
 By joining this Zoom web tutorial session, you
automatically consent to the recording of all video,
audio, and chat-room content.

 Furthermore, you grant permission to ACM and the
OpenCilk organization to share the recordings, in
full or in part, internally and with third parties.

 Please join without video and stay muted if you do
not wish to be recorded.

Slides downloadable at
http://opencilk.org/beta2/opencilk.spaa.2020.pdf

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

Dorothy Curtis
Alexandros-Stavros Iliopoulos

I-Ting Angelina Lee
Charles E. Leiserson

Tao B. Schardl
& many helpers

www.opencilk.org
contact@opencilk.org

ACM Symposium on Parallelism in
Algorithms and Architectures

July 14, 2020

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

http://www.opencilk.org/

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

Eagles
Researchers employing
large amounts of parallel
computing in support of
their scientific interests.

Owls
Researchers developing
parallel-computing
technology to address the
future needs of Eagles.

Cilk is the only parallel-computing platform
that effectively serves both Eagles and Owls.

Google scholar: 9150 citations
 Cilk runtime system [BJKLRZ96]: 2403 citations
 Cilk language [FLR98]: 1556 citations
 Cilk scheduler [BL99]: 1936 citations

Professional venues that have featured research papers
that meaningfully rely on Cilk:
3PGCIC, ACM-SE, ACTAE, AIMS, ALENEX, ASPLOS, BIG DATA, CC, CF, CGO,
COMPSAC, CSS, DAC, DCC, DFM, ICACT, ICCSE, ICDE, ICESS, ICPADS, ICPP,
ICS, ICTAI, ICWC, IPDPS, ISCA, ISSAC, JACM, LLVM-HPC, MIPRO,
OOPSLA/SPLASH, PACT, PASCO, PDP, PLDI, POPL, PPoPP, RTSS, SC, SIGCSE,
SIGMETRICS, SIGOPS, SODA, SPAA, SoftCOM, TOCS, TOPC, TOPLAS, VLDB,
VL/HCC, VPA, WOSC, and more.

Universities that have used Cilk in their courses:
Alabama, ANU, Binghamton, CMU, Cornell, Duke, Fudan, George
Washington, Georgetown, Georgia Tech, Harvard, Indiana, Johannes Kepler,
Knox College, Lehigh, Maryland, Michigan, MIT, NTU, NUS, Oregon, Otago,
Oxford, Princeton, Purdue, Rice, Rochester, Rutgers, Stanford, Stonybrook,
TU Wein, Tel Aviv, Texas, UC Berkeley, UCSB, UNC, Washington, WUSTL,
Yale, and more.

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

1994–2006 Cilk project formed at MIT. Cilk offers simple C-
based multithreaded programming combined with
execution efficiency.

2006–2009 Cilk Arts spun out of MIT. Cilk++ provides support
for C++, parallel loops, and reducer hyperobjects.

2009–2014 Intel Corporation acquires Cilk Arts. Cilk Plus offers
Cilk++ and vector ops in ICC and GCC.

2014–2017 Due to attrition in Intel’s Cilk team, the development
of Cilk Plus at Intel stagnates.

2017 Intel announces it is dropping support for Cilk Plus,
and GCC follows suit.

2019 NSF and Air Force fund development of OpenCilk.

2020 OpenCilk 1.0 beta released.

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

 Compatibility — Provide backward compatibility with
Cilk Plus minus vector ops (i.e., Cilk++).

 Open source — Distribute under liberal open-source
licenses.

 Componentization — Divide system into distinct
software components with well-defined interfaces.

 Integration — As individual components are enhanced,
ensure that they continue to interoperate with the
entire platform.

 Reliability — Provide a suite of extensive tests and
benchmarks to ensure that releases are stable, perform
well, and are free of serious bugs.

 Our focus is on researchers and educators who
already know something about Cilk.

 During the hands-on session, you can download
and install (from binary) the OpenCilk 1.0 beta 2
release.

 To get a jump on things, download the latest
release of OpenCilk here:
• https://github.com/OpenCilk/opencilk-project/releases

 Technical-support assistants will hold your hand as
you experiment with the release, including getting
your legacy Cilk++ and Cilk Plus codes to work.

 You can also schedule additional technical support
for some time in the future.

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

https://github.com/OpenCilk/opencilk-project/releases
https://github.com/OpenCilk/opencilk-project/releases
https://github.com/OpenCilk/opencilk-project/releases

 Background of OpenCilk

 The OpenCilk Organization

 Overview of OpenCilk 1.0 Beta 2

 Plans and Q&A

 [Break]

 Hand-Holding Hands-On Session

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

 Background of OpenCilk

 The OpenCilk Organization

 Overview of OpenCilk 1.0 Beta 2

 Plans and Q&A

 [Break]

 Hand-Holding Hands-On Session

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

OpenCilk provides quality open-
source parallel-programming
software and responsive support
services for the benefit of
application developers, parallel-
language researchers, and teachers
of parallel computing.

OpenCilk operates under the auspices of MIT.

Leadership
 Tao B. Schardl, MIT — Director, Chief Architect

 I-Ting Angelina Lee, WUSTL — Director, Runtime Architect

 John F. Carr, consultant — Senior Programmer

 Dorothy Curtis, MIT — Project Manager

 Charles E. Leiserson, MIT — Executive Director

Other contributors
 Alexandros-Stavros Iliopoulos, postdoc, MIT

 Tim Kaler, Ph.D. student, MIT

 Matthew Kilgore, Ph.D. student, MIT

 Billy Moses, Ph.D. student, MIT

 Kyle Singer, Ph.D. student, WUSTL

 Daniele Vettorel, Ph.D. student, MIT→Google

 Grace Yin, M.Eng. student, MIT→MIT

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

 OpenCilk development activities are
reviewed by the OpenCilk Advisory Board.

 Leadership
• Vivek Sarkar, Georgia Tech — Chair
• John Gilbert, UCSB — Co-Chair
• Lawrence Rauchwerger, UIUC — Co-Chair

 Members
• Umut Acar, Vikram Adve, David Bader, Pavan Balaji, Guy E.

Blelloch, Aydın Buluç, David Bunde, Andrew Chien, Rezaul
Chowdhury, Chen Ding, Alan Edelman, Jeremy T. Fineman,
Matteo Frigo, Philip B. Gibbons, Pablo Halpern, Shahin Kamali,
Bradley C. Kuszmaul, Will Leiserson, Marc Moreno Maza, Janice
McMahon, John Mellor-Crummey, David Padua, Keshav Pingali,
Nikos Pitsianis, Jan Prins, Nir Shavit, Julian Shun, Guy L. Steele
Jr., Jim Sukha, Xiaobai Sun, Michael Bedford Taylor, Charles R.
Tolle.

 http://opencilk.org/beta2/opencilk.spaa.2020.pdf

 Background of OpenCilk

 The OpenCilk Organization

 Overview of OpenCilk 1.0 Beta 2

 Plans and Q&A

 [Break]

 Hand-Holding Hands-On Session

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

Open-source components
 Compiler (based on Tapir/LLVM)

 Runtime system (based on Cheetah)

 Compiler-based tools
• Cilksan race detector

• Cilkscale scalability analyzer

 Regression tests and benchmark suite

 Intel’s Cilk Plus reducer library

Task-parallel features
 Full support for exceptions

 No support for vector extensions (intended)

 No support for pedigrees (coming)

 Ability to spawn statement blocks (new)

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

 Unix/Linux x86-64

 Tested on the following releases
• Ubuntu 18.04

• FreeBSD 12.1

• Fedora 30

• MacOSX 10.15

 May work on other distributions/releases
• Ask us!

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

The OpenCilk compiler is based on the

award-winning Tapir/LLVM compiler [SML17].

 Compile Cilk programs using clang and the

–fopencilk flag.

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

$ clang fib.c –o fib -O3 –fopencilk
$./fib 35

 Tapir/LLVM optimizes Cilk programs more

effectively than GCC and ICC.

 The OpenCilk compiler contains bug fixes and

performance improvements over the original

Tapir/LLVM compiler.

Beta 2 capabilities

 Based on Clang and LLVM 9.

 Supports the Cilk keywords cilk_spawn,
cilk_sync, and cilk_for in C/C++ programs.

 Also supports cilk_spawn of statements other
than function calls:
• E.g., cilk_spawn { x += y; } .

 Works with standard Clang flags, including
optimization and debugging flags.

Status
 Tested on a wide variety of Cilk applications,

including Cilk-5 applications, PBBS, and Ligra.

 For C code, earlier versions of the compiler were
battle-tested by hundreds of students.

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

Beta 2 capabilities
 Provides a simple, easy-to-extend, and high-

performing work-stealing runtime system.

 Based on Cheetah (WUSTL).

 The scheduler supports cilk_spawn, cilk_sync,
cilk_for, exceptions, and reducer hyperobjects.

Status
 Source lines of code < 5,000, including comments

and core header files.
• Compare to Cilk Plus’s 22,000+.

 Performance currently lags slightly behind Cilk Plus
if the application has limited parallelism.

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

Beta 2 capability
• Provides the same linguistic interface and

functionality as Cilk Plus.

Status
• Uses Cilk Plus’s reducer library.

• Runtime contains a more-efficient reducer data
structure, but performance can still be improved.

• Hard limit on the number of active reducers.

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

Beta 2 capabilities
 Open-source replacement for Intel’s closed-source

Cilkscreen race detector.

 Basic determinacy-race detection on memory
accesses.

 Uses compiler instrumentation to implement a
serial “SP-bags” algorithm.

Status
 Tested on ~20 Cilk applications.

 No special support for locks and reducers.

 Earlier versions were battle-tested by hundreds of
students doing Cilk programming.

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

 Find logically parallel
accesses to the same
location (at least 1 write).

 Analysis cost proportional
to serial execution:
• ~7× overhead on this

example.

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

$./nqueens 12
Running Cilksan race detector
Running ./nqueens with n = 12.
Race detected at address 7f7db6c0f2e6
* Read 43ef18 nqueens ./nqueens.c:87:3
| `-to variable a (declared at nqueens.c:50)
+ Call 43f73b nqueens ./nqueens.c:91:29
+ Spawn 43efd7 nqueens ./nqueens.c:91:29
|* Write 43efa9 nqueens ./nqueens.c:89:10
|| `-to variable b (declared at ./nqueens.c:53)
\| Common calling context
 + Call 43f73b nqueens ./nqueens.c:91:29
 + Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
 + Call 43f42b main ./nqueens.c:125:9
 Allocation context
 Stack object b (declared at ./nqueens.c:53)
 Alloc 43eef8 in nqueens ./nqueens.c:86:16
 Call 43f73b nqueens ./nqueens.c:91:29
 Spawn 43efd7 nqueens ./nqueens.c:91:29
[...]
 Call 43f42b main ./nqueens.c:125:9

2.544000
Total number of solutions : 14200

Race detector detected total of 1 races.
Race detector suppressed 3479367 duplicate error
messages

[...]
b = (char*) alloca((j+1) * sizeof(char));
memcpy(b, a, j * sizeof(char));
for (int i = 0; i < n; i++) {
 b[j] = i; /* <-- racy write! */
 if (ok(j+1,b))
 cnt[i] = cilk_spawn nqueens(n,j+1,b);
}
[...]

nqueens.c

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

Beta 2 capabilities
 Open-source replacement for Intel’s closed-source

Cilkview scalability analyzer.

 Analyze whole-program or user-specified region.

 Automated benchmarking, visualizer, CSV output.

Status
 Tested on ~5 Cilk applications.

 Earlier versions were battle-tested by hundreds of
students doing Cilk programming.

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

Example: Parallel Quicksort

 Background of OpenCilk

 The OpenCilk Organization

 Overview of OpenCilk 1.0 Beta 2

 Plans and Q&A

 [Break]

 Hand-Holding Hands-On Session

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

 OpenCilk 1.0 beta 1 — spring 2020

 OpenCilk 1.0 beta 2 — summer 2020

 OpenCilk 1.0 beta 3 — late summer 2020

 OpenCilk 1.0 — late fall 2020

 OpenCilk 2.0 — ?

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

 Performance engineering

 Pedigrees and deterministic pseudorandom-
number generator

 Enhanced componentization, including
pluggable scheduler

 Compiler-based instrumentation framework

 Programmer start-up of runtime system

 Multiple cilks

 Improved reducer syntax

 Enhanced and new productivity tools

 OpenCilk user groups (Eagles and Owls)

 ⟨Your idea here⟩

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

 Background of OpenCilk

 The OpenCilk Organization

 Overview of OpenCilk 1.0 Beta 2

 Plans and Q&A

 [Break]

 Hand-Holding Hands-On Session

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

 Background of OpenCilk

 The OpenCilk Organization

 Overview of OpenCilk 1.0 Beta 2

 Plans and Q&A

 [Break]

 Hand-Holding Hands-On Session

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

Download the latest OpenCilk release:
 https://github.com/OpenCilk/opencilk-
project/releases

Installation
 Linux binaries can be installed using
OpenCilk-9.0.1-Linux.sh.

 Binaries for MacOSX 10.14 or newer can be installed using
OpenCilk-9.0.1-Darwin.sh.

 Instructions to build OpenCilk from source:

• https://github.com/OpenCilk/infrastructure

Download the tutorial code examples
 https://github.com/OpenCilk/tutorial

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

https://github.com/OpenCilk/opencilk-project/releases
https://github.com/OpenCilk/opencilk-project/releases
https://github.com/OpenCilk/opencilk-project/releases
https://github.com/OpenCilk/infrastructure
https://github.com/OpenCilk/tutorial

To compile a program with OpenCilk, pass the
–fopencilk flag to Clang:

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

$ clang fib.c –o fib -O3 –fopencilk
$./fib 35

Add the –fsanitize=cilk compiler flag to enable the
Cilksan determinacy-race detector:

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

$ clang nqueens.c –o nqueens –fopencilk –fsanitize=cilk –Og -g
$./nqueens 12

We recommend the –Og -g

flags for debugging.

$ clang nqueens.c –o nqueens –fopencilk –fsanitize=cilk –Og –g \
> -D_FORTIFY_SOURCE=0

Note: On MacOSX, the compiler compiles nqueens.c

using builtins that Cilksan does not currently
recognize. You can work around this behavior using
the flag –D_FORTIFY_SOURCE=0:

Add the –fcilktool=cilkscale compiler flag to
measure work and span using Cilkscale:

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

$ clang qsort.c –o qsort –fopencilk –fcilktool=cilkscale –O3
$./qsort 10000000

Recompile and rerun using Cilkscale:

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

$ clang qsort.c –o qsort –fopencilk –fcilktool=cilkscale –O3
$./qsort 10000000

#include <cilk/cilkscale.h>

int main(int argc, char **argv) {
 …
 wsp_t start, end;
 start = wsp_getworkspan();
 sample_qsort(a, a + n);
 end = wsp_getworkspan();
 …
 wsp_dump(wsp_sub(end, start), "sample_qsort");
 …
}

Annotate the code using the Cilkscale API:

qsort.c

Download OpenCilk productivity-tools repository:

 https://github.com/OpenCilk/productivity-tools

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

$ git clone https://github.com/OpenCilk/productivity-tools.git

https://github.com/OpenCilk/productivity-tools
https://github.com/OpenCilk/productivity-tools
https://github.com/OpenCilk/productivity-tools

Compile the program twice,

 once with –fcilktool=cilkscale, and

 once with –fcilktool=cilkscale-benchmark:

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

$ clang qsort.c –o qsort –fopencilk –fcilktool=cilkscale –O3
$ clang qsort.c –o qsort-bench –fopencilk –O3 \
> -fcilktool=cilkscale-benchmark

Run the program with the visualizer:

$ cd productivity-tools/Cilkscale_vis
$ python3 cilkscale.py –c ../../qsort –b ../../qsort-bench \
> --args 10000000 -rplot 0,1

Open plot.pdf to view the performance plot.

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

www.opencilk.org
contact@opencilk.org

http://www.opencilk.org/

 National Science Foundation: OpenCilk development is
supported in part by the National Science Foundation under
Grant No. CNS-1925609. Any opinions, findings, and
conclusions or recommendations expressed in this tutorial are
those of the presenters and do not necessarily reflect the views
of the National Science Foundation.

 United States Air Force Research Laboratory: OpenCilk
development is supported in part by the United States Air Force
Research Laboratory and was accomplished under Cooperative
Agreement Number FA8750-19-2-1000. The views and
conclusions contained in this tutorial are those of the presenters
and should not be interpreted as representing the official
policies, either expressed or implied, of the United States Air
Force or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute content for Government
purposes notwithstanding any copyright notation herein.

http://opencilk.org/beta2/opencilk.spaa.2020.pdf

