
Western University
Scholarship@Western

University of Western Ontario - Electronic Thesis and Dissertation Repository

January 2015

Computing Intersection Multiplicity via Triangular
Decomposition
Paul Vrbik
The University of Western Ontario

Supervisor
Dr. Marc Moreno Maza and Dr. \'Eric Schost
The University of Western Ontario

Follow this and additional works at: http://ir.lib.uwo.ca/etd

Part of the Algebraic Geometry Commons, and the Theory and Algorithms Commons

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in University of
Western Ontario - Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information,
please contact kmarsha1@uwo.ca.

Recommended Citation
Vrbik, Paul, "Computing Intersection Multiplicity via Triangular Decomposition" (2014). University of Western Ontario - Electronic
Thesis and Dissertation Repository. Paper 2631.

http://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fetd%2F2631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/176?utm_source=ir.lib.uwo.ca%2Fetd%2F2631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F2631&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.lib.uwo.ca/etd/2631?utm_source=ir.lib.uwo.ca%2Fetd%2F2631&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kmarsha1@uwo.ca

Computing Intersection Multiplicity via Triangular Decomposition

(Thesis format: Monograph)

by

Paul Vrbik

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Paul Vrbik 2015

Abstract

Fulton’s algorithm is used to calculate the intersection multiplicity of two

plane curves about a rational point. This work extends Fulton’s algorithm

first to algebraic points (encoded by regular chains) and then, with some

generic assumptions, to ℓ many hypersurfaces.

Out of necessity, we give a standard-basis free method (i.e. practically

efficient method) for calculating tangent cones at points on curves.

Keywords. Algebraic geometry, Computer Algebra, Intersection Multi-

plicity, Intersection Number, Fulton’s Algorithm, Tangent Cone.

ii

For DLM — hero of listening.

iii

Acknowledgments

I wish to thank. . .

My co-supervisors Dr. Marc Moreno Maza and Dr. Éric Schost who

have spent a sensational amount of time and energy training me. For their

patience, wisdom, and guidance I am deeply grateful.

Marc for choosing a good problem — the fact we were able to develop a

comprehensive solution is a testament to his good judgement and intuition.

Éric for shaping my loose ideas into algorithms and my ‘proofs’ into

proofs — I truly benefited from his extensive experience and keen eye.

My long-time friend Dr. Steffen Marcus. His role as our (very) pure

mathematician consultant was critical for this work.

Dr. Michael Monagan for flying me out to Vancouver each summer and

Roman Pearce for buying me dinner at every conference we have attended

together.

The good people of ORCCA and the department’s support staff: thanks

for putting up with me.

iv

Contents

Abstract ii

Dedication iii

Acknowledgments iv

Table of Contents vii

0 Introduction 1

0.1 First Example . 2

0.2 Contributions . 3

0.3 Review of Literature . 5

0.4 Summary . 6

1 Ideals and Varieties 7

1.1 Polynomials . 7

1.1.1 Monomial Orderings 8

1.1.2 Operations on Polynomials 9

1.1.3 Polynomial Remainder Sequences 11

1.1.4 Solving Polynomials 13

1.2 Ideals and Varieties . 14

1.2.1 Varieties . 14

1.2.2 Ideals . 15

1.2.3 The Ideal Variety Correspondence 16

1.2.4 Prime Ideals and Irreducible Varieties 17

1.3 The Dimension of an Ideal 18

2 Regular Chains 19

v

CONTENTS vi

2.1 Solving . 19

2.2 Triangular Sets . 21

2.2.1 Properties of Triangular Sets 22

2.3 Regular Chains . 23

2.3.1 Shedding Bad Initials 24

2.3.2 Specializing at Regular Chains 26

2.4 Triangularization . 26

2.5 Splitting and the D5 Principle 28

2.5.1 Regularize . 29

3 Intersection Multiplicity 32

3.1 Bivariate Intersection Multiplicity 32

3.2 Fulton’s Properties . 35

3.3 Extending Fulton’s Properties 37

4 Fulton’s Algorithm for Regular Chains 45

4.1 Descriptions . 45

4.2 Valuations . 47

4.3 Maximal Ideals . 49

4.4 Non-Splitting Case . 50

4.5 Splitting Case . 55

5 Tangent Cones 58

5.1 Singularities . 58

5.2 Homogeneous Components 60

5.2.1 Classical Tangent Cone Definition 62

5.2.2 Secants . 64

5.3 Tangent Cone Algorithm 64

5.3.1 Equations of Tangent Cones 71

5.3.2 Examples . 72

6 Extended Fulton’s Algorithm 77

6.1 Transversality . 77

6.2 Cylindrification . 81

6.3 Algorithms . 84

CONTENTS vii

7 Experiments 89

7.1 Examples from literature 92

7.1.1 Characteristic 101 92

7.1.2 Characteristic 962 592 769 95

7.1.3 Characteristic 0 . 99

7.2 Random Case Testing (Bivariate) 103

7.3 Comparison to other systems 106

7.3.1 Magma . 106

Chapter 0

——!——

Introduction

In algebraic geometry, the intersection multiplicity of two planar curves

is an important quantity for it provides valuable information about the

number of times these curves meet. This notion extends to the study

of three surfaces and generalizes to ℓ hypersurfaces in an ℓ-dimensional

space. It is useful to use this number to confirm all solutions are accounted

for when solving a polynomial system, where the geometry may not be

apparent.

As pointed out by Fulton in his “Intersection Theory” [14] the intersec-

tion multiplicities of two plane curves satisfy a series of seven properties

which uniquely define this number at each of the common points of these

curves. Moreover, the proof of this (remarkable) fact is constructive, yield-

ing (what we call) Fulton’s algorithm. This construction, however, is not

given in spaces of dimension greater than two or at points that lie outside

the (usually rational) coefficient field.

There are some barriers towards realizing a practical implementation of

this algorithm. The main one is that computer algebra systems efficiently

manipulate multivariate polynomials only when their coefficients are in the

field of rational numbers or in a prime field. Nonetheless there are efficient

algorithms [8] for decomposing algebraic varieties which rely only on field-

operations and avoid explicit implementation of non-rational numbers.

In this manuscript: we extend Fulton’s algorithm to work at any point,

rational or not; give algorithmic criteria for reducing the case of ℓ vari-

ables to the (known) bivariate case; and (out of necessity) give a standard

1

first example 2

basis free algorithm for calculating tangent cones to make our reduction

condition computational tractable to determine.

§0.1 First Example

Consider the intersection of the parabola y = x2 with a line (y − b) =

m(x − a). The line and parabola meet at two distinct points except at

the point p = (a, b) when m = 2a. Here the line is the tangent at p of

the parabola and the intersection multiplicity of the two curves at p equals

two.

Figure 1: The various intersections of a line and parabola corresponding to
(resp.): two intersections of intersection multiplicity 1, one tangential intersec-
tion of intersection multiplicity 2, and two complex intersections with intersec-
tion multiplicity 1.

Within the pure-mathematical spectrum the intersection multiplicity

provides insight into the local geometry of zero dimensional varieties. In

this setting, the invariant is defined as the number of tangent lines at

each point of intersection. The (practical) difficulty this introduces is the

necessity to determine transversality with tangent cones at points with

non-simple intersection (i.e. where more than one tangent is needed to

locally approximate the zero-dimensional variety under study).

This transversality testing was a significant obstacle as there was (up

to our knowledge) no efficient symbolic algorithms for computing tangent

cones. That is to say, all alternatives required an expensive Gröbner basis

calculation in some way.

contributions 3

§0.2 Contributions

There are three main contributions of this work:

We extend Fulton’s algorithm to work about zero-dimensional regu-

lar chains which enables the calculation of intersection multiplicities at

points in the algebraic closure of the coefficient field. Three procedures

for calculating the intersection multiplicity of two planar curves are given.

The first is designed to work at a point p, the second at an irreducible

zero-dimensional regular chain, and the last at arbitrary zero-dimensional

regular chains.

We also extend Fulton’s seven properties from two variables to ℓ + 1

variables and provide an algorithmic criterion which allows for recursing the

calculation of the intersection multiplicity in ℓ+ 1 variables to ℓ variables.

As a caveat our criterion involves the manipulation of a tangent cone which

is often computationally prohibitive to obtain.

Fortunately, we give a standard-basis free method (i.e. practically ef-

ficient method) for calculating tangent cones at points on curves. This,

in itself, is an important contribution as there was no efficient method for

calculating tangent cones before.

These algorithms have been implemented in the Maple language as a

sub-package of the RegularChains library. The Maple sessions in Table 1

and Table 2 illustrate computations with this package.

Consequently, we obtain a practical algorithm for computing intersec-

tion multiplicities of zero-dimensional varieties. The novelty of our ap-

proach is attributed to an important feature which is conducive to perfor-

mance. Since we only require a triangular decomposition of a variety V

— computed by any available method — we can operate without trying

to ‘preserve’ any multiplicity information. Once V is decomposed, we are

able to work ‘locally’ at each regular chain.

There are special cases where our algorithmic criterion for reducing

computations with ℓ+ 1 variables to ℓ variables does not apply and, thus,

where our algorithm fails. However, these exceptional cases are highly

degenerate and rarely occur naturally.

contributions 4

> with(RegularChains):

> with(RegularChains:-AlgebraicGeometryTools):

> h :=
[
(x2 + y2)

2
+ 3x2y − y3, (x2 + y2)

3 − 4x2y2
]
:

> plots[implicitplot](h, x = −2..2, y = −2..2);

> R := PolynomialRing([x, y], 101):

> TriangularizeWithMultiplicity(h, R):

[[
1,
{
x− 1
y + 14

]
,
[
1,
{
x+ 1
y + 14

]
,
[
1,
{
x− 47
y − 14

]
,
[
1,
{
x+ 47
y − 14

]
,
[
14,

{
x
y

]]

Table 1: Maple worksheet.

review of literature 5

> with(RegularChains):

> with(RegularChains:-AlgebraicGeometryTools):

> h :=
[
x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1

]
:

> R := PolynomialRing([x, y, z], 101):

> TriangularizeWithMultiplicity(h, R):

⎡

⎣
[
1,

{
x− z
y − z
z2 + 2z − 1

]
,

[
2,

{
x
y
z − 1

]
,

[
1,

{
x
y − 1
z

]
,

[
2,

{
x− 1
y
z

]⎤

⎦

Table 2: Maple worksheet.

We note that the question of computing intersection numbers in space

of dimension greater than two is known to be highly challenging, even from

a theoretical point of view, as noted in [34].

§0.3 Review of Literature

The authors of [9] and [21] report algorithms with similar specifications

to ours. The first is only applicable to the case of two input polynomials

whereas [21] is not complete in the sense that it may not compute the

intersection multiplicities of all regular chains in a triangular decomposition

of the input system (even in the bivariate case).

There are also methods that do not use triangularization which work in

the ℓ-variate setting: Mora gave an algorithm for calculating standard bases

using weak normal forms which can be used to calculate the intersection

multiplicity at the origin via its classical definition (i.e. the dimension of

the local quotient ring) [26, 1, 25]. One could use a method from Mourrain

[29, §4.2] which uses repeated linear system solving to calculate a basis of

the local ring. This is sufficient to deduce the intersection multiplicity but

again only for those points at the origin. In all cases, these methods are

limited to those ideals for which a Gröbner basis can be obtained. This is

problematic especially if one introduces an additional variable to shift the

input system to the origin.

summary 6

Finally the computer algebra systems Magma and Singular provide

(resp.) IntersectionNumber [22, Example H84E6] and iMult [31] which

calculate intersection multiplicities using (resp.) [16, Chapter I, Exercise

5.4] and standard basis techniques. However in both cases only the sum of

the intersection multiplicities are counted and in fact some tangent lines

may be counted twice, leading to over-counting.

§0.4 Summary

This manuscript is organized as follows:

1. Chapter 1 is introduces the definitions and notations required to de-

scribe the theory;

2. Chapter 2 is an overview of triangular sets, regular chains, and tri-

angular decomposition;

3. Chapter 3 recounts a general introduction of intersection theory (in

particular the intersection multiplicity) and contains the algorithm

for computing intersection multiplicity at points from an algebraic

closure;

4. Chapter 4 builds the extension to Fulton’s algorithm which works at

irrational points;

5. Chapter 5 describes the tangent cone, its (classical) computation

using standard basis, and our alternate method which uses triangular

decomposition;

6. Chapter 6 contains our criterium for recursing the calculation of an

intersection multiplicity in ℓ + 1 variables to ℓ variables; and finally

7. Chapter 7 reports experimental results.

Chapter 1

——!——

Ideals and Varieties

This chapter introduces the definitions and notations required to describe

the theory in such a way to make implementation clear. The basic concepts

and operations on rings, ideal, and varieties are defined as well as the notion

of the dimension of an ideal and variety.

§1.1 Polynomials

In what follows, for the entirety of this work, R is a ring, F is a field, and

F is the algebraic closure of F .

Polynomials are comprised of finite sums of monomials, which are in

turn finite products of variables. So let N be the natural numbers and

x := {x0, . . . , xℓ} : ℓ ∈ N

be a finite set of variables.

An arbitrary (but finite) product of variables is a monomial .

Definition 1.1 (Monomials). The monomials over variables x:

[x] :=
{
xd0
0 · · ·xdℓ

ℓ : (d0, . . . , dℓ) ∈ Nℓ+1
}
=

{
xd : d ∈ Nℓ+1

}
.

(Note: 1 ∈ [x] and 0 ̸∈ [x].)

The product of a monomialm and c from the ring R (calledm’s coefficient)

is a term.

7

polynomials 8

Definition 1.2 (Terms). The terms with monomials from [x] and coeffi-

cients from the ring R are given by

[x]
R
:= {cm : c ∈ R, m ∈ [x]}.

And finally, a finite sum of terms is a polynomial , the comprehensive set

of which form a ring.

Definition 1.3 (Polynomial Ring). Polynomials with variables x over the

coefficient ring R:

R[x] := {
∑

t∈ t

t : t ⊆ [x]
R
and |t| <∞}.

Equivalent and more common representations of the polynomial ring are:

R[x] = {f0 + · · ·+ fs : f0, . . . , fs ∈ [x]
R
and s <∞}

and R[x] =
∑

cαx
α0

0 · · ·xαℓ

ℓ for cα ∈ R.

§Monomial Orderings

To impose some canonical form on our polynomials we strive to write terms

in descending degree as in

5x3 + 2x2 + 7x+ 3.

The same can be done with arbitrary polynomials from R[x] provided all

but one variable is ‘demoted’ to the coefficient ring. (The subsequent one

variable polynomial is said to be univariate.)

Example 1.1. The polynomial

xyz + y3 + x3 + x2z ∈ R[x, y, z]

re-written as a univariate polynomial in x with descending degree:

x3 + (z)x2 + (yz)x+
(
y3
)
∈ R[y, z][x].

polynomials 9

The brackets on (z), (yz), and (y3) are meant to emphasize these ‘mono-

mials’ are taken from the coefficient ring R[x, y].

Operations on univariate polynomials can be extended to multivariate

polynomials provided the coefficients still form a ring. So, viewing multi-

variate polynomials as univariate (in what we later call the main variable)

is something we do frequently.

Generally, any total ordering ≺ of [x] (that is, an order satisfying

u ≺ v and v ≺ u =⇒ u = v antisymmetry,

u ≺ v and v ≺ w =⇒ u ≺ w transitivity, and

[u ≺ v or v ≺ u] ≡ ⊤ totality

∀ u, v, w ∈ [x]) is a monomial ordering when the ordering respects multi-

plication and has 1 ordered least.

Definition 1.4 (Monomial ordering). Let u, v and w be monomials from

[x] and ≻ : [x] → {⊤,⊥} be an ordering. The predicate ≻ is a monomial

ordering when ≻ is a total ordering and

1. ∀w ∈ [x]; u ≻ v =⇒ uw ≻ vw, and

2. ∀ u ∈ [x]; u ≻ 1.

(As with the degree function we extend monomial orderings to terms by

ignoring their coefficients.)

§Operations on Polynomials

Definition 1.5 (deg). The total degree of

1. a monomial xd0
0 · · ·xdℓ

ℓ ∈ [x] is

deg(xd0
0 · · ·xdℓ

ℓ) := d0 + · · ·+ dℓ;

2. a term cm ∈ [x]
R
such that c ̸= 0 is

deg(cm) := deg(m);

polynomials 10

3. a polynomial c0m0 + · · ·+ csms with mi ̸= mj and ci ̸= 0 is

deg(c0m0 + · · ·+ csms) := max(deg(c0m0), . . . , deg(csms)),

and following convention deg(0) := −∞.

Example 1.2. In R[x, y, z]

deg
(
x3 + y2 + xy2z

)
= max

(
deg

(
x3
)
, deg

(
y2
)
, deg

(
x2yz

))
= 4.

We may also take the degree of a polynomial h ∈ R in x for any x ∈ x.

This is simply the total degree of h when taken as univariate in x. Denote

this value by degx(h).

Example 1.3. h = x3+ y2+xy2z ∈ R[x, y, z] has degx(h) = 3, degy(h) =

2, and degz(h) = 1.

Let us devote some notation for deconstructing and identifying the

pieces of a polynomial.

Definition 1.6. Assume c0, . . . , cs ∈ R − {0}, {m0, . . . , ms} ⊆ [x], m ∈
[x], and f = c0m0 + · · ·+ csms ∈ R[x]. Let

1. terms(f) := {c0m0, . . . , csms} be the terms of f ,

2. monos(f) := {m0, . . . , ms} be the monomials of f , and

3. indets(m) :=
{
x ∈ x : x

∣∣m
}
be the indeterminates of a monomial

m, and

4. indets(f) := ∪(indets(m) : m ∈ monos(f)) be the indeterminates of

the polynomial f .

Example 1.4. Let f = x3+2y2+3xy2z then terms(f) = {x3, 2y2, 3xy2z},
monos(f) = {x3, y2, xy2z}, and indets(f) = {x, y , z}.

The leading term of a polynomial is then the ‘largest’ term with respect

to a monomial ordering; the leading coefficient is the coefficient from the

leading term.

polynomials 11

Definition 1.7 (Leading Term). The leading term and leading monomial

of a polynomial f ∈ R[x] with respect to a monomial ordering ≻ are given

by

ℓt(f) := max
≻

(t : t ∈ terms(f)) and ℓm(f) := max
≻

(m : m ∈ monos(f))

and the leading coefficient is

ℓc(f) :=
ℓt(f)

ℓm(f)
.

Example 1.5. Let f = x3 + 2y2 + 3xy2z be taken univariate in y with

coefficients from R[x, z], that is y ≻ x ≻ z, then

ℓt(f) = 2y2 + 3xy2z, ℓm(f) = y2, and ℓc(f) = 3xz + 2.

§Polynomial Remainder Sequences

We enumerate the basic polynomial remainder sequences.

Proposition 1.1. Let F be a field and g a nonzero polynomial in F [x].

For any f ∈ F [x] there are unique q, r ∈ F [x] such that

f = q · g + r : degx(r) < degx(g).

Proof. See [11, Ch. 1 §5 Proposition 2.] where the division algorithm is

outlined.

Definition 1.8 (Quotient and Remainder). The polynomials q and r from

Proposition 1.1 are called the quotient and remainder and are denoted by

quo(f, g; x) and rem(f, g; x). They satisfy

f = quo(f, g; x) · g + rem(f, g; x) : degx(rem(f, g; x)) < degx(g).

polynomials 12

Notation (French long division). Let f, g, q, r ∈ F [x] then

f g

r q
⇐⇒ f = qm+ r and deg(r) < deg.(m)

We sometimes require that F is the fraction field of a domain R;

for instance, R may be the polynomial ring Q[y], and F is the rational

function field Q(y). In this case, even if f and g are in R[x], the quotient

and remainder may lie in F [x].

For instance, let f = x4 + 1 and g = xy2 + 1 and note

f =
x3y6 − x2y4 + xy2 − 1

y8
· g +

y8 − 1

y8

where thereby

rem(f, g; x) =
y8 − 1

y8
and quo(f, g; x) =

x3y6 − x2y4 + xy2 − 1

y8
.

A premultiplication can be done to preclude this possibility. We call

the quotient and remainder calculated using premultiplications the pseudo-

remainder and pseudo-quotient .

Proposition 1.2. Let f, g ∈ R[x] and let x ∈ x. Assume degx(f) <

degx(g) and g ̸= 0. There are unique q ∈ R[x] and r ∈ ⟨f, g ⟩ such that

m · f = q · h+ r : degx(r) < degx(b)

where m = ℓcx(g)
degx(f)−degx(g)+1

Proof. See [11, Ch. 6 §6 Proposition 1] where the pseudo-division algorithm

is outlined.

Definition 1.9 (Pseudo-quotient and Pseudo-Remainder). Take the set-

tings of Proposition 1.2. The polynomial r is called the pseudo-remainder

in x and is denoted by prem(f, g; x). Thus

m · f = quo(f, g; x) · g + prem(f, g; x) : degx(r) < degx(g),

polynomials 13

where m = ℓcx(g)
degx(f)−degx(g)+1.

Example 1.6 (Pseudo-Remainder). Let f = x4 + 1 an g = xy2 + 1 and

note (
y3
)
· f =

(
xy2 − y

)
· g +

(
y3 − y

)
.

Thus prem(f, g; x) = (y3 − y).

§Solving Polynomials

Polynomials define polynomial mappings from affine spaces into base fields .1

Definition 1.10 (Affine Space). For F a field,

Aℓ+1(F) := F × · · ·×F︸ ︷︷ ︸
ℓ+1-times

is called an affine space.

For these mappings we adopt the familiar function notation. That is,

when f ∈ F [x] and p = (p0, . . . , pℓ) ∈ Aℓ+1(F) we take

f(p) := f(p0, . . . , pℓ)

and let a polynomial map be given by the following.

Definition 1.11 (Polynomial Mapping). For F a field and f ∈ F [x], the

polynomial map given by f is

f : Aℓ+1(F)→ F

p 3→ f(p).

Recall the kernel of a mapping is the subset of its domain which maps

to zero. Solving a polynomial typically means deducing some or perhaps

all of this kernel (also called the nullspace).

1Really base rings, but in our setting this is never required.

ideals and varieties 14

Definition 1.12 (Kernel). Let F be a field and f ∈ F [x]. Let

ker(f) :=
{
p ∈ Aℓ+1(F) : f(p) = 0

}
.

Importantly, the kernel depends on the coefficient field. For instance

f = (x2 − 2)(x2 + 1) ∈ F [x] can have zero, two, or four roots:

R ker(f)

Q ∅

R
{
±
√
2
}

C
{
±
√
2, ±i

}

.

§1.2 Ideals and Varieties

Much in the same way vector spaces are comprised of linear combinations

of vectors, ideals are comprised of polynomial combinations of polynomials.

They were first introduced by Richard Dedekind in 1876 as a generalization

of ideal numbers [33].

Varieties arise as the kernel of these ideals and correspond to sets of

points where the polynomials of the ideal vanish (i.e. become zero) si-

multaneously. It is important that ideals are representable by computers

while simultaneously representing infinitely large kernels. The broader

ideal/variety correspondence allows for the conversion between geometric

and algebraic points of view.

§Varieties

Any subset of affine space which is the solution set of a system of poly-

nomials is called a variety. A variety can be viewed as a function from

P(F [x]) (powerset of A) to Aℓ+1(F) which computes the set of points

where a finite set of polynomials vanish simultaneously:

ker(f0) ∩ · · · ∩ ker(fs).

ideals and varieties 15

This is the natural way of extending the kernel to that of systems of poly-

nomials.

Definition 1.13 (Variety). Let f = {f0, . . . , fs} ⊆ F [x], for F a field,

and

V(f0, . . . , fs) := ker(f0) ∩ · · · ∩ ker(fs).

V ⊆ Aℓ+1(F) is called a variety when ∃ f ⊆ F [x] : V = V(f).

Example 1.7. Let f = {y − x2, y − x} ⊆ F [x, y] (the parabola and line

through the origin).

V
(
y − x2, y − x

)
= ker

(
y − x2

)
∩ ker(y − x)

=
{(

p, p2
)
: p ∈ F

}
∩ {(p, p) : p ∈ F}

= {(0, 0), {1, 1}}.

It is these varieties we wish to encode, and their points/elements we wish

to classify.

§Ideals

Observe ker : F [x]→ Aℓ+1(F) is not injective; there can be many (if not

infinitely many) polynomials with equivalent kernel:

ker(x− 1) = ker(2x− 2) = ker(3x− 3) = · · · = {1}.

Not only this, we also require polynomials whose kernels inlude {1}.

Definition 1.14 (Ideal). Let I ⊆ F [x]. I is an ideal when

1. 0 ∈ I,

2. f, g ∈ I =⇒ f + g ∈ I,

3. f ∈ I and h ∈ F [x] =⇒ hf ∈ I.

ideals and varieties 16

Definition 1.15 (Ideal Brackets). Let V ⊆ Aℓ+1(F) and I(V), the ideal

defined by V , be the set of all polynomials which vanish on V :

I(V) := {f ∈ F [x] : V ⊆ ker(f)}.

We use ideal brackets to represent these infinite sets. That is when f ⊆
F [x]:

⟨ f ⟩ :=
{∑

f∈f

cff : cf ∈ F [x]
}
.

Proposition 1.3. For any f = {f0, . . . , fℓ} ⊆ F [x] we have ⟨ f ⟩ is an

ideal.

Proof. See [11, Ch. 1 §4 Lemma 1.].

For more on Ideals, Varieties, and Algorithms see [11].

§The Ideal Variety Correspondence

The correspondence between varieties and ideals is important as it trans-

lates problems of geometry into problems of algebra. The practical upshot

of this is an encoding of geometric problems with objects that can be ma-

nipulated with computers. Hilbert’s Nullstellensatz (German for “theorem

of zeros” or more literally “zero-locus-theorem”) along with its weak and

strong versions gives the precise relationship between algebra and geome-

try.

Theorem 1.1 (Hilbert’s Nullstellensatz). Let f ⊆ F [x] then

f ∈ I(V(f)) ⇐⇒ ∃m ∈ N>0 : fm ∈ ⟨f ⟩

Proof. [10, Ch. 4 §1 Theorem 1].

When fm ∈ ⟨f ⟩ form ∈ N implies f ∈ ⟨f ⟩ the ideal is said to be radical

and any ideal can be made radical by simply including those required f ’s

in the ideal — the resulting set is still an ideal.

ideals and varieties 17

Definition 1.16 (Radical). Let f ⊆ F [x] and ⟨f ⟩ be an ideal. The radical

of ⟨ f ⟩ is given as follows.

√
⟨f ⟩ :=

{
f : ∃m ∈ N>0; fm ∈ ⟨f ⟩

}

This enables us to write the Strong Nullstellensatz which states the

ideal-variety correspondence is exact for radical ideals.

Theorem 1.2 (Strong Nullstellensatz). Let f ⊆ F [x] then

I(V(⟨f ⟩)) =
√
⟨ f ⟩.

Proof. [10, Ch. 4 §2 Theorem 6].

§Prime Ideals and Irreducible Varieties

Definition 1.17 (Irreducible Variety). A variety V is irreducible if and

only if when V = V0 ∪ V1 then either V = V0 or V = V1.

For instanceV(xz, yz) is not an irreducible variety becauseV(xz, yz) =

V(x) ∪ V(z, y). Whereas the variety V(y − x2, z − x3) is irreducible,

though this takes some work to prove. The key is to move from a geo-

metric point of view to an algebraic one. This transformation leads to the

notion of prime ideals which correspond to irreducible varieties.

Definition 1.18 (Prime Ideal). An ideal ⟨ f ⟩ of F [x] is prime if whenever

gh ∈ ⟨f ⟩ then g ∈ ⟨f ⟩ or h ∈ ⟨f ⟩.

Proposition 1.4. Let V be an affine variety of Aℓ+1
(
F

)
. V is irreducible

if and only if I(V) is prime ideal.

Proof. See [11, Ch. 4 §5 Proposition 3].

When working over an algebraically closed field F then the correspondence

between prime ideals and irreducible varieties is one-to-one.

Finally, maximal ideals are ones whose only proper superset is the entire

polynomial ring it resides in.

the dimension of an ideal 18

Definition 1.19 (Maximal Ideal). Let f ⊆ F [x] with ⟨f ⟩ ̸= F [x]. The

ideal ⟨f ⟩ is maximal when for any g ⊆ F [x] where ⟨f ⟩ ⊆ ⟨g ⟩ either
⟨ f ⟩ = ⟨g ⟩ or ⟨g⟩ = F [x].

Importantly, any ideal of the form ⟨x− p⟩ = ⟨x0 − p0, . . . , xℓ − pℓ ⟩ is
maximal in F [x] (e.g. ⟨x− 2, y − 4⟩ is maximal in F [x]).

§1.3 The Dimension of an Ideal

Hilbert’s insight was characterizing the dimension of an ideal by the number

of monomials not in the ideal (i.e. in the ideals complement) [11, Ch. 9 §3].

This number is given by the so-called Hilbert Polynomial whose degree

is already a definition for the dimension of a variety. Crucially, the mono-

mial ideal ⟨ℓt(h : h ∈ ⟨h⟩)⟩ has the same Hilbert Polynomial as ⟨h⟩ when
the leading terms are taken with a graded monomial ordering (e.g. one

that orders by total degree first and breaks ties somehow).

However, for our purposes it is sufficient to take [11, Ch. 9 §5 Corol-

lary 3.] as definition for dimension.

Definition 1.20. Let V ⊆ Aℓ+1(F) be an affine variety and assume

I(V) ⊆ F [x]. The dimension of V is given by the largest (by cardi-

nality) y ⊆ x satisfying I(V) ∩F [y] = {0}. That is to say, there are no

polynomials in I(V) with variables in y other than the zero polynomial.

The Zariski closure of a subset S ⊆ Aℓ+1(F) is the smallest (by set

inclusion) affine variety V(h) : h ⊆ F [x] which is a superset to it. S

denotes the Zariski closure of S and V(I(S)) = S.

Geometrically, the intersection I(V) ∩F [y] is {0} only when the pro-

jection of V given by x 3→ y being almost surjective. Almost in this setting

means that the image of the projection is Zariski dense, that is the Zariski

closure of the projection fills the affine space which y defines.

Chapter 2

——!——

Regular Chains

The subsequent chapter develops the notion of a triangular set and regular

chain from the basic goal of ‘solving’ a system of polynomials — in fact,

even the idea of solving requires consideration. Among the options for

encoding the solutions are Gröbner basis, triangular sets, and (of course)

regular chains. The utility of using regular chains is that they satisfy

conditions of algorithmic importance. In particular, using regular chains

enables the exploitation of efficient “splitting algorithms” [6].

Triangular sets, but more specifically their specialization into regular

chains, are the principal objects of study of this work. They are critically

important to computer algebra systems for their part in solving systems of

polynomials and cylindrical algebraic decomposition.

See [4, 17, 36] for a general overview of the theory of triangular sets

and regular chains.

§2.1 Solving

‘Solving’ a system of polynomials, say h ⊆ F [x] for F a field, means

different things in different contexts. In each case however the goal is the

same: encode the zeros of the polynomial system somehow.

For proofs, one typically wants either a primary decomposition of ⟨h⟩
or a unique irreducible decomposition of V(h). Though such a decomposi-

tion can be desirable, computing them is akin to multivariate factorization

19

solving 20

which is computationally difficult. Additionally, these decompositions may

not even be helpful for explicitly constructing points in V(h) and are not

unique [15].

Example 2.1. Let h = {x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1} ⊆
F [x]. A primary decomposition of ⟨h⟩ is given by

⟨h′
0 ⟩ =

〈
z − 1, z2 + x+ y − 1, x+ y2 + z − 1, x2 + y + z − 1

〉
,

⟨h′
1 ⟩ =

〈
z2 + 2z − 1, z2 + x+ y − 1, x+ y2 + z − 1, x2 + y + z − 1

〉
,

⟨h′
2 ⟩ =

〈
y, z, z2 + x+ y − 1, x+ y2 + z − 1, x2 + y + z − 1

〉
,

⟨h′
3 ⟩ =

〈
z, y − 1, z2 + x+ y − 11, x+ y2 + z − 1, x2 + y + z − 1

〉
,

where ⟨h⟩ = ⟨h′
0 ⟩ ∩ · · · ∩ ⟨h′

3 ⟩.
Note that the bad shape of these ideals (as produced by Maple) makes

them unsuitable for back substitution.

An alternative is to use Gröbner bases. Buchberger’s algorithm allows

for the computation of g ⊆ F [x] such that ⟨g⟩ = ⟨h⟩ and (crucially)

⟨ℓt(h) : h ∈ ⟨h⟩⟩ = ⟨ℓt(g) : g ∈ g ⟩ for an arbitrary monomial ordering.

Moreover, when reduced, these Gröbner bases are unique representations

of the ideal.

Provided the basis is over a lexical monomial ordering, g satisfies the

elimination condition that ⟨g⟩ ∩ F [xn+1, . . . , xℓ] is a Gröbner basis of

the n-th elimination ideal. This property allows for a Gaussian-like back

substitution.

Example 2.2. Let h = {x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1} ⊆
F [x, y, z]. A Gröbner basis of ⟨h⟩ is

{z2 + x+ y − 1,

y2 − z2 − y + z,

z4 + 2yz2 − z2,

z6 − 4z4 + 4z3 − z2}.

Note the second step of back substitution here requires calculating the

triangular sets 21

roots of y2 − z2 − y + z and z4 + 2yz2 − z2 simultaneously for some z ∈
V(z6 − 4z4 + 4z3 − z2).

A third option and our preference is to use triangular decomposition.

These decompositions are comparable to ‘minimal’ factorizations in the

sense that only as many factors as necessary are calculated.

§2.2 Triangular Sets

Intuitively, triangular sets are comprised of polynomials with mutually dif-

ferent leading terms. The practical consequence of this is back substitution

as it allows us to eliminate variables from the systems one by one. Reg-

ular chains emerge by enforcing increasingly stronger conditions on these

triangular sets.

Definition 2.1 (Main Variable). Let ≻ be an ordering of x. The main

variable of a term t ∈ [x]F , and by extension a polynomial f ∈ F [x], is

given recursively

mvar(t) := max
≻

(v : v ∈ indets(t)),

mvar(f) := max
≻

(mvar(t) : t ∈ terms(f)).

Definition 2.2 (Triangular Set). A set of polynomials with mutually dif-

ferent main variable is a triangular set . Let T(F [x]) denote the class of

triangular sets of F [x], then

f△ ∈ T(F [x])
Defn.
⇐⇒ ∀ g, h ∈ f△ : g ̸= h; mvar(g) ̸= mvar(h),

and in particular when |f△| = |x| we say f△ is a square triangular set .

triangular sets 22

Example 2.3. A square triangular set of F [x ≺ y ≺ z ≺ t].

f△ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(yz − 1)t+ y2 ∈ F [x, y, z, t]

xz2 − 2yz + 1 ∈ F [x, y, z]

(x− 1)y2 − x ∈ F [x, y]

(x− 1)(x+ 1) ∈ F [x].

The shape of the polynomial rings as written form a triangle—the motiva-

tion for the name “triangular sets.”

Triangular sets and regular chains are recursive so notation for breaking

triangular sets into the ‘top’ and ‘bottom’ is prudent.

Notation. When f△ ∈ T(F [x]) let

f⊤△ := max
mvar

(f : f ∈ f△), f ↑
△ := f△ − {f⊥△},

f ↓
△ := f△ − {f⊤△}, f⊥△ := min

mvar
(f : f ∈ f△).

Note {f⊤△} ∪ f ↓
△ = f ↑

△ ∪ {f⊥△} = f△.

§Properties of Triangular Sets

The history of triangular sets dates back to at least 1932 when Joseph Fels

Ritt demonstrated one can compute a triangular set equivalent to a given

irreducible variety [7].

Let us first define the Iterated Pseudo-remainder .

Definition 2.3 (Iterated Pseudo-remainder). Let h ∈ F [x] and f△ ∈
T(F [x]) be a triangular set. The iterated pseudo-remainder is given (re-

cursively) by

prem∗(h, ∅; ∅) := h,

prem∗(h, f△; x) := prem∗(prem(h, f⊤△; xℓ), f
↓
△; x

↓).

Similarly we have the iterated pseudo-quotient .

regular chains 23

Theorem 2.1 (Ritt, 1932). For any h ⊆ F [x] such that V(h) is an irre-

ducible variety one can construct a triangular set f△ ∈ T(F [x]) satisfying

∀h ∈ ⟨h⟩; prem∗(h, f△; x) = 0.

A set given by Theorem 2.1 is called a Ritt characteristic set and the

utility of this construction is that it enables an ideal membership test on

h.

Because irreducible components are often difficult to calculate, Wen-

Tsun Wu in 1987 devised a method for computing triangular sets for ar-

bitrary varieties [37]. Such sets are called Wu characteristic sets and can

be calculated using fully Gröbner basis free methods [3].

Theorem 2.2 (Wu, 1987). For any h ⊆ F [x] one can compute a triangular

set f△ ⊆ ⟨h⟩ such that

∀h ∈ h; prem∗(h, f△; x) = 0.

Although certainly more widely applicable, Wu’s method cannot detect

empty varieties. Empty varieties are those corresponding to polynomial

systems with no solutions. The stronger restrictions imposed on triangular

sets make them regular chains.

§2.3 Regular Chains

Being a triangular set, despite having the right shape, provides no as-

surance to back substitution being “well behaved.” In Example 2.3 for

instance, substituting x = 1 into (x− 1)y2 − x = 0 implies x = 0 = 1

and contradiction. The extra restrictions on triangular sets, like ensuring

leading coefficients are invertible, yield regular chains and eliminate this

and other problems.

regular chains 24

§Shedding Bad Initials

When a leading coefficient vanishes so doe, more disastrously, the leading

term. Geometrically, shedding these bad substitution points simply means

removing points from the variety where leading coefficients (or initials)

vanish.

Definition 2.4 (Initial). The initial of f ∈ F [x] is the leading coefficient

of f when taken as univariate in its main variable.

init(f) := lcoeffmvar(f)(f).

The quasi-component of a regular chain f△ corresponds to the removal

of points where an initial of some f ∈ f△ vanishes.

Definition 2.5 (Quasi Component). Let f△ ∈ T(F [x]), then

W(f△) := V(f△)−V
(∏

init(f) : f ∈ f△
)

is called the quasi component of f△.

Algebraically removing bad initials from an ideal is less obvious. Here

we must remove initials which are zero divisors modulo a ‘chain’ of regular

chains. The saturation ideal , as it turns out, does this. Saturating an ideal

has the desired effect of algebraically shedding bad initials.

Definition 2.6 (Colon Ideal). Let f , g ⊆ F [x].

⟨ f ⟩ : ⟨g ⟩ := {h : ∀ g ∈ g; hg ∈ ⟨ f ⟩}.

Definition 2.7 (Saturation Ideal). Let f△ ∈ T(F [x]) and the product of

the initials be

init(f△) :=
∏

(init(f) : f ∈ f△).

The saturation of f△ is the ideal

⟨sat(f△)⟩ := ⟨ f△ ⟩ : ⟨ init(f△)0 ⟩+ ⟨ f△ ⟩ : ⟨ init(f△)1 ⟩+ · · ·

= ⟨f△ ⟩ : init(f△)∞.

regular chains 25

In other words, f ∈ ⟨sat(f△)⟩
Defn.
⇐⇒ ∃n ∈ N>0 : init(f△)

nf ∈ ⟨ f△ ⟩.

Notice saturating an ideal may make it larger.

Example 2.4. Let f△ =

⎧
⎨

⎩
zx+ t

ty + z
∈ T(F [x, y, z, t])

⟨f△ ⟩ = ⟨z, t⟩ ∩ ⟨−xy + 1, ty + z ⟩, and

⟨sat(f△)⟩ = ⟨1− xy, ty + z ⟩.

It is well known that the quasi-component and saturation ideal are

related in the following manner [10].

Theorem 2.3. Let f△ ∈ T(F [x]) and W(f△) be the Zariski closure of

quasi-component of f△. Then

W(f△) = V(⟨sat(f△)⟩).

And finally, a regular chain is a triangular set whose top is regular (i.e.

not a zero-divisor) modulo its bottom.

Definition 2.8 (Regular Element). Let f ∈ F [x], f ⊆ F [x], and U⟨f ⟩
denote the set of regular elements among F [x]/⟨f ⟩. Then

f ∈ U⟨f ⟩
Defn.
⇐⇒ ∀ g ∈ F [x]; fg ≡ 0 mod ⟨f ⟩ =⇒ g ≡ 0 mod ⟨f ⟩.

Moreover, let f ̸∈ U⟨f ⟩ be called a zero-divisor .

Definition 2.9 (Regular Chain). Denote by Treg(F [x]) the class of regular

chains of F [x] and let Treg(F [x]) ⊆ T(F [x]). Then

f△ ∈ Treg(F [x])
Defn.
⇐⇒

⎧
⎨

⎩
f△ = ∅, or

f ↓
△ ∈ Treg(F [x]) and init(f⊤△) ∈ U⟨f ↓

△ ⟩.

Among the things that make regular chains interesting is that the di-

mension of the Zariski closure of quasi-component is the expected number

of variables minus the number of equations.

triangularization 26

Proposition 2.1. When f△ ∈ Treg(F [x]) the dimension ofW(f△) is given

by

dimW(f△) = ℓ+ 1− |f△|.

Proof. See [35].

§Specializing at Regular Chains

When working over the complex numbers for instance specialization at

maximal ideals corresponds to evaluation,

x2 + y mod ⟨x− 1, y − 2⟩ = x2 + y
∣∣
x=1, y=2

= 3

whereas more arbitrary ideals specialize at algebraic points

x2 − 4 mod
〈
x2 − 2

〉
= x2 − 4

∣∣
x=±

√
2
= −2

and so naturally at complex points as well

x4 mod
〈
x2 + 1

〉
= x4

∣∣
x=±

√
−1

= 1.

In any case, “modding out” a polynomial g by some ideal ⟨ f ⟩ has the

effect of simultaneously evaluating g at each point of V(f). Thus, modular

images can be (and are) used instead of explicit function evaluation.

§2.4 Triangularization

In general there are two ways to decompose ⟨h⟩ into regular chains. One

can either describe the generic points of the ideal (a Kalkbrenner decom-

position) or all the zeros of the corresponding variety (a Lazard decomposi-

tion). There are various algorithms available for triangular decompositions

in either sense.

All the proofs for this section can be found within [35] and the references

therein.

triangularization 27

Theorem 2.4 (Kalkbrenner Decomposition). For any h ⊆ F [x] there are

regular chains {f△, 0, . . . , f△, e} ⊆ Treg(F [x]) such that

√
⟨h⟩ =

√
⟨sat(f△, 0)⟩ ∩ · · · ∩

√
⟨sat(f△, r)⟩

where e ∈ N and, using the Ideal-Variety correspondence and Theorem 2.3,

we also have

V(h) = W(f△, 0) ∪ · · · ∪W(f△, e).

Additionally, there is an algorithm for computing a Kalkbrenner de-

composition. We take this algorithm as black-box and simply let △(h) be

the computed triangularization.

Definition 2.10 (Triangularize). For any ideal h an ideal of F [x] let the

triangularization of h be a mapping from the ideals of F [x] into sets of

regular chains from F [x] given by

△ : P(F [x])→P(Treg(F [x]))

⟨h⟩ 3→ {f△, 0, . . . , f△, e} : V(h) = W(f△, 0) ∪ · · · ∪W(f△, e).

where r ∈ N.

Moreover, Moreno Maza and Wang (simultaneously) in 2000 [32][28]

gave the following guarantee regarding the decomposition of varieties into

a disjoint union of quasi-components independent of the Zariski closure.

Theorem 2.5 (Lazard Decomposition). For any h ⊆ F [x] there are reg-

ular chains {f△, 0, . . . , f△, r} ⊆ Treg(F [x]) such that

V(h) = W(f△, 0) 8 · · · 8W(f△, e)

where 8 is the disjoint union and r ∈ N.

Proof. See [19].

splitting and the d5 principle 28

Because Kalkbrenner decompositions are typically faster than Lazard

decompositions, in practice the former is the default setting when using

the Triangularize command in Maple. In particular, this is the case

for our algorithms.[23]

Example 2.5. Let h = {x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1} ⊆
F [x]. A Kalkbrenner decomposition of ⟨h⟩ is given by

△(h) =
{

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x− z

y − z

z2 + 2z − 1

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x

y

z − 1

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x

y − 1

z

,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x− 1

y

z

}

§2.5 Splitting and the D5 Principle

The intuition behind triangular decomposition algorithms is to “follow

the one variable polynomial division algorithm as closely as possible”[11,

Ch. 6 §5]. The difference being a ‘splitting’ step that handles degenerate-

cases where the leading coefficients of the divisors are zero divisors.

In the univariate, unlike the multivariate, case the polynomial division

algorithm produces unique remainders. Accordingly, when m ∈ F [x],

F [x]/⟨m⟩ can be identified with {rem(f, m; x) : f ∈ F [x]}.

Consider x+3 ∈ F [x]. This element is a zero divisor modulo ⟨m⟩ with
m = x2 + 5x+ 6 because there is x+ 2 ∈ F [x] such that (x+ 2)(x+ 3) ≡
0 mod ⟨m⟩. Now, if we wanted to do a ‘univariate’ division in R[y] with

R = F [x]/⟨m⟩, say

y2 + (x+ 1)y + 2 (x+ 3)2y + y + x
,

we are unable to because x+3 cannot be inverted modulo ⟨(x+ 3)(x+ 2)⟩.

Instead of giving up though, the computation can be split into two

splitting and the d5 principle 29

separate divisions. The first modulo ⟨x+ 3⟩:

y2 + (x+ 1)y + 2 y + x

y − 3 y2 − 2y + 2

and the second modulo ⟨x+ 2⟩:

y2 + (x+ 1)y + 2 y + y + x

1
2y 2

This is possible because

R = F [x]/⟨(x+ 3)(x+ 2)⟩ ∼= F [x]/⟨x+ 2⟩ ⊗F [x]/⟨x+ 3⟩

where ⊗ is the direct product and R is a product of fields.

§Regularize

Loosely speaking, any algorithm that works over a field can be made to

work over a product of fields. However, in the very least the product of

fields should be defined by zero-dimensional regular chains. This is the

essence of the D5 principle.

Let m ∈ F [x] ̸=F . Any element α ∈ F [x]/⟨m⟩ has a canonical repre-

sentation in F [x]/⟨m⟩. Moreover, when α has a trivial gcd with m we can

retrieve with the extended Euclidean algorithm u, v ∈ F [x] such that

u · α + v ·m = gcd(α, m) = 1 =⇒ u · α ≡ 1 mod ⟨m⟩.

Elements with inverses (naturally) are called invertible but more gen-

erally in our setting they are regular elements. Conversely, if the gcd is

not a unit then m = gcd(α, m) · m′ and thus α is a zero divisor. Indeed

m = gcd(α, m) ·m′, α = gcd(α, m) · α′, and multiplying the first by α′ we

deduce α · m′ ≡ 0 mod ⟨m⟩. Because m′ is not zero modulo m (using a

degree argument) we conclude α is a zero divisor.

The intuition behind ‘Regularization’ is to decompose m into as few

splitting and the d5 principle 30

1 Function Regularize(m; h)

Input: A squarefree m ∈ F [x] and h ∈ F [x].

Output: m ⊆ F [x] such that

1. m =
∏
(m′ : m′ ∈m), and

2. ∀m′ ∈m; h ∈ U⟨m′ ⟩ xor h ≡ 0 mod ⟨m′ ⟩.

2 if gcd(m, h) ∈ F then

3 return {m};

4 Otherwise m = gcd(m, h) ·m′;

5 m′ ← quo(m, gcd(m, h); x);

6 return {gcd(m, h)} ∪ Regularize(m′; h)

Algorithm 1: Regularize for univariate polynomials.

factors as possible so that either α is regular or zero (but not any other zero

divisor) modulo the factors. The Regularize function propagates through

our algorithms mostly by virtue of zero testing. That is, we must assume

all zero-testing modulo a regular chain will require splitting to distinguish

regular elements from those simply multiplied by zero.

The general version of Regularize is similar to this except that the gcd

works over triangular sets rather than a field. It itself uses Regularize,

though in one variable less, and because of this recurses to the (known)

univariate case. We take the greatest common divisor and subsequently

the multivariate Regularize algorithm for regular chains as black-box and

instead refer the reader to [6, §3.2].

Example 2.6. Let f△ = {y2 − y, z(z − 1)} ∈ F [x, y, z] and consider the

regularization of h = xz + y. Note

Regularize(f△; h) =
{
⎧
⎨

⎩
y − 2

z
,

⎧
⎨

⎩
y

z − 1
,

⎧
⎨

⎩
y − 2

z − 1
,

⎧
⎨

⎩
y

z

}
.

and that h ≡ 2 mod ⟨y − 2, z ⟩, h ≡ xmod ⟨y, z − 1⟩, and h ≡ x+ 2 mod

splitting and the d5 principle 31

1 Function Regularize(f△; h)

Input: f△ ∈ Treg(F [x]) a zero-dimensional regular chain such that sat(f△) is

radical and h ⊆ F [x] a set of polynomials.

Output: A Kalkbrenner decomposition of f△ given by

f△, 0, . . . , f△, e ∈ Treg(F [x])

such that for any h ∈ h and any regular chain f△, 0,. . . , f△, e, h is either zero or

regular modulo f△, i. That is to say

hmod ⟨f△, 0 ⟩ ∈ U⟨f△, 0 ⟩ ∪ {0},
...

hmod ⟨ f△, e ⟩ ∈ U⟨f△, e ⟩ ∪ {0}.

Specification 1: Regularize for multivariate polynomials.

⟨y − 2, z − 1⟩ are all units. Conversely h ≡ 0 mod ⟨y, z ⟩.

Chapter 3

——!——

Intersection Multiplicity

The intersection multiplicity is an invariant of algebraic geometry which

weighs points of algebraic varieties according to their importance (mea-

sured by the dimension of their corresponding tangent spaces). Consider

a system of polynomials h with variety V(h). The definition of im(p; h),

the intersection multiplicity of p on V(h), is tailored to satisfy

∑

p∈V(h)

im(p; h) =
∏

h∈h

deg(h).

This implies (in projective spaces with mild assumptions) that the cardi-

nality of a finite algebraic variety V(h) is equal to the product of the total

degrees among h.

In this chapter we investigate the formal definition of the intersection

multiplicity and Fulton’s properties which enable an algorithm to calculate

these values for planar curves. Finally we demonstrate how to extend

Fulton’s properties to ℓ-variate systems.

§3.1 Bivariate Intersection Multiplicity

To give a concrete example consider the intersection of a parabola (degree

2) and line (degree 1) in A2(R):

V
(
y − x2, y − ax− b

)
: a, b ∈ R.

32

bivariate intersection multiplicity 33

Here we want the weighted sum over the points of intersection to be two.

There are three possible cases:

1. two points of intersection with IM one,

2. a single tangential intersection with IM two, or

3. two complex intersections with IM one.

In each case ∑

p∈V(y−x2,y−ax−b)

im
(
p; y − x2, y − ax− b

)
= 2

is satisfied. These cases are illustrated in Figure 3.1.

Regular points have intersection multiplicity one — in fact they can be

defined by this property. Points at tangential intersections, crossovers, and

singular points have IM greater than one. Everything else has IM zero.

(a) Both intersection
points have IM 1.

(b) A tangent with IM
2.

(c) Two complex solu-
tions with IM 1.

Figure 3.1: The various intersections of a line and parabola.

There are a myriad of ways to define the intersection multiplicity of

two planar curves h0, h1 ∈ F [x, y]. Its ‘purest’ form is Bézout’s defini-

tion which simply states a point’s intersection multiplicity is equal to the

dimension of the local ring OA2(F), p at ⟨h0, h1 ⟩.

Definition 3.1 (Bézout’s IM for bivariates). Let h ⊆ F [x, y] and p ∈
V(h). The intersection multiplicity of p in V(h) is

im(p; h) := dim
vec

(OA2, p/⟨h⟩),

bivariate intersection multiplicity 34

where OA2, p :=

{
f

g
: f, g ∈ F [x, y], g(p) ̸= 0

}
.

As the intersection multiplicity is a local property it can safely be cal-

culated using Taylor series instead of rational functions.

In order to different between ideal brackets and vector brackets we use ⟨ ⟩
for the former and ⟨⟨ ⟩⟩ for the later. That is to say, when {f0, . . . , fe} ⊆
F [x] then

⟨⟨ f0, . . . , fe ⟩⟩ = {c0f0 + · · ·+ cefe : c0, . . . , ce ∈ F}.

Example 3.1. Consider the parabola and line given by h = {y − x2,

y − x} ⊆ F [x, y] is x(x+ 1), y − x. Near 0, a point in h’s variety, we

have

F [[x, y]]/⟨h⟩ = F [[x, y]]/⟨x(x+ 1), y − x⟩

(note (x+ 1) is a unit near 0.)

= F [[x, y]]/⟨x, y − x⟩

= F [[x, y]]/⟨x, y ⟩

= ⟨⟨ 1 ⟩⟩.

This means dimvec(OA2, p/⟨h⟩) = im(0; h) = 1.

Example 3.2 (Figure 3.1b). Consider the parabola and tangent line given

by h = {y − x2, y} ⊆ F [x, y] is x2, y. Near 0 we have

F [[x, y]]/⟨h⟩ = F [[x, y]]/
〈
y, x2

〉

= {a+ bx : a, b ∈ F}

= ⟨⟨ 1, x ⟩⟩.

Thus im(0; h) = 2.

fulton’s properties 35

§3.2 Fulton’s Properties

Fulton’s constructive characterization of the intersection multiplicity is an

an algorithm for planar curves. Indeed this algorithm, and its proofs, form

the basis of our generalization.

The multiplicity of h ∈ F [x, y] at p (denoted mp(h)) is the tailing

degree of h when viewed as a polynomial from F [x− p].

Theorem 3.1 (Fulton’s Properties). Let two plane curves be given by

h0, h1 ∈ F [x, y] and let p ∈ A2(F [x, y]). The intersection multiplicity of

h0, h1 at p satisfies and is uniquely determined by the following properties:

(2-1) im(p; h0, h1) =

⎧
⎨

⎩
∞ if p ∈ V(gcd(h0, h1))

n ∈ N otherwise.
,

(2-2) im(p; h0, h1) = 0 ⇐⇒ p /∈ V(h0) ∩V(h1),

(2-3) im(p; h0, h1) is invariant to affine change of coordinates on A2(F),

(2-4) im(p; h0, h1) = im(p; h1, h0),

(2-5) im(p; h0, h1) ≥ mp(h0) ·mp(h1) with equality occurring if and only if

πp(h0) ! πp(h1). That is, if V(h0) and V(h1) have no tangent lines

in common at p,

(2-6) ∀ g ∈ F [x]; im(p; h0, h1) = im(p; h0, h1g)− im(p; h0, g), and

(2-7) ∀ g ∈ F [x]; im(p; h0, h1) = im(p; h0, h1 + h0g).

Notice Theorem 3.1 classifies every point of Aℓ+1
(
F

)
.

Proof. See [14] for the full constructive proof yielding Algorithm 2. We

note items (2-6) and (2-7) from Theorem 3.1 are the crucial properties

for Algorithm 2 since they enable a recursive “division step” for lines 8–9

where the operands descend in degree until termination. Additionally, line

3 is justified by (2-2), line 5 by (2-4), and lines 11–12 by (2-7).

fulton’s properties 36

1 Function im(p; h0, h1)

Input:

1. p = (px, py) ∈ A2(F), and

2. h0, h1 ∈ F [y ≺ x] : gcd(h0, h1) ∈ F .

Output: im(p; h0, h1) ∈ N satisfying (2-1)–(2-7).

2 if h0(p), h1(p) ̸= 0 then

3 return 0;

4 r, s← deg(h0(x, py)), deg(h1(x, py));

5 if r > s then

6 return im(p; h1, h0);

7 if r = −∞ then /* (y − py)
∣∣h0(x, y) */

8 write h1(x, py) = (x− px)
m(am + am(x− px) + · · ·);

9 return m+ im(p; quo(h0, y − py; y), h1);

10 if r ≤ s then

11 h′
1 ← h1 − xs−r ℓc(h1(x, py))

ℓc(h0(x, py))
h0;

12 return im(p; h′
1, h0);

Algorithm 2: Fulton’s Algorithm

extending fulton’s properties 37

Example 3.3. Find the intersection multiplicity of h = {y, y − x2} at

the origin using Fulton’s algorithm. See Figure 3.1b for a geometric repre-

sentation. Boxed values indicate the recursive calls and the remaining the

algorithm’s trace.

line

im
(
0; y, y − x2

)

(r, s)← deg
(
0, 0− x2

)
4

= (−∞, 2)

h1(x, 0) = x2(−1) =⇒ m = 2 8

2 + im
(
0; quo(y, y; y), y − x2

)

im
(
0; 1, y − x2

)
= 0 2

2.

Fulton’s algorithm has not yet been generalized to more than two hy-

persurfaces.1 Moreover, Algorithm 2 is limited to computing intersection

multiplicities at rational coordinates from the base field. Thus, intersec-

tion multiplicities at complex points, irrational points, and more generally

algebraic points cannot be calculated using this algorithm.

§3.3 Extending Fulton’s Properties

Extending the geometric definition of intersection multiplicity to more vari-

ables is straightforward. We are still measuring the dimension of tangent

spaces (albeit higher dimensional ones) about points in an affine space.

Definition 3.2 (Bézout’s Intersection Multiplicity). Let h ⊆ F [x] and

p ∈ V(h) ⊆ Aℓ+1
(
F

)
. The intersection multiplicity of p in V(h) is

im(p; h) := dim
vec

(OAℓ+1, p /⟨h⟩).

1To our knowledge.

extending fulton’s properties 38

OAℓ+1, p :=

{
f

g
: f, g ∈ F [x], g(p) ̸= 0

}
.

Note that by [11, Chapter 4. §2 Proposition 11] we can substitute the

power series ring F [[x− p]] for OAℓ+1, p/⟨h⟩ below as they are isomorphic.

Example 3.4. Locally at the origin the system

h =
{
x, x− y2 − z2, y − z3

}
⊆ F [x, y, z]

is x, y = z3, z2(z4 + 1). Near 0 we have

F [[x]]/⟨h⟩ = F [[x]]/
〈
x, y − z3, z2

〉

= F [[x]]/
〈
x, y, z2

〉

= {a+ bz : a, b ∈ F}

= ⟨⟨ 1, z ⟩⟩,

where ⟨⟨ 1, z ⟩⟩ is a F -vector space. Thus im(0; h) = 2.

We propose, up to splitting, the following extension of Fulton’s prop-

erties to correspond with Definition 3.2 for Regular Chains [24].

Theorem 3.2. Let h ∈ S(F [x]) be a sequence in F [x] so that ⟨h⟩ is zero
dimensional, p := (p0, . . . , pℓ) ∈ Aℓ+1

(
F

)
, and let h ↓ denote the removal

of the element hℓ ∈ h (i.e., h = {hℓ} ∪ h ↓) then

im(p; h) satisfies (n-1) through (n-7)

where

(n-1) im(p; h) ∈ N,

(n-2) im(p; h) = 0 ⇐⇒ p ̸∈ V(h),

(n-3) im(p; h) is invariant to affine change of coordinates on Aℓ+1(F),

(n-4) im(p; h) = im(p; σ(h)) for any permutation σ(h) of the elements of

h,

(n-5) im(p; (x0 − p0)
m0 , . . . , (xℓ − pℓ)

mℓ) = m0 · · ·mℓ,

extending fulton’s properties 39

(n-6) provided h ↓, gh is a regular sequence (and thus dim ⟨h ↓, gh⟩ = 0)

im(p; h ↓, gh) = im(p; h ↓, g) + im(p; h ↓, h),

(n-7) ∀ g ∈ ⟨h ↓ ⟩; im(p; h ↓, h) = im(p; h ↓, h+ g).

For these seven properties, we adapt the proofs of [14, 18] and note all

but (n-6) are trivial and (n-4) and (n-7) in particular are obvious because

the intersection multiplicity depends only on p and ⟨h⟩.

Proof of (n-1). The sequence h is regular, so V(h) is proper intersection

of varieties and ⟨h⟩ forms a zero dimensional ideal. The result follows.

Proof of (n-2). When p ̸∈ V(h).

p ̸∈ V(h) =⇒ ∃ f ∈ h : p ̸∈ V(f)

=⇒ f ̸∈ ⟨x− p⟩

=⇒
1

f
∈ OAℓ+1, p

=⇒ OAℓ+1, p /⟨h⟩ = 0

=⇒ dim
vec

(OAℓ+1, p /⟨h⟩) = dim
vec

(0) = 0.

Conversely when p ∈ V(h).

p ∈ V(h) =⇒ ∀ f ∈ h; f(p) = 0

=⇒ ⟨h⟩ ⊆ ⟨x− p⟩

=⇒ OAℓ+1, p /⟨x− p⟩ ⊆ OAℓ+1, p /⟨h⟩

=⇒ dim
vec

(OAℓ+1, p /⟨x− p⟩) ≤ dim
vec

(OAℓ+1, p /⟨h⟩).

As OAℓ+1, p /⟨x− p⟩ is a field

dim
vec

(OAℓ+1, p /⟨x− p⟩) = 1

so it follows that

∀ p ∈ V(h); dim
vec

(OAℓ+1, p /⟨x− p⟩) ̸= 0.

extending fulton’s properties 40

Thus im(p; h) = 0 ⇐⇒ p ̸∈ V(h).

Proof of (n-3). Recall an affine change of coordinates induces an isomor-

phism on local rings:

γ : Aℓ+1(F)→ Aℓ+1(F).

We have OAℓ+1, p
∼= OAℓ+1, γ(p) and thus

dim
vec

(OAℓ+1, p /⟨h⟩) = dim
vec

(OAℓ+1, γ(p) /⟨h⟩),

from which the result follows immediately.

Proof of (n-4). As ⟨h⟩ = ⟨σ(h)⟩ by the definition of ideal.

im(p; h) = dim
vec

(OAℓ+1, p /⟨h⟩)

= dim
vec

(OAℓ+1, p /⟨σ(h)⟩)

= im(p; σ(h)).

Proof of (n-5). Let h = (x0 − p0)
m0 , . . . , (xℓ − pℓ)

mℓ and notice V(h) =

{p}. As ⟨h⟩ is a Gröbner bases (for any monomial order) the monomials

{xe0
0 · · ·xeℓ

ℓ : 0 ≤ ei < mℓ}

form a vector space basis of OAℓ+1, p /⟨h⟩. Thus im(p; h) = m0 · · ·mℓ by

definition.

Alternate proof of (n-5). Let h = (x0 − p0)
m0 , . . . , (xℓ − pℓ)

mℓ , assume

(n-6) is valid, and notice

∀m0, . . . , mℓ ∈ N; dim
vec

(⟨(x0 − p0)
m0 , . . . , (xℓ − pℓ)

mℓ ⟩) = 0.

We can thus invoke (n-6) m0 · · ·mℓ times to deduce

im(p; (x0 − p0)
m0 , . . . , (xℓ − pℓ)

mℓ)

extending fulton’s properties 41

= im(p; h ↓, (xℓ − pℓ)
mℓ)

= im(p; h ↓, (xℓ − pℓ)
mℓ−1) + im(p; h ↓, (xℓ − pℓ))

...

= (mℓ) · im(p; h ↓, (xℓ − pℓ))

...

= (m0 · · ·mℓ) · im(p; (x0 − p0), . . . , (xℓ − pℓ))

where

dim
vec

(OAℓ+1, p /⟨(x0 − p0), . . . , (xℓ − pℓ)⟩) = dim
vec

(F) = 1.

It follows that

im(p; (x0 − p0)
m0 , . . . , (xℓ − pℓ)

mℓ) = m0 · · ·mℓ.

Proof of (n-6). Assume dimvec(p; h
↓, gh) = 0, let g, h ∈ F [x] be arbi-

trary, and set for notational convenience:

Ogh := OAℓ+1, p /⟨h ↓, gh⟩,

Oh := OAℓ+1, p /⟨h ↓, h⟩,

Og := OAℓ+1, p /⟨h ↓, g ⟩.

By Definition 3.2

im(p; h ↓, gh) = im(p; h ↓, g) + im(p; h ↓, h)

⇐⇒ dim
vec

(Ogh) = dim
vec

(Og) + dim
vec

(Oh),

so it suffices to show

dim
vec

(Og)− dim
vec

(Ogh) + dim
vec

(Oh) = 0, (3.1)

extending fulton’s properties 42

which holds when there is injective ψ and surjective ϕ so that

0 −→ Oh

ψ
−→ Ogh

ϕ
−→ Og −→ 0

is a short exact sequence.

The meaning behind the (standard) notation of a = f + ⟨h⟩ is used to

compactly express

a = f + h : h ∈ ⟨h⟩.

That is, in prose, that a is f plus any element from ⟨h⟩.

Lemma 3.1. There is an injective map ψ : Oh → Ogh and surjective map

ϕ : Ogh → Og such that img(ψ) = ker(ϕ). That is, the image of ψ is the

kernel of ϕ.

Proof of Lemma. Let

ψ : Oh → Ogh, ϕ : Ogh → Og,

f 3→ fg mod ⟨h ↓, gh⟩, f 3→ f mod ⟨h ↓, g ⟩.

Since ϕ is onto by construction we need only show that img(ψ) = ker(ϕ)

and ψ is injective.

As ϕ ◦ ψ = 0 we have img(ψ) ⊆ ker(ϕ) immediately. For the reverse

inclusion take an arbitrary element u+ ⟨h ↓, gh⟩ ∈ ker(ϕ). It follows

ϕ(u+ ⟨h ↓, gh⟩) = u+ ⟨h ↓, g ⟩ = ⟨h ↓, g ⟩,

which implies u ∈ ⟨h ↓, g ⟩. Thus there is {ah : h ∈ h ↓} ⊆ OAℓ+1, p and

b ∈ OAℓ+1, p such that

u = bg +
(∑

h∈h ↓

ahh
)
.

Considering

ψ(b) = bg + ⟨h ↓, gh⟩

extending fulton’s properties 43

= bg +
(∑

h∈h ↓

ahh
)
+ ⟨h ↓, gh⟩

= u+ ⟨h ↓, gh⟩

we see ψ(b+ ⟨h ↓, h⟩) = u+ ⟨h ↓, hℓ ⟩ and thereby ker(ϕ) ⊆ img(ψ).

Thus ker(ψ) = img(ϕ).

To show ψ is injective, let u+ ⟨h ↓, h⟩ ∈ ker(ψ) be arbitrary. Since

ψ(u+ ⟨h ↓, h⟩) = ug + ⟨h ↓, gh⟩ = ⟨h ↓, gh⟩,

it follows that gu ∈ ⟨h ↓, gh⟩. Thus there is {ah′ : h′ ∈ h ↓} ⊆ OAℓ+1, p so

that ug = bgh +
∑

h′∈h ↓ ah′h. Recall g is regular modulo ⟨h ↓ ⟩ because
otherwise h ↓, g and thus h ↓, gh are not regular sequences as assumed. By

definition of regularity u− bh ∈ ⟨h ↓ ⟩ implying u ∈ ⟨h ↓, h⟩.

Thus ψ in injective. " (n-6) follows from the lemma.

Proof of (n-7). By definition of an ideal ⟨h ↓, g ⟩ = ⟨h, g + h⟩ when h ∈
⟨h ↓ ⟩ and thus

im(p; h ↓, g) = dim
vec

(OAℓ+1, p /⟨h ↓, g ⟩)

= dim
vec

(OAℓ+1, p /⟨h ↓, g + h⟩)

= im(p; h ↓, g + h).

Because, in general, an arbitrary F [x] is not a principal ideal domain

we are not guaranteed (unlike in the bivariate case) a “Euclid like” step

from (n-1) through (n-7). In order to descend to the bivariate case an

additional criteria for reducing the ℓ + 1-variate case to the ℓ-variate one

is required.

One generically sufficient condition is to test for transversality of the

tangent plane hℓ with the tangent cone h ↓ at p. If the intersection is

indeed transversal then hℓ can be replaced with a 1-form at p. Provided

this 1-form is nonzero, which is assured when hℓ is nonsingular, then for

extending fulton’s properties 44

any x ∈ indets(hℓ) the pseudo-remainder prem∗(h ↓, hℓ; x) eliminates the

variable x from h ↓ and

im(p; h) = im(p; prem∗(h ↓, hℓ; x)).

Another strategy is to try and ‘cylindrify’ the input system. That is,

attempt to eliminate a variable via repeated pseudo-divisions among h.

Successful application of this procedure yields a cylinder which trivially

satisfies transversality.

These concepts form the content of Chapter 6.

Chapter 4

——!——

Fulton’s Algorithm for

Regular Chains

We re-write Fulton’s bivariate algorithm using reduction modulo ⟨x − p0,

y − p1⟩ instead of evaluation at p. We then extend that algorithm to

work modulo bivariate regular chains (assuming no splitting) and finally

to handle splitting as well.

§4.1 Descriptions

We wish to execute Fulton’s algorithm using specialization and splitting

instead of explicit evaluation. Namely, given h ⊆ F [x], this algorithm

should calculate a ‘description’ of h.

Definition 4.1 (Description). Let h, f△ ⊆ F [x] give zero-dimensional

ideals and write im(f△; h) = m if all points of V(f△) have intersection

multiplicity m:

im(f△; h) = m
Defn.
⇐⇒ ∀ p ∈ V(f△); im(p; h) = m.

Let {f△, 0, . . . , f△, e} be a Kalkbrenner decomposition of h. A descrip-

tion of h is a set of tuples

D(h) = {(m0, f△, 0), . . . , (me, f△, e)}

where each (mi, f△, i) satisfies im(f△, i; h) = mi.

45

descriptions 46

Figure 4.1: A circle and ellipse with IM two at 0 and IM one at the remaining
two irrational intersection points.

Example 4.1 (Figure 4.1). The circle and ellipse given by

h =

{

(x− 1)2 + y2 − 1,

(
4x

5
− 1

)2

+ 2y2 − 1

}

⊆ R[x, y]

corresponding to the collection of regular chains

f△, 1 =

⎧
⎨

⎩
x

y
, f△, 2 =

⎧
⎨

⎩
17x− 30

289y2 − 120
,

has description D(h) = {(2, f△, 1), (1, f△, 2)}.

valuations 47

§4.2 Valuations

A good starting point is to devise a splitting algorithm for the valuation

of a bivariate polynomial h ∈ F [x, y] at p ∈ Aℓ+1
(
F [x]

)
. These strategies

will similarly apply to the broader intersection multiplicity the valuation

is embedded into.

By valuation we essentially mean the tailing degree, or equivalently the

least degree among the monomials of a (morally) univariate polynomial.

For instance, the valuation of h ∈ F [x, y] at (p0, p1) ∈ A2(F) is the tailing

degree of h(x, p1) taken in F [x− p0]. That is to say, the valuation is the

maximum m for which h(x, p1) writes

h(x, p1) = (x− p0)
m
(
am + am+1(x− p0) + · · ·+ ad(x− p0)

d−m
)

where d := deg(h(x, p1)).

Example 4.2. Let

h := x4y+ 2x4 − 4yx3− 8x3 + 7x2y+ 14x2− 6xy − 12x+ 2y+ 4 ∈ F [x, y]

and consider the valuation at (1, 2). Since h(x, 2), taken as a polynomial

from F [x− 1], has writing

h(x, 1) = 4(x− 1)2
(
1 + (x− 1)2

)

the valuation of h is 2.

In fact, the valuation about a regular chain f△ = ⟨fx, fy ⟩ ∈ T(F [x, y])

is analogous to the valuation at a point. Here we want the tailing degree

of h mod ⟨fy ⟩ taken as univariate in F [fx]. Thereby the valuation is the

number of fy factors which can be removed from h mod ⟨fy ⟩. Or, more

precisely,

max(m ∈ N : hmod ⟨fy ⟩ ̸≡ 0 mod ⟨fm
x ⟩). (4.1)

There is a simple way to express Equation (4.1) recursively. Intuitively

we are merely extracting the valuation from the writing of hmod⟨fy ⟩ taken

valuations 48

as a univariate in fx (i.e. from F [fx]) with as many fx factors removed:

(fx)
m
(
cm + cm+1(fx) + · · ·+ cm+d(fx)

d
)
.

Recall U⟨ f△ ⟩ are the regular elements in F [x, y]/⟨f△ ⟩ then

Valuation(f△, h) =

⎧
⎨

⎩
0 f△ ∈ U⟨f△ ⟩

1 + Valuation(f△, quo(h, fx; x)) otherwise
.

However, as noted in §2.5.1, regularity testing modulo a regular chain

may induce splitting. We address this by adjusting the output of valuation

to return, as with our descriptions , a set of pairs encoding the valuations

of the corresponding branches. See Algorithm 3 for the realization of this

method.

1 Function Valuation

Input: Let x ≻ y.

1. f△ = ⟨f0, f1 ⟩ ∈ Treg(R[x, y]), and

2. h ∈ R[x, y].

Output: Let val
(
f ′
△

)
= (max(m ∈ N : hmod ⟨f ′

1 ⟩ ̸≡ 0 mod ⟨f ′
0 ⟩)) then the

output is
{
(val(f ′

△), f
′
△) : f

′
△ ∈ △(f△)

}
.

2 if |Regularize(f△; h)| > 1 then

3 return union(Valuation
(
f ′
△; h

)
: f ′

△ ∈ Regularize(f△; h));

4 if h ∈ U⟨ f△ ⟩ then
5 return {(0, f△)};
6 else

7 h′ ← quo(h, f0; x);

8 return
{(

1 +m′, f ′
△
)
:
(
m′, f ′

△
)
∈ Valuation(f△; h′)

}
;

Algorithm 3: Valuation.

maximal ideals 49

Example 4.3. The valuation of

(x2 − x− 1)3
((
y2 + 1

)
+ (y)

(
x2 − x− 1

))
∈ F [x, y]

about the regular chain ⎧
⎨

⎩
x2 − x− 1

y3

is three.

§4.3 Maximal Ideals

Let us rewrite Algorithm 2 using images modulo ⟨x− p0, y − p1 ⟩ instead
of evaluation. In particular, when h and p are (resp.) restricted to F [x, y]

and A2(F), we use

1. hmod ⟨x− p0 ⟩ = h(p0, y) for h(p0, y),

2. hmod ⟨y − p1 ⟩ = h(x, p1) for h(x, p1), and

3. hmod ⟨x− p0, y − p1 ⟩ = h(p) for h(p0, p1).

See Algorithm 4 for this rewrite.

Example 4.4. The intersection multiplicity of h = {y − x2, y2 − x3 − x2}
at the origin calculated using Algorithm 4. Boxed values indicate recursive

calls; the remaining is the algorithm’s trace.

line

im2

(
0; y − x2, y2 − x3 − x2

)

(r, s)← deg
(
0− x2, 0− x3 − x2

)
4

= (2, 3) 11

h′
1 ←

(
y2 − x3 − x2

)
− x3−2 (−1)

(−1)
(y − x2) 12

= y2 − x2 − xy

non-splitting case 50

im2

(
0; y2 − x2 − xy, y − x2

)
13

(r, s)← deg
(
0− x2 − 0, 0− x2

)
4

= (2, 2) 11.

h′
1 ←

(
y2 − x2

)
− x2−2 (−1)

(−1)
(y2 − x2) 12

= y − y2

im2

(
0; y − y2, y2 − x2 − xy

)
13

(r, s)← deg
(
0− 0, 0− x2 − 0

)
4

= (−∞, 2)

h1(x, 0) = x2(−1)im2(=⇒ ; m) = 2 9

2 + im2

(
0; quo

(
y − y2, y; ,

)
y2 − x2 − xy

)
10

im2

(
0; 1− y, y2 − x2 − xy

)
= 0 2

2. 3

§4.4 Non-Splitting Case

The next step is to lift the restriction on p and allow it to lie in the closure

of F . This means the encodings of p may (and will) have degrees greater

than one; correspondingly evaluations at p will give polynomials of nonzero

degree. Nevertheless, Fulton’s algorithm operates as expected.

However there is a caveat: zero tests are required on Line 2 for h0,

h1 ̸≡ 0, 0 mod ⟨f△ ⟩ and an additional one on Line 9 to determine the

valuation. We assume here that these zero tests will never induce splitting

and address this in the next section.

See Algorithm 6 and Example 4.5.

non-splitting case 51

1 Function im2(⟨x− p0, y − p1 ⟩; h0, h1)

Input: Let x ≻ y

1. ⟨x− p0, y − p1 ⟩ ∈ Treg(F [x, y]), and

2. h0, h1 ∈ F [x, y] : dim ⟨h0, h1 ⟩ = 0.

Output: im2((p0, p1); h0, h1) ∈ N.

2 if h0, h1 ̸≡ 0, 0 mod ⟨x− p0, y − p1 ⟩ then
3 return 0;

4 r ← degx(h0 mod ⟨y − p1 ⟩);
5 s← degx(h1 mod ⟨y − p1 ⟩);

6 if r > s then

7 return im2(⟨x− p0, y − p1 ⟩; h1, h0);

8 if r = −∞ then /* y − p1
∣∣h0 */

9 m← min
(
m ∈ N : h1 ̸≡ 0 mod

〈
(x− p0)

m+1, y − p1
〉)
;

10 return m+ im2(⟨x− p0, y − p1 ⟩; quo(h0, y − p1; y), h1);

11 if r ≤ s then

12 h′ ← ℓc(h0 mod ⟨y − p1 ⟩) · h1 − xs−r ℓc(h1 mod ⟨y − p1 ⟩) · h0;

13 return im2(⟨x− p0, y − p1 ⟩; h′, h0);

Algorithm 4: At the maximal ideal ⟨x− p0, y − p1 ⟩.

non-splitting case 52

1 Function im2(f△; h0, h1)

Input: Let x ≻ y, f0 ∈ F [x, y], f1 ∈ F [y],

1. f△ = ⟨f0, f1 ⟩ ∈ Treg(F [x, y]), and

2. h0, h1 ∈ F [x, y] : dim ⟨h0, h1 ⟩ = 0.

Output: im(f△; h0, h1) ∈ N.

2 if h0, h1 ̸≡ 0, 0 mod ⟨f△ ⟩ then
3 return 0;

4 r ← deg(h0 mod ⟨f1 ⟩);
5 s← deg(h1 mod ⟨f1 ⟩);

6 if r > s then

7 return im2(f△; h1, h0);

8 if r = −∞ then /* f1
∣∣h0 */

9 m← min
(
m ∈ N : h1 ̸≡ 0 mod

〈
fm+1
0 , f1

〉)
;

10 return m+ im2(f△; quo(h0, f1; y), h1);

11 if r ≤ s then

12 h′ ← ℓc(h0 mod ⟨f1 ⟩) · h1 − (x)s−r ℓc(h1 mod ⟨f1 ⟩) · h0;

13 return im2(f△; h′, h0);

Algorithm 5: At a regular chain f△ with no splitting assumed.

non-splitting case 53

Example 4.5. The intersection multiplicity of h = {x2 − y, x3 + x2 − y2}
at

f△ =

⎧
⎨

⎩
x− y + 1

y2 − 3y + 1

calculated using Algorithm 4. Boxed values indicate the recursive calls;

the remaining is the algorithm’s trace.

line

im2

(
f△; y − x2, y2 − x3 − x2

)

(r, s)← degx
(
x2 − y, x3 + x2 − y2 mod

〈
y2 − 3y + 1

〉)
4

= degx
(
y − x2, x3 + x2 − 3y + 1

)

= (2, 3) 11

h′
1 ← h1 − pivot(f△; h) 12

=
(
y2 − x3 − x2

)
−

(
−x3−2

)
(y − x2)

= x2 + xy − y2

im2

(
f△; x

2 + xy − y2, x2 − y
)

13

(r, s)← degx
(
x2 + xy − y2, x2 − y mod ⟨fy ⟩

)
4

= degx
(
x2 + xy − 3y + 1, x2 − y

)

= (2, 2) 11

h′
1 ← h1 − pivot(f△; h) 12

=
(
x2 − y

)
−

(
−x2−2

)
(x2 + xy − y2)

= y2 − xy − y

im2

(
f△; y

2 − xy − y, x2 + xy − y2
)

12

(r, s)← degx
(
y2 − xy − y, x2 + xy − y2 mod ⟨fy ⟩

)
4

= degx
(
2y − xy − 1, x2 + xy − 3y + 1

)

= (1, 2) 11

h′
1 ← (x2 + xy − y2)− (−2 + y)

(
x2−1

)(
y2 − xy − y

)
12

non-splitting case 54

=
(
y2 − 3y + 1

)
x2 +

(
−y3 + 4y2 − 2y

)
x− y2

im2

(
f△; h

′
1, y

2 − xy − y
)

13

(r, s)← degx
(
h0, y

2 − xy − y mod ⟨fy ⟩
)

4

= degx(2xy − x− 3y + 1, −xy + 2y − 1)

= (1, 1) 11

h′
1 ←

(
y2 − xy − y

)
− (2y + 5)

(
x1−1

)
h0 12

=
(
2y4 − 11y3 + 17y2 − 5y

)
x2

+
(
−2y5 + 13y4 − 24y3 + 10y2 − y

)
x

+
(
−2y4 + 5y3 + y2 − y

)

im2(f△; h
′
1, h0) 13

(r, s)← degx(h0, h1 mod ⟨fy ⟩) 4

= degx(0, 2xy − x− 3y + 1)

= (−∞, 1) 8

m← Tailing degree of h1 in R/⟨fy ⟩ [fx]. 9

h1 =
(
y2 − 3y + 1

)
x2 +

(
−y3 + 4y2 − 2y

)
x− y2

= (fyx+ 2y − 1)fx + fy

≡ (2y − 1)fx + 0 mod ⟨fy ⟩

= 1

1 + im2(f△; quo(h0, f
↓
△; ,)h1) 10

h0, h1 ̸≡ 0mod ⟨ f△ ⟩ 2

= 0 3

im2(f△; h0, h1) = 1.

Finally, let us provide justification for Algorithm 6 by demonstrating

each calculation leaves the intersection multiplicity invariant and that the

process eventually terminates.

Proposition 4.1. Each line of Algorithm 6 uses only the “allowed opera-

splitting case 55

tions” from (2-1) through (2-7).

Proof. Lines 2 and 7 are justified by properties (2-2) and (2-4) respectively.

When r = −∞ we have that h0 writes fy h′
0 and thereby

im2(f△; fy h
′
0, h1) = im2(f△; fy, h1) + im2(f△; h

′
0, h1)

by property (2-6).

Furthermore, as h1mod⟨fy ⟩ writes (fx)m(am + am+1fx + · · ·) we deduce

im2(f△; fy, h1) = im(f△; h1 mod ⟨fy ⟩)

= im(f△; (fx)
m(am + am+1fx + · · ·))

= m

via property (2-5). Collectively this justifies line 10.

Finally, when r ≤ s the pivot requires only property (2-7).

Proposition 4.2. Algorithm 6 terminates.

Proof. The degree in x of h0 mod ⟨y − p1 ⟩ is greater than zero only when

h0(x, p1) ∈ F [x]; in this case line 2 triggers and zero returns. By line 7

r > s is impossible. When r = −∞ we remove one factor of y − p1 and

this cannot increase the degree in x. Finally, when r ≤ s the pivot on line

12 reduces the degree in x by design.

Thereby (forgetting line 7) the r strictly descends except when factors of

y−p1 are removed—however this can happen only finitely many times.

§4.5 Splitting Case

In this case we simply invoke the D5 principle to justify the splitting step.

Proposition 4.3. Algorithm 6 is correct.

Proof. We (necessarily) gloss over the details here as they are beyond the

scope of this work. We recall, as mentioned, that the D5 principle (loosely

splitting case 56

speaking) enables an algorithm over a field (i.e. a non-splitting algorithm)

to be imbued with splitting.

As the only splittings here are invoked in line 2 and 7 by regularization

the computation is indeed decomposed, or ‘split’, into multiple computa-

tions over a product of fields.

Proposition 4.4. Algorithm 6 terminates.

Proof. Regularizing can never produce infinite branches so each step with

splitting reduces the calculation to that of new regular chains of strictly

lower degree.

splitting case 57

1 Function im∗
2(f△; h0, h1)

Input: Let x ≻ y, f0 ∈ F [x, y], f1 ∈ F [y],

1. f△ = ⟨f0, f1 ⟩ ∈ Treg(F [x, y]), and

2. h0, h1 ∈ F [x, y].

Output: D(f△; h0, h1) ⊆ N× Treg(F [x, y]).

2 if h0 ∈ U⟨f△ ⟩ or h1 ∈ U⟨ f△ ⟩ then
3 return {(0, f△)};
4 else if |Regularize(f△; h0, h1)| > 1 then

5 return union(im∗
2

(
f ′
△; h0, h1

)
: f ′

△ ∈ Regularize(f△; h0, h1));

6 if init(h0) ∈ U⟨ f△ ⟩ and init(h1) ∈ U⟨f△ ⟩ then
7 r, s← degx(h0, h1 mod ⟨f1 ⟩);
8 else if |Regularize(f△; init(h0, h1))| > 1 then

9 return union(im∗
2

(
f ′
△; h0, h1

)
: f ′

△ ∈ Regularize(f△; init(h0, h1)));

10 if r > s then

11 return im∗
2(f△; h1, h0);

12 if r = −∞ then /* h0 ≡ 0 mod ⟨f1 ⟩ */

13 for
(
m′, f ′

△

)
∈ Valuation(f△; h1) do

14 return
{(

m′ +m′′, f ′′
△
)
:
(
m′′, f ′′

△
)
∈ im∗

2

(
f ′
△; quo(h0, f0; y), h1

)}
;

15 if r ≤ s then

16 h′ ← pivot(f△; h0, h1);

17 return im∗
2(f△; h

′, h0);

Algorithm 6: With splitting.

Chapter 5

——!——

Tangent Cones

Unlike a tangent hyperplane, computing a tangent cone of a one dimen-

sional curve is not computationally easy. As our computation of intersec-

tion multiplicity in dimension greater than two has this as a bottleneck,

we were motivated to create a practically efficient tangent cone algorithm.

We realized such an algorithm by viewing each line of a tangent cone as

the limit — along of curve — of some sequence of ‘secant’ lines.

We present an efficient algorithm, based on triangular decomposition,

for the computation of tangents cones on one-dimensional curves in di-

mension ℓ + 1. Up to our knowledge (and up to this point) there was

no alternative method which did not utilize Gröbner bases or standard

bases in some way. And the use of either was causing our algorithms to

bottleneck at transversality checking.

§5.1 Singularities

Sometimes it is useful to investigate the local behaviour of a variety near

a point. When this point is ‘nice’ (which in our case means non-singular)

tangent planes provide adequate linear descriptions of the variety around

that point. However further consideration is required when the point is

singular.

In the planar case, singular points are those places on the curve where

the gradient vanishes. Geometrically, these are points like crossovers or

cusps which cannot be approximated by single lines.

58

singularities 59

For example, consider the typical ‘fish’ system, a planar curve given by

h = y2 − x2(x+ 1) ∈ F [x, y]:

.

Notice there are two tangent lines through the origin. Correspondingly, we

see in Figure 5.1 by looking locally about the origin that a single tangent

line is insufficient to approximate h at the origing. In this case two lines

are required.

In general, when h ⊆ F [x] and p ∈ V(h) is singular then the tangent

space of V(h) at p is not a single tangent line. This is because the dimen-

sion of the tangent space is different than that of the variety at p. In fact

singular points can be defined by this property.

Definition 5.1 (Dimension of a variety). Let V be a variety and p ∈ V .

The dimension of V at p is the maximum dimension of an irreducible

component of V containing p. Denote this value by dimp(V).

Definition 5.2 (Tangent Space). Let h ⊆ F [x], p ∈ V(h), f ∈ F [x].

homogeneous components 60

The tangent space of V(h) at p is the variety

Tp(h) := V(πp(f) : f ∈ ⟨h⟩)

where πp(f) is the (equation for) the linear part

∂f

∂x0
(p)(x0 − p0) + · · ·+

∂f

∂xℓ

(p)(xℓ − pℓ).

or (equivalently) the tangent plane of f at p.

Definition 5.3 (Singular). Let h ⊆ F [x] and p ∈ V(h). Then p is non-

singular (or smooth) when

dim
vec

(Tp(h)) = dim
p
(V)

and singular otherwise. Moreover define the singular locus of h as

sing(h) := {p ∈ V(h) : p is singular}.

§5.2 Homogeneous Components

Formally, the tangent cone of a curve h at the origin is given by the homo-

geneous components of least degree among ⟨h⟩. Homogeneous polynomi-

als have the property that all terms have equivalent degree. For example

x5 + 2x2y3 + xy4 is a homogeneous polynomial.

Arbitrary polynomials can then be written as a sum of homogeneous

polynomials like

(
53y2x− 75yz2 + 5z3

)
+
(
27x2 − 15xy + 16xz + 3yz

)
+ (68x− 10y + 31z)

but more generally as

h =
deg(h)∑

d=0

∑
(t ∈ terms(h) : deg(t) = d). (5.1)

homogeneous components 61

(a) The fish.

(b) Closer to origin.

(c) Very close to the origin.

Figure 5.1: Investigating the local behaviour of y2 − x2(x + 1). Notice a single
line is insufficient to approximate the curve at the origin.

homogeneous components 62

The groupings of terms of equivalent degree in (5.1) are called the homo-

geneous components of h.

Definition 5.4 (Homogeneous Component). Let h ∈ F [x]. The degree d

homogeneous component of h is

∑
(t : t ∈ terms(h) and deg(t) = d).

The degree d homogeneous component of h ∈ F [x− p] is

hcp(h; d) :=
∑(

t ∈ terms(h) : deg(x−p)(t) = d
)
.

Moreover let the homogeneous component of least degree (corresponding

to the smallest d for which {t ∈ terms(h) : deg(t) = d} is non-empty) be

denoted hcp(h; min)

hcp(h; min) := hcp(h; d),

where d = min(d ∈ N : hcp(h; d) ̸= 0).

§Classical Tangent Cone Definition

The tangent cone of h is the ideal generated by the homogeneous compo-

nents of least degree among ⟨h⟩.

Definition 5.5 (Tangent Cone). Let h ⊆ F [x] and p ∈ V(h). The tangent

cone of h at p is the ideal generated by the homogeneous components in

x− p of least degree among ⟨h⟩

κp(h) := ⟨hcp(h; min) : h ∈ ⟨h⟩ ⟩.

For principally generated ideals this is easy as we need only find the

homogeneous component of least degree of among the single generator. In

other words, we require no ideal manipulation to calculate ⟨hcp(h; min) ⟩.

Example 5.1. Let h = {y2 − x2(x+ 1)} ⊆ F [x, y] and note h is a basis

of ⟨h⟩. Accordingly, the tangent cone at the origin is the homogeneous

homogeneous components 63

component of least degree from y2 − x3 − x2:

κ0

(
y2 − x2(x+ 1)

)
=

{
y2 − x2

}
= {(x+ y)(x− y)}.

Which are the expected two lines through the origin.

For ideals with more generators however it need not follow that

⟨hcp(h; min) : h ∈ ⟨h⟩ ⟩ ?
= ⟨hcp(h; min) : h ∈ h ⟩. (5.2)

Example 5.2. Let h = {h0, h1} = {xz + z(y2 − z2), xy} ⊆ F [x, y, z].

Notice y · h1 − xy · h0 = yz(y2 − z2) ∈ ⟨h⟩ and therefore

hc0(y h0 − z h1; min) = yz(y2 − z2)

implying yz(y2 − z2) ∈ ⟨hc0(h; min) : h ∈ ⟨h⟩ ⟩. However

⟨hc0(h; min) : h ∈
{
xz + z(y2 − z2), xy

}
⟩ = ⟨xz, xy ⟩

and clearly yz(y2−z2) ̸∈ ⟨xz, xy ⟩ and thus yz(y2−z2) ̸∈ ⟨hc0(h; min) : h ∈
h ⟩.

One can compute ⟨hcp(h; min) : h ∈ ⟨h⟩ ⟩ by finding a graded Gröbner

basis (say G) of the homogenization of h (a process where an additional

name xℓ+1 is used to make every h ∈ h a homogeneous polynomial in

F [x][xℓ+1]). Dehomogenizing G (that is, removing xℓ+1 by setting it to

one) produces the tangent cone of h [10, Chapter 9 §7 Proposition 4]. (This

way of computing tangent cones was investigated by Mora et al. in [27].)

Example 5.3. Continuing Example 5.2 the homogenization of h in t is

{txz + y2z − z3, xy} which has a graded Gröbner basis (with t largest)

given by G = {xy, tx+ y2 − z2, y3 − yz2}. Dehomogenizing G leaves {xy,
y2 − z2 + x, y3 − yz2} and therefore the tangent cone of h is κ0(h) =

⟨xy, x, y3 − yz2 ⟩.

Since Gröbner basis computation can be expensive let us explore cal-

culating these tangent lines as limits of secants instead.

tangent cone algorithm 64

§Secants

There is an alternate definition for tangent cones which enables the con-

struction of lines in the tangent cone using limits of secants .

Theorem 5.1. Let h ⊆ F [x]. A line L through p ∈ V(h) lies in the

tangent cone κp(h) if and only if there is a sequence of points from V(h)−
{p} converging to p where the secant lines Lk containing p and qk become

L in the limit.

Equivalently,

L ∈ κp(h) ⇐⇒

∃ {qk : k ∈ N} ⊆ V(h)− {p} : lim
k→∞

qk = p and lim
k→∞

Lk = L.

Proof. See [10, Chapter 9 §7 Theorem 6].

§5.3 Tangent Cone Algorithm

As the following is mainly a geometric presentation we use the geometric

analogue of the tangent cone and let TCq(V(h)) denote the tangent cone

of V(h) at q. Namely,

TCq(h) := V(κq(f) : f ∈ ⟨h⟩).

This is much like using a tangent space rather than a tangent plane.

Let F be a field, h = {h0, . . . , hℓ−1} ⊆ F [x] a collection of polyno-

mials, and p ∈ V(h). For this section (and without loss of generality)

assume

1. F = C (the complex numbers) and that

2. V(h) is non-singular at p for any h ∈ h.

For each branch of a connected component D through p of C = V(h)

there is a neighbourhood B about p in the analytic topology where V(h0)

tangent cone algorithm 65

.

Figure 5.2: Secant lines on the fish.

tangent cone algorithm 66

through V(hℓ−1) are non-singular for each q ∈ (B ∩ D) − {p}. Moreover,

the singular locus sing(D) contains a finite number of points.

Take B small enough so that B ∩ sing(D) is either empty or {p}
and recall V(πq(h0)) is the tangent hyperplane of V(hi) at q. Regard

V(πq(h0), . . . , πq(hℓ−1)) as the zero set of a parametric polynomial sys-

tem, with coordinates of q as parameters and let

v(q) := Tq(h0) ∩ · · · ∩ Tq(hℓ−1).

We obtain TCp(C) by taking the limit of v(q) as q approaches p. Since

TCp(C) is the union of all the TCp(D) we are done. Crucially, this process

can be simulated through variable elimination.

Lemma 5.1. The collection of limits of lines v(q) in TCp(D) as q ap-

proaches p along the branches of D gives the tangent cone of D at q. That

is to say

TCp(D) = lim
q→p

v(q) = lim
q→p

Tq(h0) ∩ · · · ∩ Tq(hℓ−1).

Proof. There are two cases, either

1. D is smooth at p and B ∩ sing(D) = ∅, or

2. D is singular at p and B ∩ sing(D) = {p}.

Case 1. Assume q ∈ B ∩ D is arbitrary and observe D is smooth within

B and thereby the tangent cone of D is simply the tangent space (i.e.

TCq(D) = Tq(D)).

Notice Tq(D) is a sub-vector space of v(q). Indeed, let w ∈ Tq(D) be

any tangent vector to D at q. As D is a curve in each V(h) for h ∈ h

it follows w is a vector tangent to each V(h) as well. Correspondingly

w ∈ Tq(h) for any h ∈ h and thus w ∈ v(q).

Finally, since h0, . . . , hℓ−1 form a local complete intersection in B, we

know v(q) is a one-dimensional subspace of each Tq(h0). Since w ∈ Tq(h)

for each h ∈ h, the vector w must span this subspace. Thus, for each

tangent cone algorithm 67

q ∈ B ∩ D , we have

Tq(D) = Tq(h0) ∩ · · · ∩ Tq(hℓ−1).

Taking the limit of each side of the above equality, when q approaches p

and using again the fact that D is smooth at q = p, we obtain the desired

result, that is, TCp(D) = limq→p v(q).

Case 2. Assume D∩B−{p} is a finite union of smooth curves D0, . . . , Dj.

These are the smooth branches of D ∩ B meeting at the singular point p.

Each j corresponds to a unique line

Lj = lim
q→p

v(q) ⊆ Tp(D)

as q approaches p along Dj .

By Theorem 5.1 the tangent cone TCp(D) is the collection of limits to

p of secant lines through p in D . Such lines given by secants along Dj must

coincide with Lj . More precisely

L0 ∪ · · · ∪ Lj ⊆ TCp(D).

Because each Dj is smooth there is only one secant line for each j and

thereby

L0 ∪ · · · ∪ Lj = TCp(D)

as desired.

Lemma 5.1 states a principle. Let us now give a precise algorithm

implementing this principle.

Let q be a point on the curve C = V(h) with co-ordinates x. Further

let p̂q be a unit vector in the direction of pq (i.e. the line through p and

q). To exploit Theorem 5.1 we must calculate

{
lim
q→p
q ̸=p

p̂q

}

,

which is indeed a set because there can be many branches of C through p.

tangent cone algorithm 68

Let f△ ∈ T(F [y]) be a zero-dimensional regular chain encoding the

point p. This renaming of x to y is necessary since the “moving point” q

is already using x for its coordinates. Consider the polynomial set

s = f△ ∪ {h0, . . . , hℓ−1}.

and observe that the ideal ⟨s⟩ is one-dimensional in F [xℓ−1 ≻ · · · ≻ x0 ≻
yℓ−1 ≻ · · · ≻ y0]. Let {f△, 0, . . . , f△, e} ⊆ F [y][x] be regular chains forming

a Kalkbrenner decomposition of s. Thus we have

V(s) = W(f△, 0) ∪ · · · ∪W(f△, e)

where each ⟨f△, 0 ⟩ through ⟨f△, e ⟩ is one-dimensional.

Computing with the normal vector p̂q is unnecessary so we instead di-

vide the entries of pq by xℓ−yℓ (making the last position one). This enables

a limit computation only when xℓ−yℓ vanishes finitely many times in V(s).

When this is the case, the lines of the tangent cone not contained in the

hyperplane yℓ = xℓ can be obtained via limits of meromorphic functions

(namely Puiseux series expansions) by letting xℓ → yℓ [2]. Moreover we

are ensured there is an ordering of x for which xℓ − yℓ is regular, as we

shall prove below.

Since the tangent cone may have lines contained in the hyperplane

yℓ − xℓ, additional computations are needed to capture them. There are

essentially three options.

1. A randomized approach where a random linear change of the coordi-

nates is performed so as to avoid those particular lines, generically.

2. A reduction of the problem to lower dimension by adding the con-

straint yℓ − xℓ so as to capture those particular lines.

3. Compute in turn the lines not contained in the hyperplane yi = xi

for i = 0, . . . , ℓ and remove the duplicates.

In our implementation, we have experimented with the first and third

approaches. Although the third one seems gross, it avoids the expression

tangent cone algorithm 69

swell of the first one and is practically more efficient. The second approach

should not have the limitations of the other two and is currently work in

progress.

From now on, we focus on computing the lines of the tangent cone

not contained in the hyperplane yℓ − xℓ. Or, equivalently, we assume the

tangent cone transversally intersects the hyperplane yℓ − xℓ.

A meromorphic function, loosely speaking, is one that is holomorphic

everywhere but at its poles.

For our purposes, holomorphic functions can be regarded as complex

valued functions of one or more complex variables.

Fortunately, deciding whether xℓ − yℓ vanishes finitely many times in

V(s) can be done algorithmically by testing whether xℓ − yℓ is regular

modulo the saturated ideal of a regular chain. Let f△, j ∈ {f△, 0, . . . , f△, e}
be arbitrary and assume xℓ − yℓ is regular modulo sat(f△, j). Because

V(xℓ − yℓ) ∩W(f△, j)

is zero-dimensional, each component of pq is divisible by xℓ− yℓ, when q is

close enough to p, with q ̸= p.

If xℓ − yℓ ≡ 0 mod sat(f△, j) then W(f△, j) ⊆ V(xℓ − yℓ) permitting us

to attempt to divide each component of pq by xℓ−1−yℓ−1 instead of xℓ−yℓ.

A key observation is

∃ d ∈ {0, . . . , ℓ} : xd − yd ̸≡ 0 mod sat(f△, j).

Indeed, if (conversely)

xℓ − yℓ ≡ 0 mod sat(f△, j)

...

x0 − y0 ≡ 0 mod sat(f△, j)

then W(f△, j) ⊆ V(x0 − y0)∩ · · ·∩V(xℓ − yℓ). Since the y are fixed by f△
we have W(f△, j) is zero-dimensional — a contradiction.

tangent cone algorithm 70

Assume then, that xℓ−yℓ is regular modulo sat(f△, j). If follows xℓ ̸= yℓ
when q is close enough to (but not equal to) p. Define

m0 =
x0 − y0
xℓ − yℓ

, . . . , mℓ =
xℓ − yℓ
xℓ − yℓ

.

and regard m = {m0, . . . , mℓ} as new variables. We have p̂q = ⟨⟨m0, . . . ,

mℓ−1, 1 ⟩⟩ and our goal is to “solve for” m when xℓ → yℓ.

We use [2] to turn this question into one computing the limit points

of a one-dimensional regular chain. To this end, extend the regular chain

f△, j to the regular chain M△ ∈ T(F [y][x]) given by

M△, j = f△, j ∪

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m0(x0 − y0)− (xℓ − yℓ)
...

mℓ(xℓ − yℓ)− (xℓ − yℓ)

.

Note M△, j is one-dimensional in this extended space.

Finally {limq→p,q ̸=p p̂q} are the limit points of the quasi-component of

M△, 0 through M△, ℓ. That is, the sets

W(M△, 0)−W(M△, 0),

for which one can use the algorithm of [2].

This process determines m0, . . . , mℓ as roots of the top ℓ polynomials

of zero-dimensional regular chains in

mℓ ≻ · · · ≻ m0 ≻ xℓ ≻ · · · ≻ x0 ≻ yℓ · · · ≻ y0.

Performing a change of variable ordering to x ≻ m ≻ y expresses m0,

. . . ,mℓ−1 as functions of the coordinates of the point p only. We consider

this a more desirable output.

tangent cone algorithm 71

§Equations of Tangent Cones

One may prefer to return lines of the tangent cone as equations instead of

as encoded by a slope.

Let S be an arbitrary point with coordinates (X0, . . . , Xℓ). This point

belongs to one of the lines of the tangent cone [corresponding to the

branches of the curve defined by W(f△, j)] if and only if the vectors

p̂q

⎛

⎜⎜⎜⎜⎜⎜⎝

1

mℓ−1

...

m0

⎞

⎟⎟⎟⎟⎟⎟⎠
and p S

⎛

⎜⎜⎜⎜⎜⎜⎝

Xℓ − yℓ

Xℓ−1 − yℓ−1

...

X0 − y0

⎞

⎟⎟⎟⎟⎟⎟⎠

are collinear. That is, if and only if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xℓ = mℓ(xℓ − yℓ) + yℓ
...

X0 = m0(xℓ − yℓ) + y0

.

Consider a regular chain (obtained at the end of the process described

in the previous section) expressing the slopes m0, . . . , mℓ−1 as functions of

y0, . . . , yℓ and, let us extend this regular chain with the above equations,

so as to obtain a one-dimensional regular chain in the variables

Xℓ ≻ · · · ≻ X0 ≻ mℓ−1 ≻ · · · ≻ m0 ≻ yℓ · · · ≻ y0.

We eliminate the variables m0, . . . , mℓ−1, with the above equations.

Indeed, the only point of a line of the tangent cone (corresponding to the

branches of the curve defined byW(f△, j)) where the equation xℓ = yℓ holds

is p itself. Finally, this elimination process consists simply of substituting
Xi−yi
xℓ−yℓ

for mi into the equations defining m2, . . . , mn.

tangent cone algorithm 72

§Examples

See Algorithm 7 for the realization of the Tangent Cone algorithm and the

following examples. We write tangent cones using unions to save vertical

space and to separate slope from point.

Example 5.4. Consider calculating the tangent cone of the fish h = y2 −
x2(x + 1) at the origin. The Puiseux expansions of h at x = 0 in T are

given by

⎧
⎨

⎩
y = −T − 1

2 T
2 +O(T 3)

x = T
and

⎧
⎨

⎩
y = T + 1

2 T
2 +O(T 3)

x = T

and substituting these values into ym− x produces

(
− 1

2 T
2 − T

)
m− T and

(
1
2 T

2 + T
)
m− T.

Call these expressions M0 and M1 resp.

To find the value of m at T = 0 we find the Puiseux series expansions

for M0 and M1 at T = 0 in U ; these are (resp.)

⎧
⎨

⎩
m = −1 + 1

2 U −
1
4 U

2 +O(U3)

T = U
and

⎧
⎨

⎩
m = 1− 1

2 U + 1
4 U

2 +O(U3)

T = U
.

Taking U → 0 in the above produces the (expected) slopes of 1 and −1.

Example 5.5. Consider Figure 5.3, i.e. secants along the the curve h =

{x2 + y2 + z2 − 1, x2 − y2 − z} ⊆ F [x, y, z] limiting to a point given by a

zero dimensional regular chain f△ = ⟨x+ y, 2y2 − 1, z ⟩.

κf△(h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m1 − 1

m2

m3

∪

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2x2 − 1

2y2 − 1

z

tangent cone algorithm 73

Figure 5.3: Limiting secants along V
(
x2 + y2 + z2 − 1, x2 − y2 − z

)
.

tangent cone algorithm 74

or alternatively (using equations of lines instead)

κf△(h) =

{
z ±

4x√
2
+ 2, y − x±

2√
2

}
.

Notice the slope for four points are encoded here. In particular the points

{(
1

±
√
2
,

1

±
√
2
, 0

)
,

(
−

1

±
√
2
,

1

∓
√
2
, 0

)}

have slope ⟨⟨ 1, 0, 0 ⟩⟩.

Example 5.6. Consider Figure 5.4, i.e. secants along the curve h =

{x2 + y2 + z2 − 1, x2 − y2 − z(z − 1)} ⊆ F [x, y, z] limiting to (0, 0, 1)

κ(0,0,1)(h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m1 +m2

2m2
2 − 6m2 + 3

m3

∪

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x

y

z − 1

or alternatively (using equations of lines instead)

κ(0,0,1)(h) =
{
z − 1, y2 − 3x2

}
.

Notice the values of the slopes here are in the algebraic closure of the

coefficient ring. In particular, they are

{(
3
2 +
√
6, 3

2 +
√
6, 0

)
,
(

3
2 −
√
6, 3

2 −
√
6, 0

)}
.

tangent cone algorithm 75

Figure 5.4: Secants along V
(
x2 + y2 + z2 − 1

)
∩V

(
x2 − y2 − z(z − 1)

)
limiting

to (0, 0, 1).

tangent cone algorithm 76

1 Function κf△(h0, . . . , hℓ−1)

Input: Recall x = x0, . . . , xℓ and f△|x=y is the renaming of the x-variables to
y-variables in f△.

1. f△ ∈ Treg(F [x]) a zero-dimensional regular chain and

2. h = {h0, . . . , hℓ−1} ⊆ F [x] : dim ⟨h⟩ = 1.

Output: A description (as in Definition 4.1) of the tangent cone at f△.

2 g ← f△|x=y ∪ {h0, . . . , hℓ−1};

3 if |Regularize(xℓ − yℓ; g)| > 1 then

4 return union(κf ′
△
(h) : f ′

△ ∈ Regularize(xℓ − yℓ; g));

5 else if xℓ − yℓ ≡ 0 mod ⟨g⟩ then
6 return κf△(h0, . . . , hℓ−1) using a different variable ordering on x;

7 M ← g ∪ {m0(xℓ − yℓ)− (x0 − y0), . . . , mℓ(xℓ − yℓ)− (xℓ − yℓ)};

8 return {W(M)−W(M)}; // Using limits of quasi-components.

Algorithm 7: Tangent cone about a regular chain.

Chapter 6

——!——

Extended Fulton’s

Algorithm

We present sufficient conditions for recursing the calculation of the inter-

section multipclity in F [x0, . . . , xℓ] to F [x0, . . . , xℓ−1].

It is important to note the subsequent presentation presumes that

pseudo-remainder sequences can be performed on h modulo f△ without

incident. More precisely, it is assumed there is always an hℓ ∈ h with a

regular leading coefficient. Thereby the Algorithms in this chapter work

only when they do not fail (though failure is detectable). However, at

least practically speaking, these highly degenerate cases very rarely occur

naturally.

§6.1 Transversality

In our setting, transversally intersecting curves are those curves that only

intersect at a single point. That is to say, two surfaces cannot have trans-

verse intersection if their common component has nonzero dimension.

Definition 6.1 (Transverse). Let h0, h1 ∈ F [x]. Two varieties V(h0) and

V(h1) in Aℓ+1
(
F [x]

)
transversally intersect at p ∈ V(h0, h1) when their

tangent cones intersect at {p} only or not at all.

V(h0) ! V(h1)
Defn.
⇐⇒ κp(h0) ∩ κp(h1) ∈ {∅, {p}}.

77

transversality 78

(Note at non-singular points the tangent cone is simply the tangent plane.)

Proposition 6.1. Let h0, . . . , hℓ−1, hℓ ∈ F [x] such that p ∈ Aℓ+1(F) is

an isolated point of V(h) and let h ↓ := {h0, . . . , hℓ−1}. Suppose hℓ at p

is non-singular and transverse to the tangent cone of V(h ↓). Finally, let π

be the tangent hyperplane to V(hℓ) at p. In this setting, the intersection

multiplicities of {h ↓, hℓ} and {h0, . . . , hℓ−1, π} at p coincide:

π ! κp(h
↓) =⇒ imℓ+1(p; h

↓, hℓ) = imℓ+1(p; h
↓, π).

Proof. The proposition follows directly from results of [30, Chapter IV];

we reuse the same notation as that reference when feasible. For instance

(contrary to our own notation) we let O be the local ring at p, and O :=

O/⟨h ↓ ⟩.

Since p is an isolated point of V(h), any irreducible component of

V(h ↓) through p must have dimension one. By Lemma 2 in [30, Chap-

ter IV.1.3] it follows O is a one-dimensional local ring.

Let C0, . . . ,Cr be the irreducible components of V(h ↓) passing through

p and let p0, . . . , pr be their respective defining ideals in O . Our transver-

sality assumption ensures hℓ and π are both nonzero divisors in O and

consequently, since O is a one-dimensional local ring, we use Equation 6

from [30, Chapter IV.1.3] to deduce

imℓ+1(p; h
↓, hℓ) =

r∑

i=0

mi dim
vec

(
O/⟨ pi, hℓ ⟩

)
(6.1)

and

imℓ+1(p; h
↓, π) =

r∑

i=0

mi dim
vec

(
O/⟨pi, π ⟩

)
(6.2)

for some constants m1, . . . , mr that we need not define more precisely.

In the original reference the above dimensions are written as lengths

but [13, Example A.1.1] permits us to use the vector space dimension

instead. This holds for all the dimensions written below as well.

transversality 79

Because ⟨h ↓ ⟩ ⊆ pi for all i, we can rewrite (6.1) and (6.2) as (resp.)

dimvec(O/⟨ pi, hℓ ⟩) and dimvec(O/⟨ pi, π ⟩). Hence it is enough to prove

that

dim
vec

(O/⟨ pi, hℓ ⟩) = dim
vec

(O/⟨ pi, π ⟩)

for all i = 1, . . . , r to conclude. (Note we have replaced ⟨h ↓ ⟩ by a dimen-

sion one prime ideal.)

Fix i for the remainder of this proof and write p instead of pi. This

prime ideal defines a curve C ⊆ F
ℓ+1

. Let C ′ ⊆ F
ℓ′+1

be a normalization

of C given by ν : C ′ → C ; thus C ′ is nonsingular. Also, it follows from [30,

Chapter IV.1.3.(9)] that

dim
vec

(O/⟨ p, hℓ ⟩) =
∑

ν(p′)=p

dim
vec

(OC ′,p′/h
∗
ℓ),

when OC ′,p′ is the local ring of C ′ at p′ and h∗
ℓ is the pull-back of hℓ by ν.

A similar expression holds for π.

Now fix p′ in the fiber ν−1(p). We prove

dim
vec

(OC ′,p′/h
∗
ℓ) = dim

vec
(OC ′,p′/π

∗).

Without loss of generality shift to the origin, that is, assume p = 0 ∈ F
ℓ+1

and p′ = 0 ∈ F
ℓ′+1

and also let t be a uniformizer for C ′ at p′ (remember

that C ′ is nonsingular). Finally, write ν = (ν0, . . . , νℓ), with all νi in F [C ′].

Expanding ν = (ν0, . . . , νℓ) in power series at the origin permits us view

them as in F [[t]]ℓ+1. With this in mind, and without loss of generality,

assume ν0 has the smallest valuation among ν0, . . . , νℓ (otherwise, do a

change of coordinates in F
ℓ+1

). Call this valuation r, so that we can

write, for all i:

νi(t) = νi, r t
r + νi, r+1 t

r+1 + · · ·

It follows the component of the κ0(C) corresponding to the image ν(C ′)

transversality 80

around p′ is the limit of secants having directions

(
ν0(t)

ν0(t)
,
ν1(t)

ν0(t)
, . . . ,

νℓ(t)

ν0(t)

)
.

This limit is a line with direction
(
1,
ν1, r
ν0,r

. . . ,
νℓ, r
νℓ, r

)
,

or equivalently (ν1, r, . . . , νn, r). Because we assumed p is the origin, hℓ has

a writing

hℓ(x0, . . . , xℓ) = π + higher order terms

with π = hℓ,0 x0 + · · ·+ hℓ,ℓ xℓ; the transversality assumption implies

hℓ,0 ν0,r + · · ·+ hℓ,ℓ νℓ,r ̸= 0.

Using the local parameter t, the multiplicities dimvec(OC ′,p′/h∗
ℓ) and

dimvec(OC ′,p′/π∗) can be rewritten as the respective valuations in t of h∗
ℓ

and π∗, that is, of

hℓ(ν0(t), . . . , νℓ(t)) and π(ν0(t), . . . , νℓ(t)).

The latter is easy; it reads

π(ν0(t), . . . , νℓ(t)) =

(hℓ,0 ν0,r + · · ·+ hℓ,ℓ νℓ,r)t
r + (hℓ,0 ν0,r+1 + · · ·+ hℓ,ℓ νℓ,r+1)t

r+1 + · · · .

Due to the shape of hℓ, the former expression is

hℓ(ν0(t), . . . , νℓ(t)) = (hℓ,0 ν0,r + · · ·+ hℓ,ℓ νℓ,r)t
r + higher order terms.

Since we know hℓ,0 ν0,r + · · ·+ hℓ,ℓ νℓ,r ̸= 0, both expressions must have the

same valuation r, so we are done.

cylindrification 81

§6.2 Cylindrification

In practice, the conditions for reduction from ℓ to ℓ−1 do not always apply.
For instance, it is simple to devise a ‘degenerate’ system which does not

satisfy transversality. Take, for instance,

{
x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1

}
⊆ F [x, y, z]

at any of the coordinates (1, 0, 0), (0, 1, 0), or (0, 0, 1). (See Figure 6.1.)

Notice though, that if one uses x2 + y + z − 1 to eliminate z in the

remaining polynomials (using pseudoremainders), we obtain two bivariate

polynomials

h′
0 = x+ y2 − x2 − y and h′

1 = x− y + x4 + 2x2y − 2x2 + y2

independent of z. Consequently, the curve given by V(h′
0, h

′
1) does not

depend on z as well — in other words, it is a cylinder with base V(h′
0, h

′
1).

(See Figure 6.2.)

Cylinders are vertical along (in this case) the xℓ axis and so their tan-

gent cones must also be vertical. More precisely if h is independent of xℓ

so must κp(h).

Conversely, the tangent plane of V(h1) at p with h2 = x2 + y + z − 1

necessarily depends on z (by our assumptions). It follows that the tangent

plane and the tangent cone of V(h′
0, h

′
1) at p intersect only at p. That is

to say, they automatically have transverse intersection.

More generally, if one polynomial among h (say hℓ) has degree one in

xℓ and init(hℓ) is invertible in the local ring at p then one can replace

h0, . . . , hℓ−1 by prem({h0, . . . , hℓ−1}, hℓ; xℓ).

Proposition 6.2. Assume h ⊆ F [x] generates a zero-dimensional idea, hℓ

has nonzero coefficient on xℓ, and further that this coefficient is invertible

in the local ring OAℓ+1, p , then

imℓ+1(p; h) = imℓ(p; prem({h0, . . . , hℓ−1}, hℓ; xℓ)).

cylindrification 82

Figure 6.1: Let h0, h1, h2 = x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1.
The above graphs are plots of V(h0, h1) ∪V(h0, h2) ∪V(h1, h2) from various
viewpoints.

cylindrification 83

Figure 6.2: Before cylindrification (left). After cylindrification (right).

algorithms 84

Assume the pseudo-remainder never fails to find an hℓ with regular initial.

Proof. A pseudo-remainder is (obviously) a pseudo-remainder sequence

which generally only requires subtraction and products of h ∈ h by el-

ements from F [x]. The properties (n-6) and (n-7) give (resp.) that the

intersection multiplicity is invariant to adding g ∈ F [x] to hℓ or multiply-

ing g ∈ F [x] by hℓ. Thereby we have the pseudo-remainder must leave

the intersection multiplicity invariant.

If no h among h has degree one in xℓ, but (say) hℓ has a degree two term

with an initial that is invertible in the local ring, then similarly one can

replace h ↓ by prem(h ↓, hℓ; xℓ) while leaving the intersection multiplicity

at p invariant. At this stage, either the degree one case applies or every h

in prem(h ↓, hℓ; xℓ) has degree zero in xℓ (i.e. it is a cylinder).

This process can be iterated to ‘solve’ the case where the least degree

in xℓ among h is (say) d ∈ N. Repeating pseudoremainders by some hℓ at

each stage will force the degree in xℓ to strictly descend to one (in no more

than d steps). Naturally, we call this process cylindrification and it is given

by Algorithm 9. We note when cylindrification succeeds that conditions

for Proposition 6.2 are satisfied.

Proposition 6.3. Algorithm 9 (cylindrification) is correct.

Proof. The invariance of the intersection multiplicity (and subsequently

correctness) is ensured by Proposition 6.2. If h0, . . . , hℓ−1 are already

in F [x0, . . . , xℓ−1] then line 5 returns and we are done. Else line 6 is

called and the pseudo-remainder ensures every degxℓ
(h0), . . . , degxℓ

(hℓ−1)

has degree in xℓ less than hℓ. Thus we must have termination because

line 2 forms a strictly descending sequence until degxℓ
(hℓ) = 0 (the first

case).

§6.3 Algorithms

Here we provide the Algorithm (along with arguments for their correctness)

required to calculate the intersection multiplicity of ℓ + 1 hypersurfaces

algorithms 85

1 Function Transversalize∗(f△; h)

Input:

1. f△ ∈ Treg(F [x]) a zero dimensional regular chain, and

2. h = {h0, . . . , hℓ} ⊆ F [x] : dim ⟨h⟩ = 0.

Output: A list of

(B, f ′
△, h

′, h′
ℓ) ∈ {0, 1}× Treg(F [x])×F [x]ℓ ×F [x]

such that B =⇒ πf ′
△
(h′

ℓ) ! κf ′
△
(h) and h′ ∪ {h′

ℓ} = h; where the f ′
△s form a

triangular decomposition of h at f△.

2 Choose h ∈ h;

3 h ↓ ← h− {h};
4 κ← κf△(h

↓);

5 t← ∅;

6 for (f ′
△, κ) ∈ κ do

7 Check if the normal of the tangent plane of h is perpendicular to the slope

of h ↓ at f△ via dot product.

8 s←∇(h) mod
〈
f ′
△
〉
· ⟨⟨m0, . . . , mℓ+1 ⟩⟩;

9 if
∣∣Regularize

(
⟨ f ′

△, κ ⟩; s
)∣∣ = 1 then

10 if s ∈ U
〈
f ′
△, κ

〉
then

11 t← t ∪
{
(1, f ′

△, h
↓, h)

}
;

12 else

13 t← t ∪
{
(0, f ′

△, h
↓, h)

}
;

14 else

15 return union(Transversalize∗
(
f ′′
△; h

)
: f ′′

△ ∈ Regularize
(
⟨ f ′

△, κ ⟩; s
)
);

16 return t;

Algorithm 8: Try to find transversal intersections along the various branches of h

towards f ′
△.

algorithms 86

from F [x] at a point p encoded by a zero dimensional regular chain f△ ∈
Treg(F [x]).

Proposition 6.4. Algorithm 10 (multivariate intersection multiplicity) is

correct and terminates.

Proof. Lines 6–8 and Line 10 are simple applications of (resp.) Proposition

6.1 and Proposition 6.2.

Notice in either case the computation is reduced to that of one in a

polynomial ring of one less variable. Accordingly the process must even-

tually call Algorithm 6 (the algorithm for the intersection multiplicity in

two variables) which terminates.

algorithms 87

1 Function Cylindrify(f△; h)

Input: Let xℓ ≻ · · · ≻ x0.

1. f△ ∈ Treg(F [x0, . . . , xℓ]) a zero dimensional regular chain, and

2. h = {h0, . . . , hℓ} ⊆ F [x0, . . . , xℓ].

Output:
{
h′
0, . . . , h

′
ℓ−1

}
⊆ F [x0, . . . , xℓ−1] such that

imℓ−1(f△;
{
h′
0, . . . , h

′
ℓ−1

}
) = imℓ(f△; h).

2 Suppose degxℓ
(hℓ) = min(deg(h) : h ∈ h);

3 Assume init(hℓ) ∈ U⟨f△ ⟩;
4 if {h0, . . . , hℓ−1} ⊆ F [x0, . . . , xℓ−1] then

5 return {h0, . . . , hℓ−1};

6 return prem({h0, . . . , hℓ−1}, hℓ; xℓ);

Algorithm 9: Cylindrification at f△.

algorithms 88

1 Function im∗
ℓ+1(f△; h)

Input:

1. f△ ∈ Treg(F [x]) a zero dimensional regular chain, and

2. h = {h0, . . . , hℓ} ⊆ F [x] : dim ⟨h⟩ = 0.

Output: D(f△; h) ⊆ N× Treg(R[x]).

2 if ℓ+ 1 = 2 then

3 return im2(f△; h);

4 t← ∅;

5 for (B, f ′
△, h

′, h′
ℓ) ∈ Transversalize∗(f△; h) do

6 if B then

7 π ← πf ′
△
(h′

ℓ);

8 t← t ∪ im∗
ℓ

(
f ′
△; prem(h′, π; xℓ)

)
;

9 else

10 t← t ∪ im∗
ℓ(f△; Cylindrify(f△; h));

11 return t;

Algorithm 10: ℓ + 1-variate intersection multiplicity about a zero dimensional

regular chain f△.

Chapter 7

——!——

Experiments

We present experimental results for the Maple implementation of the al-

gorithms outlined in this work.

The relevant hardware details are as follows.

os : Ubuntu 12.04.4 LTS

processors : 2

vendor_id : GenuineIntel

model name : Intel(R) Core(TM)2 Duo CPU E8500 @ 3.16GHz

cpu MHz : 3163.000

cache size : 6144 KB

ram : 2 x 4GB DDR2

All timings are given in seconds and the coefficient field has character-

istic 101, 962 592 769, or 0 as indicated. It should be noted that 962 592 769

is a so-called FFT-prime which allows some sub-packages to run faster by

exploiting techniques for FFT based calculations.[20]

The experimentation is done in three parts:

First we study systems taken from [12] (a paper on intersection mul-

tiplicity) and from [5] (a test suite for benchmarking homotopy solvers).

Next we investigate random homogeneous bivariate polynomials from R[x, y]

of the form

c0x
a0yb0 + c1x

a1yb1 + c2x
a2yb2 + c3x

a3yb3 + c4x
a4yb4

89

90

where a0 + b0, . . . , a4 + b4 = d for varying d ∈ N>1 and c0, . . . , c4 ∈ R for

both the optimized (testing for trivial intersection multiplicity using the

Jacobian) and unoptimized versions.

Note the density, or number of terms relative to the degree, of the

starting polynomials are irrelevant as they inevitably become dense during

the algorithm’s operation.

91

System |x| deg(h) deg
x
(h) : x ∈ x

Ojika2 3 (2, 2, 2) (2, 1, 1)

(1, 2, 1)

(1, 1, 2)

Ojika3 3 (1, 2, 2) (1, 1, 1)

(1, 2, 1)

(1, 1, 2)

Arnborg-Lazard-rev 3 (4, 5, 6) (2, 2, 2)

(2, 2, 2)

(2, 2, 2)

Barry 3 (5, 4, 1) (5, 0, 1)

(5, 4, 1)

(0, 0, 1)

GonzalezGonzalez 3 (3, 3, 2) (3, 2, 2)

(5, 4, 1)

(0, 0, 1)

Eco5 5 (3, 3, 3, 2, 1) (1, 1, 1, 0, 1)

(1, 1, 0, 0, 1)

(1, 1, 1, 0, 1)

(1, 1, 1, 1, 1)

(1, 1, 1, 1, 0)

Cyclohexane 3 (4, 4, 4) (0, 2, 2)

(2, 0, 2)

(2, 2, 0)

ℓ-3 4 (3, 3, 3, 3) (3, 1, 1, 1)

(3, 1, 1, 1)

(1, 3, 1, 1)

(1, 1, 3, 1)

(1, 1, 1, 3)

Table 7.1: Systems taken from [12] and [5].

examples from literature 92

§7.1 Examples from literature

§Characteristic 101

h = ojika2 p = 101.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 2 2 0.368 0.436 0.020

2 1 2 0.780 1.280 1.244

2 1 2 0.728 1.140 1.144

2 1 2 0.764 1.130 1.128

8 2.640 3.984 3.536

h = ojika3 p = 101.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 1 1 0.204 0.236 0.012

1 1 1 0.232 0.268 0.012

1 1 1 0.236 0.268 0.008

1 1 1 0.192 0.224 0.012

4 0.864 0.996 0.044

h = Arnborg-Lazard-rev p = 101.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 6 6 10.505 10.900 0.096

1 6 6 8.784 9.130 0.172

1 3 3 6.117 6.360 0.136

1 3 3 6.024 6.260 0.132

1 1 1 2.448 2.560 0.088

1 1 1 2.448 2.610 0.120

20 36.326 37.814 0.744

h = Barry p = 101.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 20 20 9.052 9.290 0.040

20 9.052 9.292 0.040

examples from literature 93

h = GonzalezGonzalez p = 101.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 3 3 1.972 2.140 0.024

1 1 1 0.828 0.868 0.012

4 2.800 3.004 0.036

h = eco5 p = 101.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 2 2 3.072 3.610 0.092

1 2 2 3.008 3.600 0.096

1 1 1 1.692 1.930 0.032

1 1 1 1.712 1.950 0.040

1 1 1 1.680 1.910 0.036

1 1 1 1.712 2.000 0.040

8 12.876 15.001 0.336

h = Cyclohexane p = 101.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 2 2 4.837 5.200 0.036

1 2 2 3.516 3.690 0.048

1 2 2 4.896 5.190 0.080

1 2 2 4.500 4.780 0.040

1 2 2 8.225 8.580 0.040

1 2 2 8.097 8.560 0.048

16 34.071 36.015 0.292

examples from literature 94

h = ℓ-3 p = 101.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 6 6 7.684 7.972 0.064

1 6 6 2.220 2.432 0.072

1 6 6 2.268 2.472 0.068

1 4 4 7.361 7.585 0.064

1 4 4 2.352 2.772 0.140

1 4 4 7.300 7.652 0.060

1 4 4 7.477 7.773 0.056

1 2 2 2.352 2.508 0.052

1 2 2 2.344 2.504 0.048

1 2 2 2.276 2.536 0.056

1 2 2 1.353 1.509 0.056

1 4 4 2.516 2.796 0.068

1 2 2 1.328 1.556 0.056

1 2 2 1.436 1.624 0.048

1 2 2 0.848 1.004 0.048

1 1 1 1.384 1.460 0.132

1 1 1 1.380 1.456 0.064

1 1 1 1.372 1.452 0.048

1 1 1 2.924 3.084 0.044

1 1 1 2.789 2.861 0.040

1 1 1 5.148 5.276 0.040

1 1 1 2.040 2.140 0.040

1 1 1 2.756 2.840 0.048

1 1 1 3.556 3.636 0.040

1 1 1 1.361 1.437 0.044

1 1 1 2.768 2.864 0.044

1 1 1 2.912 3.004 0.048

1 1 1 0.768 0.844 0.048

1 1 1 0.776 0.852 0.120

1 1 1 0.784 0.860 0.044

1 1 1 3.168 3.300 0.064

1 1 1 0.748 0.820 0.040

1 1 1 4.285 4.465 0.048

1 1 1 0.772 0.848 0.040

1 1 1 0.756 0.912 0.044

examples from literature 95

1 1 1 0.772 0.844 0.040

1 1 1 2.100 2.196 0.044

1 1 1 0.748 0.816 0.060

1 1 1 2.976 3.088 0.044

1 1 1 0.532 0.608 0.040

1 1 1 0.544 0.620 0.132

1 1 1 0.456 0.612 0.044

1 1 1 0.728 0.808 0.040

1 1 1 0.440 0.508 0.060

81 81 102.858 109.206 2.540

§Characteristic 962 592 769

h = ojika2 p = 962 592 769.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

2 1 2 0.796 1.460 1.360

2 1 2 0.408 0.636 1.300

1 1 1 0.208 0.264 0.024

1 1 1 0.212 0.348 0.028

2 1 2 0.792 1.180 1.264

8 2.416 3.888 3.976

h = ojika3 p = 962 592 769.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 1 1 0.208 0.268 0.028

1 1 1 0.200 0.260 0.024

1 1 1 0.280 0.340 0.024

1 1 1 0.200 0.252 0.024

4 0.888 1.120 0.100

examples from literature 96

h = Arnborg-Lazard-rev p = 962 592 769.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 6 6 25.310 26.000 0.296

1 6 6 27.302 28.100 0.372

1 6 6 16.861 17.700 0.332

1 2 2 7.876 8.480 0.308

20 77.349 80.321 1.308

h = Barry p = 962 592 769.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 2 2 0.192 0.380 0.048

1 2 2 0.188 0.296 0.052

1 2 2 0.188 0.292 0.132

1 2 2 0.188 0.288 0.048

1 2 2 0.188 0.284 0.044

1 2 2 0.188 0.368 0.040

1 2 2 0.188 0.277 0.036

1 2 2 0.272 0.360 0.040

1 1 1 0.152 0.228 0.040

1 1 1 0.152 0.224 0.040

1 1 1 0.148 0.304 0.032

1 1 1 0.148 0.212 0.032

20 2.192 3.513 0.584

h = GonzalezGonzalez p = 962 592 769.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 4 4 2.288 2.630 0.048

4 2.288 2.628 0.048

examples from literature 97

h = eco5 p = 962 592 769.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 3 3 5.728 8.730 0.928

1 3 3 5.929 8.910 0.956

1 1 1 1.464 2.710 0.352

1 1 1 1.996 2.970 0.352

8 15.117 23.321 2.588

h = Cyclohexane p = 962 592 769.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 2 2 6.937 7.590 0.088

1 2 2 8.248 8.940 0.200

1 2 2

1 2 2 11.248 12.300 0.100

1 1 1 2.056 2.300 0.100

1 1 1 2.073 2.370 0.152

1 1 1 2.052 2.250 0.176

1 1 1 1.996 2.410 0.080

1 1 1 2.504 2.700 0.104

1 1 1 4.480 4.700 0.068

1 1 1 4.765 4.920 0.184

1 1 1 2.476 2.620 0.180

16 48.835 53.092 1.432

h = ℓ-3 p = 962 592 769.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 4 4 0.000 0.372 0.316

1 4 4 0.000 0.212 0.260

1 4 4 0.000 0.364 0.248

1 4 4 0.000 0.312 0.340

1 3 3 0.000 0.280 0.204

1 2 2 0.000 0.176 0.328

1 2 2

1 2 2 0.000 0.228 0.344

1 2 2 0.000 0.268 0.196

1 2 2 0.000 0.160 0.276

examples from literature 98

1 2 2 0.000 0.252 0.328

1 1 1 0.000 0.164 0.160

1 1 1 0.000 0.224 0.172

1 1 1 0.000 0.356 0.148

1 1 1 0.000 0.164 0.132

1 1 1 0.000 0.224 0.132

1 1 1 0.000 0.176 0.216

1 1 1 0.000 0.260 0.136

1 1 1 0.000 0.240 0.132

1 1 1 0.000 0.176 0.208

1 1 1 0.000 0.132 0.196

1 1 1 0.000 0.132 0.216

1 1 1 0.000 0.168 0.128

1 1 1 0.000 0.312 0.124

1 1 1 0.000 0.184 0.308

1 1 1 0.000 0.185 0.232

1 1 1 0.000 0.148 0.148

1 1 1 0.000 0.136 0.220

1 1 1 0.000 0.160 0.344

1 1 1 0.000 0.196 0.136

1 1 1 0.000 0.224 0.188

1 1 1 0.000 0.340 0.264

1 1 1 0.000 0.152 0.272

1 1 1 0.000 0.184 0.148

1 1 1 0.000 0.232 0.132

1 1 1 0.000 0.224 0.220

1 1 1 0.000 0.148 0.304

1 1 1 0.000 0.268 0.148

1 1 1 0.000 0.236 0.200

1 1 1 0.000 0.152 0.264

1 1 1 0.000 0.176 0.428

1 1 1 0.000 0.148 0.240

1 1 1 0.000 0.160 0.124

1 1 1 0.000 0.160 0.156

1 1 1 0.000 0.132 0.144

1 1 1 0.000 0.252 0.184

1 1 1 0.000 0.136 0.208

examples from literature 99

1 1 1 0.000 0.132 0.136

1 1 1 0.000 0.188 0.224

1 1 1 0.000 0.260 0.152

1 1 1 0.000 0.220 0.172

1 1 1 0.000 0.184 0.208

1 1 1 0.000 0.160 0.148

1 1 1 0.000 0.252 0.132

1 1 1 0.000 0.140 0.128

1 1 1 0.000 0.212 0.164

1 1 1 0.000 0.132 0.132

1 1 1 0.000 0.228 0.132

1 1 1 0.000 0.148 0.136

1 1 1 0.000 0.212 0.212

1 1 1 0.000 0.148 0.204

81 0.000 12.301 12.232

§Characteristic 0

h = ojika2 p = 0.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 2 2 0.192 0.228 0.012

2 1 2 0.564 0.816 0.800

2 1 2 0.560 0.748 0.744

2 1 2 0.560 0.740 0.736

8 1.876 2.532 2.292

h = ojika3 p = 0.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 1 1 0.136 0.156 0.008

1 1 1 0.136 0.152 0.004

1 1 1 0.132 0.152 0.008

1 1 1 0.132 0.236 0.008

4 0.536 0.696 0.028

examples from literature 100

h = Arnborg-Lazard-rev p = 0.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 6 6 29.274 29.400 0.016

1 2 2 1.772 1.820 0.016

20 8203.865 8204.165 0.060

h = Barry p = 0.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 20 20 9.052 9.290 0.040

20 9.052 9.292 0.040

h = GonzalezGonzalez p = 0.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 4 4 2.288 2.630 0.048

4 2.288 2.628 0.048

h = eco5 p = 0.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 3 3 5.728 8.730 0.928

1 3 3 5.929 8.910 0.956

1 1 1 1.464 2.710 0.352

1 1 1 1.996 2.970 0.352

8 15.117 23.321 2.588

examples from literature 101

h = Cyclohexane p = 0.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 2 2 6.937 7.590 0.088

1 2 2 8.248 8.940 0.200

1 2 2

1 2 2 11.248 12.300 0.100

1 1 1 2.056 2.300 0.100

1 1 1 2.073 2.370 0.152

1 1 1 2.052 2.250 0.176

1 1 1 1.996 2.410 0.080

1 1 1 2.504 2.700 0.104

1 1 1 4.480 4.700 0.068

1 1 1 4.765 4.920 0.184

1 1 1 2.476 2.620 0.180

16 48.835 53.092 1.432

h = ℓ-3 p = 0.

im(f△; h) |f△| Bézout Weight Cones Total Optimized

1 6 6 5.972 6.130 0.020

1 6 6 2.548 2.760 0.020

1 6 6 2.596 2.720 0.020

1 5 5 5.149 5.290 0.020

1 5 5 2.356 2.470 0.020

1 5 5 2.384 2.490 0.100

1 5 5 1.764 1.890 0.016

1 8 8 24.398 24.600 0.024

1 4 4 4.396 4.530 0.020

1 3 3 2.168 2.270 0.016

1 4 4 5.888 6.020 0.020

1 4 4 2.849 3.010 0.020

1 4 4 0.628 0.776 0.020

1 1 1 3.236 3.300 0.008

1 1 1 3.000 3.080 0.012

1 1 1 6.605 6.840 0.008

1 1 1 5.064 5.180 0.012

1 1 1 3.012 3.090 0.012

1 1 1 3.936 4.020 0.012

examples from literature 102

1 1 1 1.480 1.550 0.012

1 1 1 3.077 3.140 0.008

1 1 1 3.152 3.220 0.008

1 1 1 4.288 4.420 0.008

1 1 1 0.772 0.832 0.008

1 1 1 5.765 5.870 0.012

1 1 1 3.076 3.160 0.012

1 1 1 0.872 0.924 0.008

1 1 1 4.132 4.230 0.008

1 1 1 0.616 0.668 0.008

81 115.179 118.491 0.492

random case testing (bivariate) 103

§7.2 Random Case Testing (Bivariate)

d Max Time Min Time Average

2 0.228 0.144 0.194

3 0.680 0.276 0.556

4 1.272 0.608 1.078

5 1.820 1.189 1.644

6 2.544 1.773 2.270

7 3.341 2.529 2.986

8 4.188 2.617 3.787

9 5.229 3.884 4.727

10 6.221 4.617 5.723

11 7.545 5.944 6.864

12 9.045 6.817 8.104

13 11.757 7.812 9.551

14 12.313 9.677 11.161

15 18.837 10.413 12.822

16 22.214 14.564 17.040

17 24.873 15.697 19.910

18 36.078 18.013 23.149

19 29.410 18.302 26.064

20 40.286 20.85 29.641

21 64.965 24.322 33.543

22 55.515 26.59 37.414

23 51.627 29.018 38.311

24 76.033 29.610 38.135

25 61.647 31.618 42.584

26 57.024 34.670 47.113

27 151.378 38.418 53.425

28 244.291 42.279 61.130

29 206.889 45.330 69.598

30 320.312 51.640 79.104

31 227.870 54.475 79.275

32 146.541 66.548 89.253

33 187.979 64.240 96.613

34 177.071 65.748 105.240

35 835.312 73.605 126.576

36 214.282 86.766 129.909

37 1734.821 101.394 167.719

38 471.741 101.519 166.836

Let h0 and h1 be two homogeneous polynomials of degree d (horizontal access). Plotted above

is the average time in seconds (vertical access) over 100 trials required to calculate a description
of {h0, h1} in Z101[x, y].

random case testing (bivariate) 104

d Max Time Min Time Average

2 0.260 0.160 0.222

3 1.712 0.404 1.174

4 3.545 2.048 2.771

5 5.416 3.376 4.456

6 7.457 5.113 6.412

7 10.216 6.768 8.684

8 12.833 8.825 11.130

9 15.901 9.021 13.988

10 19.145 14.009 17.049

11 24.062 15.457 20.742

12 28.190 19.201 24.342

13 33.414 22.477 29.372

14 38.819 24.730 33.396

15 45.106 28.570 38.475

16 55.375 33.738 44.004

17 58.612 33.298 50.474

18 65.812 41.927 57.648

19 81.237 51.727 66.026

20 89.282 53.596 76.124

21 100.21 64.956 85.827

22 109.747 68.308 94.293

23 66.256 115.347 97.612

24 71.076 124.512 105.164

25 74.785 162.347 117.440

26 93.97 159.774 129.5348

27 91.518 177.483 141.4713

28 100.778 195.884 155.323

29 119.419 217.074 177.308

30 122.8 245.335 189.783

31 127.944 420.554 214.194

32 140.753 302.039 230.133

33 137.685 422.694 252.320

34 167.982 594.469 276.888

35 182.779 396.033 316.008

36 190.636 574.968 333.008

37 217.377 864.262 370.141

38 224.418 818.135 423.000

Let h0 and h1 be two homogeneous polynomials of degree d (horizontal access). Plotted above

is the average time in seconds (vertical access) over 100 trials required to calculate a description
of {h0, h1} in Z962 592 769[x, y].

random case testing (bivariate) 105

h = randpoly([x,y], homogeneous, deg=d) mod 0.

d Max Time Min Time Average

2 0.068 0.144 0.111

3 0.200 0.264 0.237

4 0.340 0.464 0.390

5 0.480 0.616 0.569

6 0.632 0.804 0.763

7 0.892 1.084 0.984

8 1.128 1.424 1.243

9 1.324 1.704 1.536

10 1.565 2.036 1.834

11 1.861 2.568 2.223

12 2.132 3.088 2.621

13 2.516 4.612 3.236

14 2.784 7.512 4.106

15 3.248 32.07 6.517

16 3.536 40.134 9.682

17 3.80 123.464 19.760

18 4.836 479.066 50.156

19 1163.633 4.849 124.730

20 137.957 33.638 9.068

21 319.104 2240.668 132.613

22 8.525 1086.528 151.689

Let h0 and h1 be two homogeneous polynomials of degree d (horizontal access). Plotted above

is the average time in seconds (vertical access) over 100 trials required to calculate a description
of {h0, h1} in Q[x, y].

comparison to other systems 106

§7.3 Comparison to other systems

§Magma

Since Magma is a commercial product these experiments were done on a

different machine. The relevant hardware details are as follows.

os : Ubuntu 10.10

processor : 4

vendor_id : GenuineIntel

model name : Intel(R) Xeon(R) CPU E5620 @ 2.40GHz

cpu MHz : 1596.000

cache size : 12288 KB

We timed Magma’s IntersectionMultiplicty [22, Example H84E6]

command which can only accept rational points; thereby we are only able

to provide timings for rational zeros. As is the case we report the partial

Bézout bound (that is, the sum of the intersection multiplicities) and the

total time required to calculate them. (Times are reported in seconds.)

Note some systems are entirely disqualified as all their zeros reside in

the algebraic closure.

Characteristic 0

System Partial Weight Bézout Weight Time

Ojika2 6 8 0.05

Ojika3 4 4 0.00

Eco5 2 8 0.08

ℓ-3 15 81 2.67

comparison to other systems 107

Characteristic 101

System Partial Weight Bézout Weight Time

Ojika2 6 8 0.05

Ojika3 4 4 0.001

Eco5 2 8 0.240

ℓ-3 15 81 2.680

Characteristic 962 592 769

System Partial Weight Bézout Weight Time

Ojika2 8 8 0.010

Ojika3 4 4 0.010

Eco5 2 8 0.020

Barry 4 20 0

Cyclohexane 8 16 0.240

ℓ-3 49 81 8.15

Bibliography

[1] Maria Emilia Alonso, Teo Mora, and Mario Raimondo. Computing

with algebraic series. In Proceedings of the ACM-SIGSAM 1989 Inter-

national Symposium on Symbolic and Algebraic Computation, ISSAC

’89, Portland, Oregon, USA, July 17-19, 1989, pages 101–111, 1989.

[2] Parisa Alvandi, Changbo Chen, and Marc Moreno Maza. Computing

the limit points of the quasi-component of a regular chain in dimension

one. In CASC, pages 30–45, 2013.

[3] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of trian-

gular sets. J. Symb. Comp., 28(1-2):105–124, 1999.

[4] P. Aubry and M. Moreno Maza. Triangular sets for solving polynomial

systems: a comparison of four methods. Technical Report LIP6/009,

LIP6, Université Paris 6, Paris, 1997.

[5] D. Bini and B. Mourrain. Polynomial test suite. http://www-sop.

inria.fr/saga/POL/. Accessed: April 1, 2012.

[6] F. Boulier, F. Lemaire, and M. Moreno Maza. Well known theorems

on triangular systems and the D5 principle. In Proc. of Transgressive

Computing 2006, Granada, Spain, 2006.

[7] François Boulier, François Lemaire, and Marc Moreno Maza. Well

known theorems on triangular systems. Technical Report LIFL 2001–

09, Université Lille I, LIFL, 2001.

108

BIBLIOGRAPHY 109

[8] C. Chen and M. Moreno Maza. Algorithms for computing triangular

decompositions of polynomial systems. In Proc. ISSAC’11, pages 83–

90. ACM, 2011.

[9] Jin-San Cheng and Xiao-Shan Gao. Multiplicity-preserving triangular

set decomposition of two polynomials. Journal of Systems Science and

Complexity, pages 1–25, 2011.

[10] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms.

Spinger-Verlag, 1st edition, 1992.

[11] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Graduate

Text in Mathematics, 185. Springer-Verlag, New-York, 1998.

[12] B. H. Dayton and Z. Zeng. Computing the multiplicity structure in

solving polynomial systems. In Proceedings of ISSAC ’05, pages 116–

123. ACM, 2005.

[13] W. Fulton. Introduction to intersection theory in algebraic geome-

try, volume 54 of CBMS Regional Conference Series in Mathematics.

Published for the Conference Board of the Mathematical Sciences,

Washington, DC, 1984.

[14] W. Fulton. Algebraic curves. Advanced Book Classics. Addison-

Wesley, 1989.

[15] Patrizia Gianni, Barry Trager, and Gail Zacharias. Gröbner bases

and primary decomposition of polynomial ideals. Journal of Symbolic

Computation, 6(2):149–167, 1988.

[16] Robin Hartshorne. Algebraic geometry. Springer, 1977.

[17] M. Kalkbrener. A generalized euclidean algorithm for computing tri-

angular representations of algebraic varieties. J. Symb. Comp., 15:143–

167, 1993.

[18] Anthony W. Knapp. Advanced algebra. Cornerstones. Birkhäuser

Boston Inc., Boston, MA, 2007. Along with a companion volume ıt

Basic algebra.

BIBLIOGRAPHY 110

[19] D. Lazard. A new method for solving algebraic systems of positive

dimension. Discr. App. Math, 33:147–160, 1991.

[20] X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The modpn

library: Bringing fast polynomial arithmetic into maple. In MICA’08,

pages 73–80, 2008.

[21] Y. L. Li, B. Xia, and Z. Zhang. Zero decomposition with multiplicity

of zero-dimensional polynomial systems. CoRR, abs/1011.1634, 2010.

[22] Magma. Local geometry. http://www.itcs.umich.edu/scs/magma/

text1029.htm. [Online; accessed 04-July-2014].

[23] Maplesoft. Regularchains[triangularize]. http://www.maplesoft.

com/support/help/Maple/view.aspx?path=RegularChains/. [On-

line; accessed 26-May-2014].

[24] Steffen Marcus, Marc Moreno Maza, and Paul Vrbik. On Fulton’s algo-

rithm for computing intersection multiplicities. In Computer Algebra

in Scientific Computing, pages 198–211. Springer Berlin Heidelberg,

2012.

[25] M. G. Marinari, H. M. Mller, and T. Mora. On multiplicities in polyno-

mial system solving. TRANS. AMER. MATH. SOC, 348:3283–3321,

1996.

[26] Ferdinando Mora. An algorithm to compute the equations of tangent

cones. In Jacques Calmet, editor, Computer Algebra, volume 144 of

Lecture Notes in Computer Science, pages 158–165. Springer Berlin

Heidelberg, 1982.

[27] T Mora and G Pfister C Traverso. An introduction to the tangent

cone algorithm issues in robotics and non-linear geometry. Advances

in Computing Research, 6:199–270, 1992.

[28] M. Moreno Maza. A new algorithm for computing triangular decom-

positions of algebraic varieties. Technical Report TR 4/98, NAG Ltd,

Oxford, UK, 1998.

BIBLIOGRAPHY 111

[29] Bernard Mourrain. Isolated points, duality and residues. Journal of

Pure and Applied Algebra, 117:469–493, 1997.

[30] I. R. Shafarevich. Basic algebraic geometry. 1. Springer-Verlag, Berlin,

second edition, 1994.

[31] Singular. Online manual - imult. http://www.singular.uni-kl.de/

Manual/latest/sing_1150.htm#SEC1225. [Online; accessed 04-July-

2014].

[32] D. M. Wang. Elimination Methods. Springer, 2000.

[33] Wikipedia. Algebraic Variety — Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Algebraic_variety. [Online; ac-

cessed 5-May-2014].

[34] Wikipedia. Intersection number — Wikipedia, the free encyclope-

dia. http://en.wikipedia.org/wiki/Intersection_number. [On-

line; accessed 28-July-2014].

[35] Wikipedia. Regular chain — Wikipedia, the free encyclopedia. http:

//en.wikipedia.org/w/index.php?title=Regular_chain. [On-

line; accessed 18-June-2014].

[36] W. T. Wu. On zeros of algebraic equations – an application of Ritt

principle. Kexue Tongbao, 31(1):1–5, 1986.

[37] W. T. Wu. A zero structure theorem for polynomial equations solving.

MM Research Preprints, 1:2–12, 1987.

Index

affine space, 14

affine spaces, 14

back substitution, 23

base fields, 14

coefficient, 9

cylindrification, 87

Dehomogenizing, 66

description, 48

descriptions, 50

Fulton’s algorithm, 1

function notation, 15

generic points, 29

graded, 20

Hilbert Polynomial, 20

homogeneous component of least de-

gree, 65

ideal, 17

ideal brackets, 17

indeterminates, 12

intersection multiplicity, 34, 36, 39

iterated pseudo-quotient, 25

Iterated Pseudo-remainder, 24

iterated pseudo-remainder, 24

kernel, 15

leading coefficient, 12

leading monomial, 12

leading term, 12

linear part, 63

local ring, 35

main variable, 10, 23

maximal, 19

maximal ideals, 19

meromorphic function, 72

monomial, 8

monomial ordering, 10

monomials, 8, 12

multiplicity, 37

non-singular, 63

nullspace, 15

polynomial, 9

polynomial map, 15

polynomial mappings, 14

powerset, 16

prime, 19

prime ideals, 19

pseudo-quotient, 14

pseudo-remainder, 14

pull-back, 82

112

INDEX 113

quasi component, 26

quasi-component, 26

quotient, 13

radical, 18

radical of ⟨ f ⟩, 18
regular chain, 27

regular elements, 27

Regular points, 35

remainder, 13

Ritt characteristic set, 25

saturation, 27

saturation ideal, 26

secants, 67

singular, 63

singular locus, 63

smooth, 63

Solving, 15

square triangular set, 24

Strong Nullstellensatz, 18

tangent cone, 65

tangent space, 63

term, 9

terms, 9, 11

the ideal defined by V , 17

total degree, 11

total ordering, 10

transversally intersect, 80

triangular sets, 23

triangularization, 29

uniformizer, 82

univariate, 9

variety, 16

Wu characteristic sets, 25

Zariski closure, 27

zero-divisor, 27

1

Paul Vrbik · The University of Western Ontario · London Ontario Canada

Education

1. Ph.D. Computer Science, University of Western Ontario, 2014.

2. M.Sc. Pure Mathematics, Simon Fraser University, 2008.

3. B.Sc. Pure Mathematics, McMaster University, 2006.

Contributions to research and development

i. Books

1. Jan Vrbik and Paul Vrbik. (2012) Informal Introduction to Stochastic Processes with Maple.
ISBN-10: 1461440564. ISBN-13: 978-1461440567. Springer

ii. Articles published or accepted in refereed journals

1. Michael Coons, Paul Vrbik. (2012) An Irrationality Measure for Regular Paperfolding Numbers.
Journal of Integer Sequences. Volume 14. Issue 2.

2. Braden Coles, Paul Vrbik, Robert D. Giacometti, and Stuart M. Rothstein. (2008) Gamma
Distribution Model To Provide a Direct Assessment of the Overall Quality of Quantum Monte
Carlo-Generated Electron Distributions. J. Phys. Chem. A, 2008, 112 (10), pp 2012-2017.

iii. Refereed conference proceedings

1. Parisa Alvandi, Changbo Chen, Steffen Marcus, Marc Moreno Maza, Éric Schost, Paul Vr-
bik. (2014) Doing Algebraic Geometry with the RegularChains Library. Mathematical Software
(ICMS 2014). Lecture Notes in Computer Science. Springer Berlin Heidelberg.

2. Marc Moreno Maza, Éric Schost, Paul Vrbik*. (2012) Inversion Modulo Zero-dimensional Reg-
ular Chains. Proceedings of the 14th International Workshop on Computer Algebra in Scientific
Computing (CASC 2012. Maribor, Slovenia). 198-210. Springer Verlag.

3. Steffen Marcus, Marc Moreno Maza, Paul Vrbik. (2012) On Fulton’s Algorithm for Computing
Intersection Multiplicities. Proceedings of the 14th International Workshop on Computer Algebra
in Scientific Computing (CASC 2012. Maribor, Slovenia). 224-235. Springer Verlag.

4. Michael Monagan, Paul Vrbik*. (2009) Lazy and Forgetful Polynomial Arithmetic and Ap-
plications. Proceedings of the 11th International Workshop on Computer Algebra in Scientific
Computing (CASC 2009. Kobe, Japan). 226-239. Springer Verlag. (MSc work).

5. B. Coles, I. Bosa, P. Vrbik, and R. M. Rothstein*. (2005) Analysis of diffusion Monte Carlo
distributions. (Pacifichem 2005. USA, Honolulu). Invited paper. American Institute of Physics.

iv. Non-refereed contributions

1. Marc Moreno Maza, Paul Vrbik*. (2012) On Fulton’s Algorithm for Computing Intersection
Multiplicities. Poster presented at East Coast Computer Algebra Day (ECCAD 2012. Rochester,
MI).

2. Marc Moreno Maza, Paul Vrbik*. (2011) Inverting Matrices Modulo Regular Chains. Poster
presented at ISSAC 2011 (San Jose, CA).

3. Greg Reid, Paul Vrbik*. (2009) Visualization of Homotopy’s and their Properties. Poster
presented at East Coast Computer Algebra Day 2009 (Kingston, RI).

2

4. Michael Coons*, Paul Vrbik. (2007) On the density of integers bi-representable as the sum of
two cubes. Poster presented at CMS-MITACS Joint Conference (Winnepeg, MB).

5. P. Vrbik, S. Jahed. (2006) Verifying Baklava. Undergraduate Thesis (McMaster University).

6. Paul Vrbik*, Stuart M. Rothstein. (2005) Determining α-polarizability of hydrogen molecule
using Quantum Monte Carlo. Poster presented at Mercury conference on computational chem-
istry (Clinton, NY).

v. Technology Transfers

1. Paul Vrbik*. (2012) Algebraic Geometry Tools (regular chains sub-library). Software written
for Maplesoft.

2. Paul Vrbik*. (2006) A generalized algorithm for Quantum Monte Carlo on arbitrary molecules.
Software written for the Theoretical Chemistry Lab at Brock University.

Honours and Awards

i. Scholarships

1. Alexander Graham Bell Canada Graduate Scholarships, Doctorate. $105,000. (2010).

2. Graduate Fellowship. Simon Fraser University. $6,250. (2008).

3. MITACS Industrial Scholarship. $15,000. (2008).

4. McMaster Entrance Scholarship. $4,000. (2002).

ii. Distinctions

1. University Students Council, Teaching Honour Roll. (2012).

2. UWORCS, best talk in session. (2011).

3. UWORCS, best talk in session. (2009).

4. CECM Days, second place poster prize. (2008).

iii. Nominations

1. For USC Teaching Award by students. CS3331A Foundations of Computer Science (2013). This
award is given for execellence in instruction.

2. For best TA by Dr. Charles Ling at UWO, CS1011 Applied Logic. (2011).

3. For best TA by Dr. Marc Moreno Maza at UWO, CS1026 Introduction to Programming. (2010).

4. For McMaster President’s Award by the department of Mathematics at McMaster University.
(2006). This award is considered the schools highest honour in student leadership.

Relevant activities

i. Teaching

1. Instructor, CS 3331 “Foundations of Computer Science”, Fall 2012.

2. Teaching Assistant, Computer Science, University of Western Ontario, 2009-present.

3. Teaching Assistant, Mathematics, Simon Fraser Univerity, 2006-2007.

4. Teaching Assistant, Computer Science, McMaster University, 2004-2006. In addition to my
regular TA duties I wrote lab handouts and courseware that are still being used.

3

5. Student Director of High School Outreach, McMaster University, 2004-2005. I ran an outreach
program to teach “gifted” high school students mathematics.

ii. Committees

1. Math representative to the Graduate Issues Committee, Simon Fraser University, 2007.

2. Mathematics and Statistics representative to the Ad Hoc Science Curriculum Review Committee
(SCRC), McMaster University, 2006. The mandate of the SCRC was to examine the nature and
delivery of the undergraduate curriculum in Science, and to make recommendations to the Dean
and to the departments and programs of the Faculty of Science.

iii. Peer Review

1. ISSAC 2013 (1), 2012 (1), 2010 (2).

2. CASC 2011 (2).

iv. Elected Positions

1. Members Services Officer, Math Grad Student Union, Simon Fraser University, 2007.

2. President, Math Student Union, Simon Fraser University, 2006.

3. President, Math and Stats Society, McMaster University, 2003, 2004, 2005.

	Western University
	Scholarship@Western
	January 2015

	Computing Intersection Multiplicity via Triangular Decomposition
	Paul Vrbik
	Recommended Citation

