processes it schedules.
We wish to avoid constraining the kernel in its choice of thenber of processes that it schedules, because
doing so would admit trivial solutions. For example, if weutnb force the kernel to schedule only one
process, then all we have to do is make efficient use of oneepsoc, and we need not worry about parallel
execution or speedup. In general, whenever processorvafatde and the kernel wishes to schedule our
processes on those processors, our user-level schedoldd $ie prepared to make efficient use of those
processors.

4.4.1 Benign adversary

A benignadversary is able to choose only the numfaeof processes that are scheduled at each réutid
cannot choose which processes are scheduled. The proeesshssen at random. With a benign adversary,
the yield system calls are not needed, so line 15 of the stihgdaop (Figure 3) can be removed.

Theorem 10 Consider any multithreaded computation with w@fkand critical-path lengthl:,, being
executed by the non-blocking work stealer witprocesses in a multiprogrammed environment. In addition,
suppose the kernel is a benign adversary, and the yieldmys# does nothing. The expected execution time
isO(T1/Pa+TxP/P4). Moreover, for any > 0, the execution time ©(T1 /Pa+ (Teo+1g(1/¢)) P/ Pa)

with probability at leastl — ¢.
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Proof: As in the proof of Theorem 9, we bound the number of throws loyéig that in each phase, the
potential decreases by a constant factor with constantpility. We consider a phase that begins at roiind
The potential ish; = ®;(A4;) + ®;(D;). From Lemma 8, we know that the potential decreases by dt leas
(1/4)®;(D;) with probability more tharl /4. It remains to prove that with constant probability the paite

also decreases by a constant fractio®gfA;).

Consider a procesgin A;. If g is scheduled at some round during the phase, then the @dtdatreases
by at least(5/9)®;(¢) as in Theorem 9. During the phase, at leBghrows occur, so at leagt processes
are scheduled, with some processes possibly being schedulitiple times. These scheduled processes
are chosen at random, so we can treat them like random baid@nd appeal to the Balls and Weighted
Bins Lemma (Lemma 7). In fact, this selection of processearadom does not correspond to independent
ball tosses, because a process cannot be scheduled morenit&rn a given round, which introduces
dependencies. But these dependencies only increasesothetbpity that a bin receives a ball. (Here each
deque is a bin and a bin is said to receive a ball if and onlyafabsociated process is scheduled.) We assign
each procesg in A; a weightW, = (5/9)®;(¢) and each procesgin D; a weightiW, = 0. The total
weight isW = (5/9)®;(A4;), so usingd = 1/2 in Lemma 7, we conclude that the potential decreases by at
leastBW = (5/18)®;(A;) with probability greater tham/4.

The event that the potential decreases(by18)®;(A;) is independent of the event that the potential
decreases byl/4)®;(D;), because the random choices of which processes to scheduteapendent of
the random choices of victims. Thus, both events occur withability greater thad /16, and we conclude
that the potential decreases by at ledstt)®; with probability greater thaid/16. The remainder of the
proof is the same as that of Theorem 9, but with different tzonts. ]

4.4.2 Oblivious adversary

An obliviousadversary is able to choose both the numieaf processes and whigh processes are sched-
uled at each round but is required to make these decisions in an off-line mar@pecifically, before the
execution begins the oblivious adversary commits itse#f tomplete kernel schedule.

To deal with an oblivious adversary, we employ a directeddyj&, 28] to a random process; we call
this operatioryi el dToRandom If at round: process; callsyi el dToRandom then a random process
r is chosen and the kernel cannot schedule progesmin until it has scheduled procesdMore precisely,
the kernel cannot schedule procesat a round; > i unless there exists a rouid: < k < 7, such that
process is scheduled at rounkl Of course, this requirement may be inconsistent with tlieedeschedule.
Suppose processis scheduled at roundsandj, and process is not scheduled at any roukd= i, . . ., j.

In this case, ify callsyi el dToRandomat round:, then because cannot be scheduled at roupds the
schedule calls for, we schedule processstead. That is, we schedule process place ofg. Observe
that this change in the schedule does not change the numipeocdsses scheduled at any round; it only
changes which processes are scheduled.

The non-blocking work stealer usgs el dToRandom Specifically, line 15 of the scheduling loop
(Figure 3) isyi el dToRandon() .

Theorem 11 Consider any multithreaded computation with w@fkand critical-path lengthl,, being
executed by the non-blocking work stealer withprocesses in a multiprogrammed environment. In ad-
dition, suppose that the kernel is an oblivious adversany the yield system call igi el dToRandom
The expected execution time(G87T:/Pa + TooP/P4). Moreover, for anye > 0, the execution time is
O(T1/Pa + (T + 1g(1/€)) P/ P4 ) with probability at leastl — e.

Proof: As in the proof of Theorem 10, it remains to prove that in eduhse, the potential decreases by a
constant fraction of;(4;) with constant probability. Again, i§ in A4; is scheduled at a round during the
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phase, then the potential decreases by at [8d8)®;(q). Thus, if we can show that in each phase at least
P processes chosen at random are scheduled, then we caniabeaBalls and Weighted Bins Lemma.

Whereas previously we defined a phase to contain at lR&stows, we now define a phase to contain at
least2P throws. With at leas2P throws, at leasP of these throws have the following property: The throw
was performed by a procegsat a round; during the phase, and procegsiso performed another throw
at a roundk > j, also during the phase. We say that such a throfeliswed Observe that in this case,
procesy calledyi el dToRandomat some round between roungdsndk. Since procesg is scheduled
at roundk, the victim process is scheduled at some round betwesmmd k. Thus, for every throw that is
followed, there is a randomly chosen victim process thatheduled during the phase.

Consider a phase that starts at rodndnd partition the steal attempts into two sétsandG, such that
every throw inF is followed, and each set contains at leBsthrows. Because the phase contains at least
2P throws and at lead? of them are followed, such a partition is possible. Lemmadi8 tes that the throws
in G cause the potential to decrease by at |€Bst)®;(D;) with probability greater tham/4. It remains to
prove that the throws i’ cause the potential to decrease by a constant fracti@n(ef;).

The throws inF' give rise to at leasP randomly chosen victim processes, each of which is schddule
during the phase. Thus, we treat thddeandom choices as ball tosses, assigning each prqdesd; a
weightW, = (5/9)®;(¢), and each other procegsn D; a weighti¥, = 0. We then appeal to the Balls and
Weighted Bins Lemma witl# = 1/2 to conclude that the throws iRl cause the potential to decrease by
at leastBW = (5/18)®;(A;) with probability greater tham/4. Note that if the adversary is not oblivious,
then we cannot treat these randomly chosen victim processkall tosses, because the adversary can bias
the choices away from processesAdp In particular, upon seeing a throw by processirget a process in
A; as the victim, an adaptive adversary may stop schedulingepsg. In this case the throw will not be
followed, and hence, will not be in the st The oblivious adversary has no such power.

The victims targeted by throws iR' are independent of the victims targeted by throwszinso we
conclude that the potential decreases by at lggst) ®; with probability greater thaih/16. The remainder
of the proof is the same as that of Theorem 9, but with diffecenstants. ]

4.4.3 Adaptive adversary

An adaptiveadversary selects both the numherof processes and which of thg processes execute at
each round, and it may do so in an on-line fashion. The adaptive adwensaconstrained only by the
requirement to obey yield system calls.

To deal with an adaptive adversary, we employ a powerfutfteht we callyi el dToAl | . If at rounds
process; callsyi el dToAl | , then the kernel cannot schedule procgagain until it has scheduled every
other process. More precisely, the kernel cannot schedatepsy at a round; > ¢, unless for every other
process, there exists a rounk. in the range < k,. < j, such that processis scheduled at rounk}.. Note
thatyi el dToAl | does not constrain the adversary in its choice of the numbprogesses scheduled at
any round. It constrains the adversary only in its choice loiclv processes it schedules.

The non-blocking work stealer calld el dToAl | before each steal attempt. Specifically, line 15 of
the scheduling loop (Figure 3)ys el dToAl | ().

Theorem 12 Consider any multithreaded computation with w@kand critical-path lengthl:,, being
executed by the non-blocking work stealer witprocesses in a multiprogrammed environment. In addition,
suppose the kernel is an adaptive adversary, and the yialtdmsycall isyi el dToAl | . The expected
execution time i©(T1 /P4 + T P/P4). Moreover, for any > 0, the execution time i©(T1 /P4 + (Too +
lg(1/e))P/P4) with probability at leastl — «.

Proof: As in the proofs of Theorems 10 and 11, it remains to argueithaach phase the potential de-
creases by a constant fraction ®f(A;) with constant probability. We define a phase to contain atlea
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2P + 1 throws. Consider a phase beginning at roian8ome procesg executed at least three throws during

the phase, so it callegi el dToAl | at some round before the third throw. Sincés scheduled at some

round after its call toyi el dTOAI | , every process is scheduled at least once during the phases, the

potential decreases by at 1e@5f9)®;(A;). The remainder of the proof is the same as that of Theorem 9.
]

5 Related work

Prior work on thread scheduling has not considered muljigrtmmed environments, but in addition to
proving time bounds, some of this work has considered boondsther metrics of interest, such as space
and communication. For the restricted class of “fully strraultithreaded computations, the work stealing
algorithm is efficient with respect to both space and comiatitn [8]. Moreover, when coupled with
“dag-consistent” distributed shared memory, work stegifalso efficient with respect to page faults [6].
For these reasons, work stealing is practical and variaats been implemented in many systems [7, 19,
20, 24, 34, 38]. For general multithreaded computationgratcheduling algorithms have also been shown
to be simultaneously efficient with respect to time and sgdc®, 13, 14]. Of particular interest here is
the idea of deriving parallel depth-first schedules fronesechedules [4, 5], which produces strong upper
bounds on time and space. The practical application andipp@sslaptation of this idea to multiprogrammed
environments is an open question.

Prior work that has considered multiprogrammed envirortenbas focused on the kernel-level sched-
uler. With coscheduling (also called gang scheduling) B3, all of the processes belonging to a compu-
tation are scheduled simultaneously, thereby giving thepdation the illusion of running on a dedicated
machine. Interestingly, it has recently been shown thateivarks of workstations coscheduling can be
achieved with little or no maodification to existing multim@ssor operating systems [17, 35]. Unfortunately,
for some job mixes, coscheduling is not appropriate. Fomgte, a job mix consisting of one parallel
computation and one serial computation cannot be cosobeafliciently. With process control [36], pro-
cessors are dynamically partitioned among the running ctatipns so that each computation runs on a
set of processors that grows and shrinks over time, and eswputation creates and kills processes so that
the number of processes matches the number of processorre\WWet aware of any commercial operating
system that supports process control.

6 Conclusion

Whereas traditional thread schedulers demonstrate pomrpeance in multiprogrammed environments [9,
15, 17, 23], the non-blocking work stealer executes withrgnied high performance in such environments.
By implementing the work-stealing algorithm with non-bking deques and judicious use of yield system
calls, the non-blocking work stealer executes any muédkied computation with worK and critical-path
length T, using any numbeP of processes, in expected tini§7; /P4 + TP/ Pa), WherePy is the
average number of processors on which the computation s chus, it achieves linear speedup —
that is, execution timé& (7T, /P4) — whenever the number of processes is small relative to traglesm
T) /T of the computation. Moreover, this bound holds even whemtiraber of processes exceeds the
number of processors and even when the computation runsatmimocessors that grows and shrinks over
time. We prove this result under the assumption that thegkewhich schedules processes on processors
and determine®4, is an adversary.

We have implemented the non-blocking work stealer in a pypC++ threads library calledHood
[10]. For UNIX platforms, Hood is built on top of POSIX thremafP9] that provide the abstraction of pro-
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cesses (known as “system-scope threads” or “bound threaéfgit performance, the deque methods are
coded in assembly language. For the yields, Hood employswioation of the UNIXpri ocnt | (prior-

ity control) andyi el d system calls to implementyd el dToAl | . Using Hood, we have coded up several
applications, and we have run numerous experiments, thétgaxf which attest to the practical applica-
tion of the non-blocking work stealer. These empirical hss[9, 10] show that application performance
does conform to our analytical bound and that the constalueni inside the big-Oh notation is small —
roughly1.
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