
Hardware Acceleration Technologies in Computer Algebra: Challenges

and Impact

(Thesis format: Monograph)

by

Sardar Anisul Haque

Graduate Program

in

Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© S. A. Haque 2013

Abstract

The objective of high performance computing (HPC) is to ensure that the compu-

tational power of hardware resources is well utilized to solve a problem. Various

techniques are usually employed to achieve this goal. Improvement of algorithm to

reduce the number of arithmetic operations, modifications in accessing data or rear-

rangement of data in order to reduce memory traffic, code optimization at all levels,

designing parallel algorithms with smaller span or reduced overhead are some of the

attractive areas that HPC researchers are working on.

In this thesis, we investigate HPC techniques for the implementation of basic

routines in computer algebra targeting hardware acceleration technologies. We start

with a sorting algorithm and its application to sparse matrix-vector multiplication for

which we focus on work on cache complexity issues. Since basic routines in computer

algebra often provide a lot of fine grain parallelism, we then turn our attention to

many-core architectures on which we consider dense polynomial and matrix operations

ranging from plain to fast arithmetic. Most of these operations are combined within

a bivariate system solver running entirely on a graphics processing unit (GPU).

Keywords. High Performance Computing, Cache complexity, Parallel algorithms,

Many core machines, multi-core machines, Computer algebra.

ii

Acknowledgments

I would like to thank my thesis supervisor Dr. Marc Moreno Maza in the department

of Computer Science at the University of Western Ontario. His helping hands toward

the completion of this research work were always extended for me. He consistently

helped me on the way of this thesis and guided me in the right direction whenever he

thought I needed it. I am grateful to him for his excellent support to me in all the

steps of successful completion of this research.

I want to thank Dr. Wei Pan of Intel Corporation for discussions around our CUDA

implementation for condensation method in the finite field case. Many thanks to Dr.

Jürgen Gerhard of Maplesoft for his help during my internship. My sincere thanks

to Dr. Shahadat Hossain in the Department of Computer Science at the University

of Lethbridge for taking the time to share his thoughts on sparse matrices with me.

I want to thank Dr. Yuzhen Xie, Dr. Changbo Chen in the Department of Com-

puter Science at the University of Western Ontario for providing me help and sharing

their knowledge.

All my sincere thanks and appreciation go to all the members from our Ontario

Research Center for Computer Algebra (ORCCA) lab, Computer Science Department

for their invaluable teaching support as well as all kinds of other assistance.

Many thanks to the members of my committee Dr. Éric Schost, Dr. Michael Bauer,

Dr. Kenneth A. McIsaac of the University of Western Ontario and Dr. Yuxiong He

of Microsoft Research for their reading of this thesis and comments.

Finally, I would like to thank all of my friends and family members for their

consistent encouragement and support.

To you, I dedicate this thesis, Tuie.

iii

Contents

Abstract ii

Acknowledgments iii

Table of Contents iv

List of Algorithms viii

List of Figures x

List of Tables xii

1 Introduction 1

2 Background 4

2.1 Random access machine (RAM) model 4

2.2 The PRAM model . 5

2.2.1 Parallel time, efficiency and speedup factor 7

2.2.2 Different types of PRAM models 7

2.3 The ideal cache model . 8

2.4 The multi-core machine model . 10

2.5 The fork-join parallelism model . 12

2.5.1 The work law . 13

2.5.2 The span law . 13

2.5.3 Parallelism . 13

2.5.4 Performance bounds . 14

2.5.5 Work, span and parallelism of classical algorithms 14

2.6 Systolic arrays . 14

iv

3 Many-core Machine Model 16

3.1 Introduction . 16

3.2 A Many-core machine model . 18

3.2.1 Many-core machine characteristics 19

3.2.2 Many-core machine programs 21

3.2.3 Complexity measures for the many-core machine model 23

3.2.4 A Graham-Brent theorem with overhead 24

3.2.5 Justification of the Many-core machine model 24

4 Cache-oblivious Counting Sort Algorithm 26

4.1 Introduction . 26

4.2 The classical counting sort algorithm 27

4.3 Cache-oblivious counting sort algorithm 28

4.4 Experiments . 34

4.5 Conclusion . 34

5 A New Integer Sorting Algorithm 36

5.1 Introduction . 36

5.2 Notations . 37

5.3 Cost of the comparand function for large integers 38

5.4 A new sorting algorithm . 39

5.4.1 Creating Ak+1 from Ak . 40

5.5 Complexity . 43

5.6 Conclusion . 44

6 Cache Friendly Sparse Matrix-vector Multiplication 45

6.1 Introduction . 45

6.2 Background . 46

6.2.1 Compressed row storage scheme (CRS) 47

6.2.2 SpMxV with CRS scheme . 47

6.2.3 Compressed column storage scheme (CCS) 47

6.2.4 Notations . 47

6.2.5 Binary reflected Gray code . 48

6.2.6 Sorting of binary reflected Gray codes 48

6.3 Proposed reordering method . 49

6.3.1 Initial column ordering . 51

6.3.2 Row ordering . 51

v

6.3.3 Algorithm merge(A1, b,m) . 54

6.3.4 Iterative column ordering . 54

6.4 Complexity . 56

6.4.1 Time complexity . 56

6.4.2 Memory complexity . 56

6.4.3 Cache complexity . 56

6.5 Experimental results . 59

6.6 Conclusion . 60

7 Implementation of Determinant by Condensation Method on GPU 63

7.1 Introduction . 63

7.2 The condensation method . 64

7.2.1 The formula of Salem and Said 65

7.2.2 The algebraic complexity of the condensation method 65

7.2.3 The cache complexity of condensation method 66

7.3 GPU implementation: the finite field case 67

7.3.1 Data mapping . 67

7.3.2 Finite field arithmetic . 68

7.3.3 Experimental results . 68

7.4 GPU implementation: the floating point case 70

7.4.1 Finding the pivots . 70

7.4.2 Multiplication of the successive pivots 71

7.4.3 Experimentation . 71

7.5 Conclusion . 74

8 Implementation of Plain Multiplication for Univariate Polynomials

on GPU 77

8.1 Introduction . 77

8.1.1 Elements of syntax . 79

8.2 Polynomial multiplication algorithms 79

8.2.1 Multiplication phase . 80

8.2.2 Addition phase . 80

8.2.3 Arbitrary x . 82

8.2.4 Comparison of running time estimates 83

8.2.5 Experimental results . 83

8.3 Conclusion . 84

vi

9 Implementation of the Euclidean Algorithm for Univariate Polyno-

mial GCDs on GPU 86

9.1 Introduction . 86

9.2 Importance of plain division and Euclidean algorithm for polynomials

with smaller degrees . 88

9.3 Plain division on the GPU . 89

9.3.1 Naive algorithm . 89

9.3.2 Optimized algorithm . 91

9.3.3 Comparison of running time estimates 92

9.3.4 Experimental results of our optimized univariate division on

GPU . 95

9.4 Euclidean algorithm on GPU . 96

9.4.1 Naive algorithm . 96

9.4.2 Optimized algorithm . 97

9.4.3 Comparison of running time estimates 101

9.4.4 Experimental results of our optimized Euclidean algorithm on

GPU . 102

9.5 Conclusion . 103

10 Evaluation and Interpolation of Univariate Polynomial by Subprod-

uct Tree Technique on GPU 104

10.1 Introduction . 104

10.2 Background . 106

10.3 Subproduct tree . 110

10.4 Subinverse tree . 113

10.5 Polynomial evaluation . 119

10.6 Polynomial interpolation . 121

10.7 Experimentation results . 124

10.8 Conclusion . 129

11 Conclusion 130

Curriculum Vitae 139

vii

List of Algorithms

1 CountingSort(A, n, r) . 27

2 PreprocessingCounting(A, n,m, r) . 30

3 PartitionFurther(A, n,m, r, r′) . 31

4 ExploreV(ai.v, u,m) . 38

5 Create(L′, n, k,m) . 40

6 SpMxV(value, colind, rowptr, x) . 48

7 BRGC(CRS(S),CCS(S),m, n, b, t) . 52

8 RowOrdering(A1, CRS(S),CCS(S), m) 54

9 RowPerm(A1, R,R,CRS(S)) . 55

10 MulSuccPivot(X) . 72

11 PlainMultiplicationGPU(a, b, d, x) . 80

12 MulKer(a, b,M, n, x) . 81

13 AddKer(M,d, c, x, r, i) . 82

14 Division(a, b) . 87

15 EuclideanGCD(a, b) . 87

16 NaivePlainDivisionGPU(a, b) . 91

17 NaiveDivKernel(a, b, q, i, d) . 91

18 OptimizePlainDivisionGPU(a, b, s) . 93

19 OptDivKer(a, b, q, i, d, s) . 94

20 NaivePlainGcdGPU(a, b) . 97

21 NaivePlainGcdKernel(a, b, st) . 98

22 OptimizedPlainGcdGPU(a, b, s) . 99

23 OptGcdKer(a, b, s st) . 100

24 SubproductTree(m0, . . . ,mn−1) . 107

25 Inverse(f, ℓ) . 109

26 TopDownTraverse(f ′, k′, h′,Mn, F) . 114

27 OneStepNewtonIteration(f, g, i) . 116

28 EfficientOneStep(M ′
i,j ,InvMi,j , i) . 116

viii

29 InvPolyCompute(Mn,InvMi,j) . 117

30 SubinverseTree(Mn, H) . 117

31 FastRemainder(a, b) . 121

32 LinearCombination(Mn, c0, . . . , cn−1) . 122

33 FastInterpolation(u0, . . . , un−1, v0, . . . , vn−1) 123

ix

List of Figures

2.1 The PRAM model. 6

2.2 The ideal-cache model. 8

2.3 Scanning an array of n = N elements, with L = B words per cache line. 10

2.4 A directed acyclic graph (dag) representing the execution of a multi-

threaded program. Each vertex represents an instruction while each

edge represents a dependency between instructions. 12

3.1 Overview of a many-core machine program 20

3.2 Adjust any program into the DAG of many-core machine model . . . 25

6.1 After initial column ordering. 51

6.2 After row permutation. 52

6.3 The distribution of different types of non-zeros. 57

7.1 Effective memory bandwidth of condensation method. 69

7.2 CUDA code for condensation method and determinant on NTL over

finite field. 71

7.3 CUDA code for condensation method and determinant on MAPLE

over finite field. 71

8.1 Dividing the work of coefficient multiplication among threadblocks. . 81

9.1 A naive division step. 90

9.2 Optimize division steps. 93

9.3 Comparison between parallel plain division on CUDA and fast division

in NTL for univariate polynomials with large degree gap. 95

9.4 Comparison between parallel GCD on CUDA and FFT-based GCD in

NTL for univariate polynomials, with the same degree (n = m). . . . 102

10.1 Subproduct tree associated with the point set U = {u0, . . . , un−1}. . . 107

x

10.2 Our GPU implementation versus FLINT for FFT-based polynomial

multiplication. 125

10.3 Evaluation lower degrees . 126

10.4 Evaluation higher degrees . 127

10.5 Interpolation lower degrees . 127

10.6 Interpolation higher degrees . 128

xi

List of Tables

2.1 Work, span and parallelism of classical algorithms. 15

3.1 Algorithm parameters . 23

4.1 CPU times in seconds for both classical and cache-oblivious counting

sort algorithm. 34

6.1 Test matrices with the number of non-zeros of type α, β and δ. 60

6.2 Normalized cache misses on ideal cache model simulator and normal-

ized CPU time for SpMxVs. 61

6.3 Preprocessing time. 62

7.1 Determinant of Hilbert matrix by MAPLE, MATLAB, and condensa-

tion method on both CPU and GPU. 74

7.2 Time(s) required to compute determinant of Hilbert Matrix by

MAPLE, MATLAB, and condensation method on both CPU and GPU. 75

8.1 Long multiplication (n = m = 5). 78

8.2 Comparison between plain and FFT-based polynomial multiplications

for balanced pairs (n = m) on CUDA. 84

8.3 Computation time for plain multiplication on CUDA for unbalance

pairs (n 6= m). 84

9.1 GCD implementation on CUDA with two different values of s. 101

10.1 Computation time for random polynomials with different degrees (2K)

and points. All of the times are in seconds. 124

10.2 Execution times of multiplication . 125

10.3 Execution times of polynomial evaluation and interpolation. 126

10.4 Effective memory bandwidth . 128

xii

Chapter 1

Introduction

This thesis deals with the implementation of basic routines in computer algebra tar-

geting multi-core and many-core architectures. We consider routines from linear

algebra (sparse and dense) and polynomial system solving. In contrast to their coun-

terpart in numerical computing, these routines perform calculations in an exact and

complete way. As a consequence, they are highly demanding in computer resources,

time and memory. This often limits the impact of computer algebra software to

problems of moderate size. However, the abundant computing power of hardware

acceleration technologies suggests that much harder problems could be attacked with

symbolic computation.

With respect to standard high-performance computing challenges, computer alge-

bra low-level routines fall into the following categories.

(P1): Memory access patterns are highly irregular and work count is essentially pro-

portional to the number of memory accesses. Typical examples are sparse ma-

trix arithmetic and sparse polynomial arithmetic.

(P2): The amount of work is much larger than the amount of reads/writes while

memory access patterns are rather regular. Typical examples are dense matrix

arithmetic and dense polynomial arithmetic. While these routines allow for fine

grain parallelism, certain complex memory access patterns (like for Fast Fourier

Transform algorithms) make these operations not so suitable for multi-cores.

Problems of the first kind are more suitable for multicore architectures while problems

of the second kind are eligible for many-core accelerators (like Graphics Processing

Units).

In this thesis, we are interested in developing tools for analyzing algorithms and

implementation techniques targeting hardware acceleration technologies. On multi-

1

cores, we consider operations that are not suitable for many-cores, due to large data

size (a frequent issue in computer algebra) and that pause challenges in terms of

memory transfer. For such operations, we propose pre-processing techniques that

reshape the input data so as to reduce memory transfer when those operations are

applied to the reshaped data. Cache complexity analysis and experimentation confirm

the effectiveness of the proposed techniques. To be more specific, our work is driven by

classical problem from linear algebra: improving data locality in sparse matrix vector

(SpMxV) multiplication. This problem is hard as the permutation of rows or columns

of a sparse matrix to maximize locality in SpMxV multiplication is NP-hard [59]. In

Chapter 6, we propose a reordering algorithm for sparse matrices that improves the

data locality during (SpMxV) multiplication. In each test-case, we re-arrange the

input data and show that the cost of this re-arrangement can be amortized against

the cost of calculations with the input data, such as linear system solving by iterative

methods (conjugate gradient, etc.). We provide cache complexity analysis whose

favorable results are confirmed experimentally. As a by-product of this research, we

propose a new integer sorting algorithm, which is suitable for large sparse objects.

This algorithm is described in Chapter 5.

On many-cores, we consider operations that are both data intensive and compute

intensive, which is another frequent feature of computer algebra calculations, as men-

tioned above. For such operations, we propose a computational model for designing

algorithms targeting many-cores, with a focus on reducing parallelism overheads. We

present a model of multithreaded computation namely many-core machine model (in

Chapter 3) that combines the fork-join and SIMD parallelisms, with an emphasis

on estimating parallelism overheads, so as to reduce scheduling and communication

costs in GPU programs. We have applied this model and successfully reduced par-

allelism overheads for several basic routines in polynomial algebra. For polynomial

multiplication, our theoretical analysis allows us to reduce parallelism overheads due

not only to data transfer but also to code divergence, see Chapter 8. For the Eu-

clidean algorithm, our running time estimates match those obtained with the Systolic

VLSI Array Model ([9]). Meanwhile, our CUDA code implementing this optimized

Euclidean algorithm runs within the same estimate analyzed by our model for input

polynomials with degree up to 100,000. This is reported in Chapter 9.

In Chapter 10, we propose a parallel algorithms for performing subproduct tree

construction, evaluation and interpolation and report on their implementation on

many-core GPUs. We enhance the traditional algorithms for polynomial evaluation

and interpolation based on subproduct-trees, by introducing the notion of a subinverse

2

tree. For subproduct-tree operations, we demonstrate the importance of adaptive al-

gorithms. That is, algorithms that adapt their behavior to the available computing

resources. In particular, we combine parallel plain arithmetic and parallel fast arith-

metic.

In Chapter 7, we present a GPU implementation of the condensation method for

computing the determinant of a matrix. To the best of our knowledge, this is the

first study of the parallelization of this algorithm. We consider both matrices with

finite field coefficients and floating point number coefficients. Notably, the latter case

exhibits favorable behavior in terms of numerical stability.

All our GPU code is freely available in source at www.cumodp.org.

3

Chapter 2

Background

Until the advent of multi-core and many-core architectures, algorithms subject to

effective implementation on personal computers were often designed with algebraic

complexity as the main complexity measure and with sequential running time as

the main performance counter [40, 41, 42, 13, 20]. Nevertheless, during the past

40 years, the increasing gap between memory access time and CPU cycle time, in

favor of the latter, brought another important and practical efficiency measure: cache

complexity [36, 17]. In addition, with parallel processing becoming available on every

desktop or laptop, the work and span of an algorithm expressed in the fork-join

multithreaded model [18, 13] have become the natural quantities to compute in order

to estimate parallelism.

These complexity measures (algebraic complexity, cache complexity, parallelism)

are defined for computation models that largely simplify reality. On many-core archi-

tectures, several phenomena (parallelism overhead, synchronization among threads of

all thread blocks, utilization of all multiprocessors, etc.) limit the performances of

applications which, theoretically, have a lot of opportunities for concurrent execution.

2.1 Random access machine (RAM) model

The RAM is a simple model of computation which is used to measure the run time

of an algorithm by counting up the number of steps it takes on a given problem

instance. Unlike Turing machine, which could not access the memory immediately

without accessing all intermediate cells, it can access the arbitrary memory in a

single step process. The memory considered, in this model, is unbounded and has the

capability to store arbitrarily large integers in each of its memory cells. This model

4

can be programmed in some specified but arbitrary programming language. Some of

the properties of this model are as follows:

• Each “simple operation” like addition, subtraction, multiplication, assign,

branching, calling, etc. takes exactly 1 time step.

• Loops and procedures are considered to be the composition of many single-step

operations.

• Each memory access takes exactly one time step, and we have as much memory

as we need. The RAM model takes no notice of whether an item is in cache or

on the disk, which simplifies the analysis.

A common problem of this model is that it is too simple, that is, these assumptions

make the conclusions and analysis too hard to believe in practice. For instance,

multiplying two numbers does not have the same cost as adding two numbers, which

clearly violates the first assumption of the model. Memory access times also differ

greatly depending on whether data are available in cache or on memory or on the disk,

which violates the third assumption. However, in spite of having such restrictions,

this model does not provide misleading results for the real world problems, since this

only assumes a simple abstract model of computation. Furthermore, robustness of

the RAM model enables us to analyze algorithms in a machine-independent way.

2.2 The PRAM model

The Parallel Random Access Machine (PRAM) is a natural generalization of RAM.

It has unbounded number of processors P0, P1, P2, · · · . Each of these processors has

unbounded private local memory, which is a sets of registers. Unlike RAM model,

it does not have tapes. The computing capability of each processor is the same as

RAM. These processors can communicate with each other via shared memory (global

memory) M [0],M [1],M [2], · · · , which is also unbounded. Note that, it is the only

way, by which a processor can communicate with another processor. Each processor

can access shared memory in unit time, unless there is a conflict.

In Figure 2.1, a PRAM model is shown. The input of a PRAM program consists

of n items stored in M [0], . . . ,M [n− 1]. The output of a PRAM program consists of

n′ items stored in n′ memory cells, say M [n], . . . ,M [n+n′−1]. A PRAM instruction

executes in a 3-phase cycle:

1. Read (if needed) from a shared memory cell,

2. Compute locally (if needed),

5

Figure 2.1: The PRAM model.

3. Write in a shared memory cell (if needed).

All processors execute their 3-phase cycles synchronously. Processor P0 has a spe-

cial activation register specifying the maximum index of an active processor. Initially,

only P0 is active; it computes the number of required active processors and loads this

number in the activation register. Then the corresponding processors start executing

their programs. Computations proceed until P0 halts, at which time all other active

processors are halted.

The PRAM Model is attractive for designing parallel algorithms because of the

following reasons.

• It is natural: the number of operations executed per one cycle on p processors

is at most p.

• It is strong: any processor can read or write any shared memory cell in unit

time.

• It is simple: ignoring any communication or synchronization overhead.

This natural, strong and simple PRAM model can be used as a benchmark. If a

problem has no feasible (or efficient) solution on a PRAM then it is likely that it

has no feasible (or efficient) solution on any parallel machine. The PRAM model is

an idealization of existing shared memory parallel machines. It ignores lower level

architecture constraints (memory access overhead, synchronization overhead, inter-

communication throughput, connectivity, speed limits, etc.)

6

2.2.1 Parallel time, efficiency and speedup factor

The Parallel Time, denoted by T (n, p), is the time elapsed from the start of a parallel

computation to the moment where the last processor terminates, on an input data

of size n, and using p processors. T (n, p) takes into account computational steps

(such as adding, multiplying, swapping variables), routing (or communication) steps

(such as transferring and exchanging information between processors). The parallel

efficiency, denoted by E(n, p), is

E(n, p) =
SU(n)

pT (n, p)
,

where SU(n) is a lower bound for a sequential execution. Observe that we have

SU(n) ≤ p T (n, p) and thus E(n, p) ≤ 1. One also often considers the speedup factor

defined by

S(n, p) =
SU(n)

T (n, p)
.

2.2.2 Different types of PRAM models

It is natural to have conflicts in accessing shared memory for some applications. To

resolve this issue and synchronize the parallel execution, some mechanism has to be

defined for concurrent read and write access conflicts to the same shared memory cell.

Some of the basic submodels of PRAM are given below.

Exclusive Read Exclusive Write (EREW). No two processors are allowed to read

or write the same shared memory cell simultaneously.

Concurrent Read Exclusive Write (CREW). Simultaneous reads of the same mem-

ory cell are allowed, but no two processors can write the same shared memory cell

simultaneously.

Concurrent Read Concurrent Write (CRCW). Simultaneous reads and writes of

the same memory cell are allowed. CRCW can be divided further based on concurrent

writes.

PRIORITY Concurrent Read Concurrent Write (PRIORITY CRCW). Simul-

taneous reads of the same memory cell are allowed. Processors are assigned fixed

and distinct priorities. In case of write conflict, the processor with highest priority is

allowed to complete WRITE.

ARBITRARY Concurrent Read Concurrent Write (ARBITRARY CRCW). Si-

multaneous reads of the same memory cell are allowed. In case of write conflict, one

7

fathena,cel,prokop,sridharg@supertech.lcs.mit.edu

= () �
(+ =)

(+ (=)(+)) ()
� �

(+(+ +)= + =
p

)

(;)

Q
cache
misses

organized by
optimal replacement

strategy

Main
Memory

Cache

Z=L Cache lines

Lines
of length L

CPU

W
work

>

= () ;

()

(;)

Figure 2.2: The ideal-cache model.

randomly chosen processor is allowed to complete WRITE. An algorithm written for

this model should make no assumptions about which processor is chosen in case of

write conflict.

COMMON Concurrent Read Concurrent Write (COMMON CRCW). Simul-

taneous reads of the same memory cell are allowed. In case of write conflict, all

processors are allowed to complete WRITE iff all values to be written are equal. An

algorithm written for this model should make sure that this condition is satisfied. If

not, the algorithm is illegal and the machine state will be undefined.

2.3 The ideal cache model

The cache complexity of an algorithm aims at measuring the (negative) impact of

memory traffic between the cache and the main memory of a processor executing that

algorithm. Cache complexity is based on the ideal-cache model shown in Figure 2.2.

This idea was first introduced by Matteo Frigo, Charles E. Leiserson, Harald Prokop,

and Sridhar Ramachandran in 1999 [17]. In this model, there is a computer with a

two-level memory hierarchy consisting of an ideal (data) cache of Z words and an

arbitrarily large main memory. The cache is partitioned into Z/L cache lines where

L is the length of each cache line representing the amount of consecutive words that

are always moved in a group between the cache and the main memory. In order to

achieve spatial locality, cache designers usually use L > 1 which eventually mitigates

8

the overhead of moving the cache line from the main memory to the cache. As a

result, it is generally assumed that the cache is tall and practically that we have

Z = Ω(L2).

In the sequel of this thesis, the above relation is referred as the tall cache assumption.

In the ideal-cache model, the processor can only refer to words that reside in the

cache. If the referenced line of a word is found in cache, then that word is delivered

to the processor for further processing. This situation is literally called a cache hit.

Otherwise, a cache miss occurs and the line is first fetched into anywhere in the

cache before transferring it to the processor; this mapping from memory to cache is

called full associativity. If the cache is full, a cache line must be evicted. The ideal

cache uses the optimal off-line cache replacement policy to perfectly exploit temporal

locality. In this policy, the cache line whose next access is furthest in the future is

replaced [5].

Cache complexity analyzes algorithms in terms of two types of measurements.

The first one is the work complexity, W (n), where n is the input data size of the algo-

rithm. This complexity estimate is actually the conventional running time in a RAM

model [1]. The second measurement is its cache complexity, Q(n;Z,L), representing

the number of cache misses the algorithm incurs as a function of:

• the input data size n,

• the cache size Z, and

• the cache line length L of the ideal cache.

When Z and L are clear from the context, the cache complexity can be denoted

simply by Q(n).

An algorithm whose cache parameters can be tuned, either at compile-time or

at runtime, to optimize its cache complexity, is called cache aware; while other al-

gorithms whose performance does not depend on cache parameters are called cache

oblivious. The performance of cache-aware algorithm is often satisfactory. However,

there are many approaches which can be applied to design optimal cache oblivious

algorithms to run on any machine without fine tuning their parameters.

Although cache oblivious algorithms do not depend on cache parameters, their

analysis naturally depends on the alignment of data block in memory. For instance,

due to a specific type of alignment issue based on the size of block and data elements

(See Proposition 1 and its proof), the cache-oblivious bound is an additive 1 away

9

BB

Figure 2.3: Scanning an array of n = N elements, with L = B words per cache line.

from the external-memory bound [36]. However, such type of error is reasonable as

our main goal is to match bounds within multiplicative constant factors.

Proposition 1. Scanning n elements stored in a contiguous segment of memory with

cache line size L costs at most ⌈n/L⌉+ 1 cache misses.

Proof ⊲ The main ingredient of the proof is based on the alignment of data elements

in memory. We make the following observations.

• Let (q, r) be the quotient and remainder in the integer division of n by L. Let

u (resp. w) be the total number of words in a fully (not fully) used cache line.

Thus, we have n = u+ w.

• If w = 0 then (q, r) = (⌊n/L⌋, 0) and the scanning costs exactly q; thus the

conclusion is clear since ⌈n/L⌉ = ⌊n/L⌋ in this case.

• If 0 < w < L then (q, r) = (⌊n/L⌋, w) and the scanning costs exactly q+ 2; the

conclusion is clear since ⌈n/L⌉ = ⌊n/L⌋+ 1 in this case.

• If L ≤ w < 2L then (q, r) = (⌊n/L⌋, w − L) and the scanning costs exactly

q + 1; the conclusion is clear again.

⊳

2.4 The multi-core machine model

A multi-core architecture consists of a multi-core processor, which is a single com-

puting component with two or more independent processors called ”cores”. These

cores are the basic units that perform read and execute program instructions. These

instructions are ordinary CPU instructions like add, move data, and branch. But,

importantly, the multiple cores can execute multiple instructions at the same time,

which enhance the overall speed of the program execution in the way of parallel com-

puting. A many-core processor is also a multi-core processor in which the number of

cores is large enough that traditional multiprocessor techniques are no longer efficient.

Manufacturers typically integrate the cores onto a single integrated circuit die, known

as a chip multiprocessor or CMP, or onto multiple dies in a single chip package.

10

The cores in a multi-core architecture can be connected tightly or loosely. For in-

stance, cores may or may not share caches, and they may implement inter-core com-

munication techniques such as message passing or shared memory. Common network

topologies are used to interconnect cores, including bus, ring, two-dimensional mesh

and crossbar. Homogeneous multi-core systems include only identical cores, whereas,

heterogeneous multi-core systems have cores which are not identical in practice. Cores

on multi-ore systems may implement architecture features such as instruction level

parallelism (ILP), vector processing, SIMD or multithreading, similar to those of

single-processor systems.

The advantages of multi-core architecture include the fact that cache coherency

circuitry operates at a much higher clock-rate than in distributed systems where the

signals have to travel off-chip. That is, signals between different CPUs (cores) travel

shorter distances, and therefore those signals degrade less. As a result, these higher-

quality signals with high frequency allow more data to be transferred within a short

time period. Moreover, a multi-core processor usually uses less power than multiple

coupled single-core processors, this is because of the reduced power required to drive

off-chip signals. Furthermore, the cores share some circuitry, like the L2 cache and

the interface to the front side bus (FSB). Also, multi-core design produces a product

with lower risk of design error than devising a new wider core-design.

Although there are lots of advantages of multi-cores, writing multithreaded pro-

grams for this architecture remains quite challenging. Maximizing the utilization of

the computing resources in this architecture requires adjustments both to the operat-

ing system (OS) support and to existing application software. Also, the performance

of multi-core processors to execute applications depends on the use of multiple threads

within applications. Finally, raw processing power is not the only constraint on sys-

tem performance. Several processing cores sharing the same system bus and as a

result memory bandwidth limits the real-world performance advantage. If a single

core is about to consume whole memory-bandwidth, then for the dual-core, it im-

proves only 30% to 70% of its performance. If memory bandwidth is not a problem,

upto 90% improvement is possible. Moreover, if communication between the CPUs is

the negligible factor, then it would be possible for an application to execute faster on

two CPUs than on one dual-core, which would count as much as 100% improvement.

11

Figure 2.4: A directed acyclic graph (dag) representing the execution of a multi-
threaded program. Each vertex represents an instruction while each edge represents
a dependency between instructions.

2.5 The fork-join parallelism model

The Cilk++1 concurrency platform [7, 18, 45, 15] provides a simple theoretical model

called the fork-join parallelism model or dag (direct acyclic graph) model of multi-

threading for parallel computation. This model represents the execution of a multi-

threaded program as a set of nonblocking threads denoted by the vertices of a dag,

where the dag edges indicate dependencies between instructions. See Figure 2.4.

In the Cilk++ terminology, a thread is a maximal sequence of instructions that

ends with a spawn, sync, or return statement. These statements are used to denote

respectively:

• an execution flow forking,

• a synchronization point, at which currently running threads must join before

the execution flow proceeds further,

• the return point of a function.

A correct execution of a Cilk++ program must meet all the dependencies in the

dag, that is, a thread cannot be executed until all the depending treads have com-

pleted. The order in which these dependent threads will be executed on the processors

is determined by the scheduler.

1http://www.cilk.com

12

Cilk++s scheduler executes any Cilk++ computation in a nearly optimal time, see

[18] for details. From a theoretical viewpoint, there are two natural measures that

allow us to define parallelism precisely, as well as to provide important bounds on

performance and speedup which are discussed in the following subsections.

2.5.1 The work law

The first important measure is the work which is defined as the total amount of time

required to execute all the instructions of a given program. For instance, if each

instruction requires a unit amount of time to execute, then the work for the example

dag shown in Figure 2.4 is 18.

Let TP be the fastest possible execution time of the application on P processors.

Therefore, we denote the work by T1 as it corresponds to the execution time on 1

processor. Moreover, we have the following relation

Tp ≥ T1/P, (2.1)

which is referred as the work law. In our simple theoretical model, the justification of

this relation is easy: each processor executes at most 1 instruction per unit time and

therefore P processors can execute at most P instructions per unit time. Therefore,

the speedup on P processors is at most P since we have

T1/TP ≤ P. (2.2)

2.5.2 The span law

The second important measure is based on the program’s critical-path length denoted

by T∞. This is actually the execution time of the application on an infinite number

of processors or, equivalently, the time needed to execute threads along the longest

path of dependency. As a result, we have the following relation, called the span law:

TP ≥ T∞. (2.3)

2.5.3 Parallelism

In the fork-join parallelism model, parallelism is defined as the ratio of work to span,

or T1/T∞. Thus, it can be considered as the average amount of work along each point

of the critical path. Specifically, the speedup for any number of processors cannot be

13

greater than T1/T∞. Indeed, Equations 2.2 and 2.3 imply that speedup satisfies

T1/TP ≤ T1/T∞ ≤ P.

As an example, the parallelism of the dag shown i n Figure 2.4 is 18/9 = 2. This means

that there is little chance for improving the parallelism on more than 2 processors,

since additional processors will often starve for work and remain idle.

2.5.4 Performance bounds

For an application running on a parallel machine with P processors with work T1 and

span T∞, the Cilk++ work-stealing scheduler achieves an expected running time as

follows:

TP = T1/P +O(T∞), (2.4)

under the following three hypotheses:

• each strand executes in unit time,

• for almost all parallel steps there are at least p strands to run,

• each processor is either working or stealing.

See [18] for details.

If the parallelism T1/T∞ is so large that it sufficiently exceeds P , that is T1/T∞ ≫
P , or equivalently T1/P ≫ T∞, then from Equation (2.4) we have TP ≈ T1/P . From

this, we easily observe that the work-stealing scheduler achieves a nearly perfect linear

speedup of T1/TP ≈ P .

2.5.5 Work, span and parallelism of classical algorithms

The work, span and parallelism of some of the classical algorithms in the fork-join

parallelism model is shown in Table 2.1.

2.6 Systolic arrays

Systolic arrays are matrix-like regular rows of basic data processing units called cells.

Each of these cells relies on arriving data from different directions in the array at

regular intervals and being combined [11]. The data streams, which are entering and

leaving the ports of the array, are generated by auto-sequencing memory units called

ASMs. In embedded systems, it is also possible that these data streams be input

from and/or output to external components.

14

Algorithm Work Span Parallelism
Merge sort Θ(n log2(n)) Θ(log2(n)

3) Θ(n
log2(n)

2)

Matrix multiplication Θ(n3) Θ(log2(n)) Θ(n3

log2(n)
)

Strassen Θ(nlog2(7)) Θ(log2(n)
2) Θ(nlog2(7)

log2(n)
2)

LU-decomposition Θ(n3) Θ(n log2(n)) Θ(n2

log2(n)
)

Tableau construction Θ(n2) Ω(nlog2(3)) Θ(n0.415)
FFT Θ(n log2(n)) Θ(log2(n)

2) Θ(n
log2(n)

)

Table 2.1: Work, span and parallelism of classical algorithms.

Matrix multiplication might be a good example of the design of systolic algorithm,

where one matrix is fed in a row at a time from the top of the array and is passed

down the array. The other matrix is fed in a column at a time from the left hand

side of the array and passes from left to right. In order to be seen each processor as

a whole row and a whole column, dummy values are often passed in when they are

not like so. Finally, the multiplication result is stored in the array and can now be

output a row or a column at a time, flowing down or across the array.

Lots of applications of systolic arrays include faster input processing, scalability,

high throughput etc. The cells are organized in such a way that it can simultaneously

process the input, that is, its processing is faster than the conventional computing

architecture. Also, this architecture can easily be extended to many more processors

according to the requirements of the application. Moreover, systolic arrays offer a

way to take certain exponential algorithms and use hardware to make them linear.

The disadvantages of systolic arrays include its complicated design and implemen-

tation of hardware and software, highly cost of hardware compared to uniprocessor

system, highly specialized for particular applications, difficult to build the system etc.

In the perspective of this thesis, systolic arrays are important since they provide

the best known work-efficient parallel algorithm for computing GCDs of univariate

polynomials [10]. By work-efficient, we mean that the work is the same complexity

class as the Euclidean Algorithm.

15

Chapter 3

Many-core Machine Model

We propose a model of computations which aims at capturing parallelism overheads

(such as communication and synchronization costs) of programs written for modern

GPU architectures. We establish a Graham-Brent theorem for this model so as to

estimate running time of programs running on p streaming multiprocessors. We

evaluate the benefits of our model with three applications. In each case, our model

is used to optimize a program parameter controlling overhead.

This chapter is a joint work with M. Moreno Maza and N. Xie.

3.1 Introduction

Designing efficient algorithms targeting implementation on hardware accelera-

tion technologies (multi-core processors, graphics processing units (GPUs), field-

programmable gate arrays) creates major challenges for computer scientists. A first

difficulty is to define models of computations retaining the features of actual comput-

ers that have a dominant impact on program performance. This implies to specify

not only the appropriate complexity measures for algorithms but also the relevant

parameters for the theoretical machine executing those algorithms. Once different

algorithmic solutions for a given problem and a given model of computations are

available, a second difficulty is to combine those complexity measures in order to

select the “best” algorithm.

In the fork-join parallelism model [6] two complexity measures (the work and the

span) and one machine parameter (the number of processors) can be combined in

results like the Graham-Brent theorem ([6, 24]) or the Blumofe-Leiserson theorem

(Theorems 13 & 14 in [7]) so as to compare algorithm running time estimates. A

16

variant of this latter theorem is actually supporting successfully the implementation

of the parallel performance analyzer called Cilkview [35] on multi-core architectures.

With many-core processors, in particular GPUs, one needs to integrate SIMD

(Single Instruction Multiple Data) processing into the model. The PRAM model ([66,

22]) has this flavor but it does not have the task-parallelism dimension which is

necessary to represent the relations between the different kernels of an application

written with the Compute Unified Device Architecture (CUDA) [58]. In addition,

the PRAM model fails to retain important features of actual computers related to

memory traffic, such as cache complexity ([18, 19]). This latter notion has been

proved to be very useful on single-core and multi-core multiprocessors.

An attempt to integrate memory contention into the PRAM model has been made

with the QRQW (Queue Read Queue Write) PRAM, defined in [23] by Gibbons,

Matias and Ramachandran. The Authors also enhance the Graham-Brent theorem.

However, they unify in a single quantity time spent in arithmetic operations and

time spent in read/write accesses. We believe that this unification is not appropriate

for recent many-core processors, such as GPUs, for which the ratio between one

read/write access to the global memory and one floating point operation can be in

the 100’s.

In a recent paper, Ma, Agrawal and Chamberlain [48] introduce the TMM

(Threaded Many-core Memory) model which retains many important characteristics

of GPU-type architectures, including several machine parameters such as throughput

and coalesced granularity. Moreover, while their running time estimate on P cores is

not a Graham-Brent theorem, TMM analysis can order algorithms from slow to fast

for many different settings of those machine parameters.

Many works, such as [49, 47], targeting code optimization and performance pre-

diction of GPU programs are related to our work, though these papers do not define

an abstract model in support of algorithm analysis.

In this chapter, we propose a many-core machine model (MMM) which aims at

optimizing algorithms targeting implementation on GPUs. We insist on the following

aspects:

- Two-level DAG programs. Defined in Section 3.2, this feature captures the two

levels of parallelism (fork-join and SIMD) of CUDA-like programs.

- Parallelism overhead. We introduce this complexity measure in Section 3.2.3

with the objective of analyzing communication and synchronization costs.

- A Graham-Brent theorem. We combine three complexity measures (work, span

17

and parallelism overhead) and two machine parameters (size of local memory

and data transfer throughput) in order to estimate the running time of an

MMM program on p streaming multiprocessors. This result is Theorem 1 in

Section 3.2.4.

To demonstrate and evaluate the benefits of our model, we consider three applica-

tions for which we have realized an implementation reported in [31]. In each case,

the parallelism overhead (and also the work, to a lesser extent) depends on a pro-

gram parameter. For the first two applications, namely polynomial division and the

Euclidean Algorithm (see Chapter 9),

this parameter controls the amount of data transfer between global memory and

local memories. For the third application, polynomial multiplication (see Chapter 8)

this parameter controls the amount of branch divergence (see [25] for optimization

techniques related to this performance issue) which can also be seen as a parallelism

overhead.

For each of these three applications, we apply the following strategy.

1. We determine a value of this program parameter that minimizes parallelism

overhead.

2. We check that the work overhead introduced by this optimization technique

remains very low. In fact, this work overhead is typically 30% of the work of

the non-optimized algorithm.

3. We use our version of Graham-Brent theorem to show that the estimated run-

ning time (on p streaming multiprocessors) of the optimized algorithm is asymp-

totically smaller than that of the non-optimized algorithm. In fact, this speedup

is typically a factor of 2, which is confirmed by the experimental study of [31].

Finally, we observe that, in our model, the Euclidean Algorithm reaches the running

estimates predicted by the Systolic VLSI Array Model [9]. At the same time, the

CUDA code implementing the Euclidean Algorithm developed with our model runs

within the same estimate for input polynomials with degree up to 100,000, as reported

in [31].

3.2 A Many-core machine model

A well-known method for optimizing CUDA programs is to transfer data from the

global memory to the local memories in order to reduce redundant memory accesses

18

with low latency and high throughput. One of the main reasons for this optimization

is the fact that global memory latency is approximately 400 to 800 cycles, while lo-

cal memory latency is only a few cycles. This memory latency difference, when not

properly taken into account, may have a dramatic negative impact on program per-

formance. As mentioned in the introduction, this hardware feature of GPUs cannot

be captured by the well-studied PRAM model. Indeed, any memory access, as well

as any integer arithmetic operation, is performed in unit time on a PRAM machine.

This and other limitations of the PRAM model have motivated variants of this

model, including our work. Another motivation is the new programming model sup-

ported by NVIDIA1 Kepler architecture, which allows algorithms to run entirely on

the device (GPU) without host (CPU) interactions. The model of parallel computa-

tions presented in this paper aims at capturing communication and synchronization

overheads of programs written for modern GPU architectures, such as NVIDIA Fermi

and NVIDIA Kepler.

As specified in Sections 3.2.1 and 3.2.2 below, our many-core machine model

(MMM) retains many of the key characteristics of modern GPU architectures and

the CUDA programming model. However, in order to support algorithm analysis,

with an emphasis on parallelism overheads, as defined in Section 3.2.3, an MMM

machine admits a few simplifications and limitations with respect to an actual GPU

device. We justify those choices in Section 3.2.5 and explain how more general models

can be reduced to ours.

3.2.1 Many-core machine characteristics

Architecture. An MMM machine possesses an unbounded number of streaming mul-

tiprocessors (SMs) which are all identical. Each SM has a finite number of processing

cores and a fixed-size local memory. An MMM machine has a 2-level memory hierar-

chy, comprising an unbounded global memory with high latency and low throughput

while the SM local memories have low latency and high throughput.

Programs. An MMM program is a directed acyclic graph (DAG) whose vertices are

kernels and where edges indicate dependencies, similarly to the instruction stream

DAGs of the fork-join multithreaded parallelism model [6]. A kernel is a SIMD (single

instruction multithreaded data) program decomposed into a number of thread-blocks.

Each thread-block is executed by a single SM and each SM executes a single thread-

block at a time. Similarly to a CUDA program, an MMM program specifies for each

1http://www.nvidia.com/

19

Figure 3.1: Overview of a many-core machine program

kernel call the number of thread-blocks and the number of threads per thread-block.

The different types of components of an MMM program are depicted on Figure 3.1.

Scheduling and synchronization. At run time, an MMM machine schedules thread-

blocks (from the same or different kernels) onto SMs, based on (1) the dependencies

specified by the edges of the DAG and, (2) the hardware resources required by each

thread-block. Threads within a thread-block can cooperate with each other via the

local memory of the SM running the thread-block. Meanwhile, thread-blocks interact

with each other via the global memory. In addition, threads within a thread-block are

executed physically in parallel by an SM. Meanwhile, the programmer cannot make

any assumptions on the order in which thread-blocks of a given kernel are mapped

to the SMs. This restriction allows MMM programs to run correctly on any fixed

number of SMs, similarly to a CUDA program.

Memory access policies. All threads of a given thread-block can access simultane-

ously any memory cell of the local memory or the global memory: read/write conflicts

are handled by the CREW (concurrent read and exclusive write) policy. However,

read/write requests to the global memory by two different thread-blocks cannot be

executed simultaneously. In case of simultaneous request, one thread-block is chosen

randomly and served first, then the other thread-block is served.

For the purpose of analyzing program performance, we define two machine pa-

rameters:

U : Time (expressed in clock cycles) to transfer one machine word between global

memory and the local memory of any SM. Thus, 1/U is a throughput.

20

Z: Size (expressed in machine words) of the local memory of each SM.

To be precise, the throughput 1/U satisfies the following property. If r and w are the

number of words respectively read and written to the global memory by one thread

of a thread-block B, then the total time TD spent in data transfer between the global

memory and the local memory of an SM executing B satisfies

TD ≤ (r + w)U. (3.1)

We observe that most phenomena that ease or limit data transfer (coalesced accesses

to global memory, local memory bank conflicts, partition camping, etc) have an im-

pact on running time which is proportional to the amount of transferred data. This

allows us to claim that the throughput 1/U combines (or unifies) these different phe-

nomena.

Similarly, the local memory size Z unifies in one parameter different characteristics

of an SM and, thus, of a thread-block. Indeed, each of the following quantities is

necessarily at most equal to Z: the number of cores of an SM, the number of threads

of a thread-block, the amount of words in a data transfer between the global memory

and the local memory of an SM.

Relation (3.1) calls for another comment. One could expect the introduction of

a third machine parameter, say V , such that, if ℓ is the number of local operations

(arithmetic operations, reads/writes in the local memory) performed by one thread

of the thread-block B, then the total time TA spent in local operations by an SM

executing B would satisfy

TA ≤ ℓV. (3.2)

As a consequence, for the total running time T of the thread-block B, we would have

T = TA + TD ≤ ℓV + (r + w)U. (3.3)

Instead of introducing this third machine parameter V , we let V = 1, which is

equivalent to a change of coordinates.

3.2.2 Many-core machine programs

As specified above, each MMM program P is modeled by a directed acyclic graph

(K, E), called the kernel DAG of P , where each node K ∈ K represents a kernel and

each edge E ∈ E represents a kernel call which must precede another kernel call. To

21

be precise, a kernel call can be executed provided that all its predecessors in the DAG

(K, E) have completed their execution.

Recall that each kernel decomposes into one or more thread-blocks and that all

threads within a given kernel execute the same serial program, but with possibly differ-

ent input data. In addition, all threads within a thread-block are executed physically

in parallel by an SM. It follows that MMM kernel code needs no synchronization

statement, like CUDA’s syncthreads().

This has two consequences. First, each thread in a thread-block is either submit-

ting read/write requests to the global memory or, executing local operations. This

justifies Relation (3.3). A second consequence is the fact that the synchronization

overheads of an MMM program are included in the scheduling costs of the thread-

blocks onto the SMs. We shall assume that those latter costs depend linearly on the

number of thread-blocks and the sum over all thread-blocks of the amount of data

transferred by one thread. Indeed, this second quantity can be used to estimate the

size of the code of a thread-block. Therefore, synchronization overheads of an MMM

program can be incorporated in the data transfer time. This key observation helps

understanding the complexity measures introduced in Section 3.2.3.

Since each kernel of the program P decomposes into a finite number of thread-

blocks, we map P to a second graph, called the thread block DAG of P , whose vertex

set B(P) consists of all thread-blocks of the kernels of P and such that (B1, B2) is an

edge if B1 is a thread-block of a kernel preceding the kernel of B2 in P . This second

graph is associated two important quantities:

N(P): number of vertices in the thread-block DAG of P ,

L(P): critical path length (that is, the length of the longest path) in the thread-block

DAG of P .

For the purpose of analyzing program performance, we define five program param-

eters, summarized in Table 3.1.

We also define five algorithm parameters, shown in table 2: n is the input size

of a many-core machine program; z is the maximum amount of the local memory

per thread-block; q is the number of threads per thread-block; d is the number of

thread-blocks needed during a parallel step; and π is the number of parallel steps of

a many-core machine program.

22

Parameter Description
n Input size in machine words
z Maximum number of words of local memory

allocated per thread-block
q The number of threads per thread-block
d The maximum number of thread-blocks

in a parallel step
π The number of parallel steps

Table 3.1: Algorithm parameters

3.2.3 Complexity measures for the many-core machine

model

Consider, as before, an MMM program P given by its kernel DAG (K, E). Let K ∈ K
be any kernel of P and B be any thread-block of K. We define the work of B, denoted

by W (B), as the total number of local operations performed by the threads of B. We

define the span of B, denoted by S(B), as the maximum number of local operations

performed by a thread of B. We assume that each thread of B reads r words and

writes w words from the global memory. Then, we define the overhead of B, denoted

by O(B), as (r + w)U . The work W (K) of the kernel K is defined as the sum of

the works of its thread-blocks. The span (resp. overhead) S(K) (resp. O(K)) of the

kernel K is defined as the maximum (resp. sum) of the spans (resp. overheads) of its

thread-blocks.

We consider now the entire program P . The work W (P) of P is defined as the

total work of all its kernels

W (P) =
∑

K∈K

W (K).

Regarding the graph (K,E) as a weighted-vertex graph where the weight of a vertex

K ∈ K is its span S(K), we define the weight S(γ) of any path γ from the first

executing kernel to a last executing kernel as

S(γ) =
∑

K∈γ

S(K).

Then, we define the span S(P) of the program P as

S(P) = max
γ

S(γ).

23

Regarding the graph (K,E) as a weighted-vertex graph, where the weight of a vertex

K is its overhead O(K), we define the overhead O(α) of an anti-chain α of (K,E) as

O(α) =
∑

K∈α

O(K),

Finally, we define the overhead O(P) of P as the sum of the O(α)’s among all anti-

chains α in (K,E), that is,

O(P) =
∑

α

O(α).

Observe that, according to Mirsky’s theorem [50], the number π of parallel steps in P
(i.e. anti-chains in (K, E)) is equal to the maximum length of a path in (K, E) from
the first executing kernel to a last executing kernel.

3.2.4 A Graham-Brent theorem with overhead

Theorem 1. We have the following estimate for the running time TP of the program

P when executed on p SMs,

TP ≤ (N(P)/p+ L(P))C(P) (3.4)

where C(P) = maxB∈B(P) (S(B) +O(B)).

The proof is similar to that of the original result. One observes that the total

number of complete steps (for which p thread-blocks can be scheduled by a greedy

scheduler) is at most N(P)/p while the number of incomplete steps is at most L(P).

Finally, C(P) is an obvious upper bound for the running of every step, complete or

incomplete.

3.2.5 Justification of the Many-core machine model

In the new programming model of CUDA, a kernel that can be executed is launched

by its predecessor at any time, while its predecessor waits to synchronize until the

kernel has completed. To analyze this type of programs, we adjust the situation into

the way our model can deal with, shown in Figure 3.2. If a child kernel is called

within a parent kernel as Figure 3.2(a), we divide the parent kernel into part A and

part B, such that part B of the parent kernel starts the same time as the child kernel,

and the rest of the parent kernel is part A in the way of Figure 3.2(b). With this

effort, our model can simulate the new features of the CUDA programming model.

24

Figure 3.2: Adjust any program into the DAG of many-core machine model

25

Chapter 4

Cache-oblivious Counting Sort

Algorithm

In this chapter, we propose a cache-oblivious counting sort algorithm. Cache com-

plexity estimates of both classical and our proposed cache-oblivious counting sort al-

gorithm are provided considering the ideal cache model. We have implemented these

algorithms and compared them by experimentation. Based on those cache complexity

results and experimental results, we can say that our cache-oblivious counting sort

algorithm is promising.

This chapter is a joint work with M. Moreno Maza.

4.1 Introduction

The counting sort algorithm sorts n non-negative integers in the range [0, r − 1] in

linear time with respect to n + r considering the RAM model [13]. Algorithm 1

describes the classical counting sort algorithm. Observe that the counting sort algo-

rithm does not require a comparand function. Thus it does not have time complexity

lower bound of the form O(n log n) like any comparison based sorting algorithms.

In this chapter, time and space complexity are computed considering the RAM

model with memory holding a finite number of s-bit words, for a fixed s [64]. We

assume each of the integers to be sorted can be stored within one machine word. Our

cache complexity results are computed considering the ideal cache model [17] with an

ideal cache of Z words and for which each cache line holds L words.

The main contribution of this work is a cache-oblivious counting sort algorithm.

We also compute the cache complexities of both classical and cache-oblivious counting

26

sort algorithms. We validate theoretical results by experimentation. Similar work can

be found in [61] but the Authors do not make use of the ideal cache model.

The organization of this chapter is as follows. we first describe the classical count-

ing sort algorithm along with its cache complexity in Section 4.2. We then present our

cache-oblivious counting sort algorithm along with its cache complexity in Section 4.3

followed by experimental results in Section 4.4. We conclude the chapter with some

remarks on our approach.

4.2 The classical counting sort algorithm

Algorithm 1 is the classical counting sort algorithm. Proposition 2 computes the

cache complexity of this algorithm.

Algorithm 1: CountingSort(A, n, r)

Input: A is an array of length n that holds n integers in the range [0, r − 1].
Output: Array B of length n, where the integers in A are sorted.
initialize an array C of length r of with zeros;1

for i = 0; i < n; i = i+ 1 do2

C[A[i]] = C[A[i]] + 1;3

t = 0;4

for i = 0; i < r; i = i+ 1 do5

c = C[i];6

C[i] = t;7

t = t+ c;8

for i = 0; i < n; i = i+ 1 do9

B[C[A[i]]] = A[i];10

C[A[i]] = C[A[i]] + 1;11

return B;12

Proposition 2. Given an array A of length n that holds n non-negative integers

within the range [0, r− 1], the total number of cache misses in Algorithm 1 is at most

3n+ 2n/L+ 2r/L+ 4, where both n and r are small enough such that none of A or

B or C can be stored into the cache entirely.

Proof ⊲ We follow the pseudo-code of Algorithm 1 and count the number of cache

misses.

Initializing C with zeros in line 1: This involves traversing C in a regular way (i.e. one

slot after another from left to right). Thus, this causes r/L+ 1 cold misses.

27

Computing frequency of the integers of A into C in lines 2-3: This involves traversing

A in a regular way. However, C is accessed n times in an irregular way. So the total

number of cache misses is (n/L+ 1) + n in the worst case. The latter n cache misses

are due to both capacity and conflict misses in accessing C irregularly.

Computing the cumulative frequency in C in lines 5-8: This involves traversing C in

a regular way, thus causing r/L+ 1 cache misses.

Creating sorted array B in lines 9-11: Finally, populating the sorted array B involves

traversing the three arrays A , B and C. The array A is accessed in a regular fashion.

However, the n accesses to C and B are irregular. So the total number of cache

misses is (n/L+1)+2n in the worst case. The latter 2n cache misses are due to both

capacity and conflict misses in accessing C and B irregularly. �

Irregular access make the performance of counting sort algorithm poor in terms of

cache misses, for large n or r, as we can see in Section 4.4. In Section 4.3, we propose

a cache-oblivious counting sort algorithm in order to reduce the cache complexity of

this algorithm.

4.3 Cache-oblivious counting sort algorithm

In Proposition 3, we first estimate the number of cache misses of Algorithm 1 with

small r. This leads us to the notion of a bucketed array introduced in Definition 1.

We show the cache complexity is reduced during counting sort algorithm if the input

A has this property. Finally, we propose a preprocessing step (Algorithm 2) which

rearranges the integers in A in such a way that it can be bucketed.

Proposition 3. The cache complexity of Algorithm 1 is at most 3n/L+ r+ r/L+ 3

for r < Z/(1 + L), where n is small enough such that none of A or B can be stored

into the cache entirely.

Proof ⊲ We traverse C in a regular way, in line 1 of Algorithm 1, in order to

initialize it by zeros. Thus it causes r/L + 1 cold misses. Observe that C is stored

entirely into the ideal cache after this step. It is possible because r < Z/(1+L). The

total number of cache misses for traversing A for computing frequency of the integers

in lines 2-3 is n/L+ 1. Because this traversal is also regular. We do not observe any

cache misses for accessing C in this step. Because the ideal cache evicts a cache line

that stores elements of A whenever it is full due to the cache replacement policy of

it. For the same reason, we do not observe any cache misses for accessing C in lines

5-8.

28

In lines 9-11, the cache misses due to accessing A exhibit the same cache com-

plexity as described in the proof of Proposition 2. Writing sorted array B means

writing (in a linear traversal) r consecutive arrays, of possibly different sizes, but

with total size n. Thus, because of possible misalignments between those arrays and

their cache-lines, this writing procedure can yield at most n/L+ r cache misses (and

not just n/L+1). It is possible if the ideal cache has at least r cache lines. We know

the ideal cache has Z/L cache lines and we have r < Z/(1 + L) < Z/L. Observe C

is stored entirely into the cache before the algorithm enters line 9. To keep C stored

entirely into the ideal cache during the execution of lines 9-11 and to observe at most

n/L+ r cache misses for writing the sorted array B, we require an ideal cache where,

(r + rL) < Z. (4.1)

Equation 4.1 holds for our case, because dividing both sides by (1 + L) yields

r < Z/(1 + L).

�

From Proposition 3, we can say that counting sort is ideal for sorting integers

with small range. The hypothesis of Proposition 3 leads us to introduce the following

notion.

Definition 1. Given an array A of length n with non-negative integer entries in the

range [0, ℓm− 1], where ℓ and m are positive integers. We say that A is m-bucketed

if for all i = 0, 1 · · · , (ℓ− 1), the integers in the sub-range [im, (i+ 1)m− 1] are kept

together in A. In other words, for all j = 0, 1 · · · , (ℓ− 1), every integer of A lying in

the sub-range [jm, (j + 1)m − 1] appears in A before every integer of A lying in the

sub-range [(j + 1)m, ℓm− 1].

In Proposition 4, we estimate the cache complexity of the counting sort algorithm

when the input array A is m-bucketed.

Proposition 4. Let the input array A be m-bucketed as described in Definition 1,

where m < Z/(1+L). The cache complexity of Algorithm 1 is at most 3n/L+4r/L+

(m + 2)ℓ + 4, where n is small enough such that none of A or B can be stored into

the cache entirely.

Proof ⊲ Algorithm 1 initializes C with zeros, computes cumulative frequencies in C

in line 1 and lines 5-8 respectively. These two steps exhibit the same cache complexity

29

as described in the proof of Proposition 2. Moreover while counting the frequencies

of the integers in lines 2-3 and creating the sorted array B in the last for-loop of the

algorithm, the traversals of A are also regular. Thus it has the same cache complexity

as in the proof of Proposition 2. Together we have 2n/L+ 2r/L+ 4 cache misses for

accessing A and C twice in a regular fashion.

For lines 2-3, accessing C for computing the frequency of the integers in A means

traversing ℓ consecutive arrays one after another, of possibly different sizes (at most

m), but with total size r. In lines 9-11, we need to access C in the same fashion.

Thus the total number of cache misses is at most 2r/L+ 2ℓ for accessing C in these

two for-loops.

Let us consider a sub-range [im, (i+ 1)m− 1] of A for i = 0, 1 · · · , (ℓ− 1). Let ni

be the total number of integers in this sub-range. From the proof of Proposition 3,

we can say that, the cache complexity for writing into B due to this sub-range is at

most ni/L+m. So in total we have at most n/L+mℓ cache misses for writing B. �

Now, we describe our cache-oblivious counting sort algorithm. Our proposed

algorithm has a preprocessing step, stated in Algorithm 2. This algorithm calls Algo-

rithm 3 iteratively. Assumption 1 below gathers two relations among the quantities

r, Z and L. The first one is made in a sake of simplicity. The second one is taken

from Definition 1.

Assumption 1. We assume that r is of the form r = mu+1, for some non-negative

integer u and a positive integer m such that we have m < Z/(1 + L).

Algorithm 2: PreprocessingCounting(A, n,m, r)

Input: A is an array of length n holding non-negative integers in the range
[0, r − 1] and m is a positive integer as defined in Assumption 1.

Output: the array A which was overwritten such that A is now m-bucketed.
r′ = r;1

while r′ > m do2

G = PartitionFurther(A, n,m, r, r′);3

r′ = r′/m;4

copy G into A;5

return A;6

The cache complexity of Algorithm 3 is given in Proposition 6.

Proposition 5. Algorithm 3 works correctly.

30

Proof ⊲ For simplicity, we describe the proof for the first bucket. Consider the sub-

array A[0 . . . j], where 0 ≤ j < n, stores the first bucket or the sub-range [0, r′ − 1].

The first iteration of the top for-loop of Algorithm 3 is responsible for rearranging

these integers such that A[0 . . . j] is m-bucketed into G[0 . . . j].

We follow the pseudo-code of Algorithm 2 for the first iteration and check its

correctness. Observe each integer in A[0 . . . j] is treated as an integer in the range

[0,m− 1] when we apply floor function after division in both line 9 and 16. In lines

8-10, we compute the frequency of integers in A[0 . . . j] into F . In lines 11-14, we

compute the cumulative frequencies in F as in lines 5-8 of Algorithm 1. Finally, in

lines 15-19, we write into the sub-array G[0, . . . , j] as m-bucketed integers in A[0 . . . j]

with the help of F .

The other r/r′ − 1 iterations in Algorithm 2 can be proved in the same way. �

Algorithm 3: PartitionFurther(A, n,m, r, r′)

Input: An array A of length n holding n positive integers in the range
[0, r − 1] and a positive integer m as defined in Assumption 1.
Moreover, the array A is assumed to be (r/r′)-bucketed.

Output: An array G of length n holding the same n entries as A but
re-ordered in a such way such that G is ((r/r′)m)-bucketed.

y = r/r′;1

d = r′/m;2

create an array F of length m;3

x = 0;4

G is an array of length n;5

for (i = 0; i < y; i = i+ 1) do6

make all entries of F as 0;7

for (j = x; j < n ∧ A[j] < r′(i+ 1); j = j + 1) do8

F [⌊(A[j]− r′i)/d⌋] = F [⌊(A[j]− r′i)/d⌋] + 1;9

t = 0;10

for (j = 0; j < m; j = j + 1) do11

c = F [j];12

F [j] = t;13

t = t+ c;14

for (j = x; j < n ∧ A[j] < r′(i+ 1); j = j + 1) do15

k = ⌊(A[j]− r′i)/d⌋;16

G[F [k] + x] = A[j];17

F [k] = F [k] + 1;18

x = x+ 1;19

return G;20

31

Proposition 6. In Algorithm 3, we can observe at most 3n/L+m/L+(r/r′)(2+m)+1

cache misses, where n is small enough such that none of A or G can be stored into

the cache entirely.

Proof ⊲ We follow the pseudo-code of the algorithm and count the number of

cache misses during the first iteration of the top for-loop of Algorithm 3. Like the

proof of Proposition 5, consider the sub-array A[0 . . . j], where 0 ≤ j < n, stores

the first bucket or the sub-range [0, r′ − 1]. The first iteration of the top for-loop

of Algorithm 3 is responsible for rearranging these integers such that A[0 . . . j] is

m-bucketed into G[0 . . . j].

We first initialize F with zeros in line 7. This involves traversing F in a regular

way. Thus, this causes m/L + 1 cold misses. In lines 8-9, we compute the number

of integers in A[0 . . . j] that falls into each bucket. This involves traversing A[0 . . . j]

in a regular way. So the number of cache misses for accessing A[0 . . . j] is at most

j/L+1 during this step. As m < Z/(1+L), like in the proof of Proposition 3, we do

not observe any cache misses for accessing F . For the same reason, we do not observe

any cache misses for accessing F in the rest of the execution of this algorithm.

Finally, in lines 15-19, when we write the m-bucketed integers in G[0 . . . j], we

need to traverse A[0 . . . j] in a regular fashion again. Moreover, we need to write

the m-bucketed integers into G[0 . . . j]. This refers to write (in a linear traversal) m

consecutive arrays, of possibly different sizes, but with total size j. From the proof

of Proposition 3, we can say that the cache complexity for writing into G[0 . . . j] is

at most j/L+m. Thus the total number of cache misses for accessing A[0 . . . j] and

G[0 . . . j] in this iteration is at most 3j/L + m + 2. So the cache complexity for

accessing A and G in Algorithm 3 is at most 3n/L+(m+2)(r/r′), as the top for-loop

runs for r/r′ times.

�

The execution of Algorithm 2 is considered as the preprocessing step of counting

sort algorithm. Proposition 7 gives the total number of cache misses during prepro-

cessing step of counting sort algorithm.

Proposition 7. In worst case, the cache complexity of Algorithm 2 is 3nu/L+mu/L+

(2 + m)m
u−1

m−1
+ u, where n is small enough such that none of A or G can be stored

into the cache entirely.

Proof ⊲ Algorithm 2 calls Algorithm 3 for u times as r = mu+1. In the j-th

call of Algorithm 3 from Algorithm 2 for j = 0, . . . , u − 1, the value of r′ is r/mj .

32

Thus r/r′ = mj. From Proposition 6, we can say the worst case cache complexity of

Algorithm 3 is

3n/L+m/L+mj(2 +m) + 1. (4.2)

Thus the worst case cache complexity of Algorithm 2 is

3nu/L+mu/L++u+ (2 +m)
u−1
∑

j=0

mj. (4.3)

We obtain the worst case cache complexity of Algorithm 2 by applying geometric

summation rule in Equation 4.3.

�

Finally, Proposition 8 counts the total number of cache misses for our proposed

cache-oblivious counting sort algorithm.

Proposition 8. Given an array A of length n that holds n non-negative integers

within the range [0, r− 1]. We preprocess A by Algorithm 2. After this preprocessing,

A becomes m-bucketed. We then apply Algorithm 1 to sort A. By cache-oblivious

counting sort algorithm, we refer to this preprocessing step and applying the classical

counting sort algorithm. In worst case, the total cache misses of our proposed cache

oblivious counting sorting algorithm is O(n log r
L

+ r), where n is small enough such

that none of A or B (for Algorithm 1 and 2) or G (for Algorithm 2) can be stored

into the cache entirely.

Proof ⊲ Following Proposition 7 and 4 the total number of cache misses of our

proposed cache-oblivious counting sort algorithm is

3n(u+ 1)/L+mu/L+ u+ (2 +m)

(

mu − 1

m− 1
+ ℓ

)

+ 4r/L+ 4. (4.4)

The dominating terms of Equation 4.4 are 3n(u + 1)/L and (2 + m)(m
u−1

m−1
+ ℓ).

As r = mu+1, and m < Z/(1 + L), we can write 3n(u + 1)/L = O(n log r
L

). The other

dominating term of the equation can also be written as (2 + m)(m
u−1

m−1
+ ℓ) = O(r),

for the same reasons and ℓ = r/m.

�

33

n classical cache-oblivious
counting counting sort

sort (preprocessing + sorting)
100000000 13.74 4.66 (3.04 + 1.62)
200000000 30.20 9.93 (6.16 + 3.77)
300000000 50.19 16.02 (9.32 + 6.70)
400000000 71.55 22.13 (12.50 +9.63)
500000000 94.32 28.37 (15.71 + 12.66)
600000000 116.74 34.61 (18.95 + 15.66)

Table 4.1: CPU times in seconds for both classical and cache-oblivious counting sort
algorithm.

4.4 Experiments

We run our experiments on an Intel(R) Core(TM) i7 CPU @ 2.93GHz. It has L2

cache of 8MB1. For smaller n, it is expected that we might not get enough speed up.

So we take large n and choose r = n. We fix m = 106. We limit r (or n) such that

n, r < m2. Thus we need to call Algorithm 3 from Algorithm 2 one time. Table 4.1

shows the CPU time for different n. CPU time for cache-oblivious algorithm includes

preprocessing time.

4.5 Conclusion

The preprocessing step of our proposed cache-oblivious counting sort algorithm relies

on division operation, which is computationally expensive. It makes the implemen-

tation slower. Moreover, if r is big, we have to call Algorithm 3 a number of times.

Each step involves with O(n) division operations. That is why, in our experiments,

we keep our r small enough such that we need to call Algorithm 3 one time. Still,

our implementation gives a way to make the counting sort algorithm efficient and it

has room for further improvement. If anyone needs a stable sort routine like counting

sort, then he or she might be benefited with this implementation.

One interesting conclusion of this work is, though classical counting sort algorithm

has linear complexity, we can do preprocessing on input to reduce cache misses and

the cost of the preprocessing can be amortized by the savings from reduced cache

misses. In Chapter 5, we propose a new integer sorting algorithm. In our proposed

1http://www.intel.com

34

sorting algorithm, we need a stable sort in intermediate steps. Our cache-oblivious

counting sort algorithm can be a candidate for that.

35

Chapter 5

A New Integer Sorting Algorithm

Consider the following problem.

Problem 1. (Sorting big integers) Consider n integers such that any two of those

integers cannot be compared in constant time (counting machine word operations) on

the targeted computer. In particular, at least one of those integers requires more than

one machine word of storage. The proposed problem is to design an efficient algorithm

for sorting those n integers.

In this chapter, we propose a new sorting algorithm to solve this problem. Our

algorithm is a practical algorithm in the sense that it can be implemented on a real

computer by using programming languages like C or C++.

This chapter is a joint work with M. Moreno Maza.

5.1 Introduction

Sorting is one of the most fundamental problems in computer science. It is well known

that a lower bound time complexity of any comparison-based sorting algorithm is

O(n log n) (counting comparisons) where n is the number of keys to be sorted. This

time complexity result assumes that there exists a comparand function that works

in constant time for those keys. Otherwise, assuming that each key is represented

by m bits this lower bound becomes O(f(m)n log n), where f(m) is the cost of the

comparand function for any pair of keys.

However, we still do not know the lower bound for integer sorting. This sorting

is important because all objects are represented by binary strings on real computer

systems. The interpretation of this binary string can be an integer. Some examples

include floating point number representation, binary reflected Gray code or character

36

strings [2]. Kirkpatrick and Reisch in [39] describe the following problem regarding

integer sorting.

Problem 2. “For what ranges of inputs can we construct practical o(n log n) integer

sorting algorithms?”

In [2], the authors ask a similar question on integer sorting.

Problem 3. “Can integers be sorted in linear expected time for all word lengths?”

In [27], [26] [2], integer sorting problem are discussed. In these works, integers

that require a fixed number of words are considered.

In this chapter, we propose a practical sorting algorithm for large integers. The

organization of the chapter is as follows. We first define some notations and symbols

in Section 5.2. We follow these notations and symbols throughout the chapter. In

Section 5.3, we compute the cost for a comparand function that can pick the larger

object between two binary objects. Section 5.4 describes our proposed sorting al-

gorithm. In Section 5.5, we describe the time and space complexity of our sorting

algorithm. Conclusions are given in Section 5.6.

5.2 Notations

Suppose we have a list of n non-negative integers U = [a0, . . . , an−1], that we want

to sort. Each integer ai, for i = 0, . . . (n − 1), is represented by m bits, where ai[0]

is the most significant bit and ai[m − 1] is the least significant bit. Let 1/p be the

probability that a bit of a binary representation of an integer in U is 1.

First disagree bit. Let ai and aj be two m bit integers, for 0 ≤ i, j < n. If ai and

aj are not equal then there exists an integer 0 ≤ k < m, for which, ai[k] 6= aj[k] and

ai[s] = aj[s] for each s < k. For obvious reason, we call k the first disagree bit of ai

and aj.

Sparse integers. By sparse integer, we mean an integer that has fewer 1s in its binary

representation. In this chapter, we assume that a sparse integer is stored by its bit

indices those are 1s.

Representation of ai. For our proposed algorithm, each integer ai in U =

[a0, . . . , an−1] is represented by three values ai.g, ai.w, ai.z and a list of positive inte-

gers ai.v described below.

37

1. Define ai.g as the position of ai in U . Note that, for any permuted array L of

U , suppose L[j].g = i for 0 ≤ j < n. It means the j-th integer in L is the i-th

integer in U . Furthermore observe ai.g = i for each i.

2. The meaning of ai.w is technical and will be presented in Definition 2.

3. Similarly, ai.z is defined in Definition 2.

4. The list ai.v stores, in ascending order, the indices of the 1s in the binary

representation of ai. For example, let, m = 10 and ai = 50, which is 0000110010

in 10-bit binary. Then, ai.v = [4, 5, 8].

The number of bit operations required to create such list for an m-bit integer is

O(m). Data structures for sparse binary objects usually store the information

about the 1s only. For such data structures, this list can be created directly.

Algorithm 4 describes how our proposed sorting algorithm can interact with

this list. Observe that the expected number of words required to store ai.v is

O(m/p).

Algorithm 4: ExploreV(ai.v, u,m)

Input: ai.v is the list of indices of 1s in integer ai. ai is an m bit integer and u
is an integer.

Output: return the index of u-th 1 (if present in vi) in ai. Return −1 or m in
exceptional cases.

if u = −1 then1

return −1;2

if u ≥length(ai.v) then3

return m;4

return ai.v[u];5

5.3 Cost of the comparand function for large inte-

gers

In this section, we estimate the cost of a comparand function that works with two

m-bit integers ai and aj for 0 ≤ i, j < n. Lemma 1 estimates the value of their first

disagree bit. Corollaries 1 and 2 estimate the cost of comparand functions for both

dense and sparse integers based on this lemma, respectively. These corollaries also

38

estimate the lower bounds of the time complexity of the comparison based sorting

algorithms inspired by Lemma 1.

Lemma 1. The expected value of the first disagree bit of two integers ai and aj, for

0 ≤ i, j < n and ai 6= aj, is
p2

2(p−1)
, where 1/p is the probability that a bit of a binary

representation of an integer is 1.

Proof ⊲ For any twom-bit integers ai, aj and randomly chosen bit s ∈ {0, . . . , (m−
1)}, define the two probabilistic events SUCCESS (ai[s] 6= aj[s]) and FAILURE

(ai[s] = aj[s]). The probability of the event SUCCESS is 2(1
p
· (1 − 1

p
)) or 2(p−1)

p2
.

Consider a succession of experiments, whereby we increase s from 0 until we obtain

a SUCCESS. Obviously the random variable for the value of s giving the first SUC-

CESS is geometrically distributed with expected value p2

2(p−1)
. This corresponds to the

expected first disagree bit. �

Corollary 1. The comparand function for dense integers is expected to work in

O(p2

2(p−1)
) bit operations. So the lower bound time complexity of any comparison based

sorting algorithm for sorting n dense integers is O(p2

2(p−1)
n log n).

Corollary 2. The comparand function for sparse integers is expected to work in

O(p

2(p−1)
) bit operations because the expected number of 1s in p2

2(p−1)
bits is p

2(p−1)
. So

the lower bound time complexity of any comparison based sorting algorithm for sorting

n sparse integers is O(p

2(p−1)
n log n).

5.4 A new sorting algorithm

Our sorting algorithm works by partitioning the given integers in U successively until

all parts are singleton. Each partition can be viewed as a list of lists of integers, which

we order by certain rules described in Section 5.4.1.

Let A0 = [U] be our first list of lists (it has one list). Assume Ak = [Ak
0, A

k
1, . . . A

k
x],

for 0 ≤ k and 0 ≤ x, is the k-th partition (list of lists of integers). In Definition 2, we

define the values ai.w and ai.z mentioned earlier for integers found in the lists of Ak.

Definition 2. Define ai.z = h when ai ∈ Ak
h, for h ∈ {0, . . . , x}. Let

as, at ∈ Ak
h and assume they satisfy ExploreV(as.v, u,m) =ExploreV(at.v, u,m) where

u ∈ {−1, . . . , (k − 1)}. Then, we define as.w = ExploreV(as.v, k − 1,m) =

ExploreV(at.v, k − 1,m) = at.w.

39

5.4.1 Creating Ak+1 from Ak

We assign ai.z = 0 and ai.w = −1 for all i ∈ {0, . . . , (n − 1)} in A0. Assume

Ak = [Ak
0, A

k
1, . . . A

k
x], for 0 ≤ k and 0 ≤ x, is constructed. We describe how we can

create Ak+1 from Ak step by step below.

1. Form the array L from Ak in the same order as they appeared in Ak. For

example, if Ak = [[a2, a0][a1, a3]] then L = [a2, a0, a1, a3].

2. Form the list L′ by sorting the integers in L, by any stable sort algorithm, based

on their ExploreV(L[r].v, k,m) values in descending order for 0 ≤ r < n. We

propose that we can use the counting sort algorithm for this purpose.

3. To obtain Ak+1 from L′, we use Algorithm 5. See Proposition 9 for the correct-

ness of this algorithm.

Algorithm 5: Create(L′, n, k,m)

Input: L′, an array of n integers of m bits. This list is sorted in descending
order based on ExploreV(L′[r].v, k,m) for 0 ≤ r < n.

Output: Ak+1, list of lists of integers.
initialize Ak+1 as an empty list;1

s = 0;2

d = 0;3

while s < n do4

for r = s; r < n; r = r + 1 do5

if L′[s].z == L′[r].z ∧ ExploreV(L′[s].v, k,m) == ExploreV(L′[r].v, k,m)6

then
L′[r].w = ExploreV(L′[r].v, k,m);7

else8

insert [L′[s], · · · , L′[r − 1]] as the d-th list of Ak+1;9

d = d+ 1;10

Break;11

s = r;12

/* Observe for any two integers ai and aj, we have ai.z = aj.z, if

both of the integers are from the same list of Ak+1. */

sort the lists in Ak+1 based on ai.z values by ascending order using any stable13

sort algorithm;
update the ai.z values of all integers in all lists of Ak+1;14

return Ak+1;15

40

Proposition 9. Algorithm 5 works correctly.

Proof ⊲Consider any two integers ai and aj, for 0 ≤ i, j < n, such that they are

in a list Ak
s of Ak, for 0 ≤ s and 0 ≤ k. Assume these two integers are in a list Ak+1

t

for 0 ≤ t. If ExploreV(ai.v, k − 1,m) = ExploreV(aj.v, k − 1,m) = ai.w = aj.w (be-

fore the execution of Algorithm 5) then ExploreV(ai.v, k,m) = ExploreV(aj.v, k,m) =

ai.w = aj.w (after the execution of Algorithm 5) because of the execution of line 7 of

Algorithm 5. Again if ai.z = aj.z = s in (before the execution of Algorithm 5) then

ai.z = aj.z = t (after the execution of Algorithm 5) because of the execution of line

14 of Algorithm 5. �

In Proposition 10, we describe the relationship between the order of the lists in

Ak and the sorted order of U .

Proposition 10. Assume Ak = [Ak
0, A

k
1, . . . A

k
x], for 0 ≤ k and 0 ≤ x. Let Ak

s and

Ak
t be two lists of Ak such that 0 ≤ s < t ≤ x then all integers in Ak

s are smaller than

any integer in Ak
t .

Proof ⊲ We proof it by induction.

(Base case): This is true in A0. Because we have one list in A0 which is U.

(Inductive step): Assume it is true in Aq = [Aq
0, A

q
1, . . . A

q
y], for 0 ≤ q and 0 ≤ y.

Consider any two lists Aq
s and Aq

t for 0 ≤ s < t ≤ y. Thus all integers from Aq
s are

smaller than any integer in Aq
t . Let [Aq+1

s1 , . . . , Aq+1
s1+b] and [Aq+1

t1 , . . . , Aq+1
t1+c] be two

sub-lists of Aq+1 obtained by partitioning Aq
s and Aq

t respectively for some positive

integers s1, t1, b, c. Thus all integers from sub-list [Aq+1
s1 , . . . , Aq+1

s1+b] are smaller than

any integer in [Aq+1
t1 , . . . , Aq+1

t1+c].

Line 14 of Algorithm 5 ensures that lists in each of such sub-list are placed consec-

utively in Aq+1. It also ensures that [Aq+1
s1 , . . . , Aq+1

s1+b] comes before [Aq+1
t1 , . . . , Aq+1

t1+c]

in Aq+1.

Again for any such sub-list, for example [Aq+1
t1 , . . . , Aq+1

t1+c], the order by which each

of the list is created and inserted into Aq+1 in the while-loop of Algorithm 5 depends

on the q-th 1s of their integers. Thus all integers in any list are smaller than any

integer of the next list in the same sub-list.

So Proposition 10 is also true in Aq+1. �

In Proposition 11, we compute the time complexity of creating Ak+1 from Ak.

Proposition 11. We can create Ak+1 from Ak by O(n+(k+1)p) bit operations using

Algorithm 5.

41

Proof ⊲ We can create the list of integers L from Ak in O(n) time as described in

Section 5.4.1. The values in ExploreV(ai.v, k,m) for 0 ≤ i < n are expected to be in

the range [0, (k + 1)p]. We can create L′ from L using the counting sort algorithm

in O(n + (k + 1)p) time. The while-loop in Algorithm 5 runs in O(n) time. We

propose that we can use the counting sort algorithm in line 14 of this algorithm.

The counting sort algorithm can sort the lists in Ak+1 in O(n) time. Finally, we can

updates z values of all integers in O(n) time. �

Our proposed sorting algorithm is described in Proposition 12.

Proposition 12. Our proposed sorting algorithm creates list of lists A0, A1, . . . suc-

cessively. It terminates whenever one of the two following conditions holds.

1. Every list of the list Aℓ, for some non-negative integer ℓ, has a single element.

2. ai.w = m for all integers in Aℓ.

Let L be a list of integers obtained from Aℓ. The order of the integers in L is the

same as they appeared in Aℓ. Then the integers in U can be found sorted in ascending

order in L.

Proof ⊲ We proof it for two different cases below.

(Case 1, when every list in Aℓ has single integer): It is easy to follow from Propo-

sition 10.

(Case 2, when ai.w = m for all i = 0 . . . , n− 1): Observe in this case, any further

calls to Algorithm 5 returns the same list of lists. All integers in a list of Aℓ are same.

�

In the case where our input U has duplicate values, according to Proposition 12,

our proposed algorithm terminates after calling Algorithm 5 for τ times, where τ is

the maximum number of 1s in any integer. As a result, our implementation becomes

inefficient. To resolve this performance issue, we limit the number of times we need

to call Algorithm 5. This is presented in Proposition 15. Proposition 16 describes

how we can get the sorted list in this case.

Proposition 13. Our proposed algorithm is a stable sorting algorithm.

Proof ⊲ Observe that, in creating L as defined in Section 5.4.1, we preserve the

given order (U) for the duplicate integers. Moreover we apply stable sorting algorithm

in creating L′ and ordering the lists in Ak+1 in Algorithm 5. For both cases, we

preserve the given order for duplicate integers too. �

42

5.5 Complexity

In Remark 1, we describe one important observation that helps us to compute the

memory requirement for our proposed sorting algorithm given in Proposition 14.

Remark 1. Our proposed algorithm creates the list of lists of integers successively.

Once it creates Ak+1 from Ak, it does not need to store Ak anymore.

Proposition 14. We need O(n + nm/p) words of storage for our proposed sorting

algorithm.

Proof ⊲ The expected number of words required to store ai.v, for i ∈ {0, . . . , n−1},
is O(m/p). Accordingly, we can store a list of lists of integers in O(n+ nm/p) words

of storage. �

Proposition 15 describes the number of times ℓ, we need to call Algorithm 5 to be

sure that all lists in Aℓ have O(1) integers. In Proposition 16, we describe the cost to

order each list in Aℓ to find the sorted order of the integers.

Proposition 15. It is expected that each list of Aℓ has O(1) integers where ℓ =

O(logp (n)).

Proof ⊲ It is expected that any list Ak
h in Ak has at most O(n

pk
) integers. So after

calling Algorithm 5 O(logp(n)) times, we expect that all lists in the list of lists of

integers have O(1) integers. �

Proposition 16. Let Aℓ, be a list of lists where each of the list has O(1) integers as

described in Proposition 15. We need O(1) comparison operations to order each list

in Aℓ. Thus, we need O(n p2

2(p−1)
) and O(n p

2(p−1)
) bit operations to sort n non-negative

dense and sparse integers respectively.

Proof ⊲ It follows from Corollary 1 and Corollary 2. �

Proposition 17. The time complexity of our proposed sorting algorithm to sort n

non-negative dense integers is O(n log n+ p logn(logn+1)
2

+ n p2

2(p−1)
).

Proof ⊲ Following from Proposition 11, the number of bit operations required for

computing Alogp(n) is

O





logp(n)
∑

j=1

(n+ jp)



 .

For dense integers, where p is small, we can say logp(n) ≈ log n. Finally, from

Proposition 16, we can compute the cost to sort the integers in all lists of Alogp(n).

43

It should be noted that, we do not consider the cost for creating [a0.v, . . . , an−1.v],

which is required for dense integers. �

Our proposed algorithm may not be suitable for dense integers for two main

reasons. First, we need to compute [a0.v, . . . , an−1.v] in advance, which is expensive.

Second, the cost of comparison based sorting algorithm for dense integers given in

Corollary 1 might already be good enough for practical purposes. Still, our proposed

algorithm has some properties given below which might be useful in practice.

• Our sorting algorithm is stable.

• We can call Algorithm 5 for a number of times to make each list of integers

small. Then each of the list can be sorted independently (or in parallel) by

any comparison based sorting algorithm. Thus, Algorithm 5 can be used as a

preprocessing step of the sorting algorithm.

Proposition 18. The time complexity of our proposed sorting algorithm to sort n

non-negative sparse integers is O(n+ p+ n p

2(p−1)
), where logp(n) = O(1).

Proof ⊲ It follows from Propositions 11 and 16. �

5.6 Conclusion

Based on theoretical complexity, we can say our algorithm is more suitable for sorting

large sparse integers. It can be modified to sort other type of objects as well. For

example, in Chapter 6 we apply this algorithm to sort binary reflected Gray codes.

Moreover it can be used as a preprocessing step in sorting of dense integers. In

our proposed algorithm, we suggest applying the counting sort algorithm as a stable

sorting algorithm for intermediate sorting. Cache-oblivious counting sort algorithm

of Chapter 4 can be used for this purpose.

44

Chapter 6

Cache Friendly Sparse

Matrix-vector Multiplication

This work is motivated by the challenges posed, in terms of data locality, by large

and unstructured matrices occurring in sparse linear algebra. Our goal is to minimize

the cache complexity of sparse matrix-vector multiplication. In a previous work,

we experimentally observed that, for an input matrix S, column reordering based

on binary reflected Gray code was a practically efficient preprocessing phase, which

could be amortized against repeated multiplications of S by a dense vector [29].

In this chapter, we provide a theoretical foundation for the above observation. If

S counts n columns, m rows and has a total number τ of non-zero entries and if S

is sufficiently sparse, we show that the columns and rows of S can be reordered in

O(τ) bit operations, using the RAM model with memory holding a finite number of

w-bit words, for a fixed w. This reordering of columns and rows is inspired by binary

reflected Gray code. We establish a cache complexity result for sparse matrix-vector

multiplication when the sparse matrix is reordered by our proposed method.

We report numerical experiments which confirm our theoretical results. In partic-

ular, we include data for a simulation of the ideal cache model for verifying our cache

complexity estimates.

This chapter is a joint work with S. Hossain and M. Moreno Maza.

6.1 Introduction

Sparse matrix-vector multiplication, or SpMxV, is an important kernel in scientific

computing. For example, the conjugate gradient method is an iterative linear system

solving process where multiplication of the coefficient matrix S with a dense vector x

45

is the main computational step accounting for as much as 90% of the overall running

time. While the total number of arithmetic operations (involving non-zero entries

only) to compute Sx is fixed, reducing the probability of cache misses per operation

by preprocessing S remains a challenging area of research. This preprocessing is done

once and its cost is amortized by repeated multiplications. Computers that employ

cache memory to improve the speed of data access rely on the reuse of data that is

brought into the cache memory. The challenge is to exploit data locality especially for

unstructured problems like modeling data locality, which in this context is hard [68].

Pinar and Heath [59] propose column reordering to make the non-zero entries in

each row contiguous. However, column reordering for arranging the non-zero entries

in contiguous location is NP-hard [59]. In a considerable volume of work [38, 29,

59, 69, 71] on the performance of SpMxV on modern processors, researchers propose

optimization techniques such as the reordering of the columns or rows of S to reduce

indirect access and improve data locality, and blocking to reduce memory load and

loop overhead. In [37], the authors describe a number of applications of sparse matrix-

vector multiplication.

Here, we present a new row-and-column permutation algorithm, based on binary

reflected Gray codes, that runs in linear time with respect to the number of non-zero

entries.

To evaluate these results, we have realized an implementation of our algorithm

and analyzed its performance on a set of well-known test matrices. Our experimental

results are coherent with our theoretical estimates and demonstrate the performance

gains rendered by our permutation algorithm.

The organization of this chapter is as follows. In Section 6.2, we discuss some

preliminary materials followed by our proposed re-ordering algorithm in Section 6.3.

We analyze our preprocessing algorithm in Section 6.4 and present the experimental

results in Section 6.5.

6.2 Background

In this section, we review some of the data structures and introduce some notations

used in this chapter.

46

6.2.1 Compressed row storage scheme (CRS)

Storage schemes used for unstructured sparse matrices usually involve some form of

indirect indexing of its non-zero elements via auxiliary data structures. For example,

the compressed row storage (CRS) scheme [4] uses two auxiliary arrays, colind of

length τ (the number of non-zero elements) and rowptr of lengthm+1 wherem is the

number of rows of S. This is the most common storage scheme for sparse matrices.

The three arrays required to store the sparse matrix S are described below.

1. value: for storing the non-zeros of S row-by-row,

2. colind: for storing the column index of each non-zero, and

3. rowptr: for storing the index of the first non-zero of each row in the value

array.

6.2.2 SpMxV with CRS scheme

Sample code for computing y = Sx under CRS scheme is given in Algorithm 6. In

this algorithm, accesses to vector y and all three arrays of CRS are regular. But the

accesses to the vector x might be irregular because the column indices of each row

may not be consecutive. A large number of cache misses might occur during the

accessing of x which may make the SpMxV very slow in practice.

6.2.3 Compressed column storage scheme (CCS)

This scheme is the same as CRS except that the non-zeros are stored column-by-

column. Like CRS, three arrays are used in the compressed column storage scheme

(CCS) to store sparse matrix S are described below.

1. value: for storing the non-zeros of S column-by-column,

2. rowind: for storing the row index of each non-zero, and

3. colptr: for storing the index of the first non-zero of each column in the value

array.

6.2.4 Notations

We consider a sparse matrix S with arbitrary sparsity structure having m rows

(r0, . . . , rm−1), n columns (c0, . . . , cn−1) and τ non-zero elements. Here, si,j refers

47

to the entry of S which is at the i-th row and the j-th column. We denote by ρr and

ρc the average number of non-zeros in a row and a column respectively. Let 1/p be

the probability that an element of S is non-zero. Throughout this chapter, we assume

that m and n are positive integers of machine word size, or smaller. We assume that

τ > m + n and min(m,n) > p. Time and space complexity estimates are given for

the RAM model with memory holding a finite number of w-bit words, for a fixed

w [64]. Cache complexity is measured by considering the ideal cache model described

in Chapter 2.

Algorithm 6: SpMxV(value, colind, rowptr, x)

Input: value, colind, rowptr are three arrays that represents S in CRS and
dense vector x

Output: vector y, where y = Sx
for all i = 0, 1, . . . ,m− 1 do1

y[i] = 0;2

for i = 0, 1, . . . ,m− 1 do3

for k = rowptr[i] to rowptr[i+ 1]− 1 do4

j = colind[k];5

y[i]+ = value[k] ∗ x[j];6

return y;7

6.2.5 Binary reflected Gray code

A q-bit binary reflected Gray code [43] is a Gray code denoted by Gq and defined by

G1 = [0, 1] and

Gq = [0Gq−1
0 , . . . , 0Gq−1

2q−1−1, 1G
q−1
2q−1−1, . . . , 1G

q−1
0], for q > 1,

where Gq
i is the i-th binary string of Gq and 0 ≤ i < 2q. We call i the rank of Gq

i in

Gq. For example, G2 = [00, 01, 11, 10] and G3 = [000, 001, 011, 010, 110, 111, 101, 100].

So, the rank of 011 in G3 is 2. For details please see [43].

6.2.6 Sorting of binary reflected Gray codes

In this chapter, we develop a new row and column permuting algorithm based on

binary reflected Gray code for sparse matrices. We call it BRGC ordering. For our

proposed reordering algorithm, we consider each non-zero of S as 1. We also consider

each column of S as a binary reflected Gray code in Gm. Like in Section 5.2, we con-

sider the bits from row 0 and m−1 as the most and least significant bits respectively.

48

In this section, we explain how we can sort binary reflected Gray codes in descending

order of their ranks by our proposed sorting algorithm described in Chapter 5. From

the mathematical definition of binary reflected Gray code in Section 6.2.5, we can

describe Corollary 3 which is the basis for sorting binary reflected Gray codes.

Corollary 3. Let Gq
i and Gq

j be two different binary reflected Gray codes in Gq. Let

their first disagree bit (see Section 5.2) be h for 0 ≤ h < q. Assume that the h-th bit

of Gq
j has 1. If the number of 1s in Gq

i or Gq
j before h-th bit is even (odd), we can

conclude j > i (i > j).

Proposition 19 describes how we can modify our proposed sorting algorithm in

Chapter 5 to sort binary reflected Gray codes according to their ranks.

Proposition 19. Our proposed sorting algorithm in Chapter 5 can sort binary re-

flected Gray codes in descending order according to their ranks with one modification.

While creating Ak+1 from Ak (see Section 5.4.1), we need to form array L and apply

a stable sort algorithm on L to obtain L′ in ascending order only when k is even.

Proof ⊲ It follows from Corollary 3. �

It should be noted that, we do not use any well-established sorting algorithm,

like quick sort, for this purpose. We can implement quick sort algorithm available in

C++ STL. The reasons for not using these technique are given below.

1. Our reordering algorithm, which is described later of this chapter, is not just a

sorting of columns considering their ranks in binary reflected Gray codes.

2. We have already seen in Chapter 5, our proposed sorting algorithm is suitable

for sparse objects.

6.3 Proposed reordering method

Our reordering algorithm proceeds by several consecutive intermediate reorderings, all

of which permute the columns except the second one which permutes the rows. Algo-

rithm 7 describes our proposed reordering algorithm. We explain this algorithm step

by step with their time and memory complexity. Below we describe Lemmas 2, 3, 4,

and 5, which help us understand the time complexity of our proposed ordering algo-

rithm.

Lemma 2. Let a sparse matrix S be given in CRS (CCS). The total number of bit

operations required to compute the CCS (CRS) representation of S from its CRS (CCS)

representation, is O(τ), where τ is the total number of non-zeros in S.

49

Proof ⊲ We show how to convert from CRS to CCS scheme of S by applying O(τ)

bit operations. The reverse conversion follows a similar method. We can determine

the number of non-zeros in each column from CRS. It involves traversing colind

which requires O(τ) bit operations. We store this information in an array F of length

n, where F [i] is the number of non-zeros of column ci, for i ∈ {0, . . . , n − 1}. We

can create another array D of length n, where D[i], stores the total number of non-

zeros in columns {c0, · · · , ci−1}. It is possible to create D from F by applying O(n)

bit operations. Observe that, we can create colptr of CCS from D. We traverse S

again using colind and value of CRS. During this traversal, for each non-zero sj,i,

we can compute how many non-zeros we have in S for columns {c0, . . . , ci−1} from

D, for j ∈ {0, . . . ,m − 1}. We can also keep track of the number of non-zeros that

we have seen so far for each column during this traversal using another temporary

array. These two pieces of information help us identify the indices of non-zeros and

place into value and rowind of CCS. It also requires O(τ) bit operations. �

Lemma 3. When we convert CRS (CCS) of S to CCS (CRS) by the method stated in

the proof of Proposition 2, the row (column) indices for each column (row) in CCS

(CRS) are sorted in ascending order.

Proof ⊲ While we are scanning the non-zeros of S for the second time, for a column

(row), the order by which the non-zeros appear depends on their row (column) indices.

�

Lemma 4. Let a sparse matrix S be given in CRS (CCS). Suppose we want to permute

the columns (rows) of S by a given column (row) permutation. In order to update

CRS (CCS) according to the new column (row) permutation, we need to perform O(τ)

operations.

Proof ⊲ We need to traverse colind (rowind) and change each column (row) index

according to the new column permutation. �

Lemma 5. Let a sparse matrix S be given in CRS (CCS). Suppose we want to permute

the rows (columns) of S by a given row (column) permutation. In order to update

CRS (CCS) according to the new row (column) permutation, we need to perform O(τ)

operations.

Proof ⊲ It follows from Lemma 2 and 4. �

Our reordering strategy is stated in Algorithm 7. It is important to understand

that in this preprocessing step each non-zero entry is treated as 1. So, in Algorithm 7,

50

Figure 6.1: After initial column ordering.

we consider each of the columns of S as a binary string of Gm. We apply Algorithm 5

in Chapter 5 for our proposed reordering strategy. For each column ci, for i ∈
{0, . . . n− 1}, we can easily create ci.v, indices of 1s (see Section 5.2), from the CCS

representation of S. Algorithm 7 order the rows and columns of S according to

BRGC ordering. We describe each step of Algorithm 7 below.

6.3.1 Initial column ordering

Lines 1-3 of Algorithm 7 are responsible for doing the initial permutation of the

columns of S. First, we create A0 considering each column of S as an m-bit binary

string following Section 5.4.1. We need to apply O(τ) bit operations to get A0.

Finally, we can compute A1 from A0 using Algorithm 5, with the modifications stated

in Proposition 19. It requires O(n+ p) bit operations. The initial column ordering is

the order of the columns as they appeared in A1. We need to update both CRS and

CCS data structures of S according to this initial column ordering. We also need to be

sure that the column (row) indices of non-zero entries for each row (column) in CRS

(CCS) are sorted in ascending order. According to Lemma 3, we can perform these

data structure updates by applying O(τ) bit operations. Each of the data structures

requires O(τ) words to be stored. The time complexity of this step is O(τ), as we

assume that n > p. The space complexity of this step is also O(τ).

In Figure 6.1, we have shown what the sparse matrix looks like after this step.

6.3.2 Row ordering

After the initial column ordering, we perform a row permutation, which is stated by

Algorithm 8. The intention of this row permutation is to place some more non-zeros

for which we can build some regular patterns. These patterns may reduce the cache

misses during SpMxV. Algorithm 8 describes this row permutation procedure. We

51

Algorithm 7: BRGC(CRS(S),CCS(S),m, n, b, t)

Input: CRS(S) and CCS(S) are the CRS, CCS representation of sparse matrix
S that has m rows and n columns, b is a positive integer, where b > 0
and t is a positive number where 0 < t < 1.

Output: CRS(S), the CRS representation of sparse matrix S after reordering
of rows and columns.

compute A0 considering each column of S as a binary object;1

compute A1 from A0 using Algorithm 5 with the modifications stated in2

Proposition 19;
update CRS(S) and CCS(S) according to the column permutation found in A1

3

and we need to be sure that the column (row) indices for each row (column) in
CRS (CCS) are sorted in ascending order;
Γ = RowOrdering(A1,CRS(S),CCS(S),m);4

update ci.v (for i = 0, · · · , (n− 1), where ci is the i-th column of S after initial5

column permutation), CRS(S) and CCS(S) according to the row permutation
found in Γ;
merge(A1, b,m);6

k = 1;7

while true do8

break if the number of lists in Ak is greater than tn;9

create Ak+1 from Ak using Algorithm 5 with the modifications stated in10

Proposition 19;
k = k + 1;11

update CRS(S) according to the column permutation found in Ak;12

return CRS(S);13

Figure 6.2: After row permutation.

52

stress the fact that not all rows participate to this row permutation. To be more

precise, we need the following notion.

The function SelectedRows(A1,m) returns precisely the set of rows of S that

participate (set R) and do not participate (set R) in creating A1. By participation,

we mean, a row participates in A1 if and only if at least one non-zero of that row

participates in the stable sorting routine which is required to create L′ from L (see

Section 5.4.1). In the sequel, we denote this set by R. Thus both R and R are

subsets of {r0, . . . , rm−1}. We define R as a set of rows defined as {r0, . . . , rm−1}−R.

The time complexity of SelectedRows(A1,m) is O(m). We have shown R rows in

Figure 6.1.

Algorithm 8 calls Algorithm 9 and returns the row permutation Γ. Algorithm 9

first determines an ordering for the rows that are in R and then computes an ordering

for the rows that are in R. The former step is done in a straightforward manner

through Lines 1 to 4 of Algorithm 9. The latter step is detailed below.

We first need to understand the following definitions.

Definition 3. Let Ri(j) be the column index of the j-th non-zero element in the i-th

row of A for 0 ≤ i < n and 0 ≤ j < n. Getting Ri(j) for a single non-zero from the

CRS representation of a sparse matrix is expensive. However, we can identify the

column indices of all non-zeros of S one-by-one from the CRS representation, which

requires O(τ) bit operations.

Definition 4. We say that a list A1
h of A1 is the owner of the non-zero referred by

Ri(j) if the non-zero belongs to a column in A1
h. Furthermore, we denote A1

h as the

winner of the i-th row if no other list in A1 owns more nonzeros from the i-th row

than A1
h. In Algorithm 9, we call a routine called owner(Ri(j), A

1), which returns the

owner of the nonzero referred by Ri(j).

Now we are ready to describe lines 5 to 21 of Algorithm 9. At Line 5, we initialize

an array of queues called winlist, whose size is equal to the number of lists in A1.

As all column indices of non-zero entries for a row in CRS are in ascending order,

after the execution of the for-loop (between line 6 and line 21), the queue winlist[k]

contains all the indices of the rows won by the list A1
k, where k is a positive integer.

Lines 22 to 25 determine the ordering of the rows from R as follows. Let i and j

be the indices of two distinct rows in R, that are won by two different lists A1
s1 and

A1
s2, respectively, where 0 ≤ s1 < s2. Then in Γ, i appears before j. Rows that are

won by the same list can be placed in arbitrary order in Γ, though in our algorithm

we dedicate k queues for this purpose. The time complexity of Algorithm 9 is O(τ).

53

Each of the data structures used in row ordering requires O(τ) words to be stored.

Figure 6.2 shows how a sparse matrix looks like after row permutations.

Algorithm 8: RowOrdering(A1, CRS(S),CCS(S), m)

Input: A1, the list of lists of columns of S described in Definition 2, CRS(S)
and CCS(S) are the CRS and CCS representation of sparse matrix S
respectively and m is the row dimension of S

Output: Γ, the row permutation vector
[R, R] = SelectedRows(A1,m);1

returnRowPerm(A1, R,R,CRS(S));2

6.3.3 Algorithm merge(A1, b,m)

Let b be an integer, where b > 0. In this routine, we re-create A1. In our

new A1, a list A1
i contains all columns for which the following property satisfies

{⌊Explore(cq.v, 0,m)/b⌋ = i|q ∈ {0, . . . , n − 1}}. The objective of this redefinition is

to make the cardinality of each list of A1 bigger. Once we re-create A1, we need to

update [c0.v, . . . , cn−1.v]. Let cq be a column which is in A1
i .

• First, delete all entries of cq.v that are smaller than (i+ 1)b.

• Second, insert i as the first entry of cq.v.

We need O(τ) bit operations to complete this algorithm. Because re-creation of

A1 can be done by O(n) bit operations but the modifications of the list of indices

[c0.v, . . . , cn−1.v] requires O(τ) bit operations. All data structures required for this

algorithm have memory complexity of O(τ).

6.3.4 Iterative column ordering

In this step, we need to create Ak for k = 2, · · · , until the number of lists in the list is

greater than tn for 0 < t < 1. We fix it as 0.9. Considering the sparse matrices found

in the University of Florida sparse matrix collection1, we can say logp(n) = O(1).

Thus according to Proposition 15, we need few iterations to break the while-loop of

Algorithm 7. We can create Ak+1 from Ak using Algorithm 5 with the modifications

stated in Proposition 19 by applying O(n+p) bit operations. So the time complexity

of this step is expected to be O(n+ p), and the space complexity of this step is O(τ).

1http://www.cise.ufl.edu/research/sparse/

54

Algorithm 9: RowPerm(A1, R,R,CRS(S))

Input: A1, the list of lists described in Definition 2, R and R are the sets of
rows of S described in Section 6.3.2 and CRS(S) is the CRS
representation of S

Output: Γ, the new row permutation
j = 0;1

for all row ri in R do2

Γ[j] = i ;3

j = j + 1;4

initialize winlist as howManySets(A1) empty queues;5

/* Let howManySets(A1) be a routine that returns the number of

lists in A1. */

for all row ri in R that has at least one non-zero do6

q = 1;7

k = 1;8

kmax = 1;9

lmax = owner(Ri(0), A
1);10

l = lmax;11

/* Let length(ri) be the number of non-zeros in i-th row of S.
*/

while q < length(ri) do12

while l == owner(Ri(q), A
1) and q < length(ri) do13

k = k + 1;14

q = q + 1;15

if kmax < k then16

kmax = k;17

lmax = l ;18

k = 1;19

l = owner(Ri(q), A
1);20

Push i into the winlist[lmax] ;21

for all k = 0 · · · (howManySets(A1) − 1) do22

while queue winlist[k] is not empty do23

Γ[j] = pop(winlist[k]) ;24

j = j + 1;25

The rows in R that does not have any non-zero are added in Γ at the end in26

arbitrary order.
return Γ;27

55

6.4 Complexity

In this section, we discuss the time and memory complexity of Algorithm 7. Fur-

thermore, we discuss the cache complexity of Algorithm 6 when S is preprocessed

BRGC ordering.

6.4.1 Time complexity

Lemma 6. Let S be a sparse matrix with m rows and n columns that has τ non-zeros.

Let 1/p be the probability that an entry of S is non-zero, where logp(n) = O(1). The

time complexity of Algorithm 7 is O(τ) with b > 0 and 0 < t < 1.

Proof ⊲ The time complexity of each step of Algorithm 7 such as initial column or-

dering (Section 6.3.1), row ordering (Section 6.3.2) and merge(A1, b,m) (Section 6.3.3)

is O(τ). The last step called iterative column ordering requires O(n+p) bit operations

(Section 6.3.4). Since, n > p, the conclusion follows. �

6.4.2 Memory complexity

Lemma 7. The memory complexity of Algorithm 7 is O(τ).

Proof ⊲It follows from the fact that each data structure used for our preprocessing

step requires O(τ) words of storage. �

6.4.3 Cache complexity

We first describe different types of non-zeros in S after BRGC ordering. We need this

classification to explain the cache complexity of SpMxV.

Classification of non-zeros

We classify the non-zeros of S into five categories after applying the BRGC algorithm.

These are α, β, γ, δ and λ non-zeros.

α non-zeros: In merge(A1, b,m), we delete some entries from the list of indices

[c0.v, · · · , cn−1.v]. α non-zeros include the non-zeros referred by those deleted

entries.

Remark 2. In general, there exists O(n) number of α non-zeros in S.

β non-zeros: It includes the non-zeros that participate in creating A2 from A1.

56

Figure 6.3: The distribution of different types of non-zeros.

Remark 3. In general, there exists O(n) number of β non-zeros in S.

From Table 6.1, we found that most of the test matrices have 0.99n β non-zeros

and all of them have more than n α non-zeros.

δ non-zeros: Every row is won by a list in A1 during the row permutation. Assume

row ri, for i ∈ {0, . . . ,m − 1}, is won by A1
h of A1. Each non-zero of ri that

is owned by the list Ak
h is called a non-zero of δ type. The total number of δ

non-zeros is O(R). In practice, for all matrices considered for experimentations,

we found the number of δ non-zeros is O(n).

Remark 4. A non-zero can be both β and δ non-zero.

γ non-zeros: A non-zero whose row index is greater than that of the β non-zero of

the corresponding column but smaller than that of any δ non-zero of the same

column is referred to a γ non-zero.

λ non-zeros: Each of the remaining non-zero is denoted as a λ non-zero.

In Figure 6.3, we can view the different types of non-zeros of a sparse matrix

pictorially. After applying Algorithm 7 on S, we obtain some interesting sparsity

structures in S. We write a C code to simulate cache misses on the ideal cache model

during SpMxV. The number of cache misses for test matrices are shown in Table 6.2.

Cache misses and different types of non-zeros

We analyze the sparsity of a sparse matrix after preprocessing by our proposed algo-

rithm. In conclusion, we come up with the following Proposition 20 about the cache

misses during SpMxV.

Proposition 20. Suppose S has at least 3n non-zeros and S is preprocessed by our

proposed BRGC ordering algorithm (Algorithm 7). For the ideal cache with Z ≥
57

2
√
nL and b =

√
nL/ρ, where ρ = ρr, we observe 3n/L+O(

√

n/L) + 1 cache misses

due to accessing x during SpMxV considering only α, β and δ non-zeros of S.

Proof ⊲Algorithm 7 returns S in CRS after reordering both the rows and columns.

Then we apply Algorithm 6 for SpMxV. After applying Algorithm merge(A1, b,m),

the number of elements in each list of A1 is expected to be ρb. The expected number

of lists in A1 is n/(ρb).

If we have only α non-zeros in S, let αs1 and αs2 be two subsets of α non-zeros such

that αs1 and αs2 are the non-zeros from some elements of A1
s1 and A1

s2 respectively.

Assume s1 < s2. It is easy to observe that αs1 non-zeros participate in SpMxV before

αs2. It is also obvious that the indices of elements x that are multiplied with αs1 are

smaller than those that are multiplied with αs2. Considering the ideal cache model,

we can multiply all α non-zeros with corresponding elements of x by scanning x once.

This refers to access a number of consecutive arrays in a irregular fashion one after

another, where each array is expected to have ρb entries. The expected number of

such arrays is n/(ρb). This creates n/L+O(n/ρb) cache misses, if the ideal cache can

store ρb non-zeros.

Now, suppose we multiply β non-zeros in S with x only. Let βh be the non-zeros

from a list A1
h. It is sufficient to have one cache line for these non-zeros during SpMxV

in order to avoid conflict or capacity misses on the ideal cache model. Because if we

list the column indices of βh row by row, it becomes a list of integers in descending

order. SpMxV for β non-zeros and x refers to accesses (in a regular fashion) a number

of consecutive arrays, of possibly different sizes, but with total size n. The expected

number of such arrays is n/(ρb). We can say that the cache complexity to multiply

β non-zeros with x is n/L+O(n/(ρb)) due to accessing x on the ideal cache model if

the ideal cache has n/(ρb) cache lines.

Again, suppose we only multiply δ non-zeros of S with x. If we list the column

indices of δ non-zeros row by row, it becomes a list of integers in ascending order.

So, in SpMxV, we have to scan x once in a regular fashion to multiply β non-zeros

with x. It creates n/L+1 cache misses in accessing x on the ideal cache model. It is

expected that, the row indices of δ non-zeros are bigger than any β non-zeros.

Finally, considering only α, β and δ non-zeros in S, during SpMxV, one can

observe 3n/L+O(n/(ρb))+2 cache misses in accessing x if we have spaces for storing

ρb + nL/(ρb) non-zeros of x in the ideal cache model. So the constraint is Z ≥
ρ(b+ nL/(ρb)). Replacing b by

√
nL/ρ in the inequality, we obtain Z ≥ (2

√
nL). �

Remark 5. We are not able to state a conclusion on the cache complexity while

58

multiplying γ and λ non-zeros with x. We believe some of these non-zeros create

some patterns to improve data locality.

Remark 6. The value of b given in Proposition 20 is maximal for a given Z. To see

why, let ρb + (nL)/(ρb) = Z. This equality can be expressed as a quadratic equation

in (ρb) as given below

(ρb)2 + nL− Zρb = 0. (6.1)

The discriminant of Equation 6.1 is Z2 − 4nL. It should be a positive value so

that Equation 6.1 has real solutions. So, Z2 − 4nL ≥ 0, or Z2 ≥ 4nL. We prefer

Z as small as possible. So, Z = 2
√
nL. Replacing the value of Z in the quadratic

equation, we get b =
√
nL/ρ.

6.5 Experimental results

We select 15 matrices from the University of Florida sparse matrix collection for our

experimentation. The basic information for each test matrix is given in Table 6.1. We

run our experiments on an intel core 2 processor Q6600. It has L2 cache of 8MB and

the CPU frequency is 2.40 GHz. Note that other column ordering algorithms reported

in [59] and their performances are compared with the BRGC ordering algorithm

in [29]. As reported in [29], the BRGC algorithm outperforms these other column

ordering algorithms on three different computer architectures.

Table 6.1 shows that for most of the matrices the sum of non-zeros of type α, β

and δ is more than 3n. We compute the cache misses on the ideal cache model and

SpMxV time for test matrices with given order, after the BRGC ordering, random

ordering, and random ordering followed by the BRGC ordering. By random ordering,

we mean a random order of both rows and columns. We present the cache misses and

SpMxV time of each setup after normalization with respect to the cache misses and

SpMxV time with the given order. We performed 1000 SpMxVs for recording the

SpMxV time. These results are shown in Table 6.2. According to the experimenta-

tion, considering both cache complexity and SpMxV time, BRGC ordering improves

for some matrices and fails to improve for others. In [74], similar improvements were

observed, because the given matrices already have some nice sparsity structure. How-

ever, if those matrices do not have nice sparsity structures then it could be as worse

as random ordering. The column for BRGC ordering after random ordering seems to

be prominent in this case.

59

Matrix name m n τ ρ α β δ
GL7d17 1548650 955128 25978098 16.0 3.97n 0.99n 1.07n
GL7d19 1911130 1955309 37322725 19.09 3.06n 0.99n 0.53n

wikipedia-20051105 1634989 1634989 19753078 12.08 1.14n 0.50n 2.15n
wikipedia-20070206 3566907 3566907 45030389 12.62 1.14n 0.50n 2.15n

cage14 1505785 1505785 27130349 18.02 7.39n 0.99n 2.21n
cage12 130228 130228 2032536 15.60 6.27n 0.99n 1.991n
GL7d24 21074 105054 593892 5.65 1.58n 0.95n 0.06n

barrier2-10 115625 115625 3897557 33.71 5.93n 0.99n 11.77n
fome21 67748 216350 465294 2.15 1.38n 0.72n 0.56n
hcircuit 105676 105676 513072 4.85 1.28n 0.99n 3.29n
lp ken 18 105127 154699 358171 2.31 1.59n 0.63n 0.44n
rajat23 110355 110355 556938 5.05 1.87n 0.95n 2.37n
ldoor 952203 952203 23737339 24.92 7.65n 0.61n 0.0n

bcsstk32 44609 44609 1029655 23.08 6.80n 0.96n 0.0n
matrix 9 103430 103430 2121550 20.51 6.48n 1.0n 5.77n

Table 6.1: Test matrices with the number of non-zeros of type α, β and δ.

As shown in Table 6.3, the time required for BRGC ordering is less than that

of at most 72 SpMxVs. This cost can be amortized easily in conjugate gradient

type algorithms. The total number of iterations required in Algorithm 7 is shown

in Table 6.3. It is greater than ρ for some matrices, such as wikipedia-20051105,

wikipedia-20070206, ldoor, and bcsstk32. For these matrices (other than ldoor), we

have a small fraction of columns that are not singleton after ρ iterations. For ldoor,

we require 3ρ iterations, to complete Algorithm 7.

6.6 Conclusion

In this chapter, we propose a new re-ordering algorithm to improve the data locality

of a sparse matrix during SpMxV. Our re-ordering algorithm is efficient. The cost

of this preprocessing can be amortized easily in conjugate gradient type algorithms.

The performance of our pre-processing algorithm on SpMxV is observed for some test

matrices, and we believe the experimental data is promising.

60

Cache Cache Cache SpMxV SpMxV SpMxV
misses misses misses time time time
after after after after after after

Matrix BRGC Random Random BRGC Random Random
name ordering ordering ordering ordering ordering ordering

then then
BRGC BRGC
ordering ordering

GL7d17 0.96 1.04 1.02 0.97 1.24 1.04
GL7d19 0.95 1.04 0.90 0.90 1.07 0.98
wikipedia 1.11 1.35 1.19 0.80 1.38 0.93
-20051105
wikipedia 1.07 1.21 1.14 0.82 1.15 1.04
-20070206
cage14 1.35 7.90 6.25 1.28 5.48 3.79
cage12 1.19 2.59 2.43 1.11 1.55 1.44
GL7d24 0.90 1.19 0.85 1.0 1.16 1.13

barrier2-10 0.24 1.55 0.49 0.94 1.18 1.04
fome21 1.34 2.08 1.43 1.10 1.42 1.30
hcircuit 1.03 1.44 1.28 1.08 1.38 1.23
lp ken 18 1.08 1.26 1.10 1.33 1.22 1.08
rajat23 1.69 2.52 2.09 1.03 1.28 1.19
ldoor 1.00 27.71 3.55 1.02 4.62 1.44

bcsstk32 1.01 1.92 1.70 1.02 1.13 1.06
matrix 9 0.95 3.72 1.79 1.05 1.46 1.26

Table 6.2: Normalized cache misses on ideal cache model simulator and normalized
CPU time for SpMxVs.

61

Matrix name R Iteration BRGC Column no.
number cost in left

terms of in BRGC
(SpMxVs) ordering

after ρc

iterations
GL7d17 0.62m 3 19.19 -
GL7d19 0.50m 3 17.93 -

wikipedia-20051105 0.78m 47 18.91 374
wikipedia-20070206 0.80m 54 51.85 712

cage14 0.5m 4 40.85 -
cage12 0.51m 4 20.0 -
GL7d24 0.14m 4 33.33 -

barrier2-10 0.81m 17 55.86 -
fome21 0.15m 2 55.55 -
hcircuit 0.82m 4 71.43 -
lp ken 18 0.29m 3 37.04 -
rajat23 0.77m 5 60.61 -
ldoor 0.0m 71 50.10 274614

bcsstk32 0.0m 188 41.67 7299
matrix 9 0.68m 4 70.59 -

Table 6.3: Preprocessing time.

62

Chapter 7

Implementation of Determinant by

Condensation Method on GPU

We report on a GPU implementation of the condensation method designed by Ab-

delmalek Salem and Kouachi Said for computing the determinant of a matrix [63].

We consider two types of coefficients: modular integers and floating point numbers.

We evaluate the performance of our code by measuring its effective bandwidth and

argue that it is numerical stability in the floating point number case. In addition,

we compare our code with serial implementation of determinant computation from

well-known mathematical packages. Our results suggest that a GPU implementation

of the condensation method has a large potential for improving those packages in

terms of running time and numerical stability.

This chapter is based on the paper [30] co-authored with M. Moreno Maza.

7.1 Introduction

The celebrated algorithm of Charles Lutwidge Dodgson [14] (also known as Lewis

Carroll) for computing the determinant of a square matrix A = (ai,j | 0 ≤ i, j ≤ n−1)

of order n is a popular trick among students. It is, indeed, much easier to perform

by hand on paper than the other classical methods, such as those based on minor

expansion or Gaussian elimination. This is due to its amazing data traversal pattern.

Each transformation step, from one array to the next one, is a streaming process,

called a condensation. Dodgson’s Algorithm can be executed as a stencil computation:

the input data array is transformed into its determinant through n − 1 successive

data arrays. This method suffers, however, from a serious algebraic limitation: it

may fail to compute the targeted determinant. Indeed, after each condensation, the

63

newly generated matrix should have no zero elements in its interior [14] for the next

condensation step to take place. The interior of A is the submatrix int(A) = (ai,j |
0 < i, j < n − 1). One can sometimes reduce to this case by combining rows or

columns. When this is not possible, the algorithm terminates without producing any

answers. In [63], Abdelmalek Salem and Kouachi Said have solved this difficulty by

introducing another type of condensation.

One can easily realize that the condensation method (Dodgson’s original method

and the improved one by Salem and Said) can be executed in parallel. Moreover,

we argue in this paper that its data traversal pattern makes it a good candidate for

an implementation within a concurrency platform based on data-parallelism such as

CUDA.

We report on an implementation of the algorithm described in [63] on GPU using

CUDA. We consider two types of coefficients: modular integers and floating point

numbers. In the first case, our contribution is to show that the condensation method

can be implemented efficiently in terms of memory bandwidth, leading to a very com-

petitive code with respect to popular software packages for computing determinant

over finite fields (i.e. with modular integer coefficients). In the floating point case,

our contribution is to show that the condensation method can be implemented ef-

ficiently in terms of numerical stability. We observe that the condensation method

computes, in some sense, a factorization of the determinant. To take advantage of

this fact, we use a new algorithm to compute the product of those factors such that, if

overflow/underflow can be avoided then computations are ordered in a way that over-

flow/underflow is indeed avoided. The challenge is to keep the intermediate products

within the range of machine floats; our solution is described in Section 7.4.

The organization of the paper is as follows. We describe the condensation method

in Section 7.2. Its GPU implementation is presented in Section 7.3 and 7.4 for the

finite field and floating point case respectively. Both of these two sections contain the

corresponding experimental results. Concluding remarks are in Section 7.5.

7.2 The condensation method

In this section, we first review the condensation method described in [63]. We then

analyze the algebraic complexity and cache complexity of this condensation method.

64

7.2.1 The formula of Salem and Said

As mentioned in the introduction, the authors of [63] have solved the algebraic lim-

itation of Dodgson’s Algorithm by introducing another type of condensation, which

we summarize below. The input is a square matrix A of order n > 2. If the first

row of A = (ai,j | 0 ≤ i, j ≤ n − 1) is the null vector then the determinant of A

is zero and the process terminates. Otherwise, let ℓ be the smallest column index of

a non-zero element in the first row of A. The condensation step produces a matrix

B = (bi,j) of order n− 1 defined by:

bi,j =

∣

∣

∣

∣

∣

a0,ℓ a0,j+1

ai+1,ℓ ai+1,j+1

∣

∣

∣

∣

∣

for j ≥ ℓ and by bi,j = −ai+1,ja0,ℓ for j < ℓ. The key relation between A and B is the

following:

det(A) = det(B)/(a0,ℓ)
n−2 (7.1)

We call a0,ℓ the pivot of the condensation step. Formula (7.1) implies that the con-

densation method of Salem and Said computes det(A) as a product of powers of the

inverse of the successive pivots. In the finite field case, this product can be accumu-

lated in a variable, that is, this variable is updated after each condensation step. In

the floating point number case, these powers can be accumulated in a list so that their

product can be performed in a way that overflow/underflow is avoided, if possible, as

we shall see in Section series.

7.2.2 The algebraic complexity of the condensation method

Algebraic complexity estimates are given for the RAM model with memory holding

a finite number of s-bit words, for a fixed s [65]. Each condensation step involves

two matrices: A and B of order n and n − 1, respectively. Computing B from A

requires 2(n− 1)2 multiplications and (n− 1)2 subtractions considering that ℓ refers

to the first column (which is the worst case for computing B). The best case happens

when ℓ is the last column. When this happens each condensation requires (n − 1)2

multiplications. The number of operations involved in finding ℓ is linear in n. The

whole algorithm takes at most n− 2 condensation steps before terminating. So, the

total cost for computing the determinant is bounded by O(n3) arithmetic operations.

Moreover, in the worst case, a precise account is n3 − 3/2n2 + 1/2n − 3, which is

comparable to the worst case of Gaussian Elimination.

65

7.2.3 The cache complexity of condensation method

Cache complexity estimates are given for the ideal cache model. The ideal cache

model [17] is a fully associative cache. Its cache replacement policy is optimal in that

the cache line to be evicted is one which will be required again furthest in future.

Before estimating the cache complexity of a condensation step, we need to describe

the data structures used to represent a square matrix of order n in our implementation.

We represent A by a one-dimensional array α[0, 1, . . . , n2−1] of size n2. We use column

major layout. that is, the sub-array α[i, i+1, . . . , i+n−1], for i = 0, n, 2n, . . . (n−1)n

represents the i-th column. In particular the element ai,j is stored in α[i+ j ∗ n].
Consider an ideal cache of Z words, with cache line of L words. To make the

analysis simple, we assume that n is large enough such that one column of A does not

fit into the cache. Let α and β be two one-dimensional arrays of size n2 and (n− 1)2,

representing the input matrix A and output matrix B of the condensation method,

respectively. In each condensation step, matrix B is created from A. Assume that,

our algorithm computes B sequentially column-wise. This involves the following data

traversals:

• Each element of B is visited only once.

• Each element of A (if it is neither in first row nor in ℓ-th column) is visited only

once.

• The ℓ-th column of A is scanned n− 1 times.

• Each element of the first row of A is visited n− 1 times consecutively.

It follows that one condensation step incurs 2(n − 1)2/L + n/L + 3 for α and

(n− 1)2/L+1 for β, thus 3(n− 1)2/L+n/L+4 cache misses in total. Summing over

the condensation steps for k = Z + 1 · · ·n (that is, those for which one column does

not fit it in cache) we obtain

(n− Z) (n2 − n+ Z2 − Z + Zn+ 1 + 4L)

L
(7.2)

Therefore, asymptotically, the ratio between the algebraic complexity and the cache

complexity is L. This is similar to Gaussian Elimination. However, the condensation

method works in a more data-oblivious way: at each condensation step, apart from

the search of the pivot, the same operations are performed independently of the data.

This regularity pattern facilitates scheduling, in particular hardware scheduling as

66

it is the case on a GPU. Gaussian Elimination does not have this feature. Indeed,

permutations of rows and columns may be needed before proceeding to the next step.

7.3 GPU implementation: the finite field case

As mentioned in the introduction, the GPU implementation reported in this paper

handles two types of coefficients, namely modular integers and floating point numbers.

In both cases, each coefficient is stored in a fixed number of machine words and

hardware arithmetic is used as much as possible for efficiency consideration. This

latter property is more difficult to achieve in the case of modular integers and we

discuss it in Section 7.3.2 Numerical stability is the challenge of floating point number

arithmetic and we address it in Sections 7.4.1 and 7.4.2. Other types of coefficients,

such as multi-precision integers, could be also considered and we leave it for future

work.

Before describing the issues specific to the finite field case (in other words to

modular integers) we present the part of our implementation which is common to

both scenarios. More precisely, we discuss in Section 7.3.1 our GPU implementation

strategy, in particular the mapping between thread blocks and data. In section 7.3.3,

we report on our experimentation with the condensation method for matrices over

finite fields. This, of course, is primarily dedicated to evaluate the performance of

our GPU implementation, but also to compare it with serial implementations of

determinant computation available in computer algebra packages One of our goals is

to understand to which extent GPU implementation could improve those packages.

7.3.1 Data mapping

Each condensation step is performed by one CUDA kernel call. The matrices α and

β, introduced in Section 7.2.3, are stored in the global memory of GPU. After each

condensation step, instead of copying β back to CPU main memory, we simply “swap

the pointers” to these arrays.

In practice, we find that the index ℓ is small. So we dedicate one kernel call, with

a single thread in a single block, to find ℓ. Once we get ℓ, we compute the (n− 2)-th

power of the inverse of α[ℓ ∗ n]. We call it pivot. We also store the product of the

successive pivots in this kernel call.

The kernel performing a condensation step uses one-dimensional blocks and

threads. Let T be the number of threads in a block. Each thread is responsible

67

to compute t elements of the array β (representing B). So the total number of blocks

required to compute β is ⌈(n− 1)2/(Tt)⌉. Consider thread i is in block j. Then this

thread is responsible for computing β[Ttj + it, T tj + it+ 1, . . . T tj + it+ t− 1].

7.3.2 Finite field arithmetic

Multiplying two elements a, b modulo a prime number p is obviously a key routine.

Unlike the case of single and double precision floating point arithmetic, the operation

(a, b, p) 7−→ (ab) mod p, for a, b, p ∈ Z, is not provided directly by the hardware. This

operation is thus an efficiency-critical low-level software routine that the programmer

must supply. When p is a machine word size prime, which is the assumption in this

paper, two techniques are popular in the symbolic computation community.

The first one takes advantage of hardware floating point arithmetic. We call

double mul mod our implementation of this technique, for which our CUDA code is

shown below. The fourth argument pinv is the inverse of p which is precomputed in

floating point.

__device__ int double_mul_mod(int a, int b, int p, double pinv) {

int q = (int) ((((double) a) * ((double) b)) * pinv);

int res = a * b - q * p;

return (res < 0) ? (-res) : res;

}

In our implementation, double precision floating point numbers are encoded on 64

bits and make this technique work correctly for primes p up to 30 bits.

The second technique, called the Montgomery reduction relies only on hard-

ware integer arithmetic. We refer to Montgomery’s paper [51] for details. We

have experimented both approaches in [72]. Our CUDA implementation favors the

double mul mod trick.

7.3.3 Experimental results

We generate random integer matrices modulo a prime number p of machine word size.

The order of our test matrices varies from 10 to 4000. We conduct all our experiments

on a GPU NVIDIA Tesla 2050 C.

We use effective memory bandwidth to evaluate our GPU code. The effective

memory bandwidth (measured in GB/seconds) of a kernel run is, by definition,

• the amount of data traversed in the global memory of the GPU during the

kernel run,

68

• divided by the running time of the kernel.

Following a principle proposed by Greg Ruetsch and Paulius Micikevicius in [62], we

compared the effective memory bandwidth of our kernel to that of a copy kernel, that

is, a kernel that simply performs one memory copy from one place to another place in

the global area of GPU. Such benchmark kernel can be regarded as a good practical

measure of the maximum memory bandwidth of a kernel.

For matrix of order of 3000, the effective memory bandwidth of the copy kernel

and our condensation method (with modular integer coefficients) on our card are 96

GB/s and 18.5 GB/s respectively.

Our effective memory bandwidth results show that our code is reasonably efficient

considering the following two facts:

• the index calculation in our code is not straightforward and

• finite field arithmetic (see Section 7.3.2) is time consuming.

Figure 7.1 reports on the memory bandwidth of our CUDA code for different matrix

orders.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000 3500 4000

B
a

n
d

w
id

th
 (

G
B

/s
)

matrix order

Memory Bandwidth of Condensation Method

Bandwidth (GB/s)

Figure 7.1: Effective memory bandwidth of condensation method.

To conclude this section, we compare our CUDA code for computing determinants

over finite fields with its counterpart in two popular mathematical software packages,

namely MAPLE1 and NTL2.

Figure 7.2 compares the computing time between our CUDA code for the conden-

sation method and the NTL determinant code, both with modular integer coefficients.

1http://www.maplesoft.com/
2http://www.shoup.net

69

It shows clearly that the condensation method in CUDA outperforms NTL code for

computing determinant over finite fields. For example, when n = 4000, the conden-

sation method in CUDA takes about 9 seconds, while NTL code takes about 850

seconds.

Figure 7.3 compares the computing time between our CUDA code for the conden-

sation method and MAPLE’s determinant command over finite fields. It shows clearly

that the condensation method in CUDA outperforms MAPLE code for computing de-

terminant over finite fields. For example, when n = 4000, the condensation method

in CUDA takes about 9 seconds, whereas MAPLE code takes about 90 seconds.

7.4 GPU implementation: the floating point case

In this section, we consider the case of matrices with floating point number coeffi-

cients. We adapt our CUDA code described in Section 7.3 to this new scenario. The

modifications are described in Section 7.4.1. One potential challenge that we found

is to multiply the successive pivots. Mathematically, the problem is to multiply a

sequence of floating values where the intermediate results might not be in the range

of the floating point number data type while the final results might be. We state

the problem and our solution in Section 7.4.2. We conclude the section by providing

experimental results.

7.4.1 Finding the pivots

Instead of taking the first nonzero from the left in the first row of A, we choose the

nonzero element of the first row that is closest to value 1.0; let use call p = a0,ℓ this

element. We have verified that this modification of the original algorithm in [63] does

not invalidate the expected result, namely the determinant. For simplicity, we are

describe the procedure for matrices A and B instead of the arrays α and β. Once p

is chosen, all elements in the ℓ-th column are divided by p including a0,ℓ. Thus we

modify Formula (7.1) as follows:

det(A) = det(B) ∗ p

We call p the pivot for this floating point number implementation.

The benefits of the above transformation are as follows.

70

• a0,ℓ becomes 1.0. So we need neither computing the (n− 2)-th power of it nor

performing any division at the end.

• By choosing an element that is the closest to 1.0, we are expecting to reduce

the potential of overflow/underflow.

7.4.2 Multiplication of the successive pivots

We first state the problem that we wish to address. Consider an array x[0, 1, . . . , k−1]

of k floating point numbers, encoded by a floating point number data type of fixed

precision. Then the problem is to write an algorithm for computing the product

X =
∏k−1

i=0 x[i], assuming that X fits within the range of the given floating point

number data type. Our solution to this problem is stated as Algorithm 10 hereafter.

We give a sketch of the proof of Algorithm 10. We observe that multiplica-

tions occur at Lines 6, 17 and 25. The multiplication at Line 6 cannot lead to

overflow/underflow since |q1| ≤ 1 ≤ |q2| holds. If Lines 17 or 25 would lead to

overflow/underflow, this would bring a contradiction to our hypothesis.

We estimate the running time of Algorithm 10. The first while loop runs in linear

time with the number of elements in x. The second while loop runs m − 1 times

considering there exists m elements in R. Each of the iteration takes O(m) time. So

the time complexity of the second while loop is O(m2). Considering the inequality

k ≥ m, the time complexity of the Algorithm is O(k2).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000 3500 4000

ti
m

e
 (

s
)

matrix order

Condensation Vs NTL code for computing determinant

NTL
Condensation method

Figure 7.2: CUDA code for con-
densation method and determi-
nant on NTL over finite field.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000 2500 3000 3500 4000

ti
m

e
 (

s
)

matrix order

Condensation Vs Maple code for computing determinant

Maple
Condensation method

Figure 7.3: CUDA code for con-
densation method and determi-
nant on MAPLE over finite field.

7.4.3 Experimentation

For the experimentation in the case of floating point coefficients matrices with

MAPLE, we use the Determinant command of the LinearAlgebra package. In this

71

Algorithm 10: MulSuccPivot(X)

Input: X, list of floating point numbers
Output: R, product of numbers in X.
Create a stack S1 of elements of x in [−1.0, 1.0];1

Create a stack S2 of the other elements of x not in S1;2

while both S1 and S2 are nonempty do3

q1 = pop(S1);4

q2 = pop(S2);5

q = q1 ∗ q2;6

if q is in [−1.0, 1.0] then7

push(q, S1);8

else9

push(q, S2);10

if stack S1 is not empty then11

make a list R with the elements in S1;12

while R has more than one element do13

select r1 and r2 in R such that r1 and r2 are closest to 0 and |1.0|14

respectively;
r = r1 ∗ r2;15

delete r1 and r2 from R;16

insert r into R;17

else18

make a list R with the elements in S2;19

while R has more than one element do20

select any r1 and r2 in R;21

r = r1 ∗ r2;22

delete r1 and r2 from R;23

insert r into R;24

return R;25

72

case, MAPLE may not have the best possible implementation, since MAPLE’s pri-

mary purpose is symbolic computation. However, MATLAB3 has certainly a com-

petitive implementation for floating point coefficients. Indeed, efficiently supporting

numerical linear algebra is the primary goal for this cutting-edge software.

For small finite field coefficients, the best serial algorithm is simply Gaussian elim-

ination, which is what MAPLE is using. Therefore, in the case of modular integers,

our comparison reported in Section 7.3.3 is also meaningful.

In order to investigate the numerical stability of our GPU implementation of the

condensation method, we use the infamous Hilbert matrix Hij = 1
i+j−1

, which is a

canonical example of ill-conditioned matrix. This matrix is non-singular, for each

value of n. However, for n large enough, any determinant computation of this matrix

using a fixed precision floating point number arithmetic returns zero.























1 1
2

1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

1
7

1
8

1
9























In the tables below, we compare determinant computation of the Hilbert matrix

with

• MAPLE using multi-precision floating point number arithmetic (thus software

floating point number),

• MATLAB using double-precision floating point number arithmetic,

• our CUDA implementation using double-precision floating point number arith-

metic.

We observe that:

1. despite of the use of multi-precision floating point, MAPLE is less accurate than

MATLAB and our CUDA implementation (this was checked by computing the

exact value of the determinant using rational number arithmetic),

2. our CUDA implementation of the condensation method can compute determi-

nants of much larger order than MATLAB,

3http://www.mathworks.com/

73

Matrix order MAPLE MATLAB Condensation method on GPU
5 0.3239712e-11 3.749295e-12 3.74967e-12
6 -0.1037653175e-16 5.367300e-18 5.36556e-18
7 -0.2940657217e-22 4.835803e-25 4.44292e-25
8 -0.2156380381e-28 2.737050e-33 -3.92813e-33
9 -0.1692148341e-35 9.720265e-43 -2.79235e-41
10 0.4704819751e-42 2.164405e-53 -4.44342e-50
15 0.1386122551e-74 -2.190300e-120 -9.47742e-103
20 0.4711757502e-106 -1.100433e-195 3.81829e-164
25 -0.4092672466-139 5.482309e-274 -3.82134e-239
30 -0.2087134536-174 0 -2.50914e-319
35 0.6863051439e-205 - 3.50293e-398
40 0.3354475665e-237 - -7.42227e-479
70 -0.1605231989e-443 - -1.42973e-961
100 -0.1344119185e-667 - 1.96009e-1467
200 -0.1635472167e-1423 - 9.43651e-3169
295 -0.1313897019e-2117 - 3.27673e-4811
300 0.4832058492e-2154 - -1.95564e-4897
320 0.1012376674e-2298 - 7.2904e-4951
340 0.3198288621e-2442 - -8.67557e-4949*2.08848e-644
360 0.6712616355e-2593 - 9.84118e-4938*8.32678e-1006
380 -0.1532669346e2736 - -3.28068e-4950*-6.51644e-1341
400 -0.4230797452e-2881 - -6.19676e-4945*6.56337e-1696
500 -0.1956609252e-3608 - 1.40177e-4939*-2.22223e-3444
600 -0.4139972675e-4335 - -2.55164e-4950*1.99856e-4945*6.19736e-232

800 0.4570493645e -5853 - 4.25009e-4940*-2.21715e-4940*-2.17891e-3739

Table 7.1: Determinant of Hilbert matrix by MAPLE, MATLAB, and condensation
method on both CPU and GPU.

3. our CUDA implementation is also competitive with MATLAB in terms of run-

ning time.

7.5 Conclusion

MAPLE and MATLAB commands for computing matrix determinants combine many

different state-of-the-art algorithms. On a given input, MAPLE and MATLAB deter-

minant commands choose one of these algorithms by considering the types of the co-

efficients and the combinatorial properties (size, sparsity) of the input matrix. These

choices are heavily tuned since linear algebra is, in the case of MAPLE, at the core

74

Matrix order MAPLE MATLAB Condensation method on GPU
5 0.004 0 0.000530
6 0.008 0 0.000570
7 0.012 0 0.000595
8 0.008 0 0.000631
9 0.012 0 0.000741
10 0.012 0 0.000447
15 0.016 0 0.000964
20 0.016 0 0.001078
25 0.020 0 0.001271
30 0.024 - 0.001460
35 0.044 - 0.001671
40 0.036 - 0.001896
70 0.188 - 0.003083
100 0.588 - 0.005145
200 5.988 - 0.012488
295 20.733 - 0.023402
300 21.661 - 0.023759
320 26.741 - 0.026633
340 31.677 - 0.029433
360 38.150 - 0.032401
380 46.146 - 0.035940
400 54.099 - 0.038955
500 104.334 - 0.058193
600 187.151 - 0.081969
800 467.541 - 0.147037

Table 7.2: Time(s) required to compute determinant of Hilbert Matrix by MAPLE,
MATLAB, and condensation method on both CPU and GPU.

of its symbolic routines while it is, in the case of MATLAB, at the core of the whole

system. Therefore, comparing our code against those systems is meaningful.

From our experimental results, it is clear that the condensation method imple-

mented on the GPU is a promising candidate for computing determinants of matrices

with both modular integer coefficients and floating point number coefficients.

Though it seems unfair in the first place that we compare our parallel code with

serial codes in mathematical packages, our primary objective is to propose parallel

algorithms for computing determinants within mathematical software packages, such

as MAPLE and MATLAB. Actually, these two systems are already able today to

take advantage of multi-core processors and GPUs for certain types of computations.

Therefore our objectives are meaningful and motivated by our active cooperation with

75

the Maplesoft company developing MAPLE. We believe that a GPU implementation

of the condensation method can be used to improve the efficiency, in terms of running

time and numerical stability, of existing mathematical software packages.

76

Chapter 8

Implementation of Plain

Multiplication for Univariate

Polynomials on GPU

In this chapter, we describe an implementation of plain univariate polynomial mul-

tiplication on many-core machine. In practice, our implementation, using CUDA

outperforms an optimized FFT-based implementation (using CUDA also) for fairly

large degrees. We analyze our algorithm on our proposed many-core machine model.

This chapter is based on the paper [31] co-authored with M. Moreno Maza.

8.1 Introduction

Let K be a field and a, b ∈ K[X] be two univariate polynomials over a K and with

variable X. Let n and m be positive integers such that deg(a) = n− 1 and deg(b) =

m − 1. We assume that each binary arithmetic operation (addition, subtraction,

multiplication and division) in K can be done with a single machine word operation

of a streaming multiprocessor (SM) of an MMM program.

a = an−1X
n−1+· · ·+a1X+a0 and b = bm−1X

m−1+· · ·+b1X+b0, with n ≥ m. (8.1)

We start from the so-called long multiplication1, which computes the product a× b in

the way we all learned integer multiplication in primary school. Multiplying a and b

by plain arithmetic requires O(nm) arithmetic operations on RAM model. The cache

1http://en.wikipedia.org/wiki/Multiplication algorithm#Long multiplication

77

a = X5+ 8X4+ 2X3+ 2X2+ 6X+ 7

b = X5+ 2X4+ 4X3+ X2+ 3X+ 2

2X5+ 16X4+ 4X3+ 4X2+ 12X+ 14

3X6+ 24X5+ 6X4+ 6X3+ 18X2+ 21X

X7+ 8X6+ 2X5+ 2X4+ 6X3+ 7X2

4X8+ 32X7+ 8X6+ 8X5+ 24X4+ 28X3

2X9+ 16X8+ 4X7+ 4X6+ 12X5+ 14X4

X10+ 8X9+ 2X8+ 2X7+ 6X6+ 7X5

X10+ 10X9+ 22X8+ 39X7+ 29X6+ 55X5+ 62X4+ 44X3+ 29X2+ 33X+ 14

Table 8.1: Long multiplication (n = m = 5).

complexity of this algorithm is Q(n,m) = 2 + 2mn+m+n−1
L

+ n(2 + 1
L
). In Table 8.1,

we show an example of long multiplication.

For simplicity, let, n = m. In [54], M. Moreno Maza and W. Pan analyze the

span, parallelism and cache complexity of this problem on multi-core machine. They

proposed a parallel algorithm for plain polynomial multiplication. According to their

analysis the span and cache complexity are Θ(n) and O(n2

LZ
) respectively. The to-

tal number of words of storage required is Θ(n log n). The total amount of memory

accesses, cache misses, allocation and deallocation of memory make the overhead sig-

nificant such that the algorithm does not perform well compare to the implementation

of Fast Fourier Transforms (FFTs) based multiplication.

Both the memory access pattern and the for-loop parallelization overheads in the

implementation of a FFT based polynomial multiplication restrict linear speedup to

input vectors of very large sizes, say 220, according to [57, 56]. In contrast, serial FFT

code provide high-performance even for input vectors of relatively small sizes, say

210. This is the case with the standard libraries FFTW [16], NTL and Spiral [60]. As

a consequence, higher level algorithms, that heavily rely on FFTs in their serial im-

plementation, require additional supporting routines for small/average size problems,

when targeting implementation on multi-core architectures. Examples of such higher

level algorithms are fast evaluation and fast interpolation based on sub-product tree

techniques, see Chapter 10 in [20]. As for serial code on CPUs, parallel code on

GPUs for dense polynomial arithmetic relies on a combination of asymptotically fast

and plain algorithms. Those are employed for data of large and small size, respec-

tively. Parallelizing both types of algorithms is required in order to achieve peak

performances.

Graphics processing units (GPUs) offer a higher level of concurrent memory access

than multi-core architectures. Moreover, thread scheduling is done by the hardware,

78

which reduces for-loop parallelization overheads significantly. Despite of these at-

tractive features, and as reported in [53], highly optimized FFT implementation on

GPUs are not sufficient to support the parallelization of higher level algorithms, such

as dense univariate polynomial arithmetic. To give a figure, for vectors of size 218

and 226, speedup factors (w.r.t. a C serial implementation) are 9 and 37 respectively

on a NVIDIA Geforce GTX 285 running CUDA 2.2, as reported in [53].

8.1.1 Elements of syntax

In this section, we describe the representation of univariate polynomials on many-

core machine model. We also describe syntax for kernel call in many-core machine

algorithms.

Each polynomial (for example b) is represented by a coefficient array (lets,

b[0, . . . , deg(b)]). The length of the array is the length of the polynomial (for b it

is deg(b) + 1). The elements in the array are in order. For example, b[deg(b)] is the

leading coefficient.

All of our kernel has one dimensional threads, and thread blocks. Each thread,

has a local variable j which is defined as the rank of the thread over all the threads

in all thread blocks. It is computed as t+blockID×ℓ, where t and ℓ are the thread id

and the number of threads in a thread block respectively. In this paper, we represent

rank and thread id by j and t respectively.

We launch a kernel by the following format: kernelName≪ c, ℓ ≫ (p0, . . . , pn−1).

Here, ℓ and c are the threads number in a thread block and the thread blocks number

respectively. kernelName is the name of our kernel. (p0, . . . , pn−1) are the parameters

for this kernel.

8.2 Polynomial multiplication algorithms

Let d ∈ K[X] such that d = ab. The main idea of the algorithm is to multiply each

coefficient of a with every coefficient of b then apply shifted additions among the

coefficient multiplications to obtain d.

Our implementation has two phases: multiplication phase and addition phase.

In Section 8.2.1 and 8.2.2 we describe these two phases followed by the analysis of

our algorithm. Algorithm 11 is our top level algorithm. We consider a number of

assumptions on the input polynomial in order to keep our algorithm simple and clear.

First, let x be a small positive integer. Second, let m is divisible by x and r = n
x
= 2q

79

for q ≥ 0. Third, (n + x − 1) ≥ 2ℓ and it is divisible by ℓ, where ℓ is the number

of threads in a thread block. The algorithm can be modified easily if any of the

assumptions does not hold, and it does not change our complexity analysis.

Algorithm 11: PlainMultiplicationGPU(a, b, d, x)

Input: a, b ∈ K[X] with n− 1 = deg(a) and m− 1 = deg(b) and an integer
x ≥ 1.

Output: d ∈ K[X] and d = ab.
c = n+ x− 1; r = m/x; t = rc;1

Let M be an array of size t with coefficients in K ;2

ℓ is the number of threads per block;3

MulKer≪ rc/ℓ, ℓ ≫ (a, b,M, n, x);4

d is an array that stores ab;5

for (i = 0; i ≤ log2 r; i = i+ 1) do6

AddKer≪ rc/(ℓ2i+1), ℓ ≫ (M,d, c, x, r, i);7

return d;8

8.2.1 Multiplication phase

Algorithm 12 is responsible for completing the multiplication phase. Each thread

copies one coefficient from polynomial a and stores the coefficient in local memory

A′. A thread block copies x coefficients from b into local memory B′.

In a thread block, multiplications between A′ and B′ are done by all threads in

parallel and the results are written into the appropriate places in M . More precisely,

each thread associated with j does x multiplications and x−1 additions in this phase,

and then save the result in an entry of M [j].

Figure 8.1 describes the computation of array M . Each thread block computes

ℓ entries of M , which are created from ℓ coefficients and x coefficients from a and b

respectively .

8.2.2 Addition phase

The main idea of adding the intermediate multiplication results into d is similar

to parallel scan [32]. Algorithm 13 completes this phase. Consider M as a two

dimensional array of r × c. For example, coefficients in {M [i r] · · ·M [i r + r − 1]}
creates the i-th row. Let all rows of the matrix are unchecked at the very beginning.

In one parallel steps, it first makes a number of pairs of consecutive unchecked rows

and applies addition operations between coefficients, such that one coefficient is from

80

Algorithm 12: MulKer(a, b,M, n, x)

Input: a, b,M ∈ K[X] and an integer x ≥ 1.
j =blockID blockDim +threadID; t =threadID;1

Let B′ and A′ be two local arrays of size x and blockDim respectively with2

coefficients in K;
i = j mod (n+ x− 1);3

if i ≥ n then4

A′[t] = 0;5

else6

A′[t] = a[i];7

if t < x then8

B′[t] = b[⌊(j/(n+ x− 1))⌋x+ t];9

/* copying from global. */

f = 0;10

for (k = 0; k < x ∧ (i− k) ≥ 0; k = k + 1) do11

f = f + A′[i− k]B′[k];12

/* both coefficient addition and multiplication operations are

done in K . */

M [j] = f ;13

/* writing to global memory. */

Figure 8.1: Dividing the work of coefficient multiplication among threadblocks.

first row and the other is from the second row and the result is stored into the second

row. By first row, we refer to the row that has smaller index than that of the other

row in the pair. Note that these additions are all valid addition operations considering

the long multiplication algorithm. If there is no such coefficient is found in the second

row, we add it with an appropriate coefficient in d. At the end, we mark the first

row as checked. We continue this procedure until, all rows are checked. We need

log2 r+1 number of parallel steps to complete the above procedure. In the last step,

there exists only one unchecked row. All coefficients from the unchecked row are

81

added with the corresponding coefficient in d. Each of parallel steps is completed by

one kernel.

In Algorithm 13, during i-th call, does one coefficient addition. First it requires to

find a row pair of M (we treat M as a two dimensional matrix of r×c) between which

it does the coefficient addition. Let the row indices of a pair be (s, e) for a thread.

It can be observed that during i-th call all rows whose index are less than 2i−1 were

already checked by previous kernels (if any). The difference between the indices in a

row pair is 2i. These rules are used in computing (s, e) in Line 5-6. The next job is

to find out coefficients from each row, then add the elements. In Line 3, we compute

k, which tells the index of the coefficient from s. The index of the other coefficient

in row e is k + 2i x. If no such coefficient found in the other row, the coefficient from

the first row is added directly with d (in Line 7-8). Note that, the algorithm does

not explicitly check the first row. Each thread is accessing the global memory for at

most 3 times without storing the coefficients into the local memory.

Algorithm 13: AddKer(M,d, c, x, r, i)

Input: M,d,∈ K[X] and c, x, r, i are positive integers.
j =blockID blockDim +threadID; t =threadID;1

k = j mod c;2

q = ⌊j/c⌋;3

s = 2i − 1 + 2i+1 q;4

e = s+ 2i;5

if k < 2i x then6

d[s x+ k] = d[s x+ k] +M [s r + k];7

else8

M [e r + k − 2i x] = M [e r + k − 2i x] +M [s r + k];9

/* coefficient addition operations are done in K . */

8.2.3 Arbitrary x

We denote by Wx, Sx and, Ox, the work, span and overhead, respectively. Each

thread block performs ℓ (2x− 1) arithmetic operations in multiplication phase, and ℓ

arithmetic operations in addition phase. Each thread requests at most 3 accesses to

the global memory. We obtain the following estimates, where δ stands for n+ x− 1

and µ stands for 2x− 1,

Wx = (2m− 1

2
) δ, Sx = µ+ log2

m

x
, Ox =

3 δ (2m− x)U

x ℓ
. (8.2)

82

In order to apply Theorem 1, we shall compute the quantities N(P), L(P) and

C(P) defined in Section 3.2. We denote them here by Nx, Lx and Cx, respectively.

One can easily check that we have

Nx =
δ (2m− x)

x ℓ
, Lx = log2

m

x
+ 1 and Cx = µ+ 3U. (8.3)

8.2.4 Comparison of running time estimates

For this application, we use “naive algorithm” as the one obtained by setting x = 1

in Algorithm 11. For fixed n and m, the overhead ratio increases as x increases, since

we have
O1

Ox

=
n (2m− 1) x

(n+ x− 1) (2m− x)
. (8.4)

Next, we observe that this substantial improvement is done at a fairly low expense in

terms of work overhead. Indeed, the work ratio is asymptotically constant, since we

have
W1

Wx

=
n

n+ x− 1
. (8.5)

Applying Theorem 1, the running times on p SMs of the naive algorithm and the

algorithm with arbitrary x are bounded over by

(N1/p+ L1) · C1 and (Nx/p+ Lx) · Cx. (8.6)

and replace m by n. When n escapes to infinity, the ratio R is equivalent to

(1 + 3U) x

2x− 1 + 3U
. (8.7)

One can assume 3U > 1, which implies that the above ratio is always greater than

1 as soon as x > 1 holds. Therefore, the algorithm with arbitrary x outperforms the

naive one.

8.2.5 Experimental results

We have experimented the CUDA implementation of the plain univariate multipli-

cation described in the previous section. We use both balanced and unbalanced pairs

of polynomials, see Table 8.2 and 8.3 respectively. By balanced, following [57], we

mean a pair of univariate polynomials of equal degree, which is a favorable case for

optimized FFT-based polynomial multiplication.

83

degree GPU Plain multiplication GPU FFT-based multiplication
210 0.00049 0.0044136
211 0.0009 0.004642912
212 0.0032 0.00543696
213 0.01 0.00543696
214 0.045 0.00709072

Table 8.2: Comparison between plain and FFT-based polynomial multiplications for
balanced pairs (n = m) on CUDA.

degree(A) degree(B) GPU Plain multiplication
210 28 0.00041
211 28 0.0005
211 210 0.00073
212 28 0.00057
212 210 0.0011
213 28 0.00074
213 210 0.0018
213 212 0.0061
214 28 0.0010
214 210 0.0031
214 212 0.011
214 213 0.02

Table 8.3: Computation time for plain multiplication on CUDA for unbalance pairs
(n 6= m).

In Table 8.2, we compare the computation time of our CUDA based implementa-

tion of parallel plain multiplication with the highly optimized FFT-based multiplica-

tion in CUDA reported in [53]. Our implementation outperforms that of FFT-based

multiplication until the degree 212.

FFT-based multiplication may not perform well for unbalanced pairs, see [57]

for details. In plain multiplication, this is not true. Computation times for plain

multiplication on CUDA of unbalanced pairs are reported in Table 8.3.

8.3 Conclusion

The number of multiprocessors in a GPU is limited. So, we can not expect that

the our implementation outperform FFT based multiplication. For our GPU card

our code is better than that of FFT based multiplication up to n = 212. On other

card, it might be different. We expect a better performance of our algorithm with

84

GPU card that has more local memory. It is obvious that, at some point, FFT

based multiplication outperforms plain multiplication. One important feature of our

algorithm is that, we do not need to compute the root of unity. Moreover, in case

of FFT based multiplication, both the length of a and b in coefficient representation

need to be equal and full power of 2. In plain multiplication, it is not required. The

consequence of this feature is that, our implementation have better performance in

case of unbalance polynomial.

85

Chapter 9

Implementation of the Euclidean

Algorithm for Univariate

Polynomial GCDs on GPU

In this chapter, we describe both plain univariate polynomial division and Euclidean

algorithm on many-core machine. We compare our experimental results with the

implementations found in NTL. We also analyze our algorithms on our proposed

many-core machine model.

This chapter is based on the paper [31] co-authored with M. Moreno Maza.

9.1 Introduction

Let K be a field and a, b ∈ K[X] be two univariate polynomials over a K and with

variable X. We assume that each binary arithmetic operation (addition, subtraction,

multiplication and division) in K can be done with a single machine word operation of

a streaming multiprocessor (SM) of an MMM program (like Chapter 8). We assume

that b is not zero. Let n and m be positive integers such that deg(a) = n − 1 and

deg(b) = m − 1. Thus n and m are the number of terms (null or not) of a and b,

respectively. Let q and r be the quotient and the remainder in the Euclidean division

of a by b. Thus, (q, r) is a unique couple of univariate polynomials over K such that

a = b q + r and deg(r) < deg(b) both hold.

a = an−1X
n−1+· · ·+a1X+a0 and b = bm−1X

m−1+· · ·+b1X+b0, with n ≥ m. (9.1)

86

We follow the same notations stated in Section 8.1.1 to represent polynomials

and kernel calls. We can apply any division algorithm for computing q and r. Plain

division is a simple method that we learn in high school. It is an iterative method.

Algorithm 14 describes plain univariate division algorithm. As we can see, in each

iteration of Algorithm 14, the polynomial a is changing. At the end, the last computed

a is returned as the remainder. The step, where we update a in the algorithm (in line

7), is called the division step.

Algorithm 14: Division(a, b)

Input: a, b are univariate polynomial.
Output: q, r are the quotient and the remainder respectively.
n = deg(a);1

m = deg(b);2

q, r be two univarate polynomials initialized as zero polynomials.;3

for (i = 0; i ≤ n−m; i = i+ 1)) do4

if an−i 6= 0 then5

w = an−1−i/bm−1;6

a = a− bw;7

q = q + w xn−m−i;8

r = a;9

return (q, r);10

Euclidean algorithm is used to compute GCDs. In Algorithm 15, we describe a

recursive version of it that calls Algorithm 14. Let g =EuclideanGCD(a, b), then both

a and b are divisible by g.

Algorithm 15: EuclideanGCD(a, b)

Input: a, b: univariate polynomial.
if b = 0 then1

return a;2

[q, r] =Division(a, b);3

return EuclideanGCD(b, r);4

Algorithm 15 is a sequential algorithm. Indeed, there is no parallel version of

this algorithm which would be both sublinear and work-efficient1. The best parallel

version of the Euclidean Algorithm which is work-efficient, is that for systolic arrays,

1Here work-efficient refers to a parallel algorithm in the PRAM model for which the maximum
number of processors in use times the span is in the same order as the work of the best serial
counterpart algorithm.

87

a model of computation formalized by H. T. Kung and C. E. Leiserson [44], for which

the span is linear [10].

Let, we have a systolic array that has two inputs that take coefficients from a and

b in order (starting from leading coefficient). The idea of computing GCD is to place

a number of such systolic arrays in series such that, each of it computes one division

step. Each of the systolic array also need to store the degrees of the polynomials. For

details, we refer [10].

Multiprocessors based on systolic arrays are not so common (as they are quite

specialized to certain operations and difficult to build). However, the recent develop-

ment of hardware acceleration technologies (GPUs, field-programmable gate arrays,

etc.) has revitalized researchers interest in systolic algorithms and more generally in

optimizing the use of computer resources for low-level algorithms [3, 21, 34].

Systolic array based gcd algorithm can be simulated on many-core machine. The

role of one systolic array can be implemented by one multiprocessor. We need to

establish synchronization rules among multiprocessors in such a way that a number

of multiprocessors can work on different division steps concurrently. Alternatively,

we can view the problem orthogonally. That is, instead of parallelizing a number of

division steps, we can parallel each division step. We explain the latter technique in

this chapter.

All operations except division step involved in computing plain division or Eu-

clidean gcd are serial operations. The division steps are the only places where we can

apply parallel operations.

9.2 Importance of plain division and Euclidean al-

gorithm for polynomials with smaller degrees

Consider now the fundamental application of polynomial arithmetic: solving sys-

tems of non-linear equations. Many polynomial systems encountered in practice have

finitely many solutions. Moreover, those systems that can be solved symbolically

by computer algebra software, such as Maple or Mathematica, have rarely more

than 10,000 solutions, see for instance [73]. For this reason, the degrees of univariate

polynomials that arise in practice rarely exceed 10,000.

It follows from the above discussion that implementation of a polynomial system

solver on multi-cores or many-core machines require efficient parallel polynomial arith-

metic in relative low degrees, that is, within degree ranges where FFT-based methods

88

may not apply due to performance issue. The study conducted in [12] show that uni-

variate arithmetic based on parallel versions of the Algorithm of Karatsuba and its

variants are not effective either in the desired degree ranges. This leads us to consider

quadratic (or plain) algorithms for dense univariate division and Euclidean algorithm.

That is, algorithms which run within O(d2) coefficient operations for polynomials of

degree less than d, meanwhile FFT-based algorithms amount to O(dlog(d)log(log(d)))

coefficient operations, see the landmark textbook [20] for details.

9.3 Plain division on the GPU

In Section 9.3.1, we present a simple multithreaded algorithm computing (q, r) on an

MMM machine. We call this algorithm naive since it is a direct implementation of

an idea that, at each division step, each thread computes a coefficient of the next

intermediate remainder. In Section 9.3.2, we propose a second MMM algorithm with

a goal of minimizing overhead. We analyze both algorithms with the complexity mea-

sures defined in Section 3.2.3. In Section 9.3.3, we compare these two algorithms by

means of Theorem 1. In Section 9.3.4, we compare our implementation of optimized

plain division algorithm using CUDA with division function found in NTL.

9.3.1 Naive algorithm

Algorithm 16 repeatedly calls the kernel stated in Algorithm 17. The latter performs

one division step in parallel. In a kernel, each thread computes one coefficient of an

intermediate remainder polynomial by means of one multiplication and one subtrac-

tion in the coefficient field K. Let ℓ be the number of threads in a thread block, we

note that each kernel uses ⌈m
ℓ
⌉ thread blocks. We observe that each thread of a kernel

reads/writes 3 to 5 words2 in the global memory without storing them in the local

memory.

We also notice that Algorithm 16 performs exactly n−m+1 consecutive calls to

Algorithm 17. Nevertheless, Algorithm 17 works correctly even if, after one division

step, the degree of an intermediate remainder drops by more than one. The imple-

mentation choice is relevant to dense polynomials, which are our primary interest. In

the sparse case, the degree of an intermediate remainder needs to be computed after

each division step.

2Indeed, in each block, the thread with ID 0 computes f ; moreover, the first thread of the first
block writes f to the global memory as the coefficient of degree i−m of the quotient q.

89

We denote by Wnai, Snai and Onai, the work, span and overhead of Algorithm 16,

respectively. Since each thread block performs 2 ℓ + 1 arithmetic operations and

each thread makes at most 5 accesses to the global memory, we obtain the following

estimates, where δ stands for n−m+ 1,

Wnai =
δ m (2 ℓ+ 1)

ℓ
, Snai = 3 δ and Onai =

5 δ mU

ℓ
.

In order to apply Theorem 1, we shall compute the quantities N(P), L(P) and C(P)

defined in Section 3.2. We denote them here by Nnai, Lnai and Cnai, respectively. One

can easily check that we have

Nnai =
δ m

ℓ
, Lnai = δ and Cnai = 3 + 5U.

In Figure 9.1, we show how one naive division step is done on GPU by our algo-

rithm.

Figure 9.1: A naive division step.

90

Algorithm 16: NaivePlainDivisionGPU(a, b)

Input: a, b ∈ K[X] with n− 1 = deg(a) ≥ m− 1 = deg(b).
Output: q, r ∈ K[X] s. t. a = qb+ r and deg(r) < m− 1.
Let ℓ be the number of threads in a thread block ;1

Let q be array of size n−m+ 1 with coefficients in K ;2

Let c = ⌈m/ℓ⌉ be the number of thread blocks;3

for (i = (n− 1) . . . (m− 1)) do4

NaiveDivKernel≪ c, ℓ ≫ (a, b, q, i,m− 1);5

if a[0] == · · · == a[m− 1] == 0 then6

return [q, 0];7

Compute d the maximum i such that a[i] 6= 0 holds ;8

Let r be array of size d+ 1 s.t. r[i] = a[i] for 0 ≤ i ≤ d ;9

return [q, r];10

Algorithm 17: NaiveDivKernel(a, b, q, i, d)

Input: a, b, q ∈ K[X], d = deg(b), i ∈ N, d ≤ i.
Let blockID, blockDim, threadID be the block id, number of threads per block,1

thread id respectively;
j =blockID blockDim +threadID;2

if j ≤ d then3

if threadID== 0 then4

f = b[d]−1 a[i];5

/* accessing global memory. */

if j == 0 then6

q[i− d] = f ;7

/* writing to global memory. */

a[j + i− d] = a[j + i− d]− b[j] f ;8

/* updating a in global memory. */

9.3.2 Optimized algorithm

Similarly to the scheme in Section 9.3.1, Algorithm 18 repeatedly calls a kernel (Al-

gorithm 19). However, in the kernel, each thread updates a number of coefficients of

an intermediate remainder polynomial repeatedly during a number of division steps,

thus without synchronizing data among each other thread blocks. The motivation of

the new scheme is to minimize the amount of data transferred between global and

local memories so as to minimize the overhead.

To be more specific, given an integer s ≥ 1, Algorithm 19 performs sufficiently

many division steps (in fact, at most s) with polynomials a and b such that an output

91

intermediate remainder is either zero or its degree has been reduced at least by s. To

this end, each thread block uses 3 s threads and:

• loads from the coefficients of Xd, Xd−1, . . . , Xd−s+1 from a (resp. b), that we

call the s-head of a (resp. b), where d the degree of a (resp. b), see Lines 6-7,

• loads 2 s (resp. 3 s) consecutive coefficients of a (resp. b), say

Xe, Xe−1, . . . , Xe−2s+1 (Xf , Xf−1, . . . , Xf−3s+1) for some positive integer e

(resp. f) which depends on the thread and thread-block IDs, see Lines 8-9.

The s-heads of a and b are used to keep track of the leading coefficient of an

intermediate remainder during the entire execution of a kernel, see Lines 11-12 and

18-19 of Algorithm 19. This task is achieved by the first s threads of a thread-block

and requires s+(s−1)+ · · ·+1 = s(s+1)
2

arithmetic operations. Meanwhile, the other

2 s threads update 2s coefficients of a, see Lines 20-21, which amounts to 2 s · 2 s
arithmetic operations. Finally, at Lines 16-17 (resp. 22-23) the quotient q (resp. the

intermediate remainder a) is updated in the global memory.

We denote the work, span and overhead of the optimized algorithm by Wopt, Sopt

and Oopt, respectively. Since each thread requests at most 9 accesses to the global

memory, we obtain the following estimates, where δ stands for n−m+ 1,

Wopt =
δ m (9 s+ 1)

4 s
, Sopt = 3 δ and Oopt =

9 δ mU

2 s2
. (9.2)

In order to apply Theorem 1, we shall compute the quantities N(P), L(P) and

C(P) defined in Section 3.2. We denote them here byNopt, Lopt and Copt, respectively.

One can easily check that we have

Nopt =
δ m

2 s2
, Lopt =

δ

s
and Copt = 3 s+ 9U. (9.3)

In Figure 9.2, we show how optimized division steps is done on GPU by our

algorithm.

9.3.3 Comparison of running time estimates

Following the strategy stated in the introduction, we first compare the overheads of

the two algorithms. The ratio Onai/Oopt is
10
9

s2

l
. Since we have 2ℓ ≤ Z and 7s ≤ Z,

this suggests to replace s and ℓ by Z/7 and Z/2, respectively in the overhead ratio,

leading to
Onai

Oopt

=
20

441
Z. (9.4)

92

Algorithm 18: OptimizePlainDivisionGPU(a, b, s)

Input: a, b ∈ K[X] with n− 1 = deg(a) ≥ m− 1 = deg(b) and s ∈ N.
Output: q, r ∈ K[X] s. t. a = qb+ r and deg(r) < m− 1.
Let ℓ = 3s be the number of threads in a thread block ;1

Let c = ⌈m/(2s)⌉ be the number of thread blocks;2

Let q be array of size n−m+ 1 with coefficients in K ;3

for (i = n− 1; i ≥ m− 1; i = i− s) do4

OptDivKer≪ c, ℓ ≫ (a, b, q, i,m− 1, s);5

if a[0] == · · · == a[m− 1] == 0 then6

return [q, 0];7

Compute d the maximum i such that a[i] 6= 0 holds ;8

Let r be array of size d+ 1 s.t. r[i] = a[i] for 0 ≤ i ≤ d ;9

return [q, r];10

Figure 9.2: Optimize division steps.

Next, we observe that this substantial improvement is done at a fairly low expense in

terms of work overhead. Indeed, the ratio Wnai/Wopt is asymptotically constant:

Wnai

Wopt

=
8 (Z + 1)

9Z + 7
. (9.5)

93

Algorithm 19: OptDivKer(a, b, q, i, d, s)

Input: a, b, q ∈ K[X], i ∈ N, d = deg(b) and s ∈ N.
f = b[d]−1;1

Let sAc, sBc, sA, sB be local arrays of size s, s, 2s, 3s respectively each with2

coefficients in K;
j =blockID blockDim +threadID; t =threadID;3

if t < s then4

sAc[t] = a[i− t]; sBc[t] = b[d− t]; sB[t] = b[d− 2s blockID−t];5

if t ≥ s then6

sA[t− s] = a[i− s− 2s blockID−t]; sB[t] = b[d− 2s blockID−t];7

/* Reading from global memory. */

for (w = 0; (w < s) ∧ (i+ w ≥ d);w = w + 1) do8

while (w < s) ∧ (sAc[w] = 0) do9

w = w + 1;10

if w ≥ s then11

break;12

v =sAc[w] f ;13

if j == 0 then14

q[i− d− w] = v;15

/* Writing q to global memory. */

if w ≤ t < s then16

sAc[t] = sAc[t]−sBc[t− w] v;17

if t ≥ s then18

sA[t− s] = sA[t− s]− sB[t− w] v;19

if t ≥ s then20

a[i− s− 2s blockID−t] = sA[t− s];21

/* Writing back a to global memory. */

Applying Theorem 1, the running times on p SMs of the naive and optimized algo-

rithms are bounded over by

(Nnai/p+ Lnai) · Cnai and (Nopt/p+ Lopt) · Copt. (9.6)

After algebraic simplifications, the ratio R of the former by the latter becomes

2

3

(3 + 5U) (m+ ℓ p) s2

ℓ (s+ 3U) (m+ 2 s p)
. (9.7)

94

After replacing s and ℓ, we obtain

2

3

(3 + 5U) (2m+ Z p)Z

(Z + 21U) (7m+ 2Z p)
. (9.8)

When m escapes to infinity, the ratio R is equivalent to

4

21

(3 + 5U)Z

Z + 21U
. (9.9)

We observe that this ratio is larger than 1 if and only if Z > 441U
20U−9

holds. A

natural technological evolution for a many-core machine is to have Z increasing and

U decreasing. Thus, the above condition is expected to hold at some point and, in

this case, the optimized algorithm is overall better than the naive one.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
o

m
p

u
ti
n

g
 t

im
e

 f
o

r
D

iv
is

io
n

 w
it
h

 p
ri
m

e
:

4
6

9
7

6
2

0
4

9

Degrees of polynomials with Large Gap

CUDA
NTL

Figure 9.3: Comparison between parallel plain division on CUDA and fast division
in NTL for univariate polynomials with large degree gap.

9.3.4 Experimental results of our optimized univariate divi-

sion on GPU

We have compared the running time of our CUDA implementation of the plain divi-

sion with the serial C implementation of the fast division (see Chapter 9 in [20]) from

the NTL library. The latter algorithm is based on FFT techniques and its work fits

within O(dlog(d)log(log(d))) coefficient operations, with d = max(m,n). The input

95

polynomials used in our experimentation are dense random (univariate) polynomials

with coefficients in a finite field whose characteristic is a machine word prime. We

use the following primes: 7, 9001 and 469762049. Our GPU code does not depend on

the prime while NTL uses different algorithms depending on the prime. For a given

degree pattern, the NTL running time varies at most by a factor of 2 from one of

our primes to another. The degrees of our input polynomials satisfy n = 2m. The

running time of our CUDA code outperforms that of NTL by a factor from 3 to 5,

for 1, 000 ≤ n ≤ 10, 000, see Figure 9.3.

9.4 Euclidean algorithm on GPU

In Section 9.4.1, we present a simple multi-threaded algorithm that computes

GCD(a, b) for an MMM machine. We call it naive (like Algorithm 16) as this algo-

rithm also performs one division step within one kernel. In Section 9.4.2, we describe

another algorithm for an MMM machine that reduces the overhead of data transfer.

Finally, in Section 9.4.3, we compare those two algorithms by means of Theorem 1.

We also provide the comparison of running time between our optimized implementa-

tion of GCD with the corresponding function found in NTL in Section 9.4.4.

9.4.1 Naive algorithm

Algorithm 20 computes GCD(a, b) in a naive way. Like naive division Algorithm 16,

it calls a kernel given in Algorithm 21 that completes one division step. The former

algorithm calls the latter one at most n + m − 2 times. Let ℓ be the number of

threads in a thread block. st is an array of length 2 that stores the degree of a

and b. Algorithm 21 is same as Algorithm 17 except it checks the current degree

of both a and b to decide which polynomial takes the role as a divisor, and then it

completes a division step. Each thread also reads/writes 3 to 5 words in the global

memory without storing then in the local memory, and it computes one coefficient

of an intermediate remainder. So, the number of active threads in a division step

depends on the degree of the divisor polynomial. The active thread, whose rank is

maximum, updates st array at the end of the division step correctly. We consider the

fact that the degree of an intermediate remainder may be dropped by more than 1.

Algorithm 17 works correctly even if the GCD is computed before n+m− 2 kernels.

After n+m− 2 division steps, either polynomial a or b becomes zero polynomial or

constant. Algorithm 20 returns the other polynomial as GCD.

96

We denote by Wnai, Snai and Onai, the work, span and overhead of Algorithm 20,

respectively. Each thread block performs 2 ℓ + 1 arithmetic operations, and each

thread requests at most 5 accesses to the global memory. We obtain the following

estimates, where δ stands for m+ n− 2 and µ stands for n+ ℓ+ 1,

Wnai =
m (2n ℓ+ µ− 2)

ℓ
, Snai = 3 δ and Onai =

5mU µ

ℓ
.

In order to apply Theorem 1, we shall compute the quantities N(P), L(P) and

C(P) defined in Section 3.2. We denote them by Nnai, Lnai and Cnai, respectively.

One can easily check that we have

Nnai =
mµ

ℓ
, Lnai = δ and Cnai = 3 + 5U.

Algorithm 20: NaivePlainGcdGPU(a, b)

Input: a, b ∈ K[X] with n− 1 := deg(a ≥ m− 1 := deg(b).
Output: g ∈ K[X], s.t. g =GCD(a, b).
int st[] = {deg(a), deg(b)};1

Let ℓ be the number of threads in a thread block ;2

Let c = ⌈m)/ℓ⌉ be the number of thread blocks;3

for (i = 0; i < n+m− 2; i = i+ 1) do4

NaivePlainGcdKernel≪ c, ℓ ≫ (a, b, st);5

if a is a zero or constant polynomial then6

Compute d the maximum i s.t. b[i] 6= 0 holds ;7

Let g be array of size d+ 1 with coefficients in K s.t. g[i] = b[i] for8

0 ≤ i ≤ d ;
else9

Compute d the maximum i s.t. a[i] 6= 0 holds ;10

Let g be array of size d+ 1 with coefficients in K s.t. g[i] = a[i] for11

0 ≤ i ≤ d ;

return g;12

9.4.2 Optimized algorithm

Algorithm 22 is our top level optimize algorithm for computing GCD of a and b.

Given a positive integer s, the algorithm calls a kernel iteratively with ⌈deg(b)+1
s

⌉
thread blocks, each of them uses 3 s threads. In Algorithm 23, we present a kernel.

Threads in a thread block collectively compute at most s division steps and update

97

Algorithm 21: NaivePlainGcdKernel(a, b, st)

Input: a, b ∈ K[X] and st[] stores the current degree of a and b.
j =blockID blockDim +threadID; t =threadID;1

if st[0] ≥ st[1] > 0 ∧ j < st[1] then2

f = a[st[0]] b[st[1]]−1; w = j+st[0]−st[1] ;3

a[w] = a[w]− b[j] f ;4

if j ==st[1]− 1 then5

while (st[0] ≥ 0) ∧ (a[st[0]] = 0) do6

st[0] = st[0]− 1;7

else if 0 < st[0] < st[1] ∧ j < st[0] then8

f = b[st[1]] a[st[0]]−1; w = j+st[1]−st[0] ;9

b[w] = b[w]− a[j] f ;10

if j == st[0]− 1 then11

while (st[1] ≥ 0) ∧ (b[st[1]] = 0) do12

st[1] = st[1]− 1;13

s coefficients from both a and b. After a division step, the degree of the dividend

polynomial is decreased by at least one, and then in the next division step, coefficients

from the divisor polynomial are adjusted by one or more shift operations. Thus, we

need 2 s coefficients from both a and b to be sure that after s division steps we have s

coefficients from both a and b correctly. The consecutive thread blocks has s common

coefficients from both a and b. That is why the required number of thread blocks

is min(deg(a)+1
s

, deg(b)+1
s

). A thread block also needs s-head (like Algorithm 19) from

both a and b to execute s division steps.

Each thread block, i copies s-head coefficients from both a and b. It also copies 2 s

other coefficients from both a (b), say Xd−i s, Xd−i s−1, · · · , Xd−i s−2s, where d is the

degree of a (resp. b). The first s threads in a thread block completes s division steps

with respect to these s-head. u and v keeping track of current leading coefficients of

a and b respectively. So, in a division step, some threads out of these s threads are

not active. These s threads do not need to write back any coefficient. The purpose

of those coefficients and those threads are to broadcast the leading coefficient of a

and b to other threads only. Once the first s threads compute the current leading

coefficient of both a and b, the other 2s threads complete a division step for the other

coefficients. After s division steps each thread block can write back s coefficients

correctly to the global memory.

We denote by Wopt, Sopt and Oopt, the work, span and overhead respectively. Each

thread block performs s + 2 (s − 1) + · · · + 2 s
2
= 27

4
s2 + 13

2
s arithmetic operations

98

Algorithm 22: OptimizedPlainGcdGPU(a, b, s)

Input: a, b ∈ K[X] with n− 1 = deg(a) ≥ m− 1 = deg(b) and an integer
s > 1.

Output: g ∈ K[X], s.t. g =GCD(a, b).
int st[2] = {deg(a), deg(b)};1

Let ℓ = 3s be the number of threads in a thread block ;2

Let c = ⌈m)/s⌉ be the number of thread blocks;3

for (i = 0; i < n+m− 2; i = i+ s) do4

OptGcdKer≪ c, ℓ ≫ (a, b, s, st) ;5

if a is a zero or constant polynomial then6

Compute d the maximum i s.t. b[i] 6= 0 holds ;7

Let g be array of size d+ 1 with coefficients in K s.t. g[i] = b[i] for8

0 ≤ i ≤ d ;
else9

Compute d the maximum i s.t. a[i] 6= 0 holds ;10

Let g be array of size d+ 1 with coefficients in K s.t. g[i] = a[i] for11

0 ≤ i ≤ d ;

return g;12

regard to the first s threads. Each thread requests at most 8 accesses to the global

memory. We obtain the following estimates, where µ stands for 345
16

s2 + 77
4
s and ν

stands for 9
4
+ 6

s
,

Wopt = ν m2 +

(

9

2
n+

n

2 s
+

87

8
s+

23

2

)

m− µ,

Sopt = 3n+ 3m and Oopt =
8mU (n+ s)

s2
.

(9.10)

In order to apply Theorem 1, we shall compute the quantities N(P), L(P) and

C(P) defined in Section 3.2. We denote them here byNopt, Lopt and Copt, respectively.

One can easily check that we have

Nopt =
mn

s2
+

m

s
, Lopt =

n

s
+

m

s
and Copt = 3 s+ 8U. (9.11)

99

Algorithm 23: OptGcdKer(a, b, s st)

Input: a, b ∈ K[X], an integer s > 1 and st[] stores the current degree of a and
b.

Let sAc, sBc, sA, sB be local arrays of size s, s, 2s, 2s respectively with1

coefficients in K;
local integers u = v = x = y = 0, f, n = st[0], m = st[1];2

j =blockID blockDim +threadID; t =threadID;3

if t < s then4

sAc[t] = a[n− t]; sBc[t] = b[m− t];5

if t ≥ s then6

sA[t− s] = a[n− s blockID−t] sB[t− s] = b[m− s blockID−t];7

/* copying from global memory. */

for (w = 0;w < s;w = w + 1) do8

if (n ≥ m ∧m ≥ 0) then9

if t == 0 then10

f =sAc[u] sBc[v]−1;11

if (u+ t < s) ∧ (v + t < s) then12

sAc[u+ t] =sAc[u+ t]−sBc[v + t] f ;13

if (u+ t ≥ s) ∧ (v + t ≥ s) then14

sA[x+ t− s] =sA[x+ t− s]− sB[y + t− s] f ;15

if t == 0 then16

while sAc[u] = 0 do17

u = u+ 1; x = x+ 1; n = n− 1;18

if (m ≥ n) ∧ (n ≥ 0) then19

if t == 0 then20

f = sBc[v] sAc[u]−1;21

if (u+ t < s) ∧ (v + t < s) then22

sBc[v + t] = sBc[v + t]− sAc[u+ t]f ;23

if (u+ t ≥ s) ∧ (v + t ≥ s) then24

sB[y + t− s] = sB[y + t− s]− sA[x+ t− s] f ;25

if t == 0 then26

while sBc[v] = 0 do27

v = v + 1; y = y + 1; m = m− 1;28

if t ≥ s then29

a[st[0]− s blockID−t] = sA[t− s];30

b[st[1]− s blockID−t] = sB[t− s] ;31

/* writing to global memory. */

if j == min(st[0], st[1]) then32

Update st array with the new degree of a and b;33

100

n m Optimize GCD on CUDA with s = 512 Naive GCD on CUDA
1000 500 0.010 0.024
2000 1500 0.024 0.058
3000 2500 0.039 0.108
4000 3500 0.053 0.158
5000 4500 0.069 0.203
6000 5000 0.056 0.235
7000 6000 0.066 0.282
8000 7000 0.076 0.324
9000 8000 0.087 0.367
10000 9000 0.097 0.411

Table 9.1: GCD implementation on CUDA with two different values of s.

9.4.3 Comparison of running time estimates

We first compare the overheads of the two algorithms. Since we have 2ℓ ≤ Z and

6s ≤ Z, we replace m, s and ℓ by n, Z/6 and Z/2, respectively in the overhead ratio,

Onai

Oopt

=
5

48

Z (2n+ 2 + Z)

6n+ Z
. (9.12)

Next, we also observe the ratio Wnai/Wopt is asymptotically constant, since we have,

where µ stands for 115Z3 + 616Z2,

Wnai

Wopt

=
(284Z + 2)n2 + (Z − 2)n

(1296Z + 7488)n2 + (348Z2 + 2208Z)n− µ
. (9.13)

Thus, the improvement has a fairly low expense. Applying Theorem 1, the running

times on p SMs of the naive and optimized algorithms are bounded over by

(Nnai/p+ Lnai) · Cnai and (Nopt/p+ Lopt) · Copt. (9.14)

When n escapes to infinity, the ratio R is equivalent to

(3 + 5U)Z

9 (Z + 16U)
. (9.15)

We observe that this ratio is larger than 1 if and only if Z > 144U
5U−6

holds. Thus,

the condition is expected to hold and, in this case, the optimized algorithm is overall

than the naive one.

101

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

C
o

m
p

u
ti
n

g
 t
im

e
 f
o

r
G

C
D

 w
it
h

 p
ri
m

e
:4

6
9

7
6

2
0

4
9

Degree of polynomial

CUDA
NTL

Figure 9.4: Comparison between parallel GCD on CUDA and FFT-based GCD in
NTL for univariate polynomials, with the same degree (n = m).

9.4.4 Experimental results of our optimized Euclidean algo-

rithm on GPU

We have compared the running time of our CUDA implementation of the Euclidean

Algorithm with the serial C implementation of the Half-GCD algorithm (see Chapter

11 in [20]) from the NTL library. The latter algorithm is based on FFT techniques

and its work fits within O(dlog(d)log(log(d))) coefficient operations, whale that of the

former algorithm amounts to O(d2) coefficient operations, for input polynomials of

degree d.

As for the experimentation with the plain division, the input polynomials used in

our experimentation are dense random (univariate) polynomials with coefficients in

a finite field whose characteristic is a machine word prime. Here again, we use the

primes 7, 9001, 469762049 and we observe that our GPU code does not depend on

the prime while NTL uses different algorithms depending on the prime. For a given

degree pattern, the NTL running time varies at most by a factor of 2 from one of our

primes to another.

Figure 9.4 correspond to 469762049. Indeed, we are interested in large primes

since they support modular methods for polynomial system solving [73].

As reported by Figure 9.4, our implementation is almost three times faster than

that of NTL for polynomials whose degrees range between 1,000 and 10,000. Recall

102

that this degree range is also what is of interest for the same purpose of polynomial

system solving.

The technique of computing s leading coefficients in every thread block, imple-

mented in both division and GCD algorithm, has two major advantages. First, it

reduces the number of kernel calls by a factor of s. Second, it reduces the amount of

memory transfer between the global and local memory by a factor of s.

In Table 9.1, we compare the computation time between two versions of our CUDA

implementation of the Euclidean Algorithm. The first one sets s = 512 and the other

one does not use at all this technique of computing s leading coefficients in every

thread block. In this latter implementation, leading coefficients are kept up-to-date

in the global memory such that they can be accessed by every thread block. Thus, in

this scheme, every thread block works on a single division step between two updates

of the leading coefficient in the global memory.

As mentioned above, the former implementation increases the work but reduces

parallelization overheads in a significant manner. Table 9.1, shows that the former

method outperforms the latter by a speedup factor varying from 2 to 4.

9.5 Conclusion

Motivated by the implementation of polynomial system solvers over finite fields, we

were lead to parallelize plain univariate polynomial arithmetic on GPUs. For the

degree range 210 · · · 218, our GPU code for computing polynomial GCDs via the Eu-

clidean Algorithm runs in linear time w.r.t the maximum degree of the input poly-

nomials. Such sizes are sufficient for many applications.

We observed that controlling parallelization overheads (synchronization on data

via global memory, number of kernel calls, etc.) was essential for reaching peak

performance in our implementation.

103

Chapter 10

Evaluation and Interpolation of

Univariate Polynomial by

Subproduct Tree Technique on

GPU

We propose parallel algorithms for operations on univariate polynomials (multi-point

evaluation, interpolation) based on subproduct tree techniques. We target implemen-

tation on many-core GPUs. On those architectures, we demonstrate the importance

of adaptive algorithms, in particular the combination of parallel plain arithmetic and

parallel FFT-based arithmetic. Experimental results illustrate the benefits of our

algorithms.

This chapter is a joint work with F. Mansouri and M. Moreno Maza.

10.1 Introduction

We investigate the use of Graphics Processing Units (GPUs) in the problems of eval-

uating and interpolating polynomials. Many-core GPU architectures were considered

in [67] and [70] in the case of numerical computations, with the purpose of obtain-

ing better support, in terms of accuracy and running times, for the development of

polynomial system solvers.

Our motivation, in this work, is also to improve the performance of polynomial

system solvers. However, we are targeting symbolic, thus exact, computations. In

particular, we aim at providing GPU support for solvers of polynomial systems with

104

coefficients in finite fields, such as the one reported in [55]. This case handles as well

problems from cryptography and serves as a base case for the so-called modular meth-

ods [73], since those methods reduce computations with rational number coefficients

to computations with finite field coefficients.

Finite fields allow the use of asymptotically fast algorithms for polynomial arith-

metic, based on Fast Fourier Transforms (FFTs) or, more generally, subproduct tree

techniques. Chapter 10 in the landmark book [20] is an overview of those techniques,

which have the advantage of providing a more general setting than FFTs. More pre-

cisely, evaluation points do not need to be successive powers of a primitive root of

unity. Evaluation and interpolation based on subproduct tree techniques have “es-

sentially” (i.e. up to log factors) the same algebraic complexity as their FFT-based

counterparts. However, their implementation is known to be challenging.

In this chapter, we report on the first GPU implementation (using CUDA [58]) of

subproduct tree techniques for multi-point evaluation and interpolation of univariate

polynomials. The parallelization of those techniques raise the following challenges.

1. The divide-and-conquer formulation of operations on subproduct-trees is not

sufficient to provide enough parallelism and one must also parallelize the under-

lying polynomial arithmetic operations, in particular polynomial multiplication.

2. Algorithms based on FFT (such as subproduct tree techniques) are memory

bound since the ratio of work to memory access is essentially constant, which

makes those algorithms not well suited for multi-core architectures.

3. During the course of the execution of a subproduct tree operation (construction,

evaluation, interpolation) the degrees of the involved polynomials vary greatly,

thus so does the work load of the tasks, which makes those algorithms complex

to implement on many-core GPUs.

The contributions of this work are summarized below. We propose parallel algo-

rithms for performing subproduct tree construction, evaluation and interpolation. We

also report on their implementation on many-core GPUs. See Sections 10.3, 10.5 and

10.6, respectively. We enhance the traditional algorithms for polynomial evaluation

and interpolation based on subproduct tree techniques, by introducing the notion of

a subinverse tree, which we use to accelerate both evaluation and interpolation, see

Section 10.4. For subproduct tree operations targeting many-core GPUs, we demon-

strate the importance of adaptive algorithms. That is, algorithms that adapt their

behavior to the available computing resources. In particular, we combine parallel

105

plain arithmetic and parallel fast arithmetic. For the former we rely on [31] and, for

the latter we extend the work of [53]. The span and overhead of our algorithm are

measured considering many-core machine model stated in Chapter 3. To evaluate our

implementation, we measure the effective memory bandwidth of our GPU code for

parallel multi-point evaluation and interpolation On a card with a theoretical maxi-

mum memory bandwidth of 148 GB/S, our code reaches peaks at 64 GB/S. Since the

arithmetic intensity of our algorithms is also high, we believe that this is a promising

result.

All implementation of subproduct tree techniques that we are aware of are serial

code only. This includes [8] for GF (2)[x], the FLINT library[33] and the Modpn

library [46]. Hence we compare our code against probably the best serial C code

(namely the FLINT library) for the same operations. On sufficiently large input data

and on NVIDIA Tesla C2050, our code outperforms its serial counterpart by a factor

ranging between 20 to 30. Experimental data are provided in Section 10.7.

10.2 Background

We review various notions related to subproduct tree techniques. See Chapter 10

in [20] for details. We also specify costs for the underlying polynomial arithmetic

used in our implementation. Notations and hypotheses introduced in this section are

used throughout this chapter. Let n = 2k for some positive integer k and let K be a

finite field. Let u0, . . . , un−1 ∈ K. Define mi = x− ui, for 0 ≤ i < n. We assume that

each ui ∈ K can be stored in one machine word.

Subproduct trees. The subproduct tree Mn := SubproductTree(u0, . . . , un−1) is a

complete binary tree of height k = log2 n. The j-th node of the i-th level of Mn is

denoted by Mi,j , where 0 ≤ i ≤ k and 0 ≤ j < 2k−i, and is defined as followed:

Mi,j = mj·2i ·mj·2i+1 · · ·mj·2i+(2i−1) =
∏

0≤ℓ<2i mj·2i+ℓ.

Note that each of Mi,j can be defined recursively as follows.

M0,j = mj and Mi+1,j = Mi,2j ·Mi,2j+1.

Observe that the i-th level of Mn has 2k−i polynomials with degree of 2i. If each

element of K fits within a machine word, then storing the subproduct treeMn requires

at most n log2 n+ 3n− 1 words.

106

u0, . . . , un−1

u0, . . . , un/2−1
un/2, . . . , un−1

u0, u1 u2, u3 un−2, un−1

u0 u1 u2 u3
un−2 un−1

Mk,0

Mk−1,0 Mk−1,1

M1,0 M1,1 M1,n/2−1

M0,0 M0,1 M0,2 M0,3
M0,n−2 M0,n−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

i = k

i = k − 1

i = 1

i = 0

Figure 10.1: Subproduct tree associated with the point set U = {u0, . . . , un−1}.

Let us split the point set U = {u0, . . . , un−1} into two halves of equal cardinality

and proceed recursively with each half until it becomes a singleton. This leads to

a binary tree of depth log2 n having the points u0, . . . , un−1 as leaves, depicted on

Figure 10.1. Note that the j-th node from the left at level i is labeled by Mi,j .

Algorithm 24 generates the polynomials Mi,j in an efficient manner, discussed in

Section 10.3.

Algorithm 24: SubproductTree(m0, . . . ,mn−1)

Input: m0 = (x− u0), . . . ,mn−1 = (x− un−1) ∈ K[x] with
u0, . . . , un−1 ∈ K and n = 2k for k ∈ N.

Output: The subproduct-tree Mn, that is, the polynomials
Mi,j =

∏

0≤ℓ<2i mj·2i+ℓ for 0 ≤ i ≤ k and 0 ≤ j < 2k−i.

for j = 0 to n− 1 do1

M0,j = mj;2

for i = 1 to k do3

for j = 0 to 2k−i − 1 do4

Mi,j = Mi−1,2jMi−1,2j+1;5

return Mn;6

Multi-point evaluation and interpolation. Given a univariate polynomial f ∈
K[x] of degree less than n, we define χ(f) = (f(u0), . . . , f(un−1)). The map χ is

called the multi-point evaluation map at u0, . . . , un−1. Define m =
∏

0≤i<n(x − ui).

107

When u0, . . . , un−1 are pairwise distinct, then

χ :
K[x]/〈m〉 −→ K

n

f 7−→ (f(u0), . . . , f(un−1))

realizes an isomorphism of K-vector spaces. The inverse map χ−1 can be computed

via Lagrange interpolation. Given distinct points (v0, . . . , vn−1) ∈ K, the unique

polynomial f ∈ K[x] of degree less than n which takes the value vi at the point ui

for all 0 ≤ i < n is: f =
∑n−1

i=0 visim/(x− ui) where si =
∏

i 6=j, 0≤j<n 1/(ui − uj) and

m =
∏

0≤i<n(x− ui).

We observe that K[x]/〈m〉 and K
n are vector spaces of dimension n over K. More-

over, χ is a K-linear map, which is a bijection as soon as the evaluation points

u0, . . . , un−1 are pairwise distinct.

Complexity measures. Since we are targeting GPU implementation, our parallel

algorithms are analyzed using an appropriate model of computation introduced in

Chapter 3. The complexity measures are the work (i.e. algebraic complexity) the

span (i.e. running time on infinitely many processors) and the overhead. This latter

measures the total amount of data transfered between the global memory and the

local memories.

Notation 1. The number of operations for multiplying two polynomials with degree

less than d using the plain (or long) multiplication is Mplain(d) = 2d2− 2d+1. In our

GPU implementation, for d small enough, one polynomial multiplication can be done

by a single thread block and thus within the local memory of a streaming multiproces-

sor. In this case, we use 2d+2 threads for one polynomial multiplication. Each thread

copies one coefficient from global memory to the local memory. Each of these threads,

except one, is responsible for computing one coefficient of the output polynomial and

writes that coefficient back to global memory. So the span and parallelism overhead

are d+ 1 and 2U respectively.

Notation 2. The number of operations for multiplying two polynomials with de-

gree less than d using Cooley-Tukey’s FFT algorithmsis: MFFT(d) = 9/2d′ log2(d
′) +

4d′ [57]. Here d′ = 2⌈log2 (2d−1)⌉. In our GPU implementation, which relies on Stock-

ham FFT algorithm, this number of operations becomes: MFFT(d) = 15d′ log2(d
′) +

2d′ [53]. The span and overhead of our implementation of FFT-based multiplication

are 15d′ + 2d′ and (36d′ − 21)U respectively.

Notation 3. Given a, b ∈ K[x], with deg(a) ≥ deg(b) we denote by Remainder(a, b)

the remainder in the Euclidean division of a by b. The number of operations for

108

computing the Remainder(a, b), by plain division is (deg(b) + 1)(deg(a)− deg(b) + 1).

In our GPU implementation, we perform plain division for small degree polynomials,

where both a, b can be stored into the local memory of a streaming multiprocessor. We

use deg(b) + 1 threads to implement this operation. Each thread reads one coefficient

of b and at most ⌈deg(a)+1
deg(b)+1

⌉ coefficients of a, from the global memory. For the output,

at most deg(b) threads write the coefficients of the remainder to the global memory.

The span and overhead are 2(deg(a)− deg(b) + 1) and (2 + ⌈deg(a)+1
deg(b)+1

⌉)U .

Notation 4. Given a univariate polynomial f ∈ K[x] of degree d and a non-negative

integer k ≥ d, the reversal of order k of f is the polynomial denoted by revk(f) and

defined as revk(f) = xkf(1/x). In our implementation of this operation, we use one

thread for each coefficient of the input and output. So the span and overhead are 1

and 2U , respectively.

Notation 5. Addition and subtraction between two polynomials of degree d can be

done within d + 1 coefficient operations. In our implementation, we use one thread

per coefficient operation. So the span and overhead are 1 and 3U , respectively.

Notation 6. Given a univariate polynomial f ∈ K[x], with f(0) = 1, and ℓ ∈ N

the modular inverse of f modulo xℓ is denoted by Inverse(f, ℓ) and defined as

Inverse(f, ℓ) f ≡ 1 mod (xℓ). Note that Inverse(f, ℓ) is unique. Algorithm 25 com-

putes Inverse(f, ℓ) using Newton iteration. Observe that, this algorithm has ⌈log2 ℓ⌉
dependent steps. In other words, the for-loop cannot be turned to a parallel for-loop.

Algorithm 25: Inverse(f, ℓ)

Input: f ∈ R[x] such that f(0) = 1 and ℓ ∈ N.
Output: gr ∈ R[x] such that fgr ≡ 1 mod xℓ.
g0 = 1;1

r = ⌈log2 ℓ⌉;2

for i = 1 . . . r do3

gi = (2gi−1 − fg2i−1) mod x2i ;4

return gr;5

Remark 7. We create a Maple worksheet 1 for computing the space and algebraic

complexity, span and overhead for constructing subproduct tree and subinverse tree

(our proposed data structure). We also write formulas to compute algebraic complex-

ity, span and overhead for evaluation and interpolation of univaivariate polynomial.

1available at http://publish.uwo.ca/∼shaque4/

109

10.3 Subproduct tree

In this section, we study an adaptive algorithm for constructing the subproduct tree

Mn := SubproductTree(u0, . . . , un−1) as defined in Section 10.2. Recall that n = 2k

holds for some positive integer k and u0, . . . , un−1 ∈ K.

Both polynomial evaluation and interpolation by subproduct tree techniques de-

pend highly on polynomial multiplication, which brings several implementation chal-

lenges.

First of all, it is well-known that for univariate polynomials of low degrees, FFT-

based multiplication is most costly than plain multiplication. For this reason, we

apply plain multiplication in constructing the nodes of levels 1, . . . , H of in the sub-

product treeMn, where 0 < H ≤ k is a prescribed threshold, Then, we use FFT-based

multiplication for the nodes of higher level.

A second challenge follows from the following observation. Each polynomial in

the subproduct tree at level i has length 2i+1 which is not a favorable case for FFT-

based multiplication. Fortunately, the leading coefficient of any such polynomial in

the subproduct tree is 1. So, it is possible to create Mi,j from Mi−1,2j and Mi−1,2j+1,

even if we do not store the leading coefficients of the latter two polynomials.

As we will see in Section 10.7 our implementation still has room for improvements

regarding polynomial multiplication. For instance, we could consider using an “in-

termediate” algorithm for polynomials with degree in a “middle range”. Such an

algorithm could be the one of Karatsuba or one of its variants. However, it is known

that these algorithms are hard to parallelize [12].

Definition 5. Let H be a fixed integer with 1 ≤ H ≤ k. We call the following

procedure an adaptive algorithm for computing Mn with threshold H:

1. For each level 1 ≤ h ≤ H, the nodes are computed using plain multiplication.

2. Then, for each level H + 1 ≤ h ≤ k, the nodes are computed using FFT-based

multiplication.

This algorithm is adaptive in the sense that, on a GPU, each plain multiplication is

done by a single streaming multiprocessor (SM) while each FFT-based multiplication

is computed by a kernel call, thus using several SMs. In fact, this kernel computes a

number of FFT-based products concurrently. Therefore, the algorithm adapts itself

to the amount of available resources and, thus, it is adaptive.

Before analyzing this adaptive algorithm, we consider the situation where the

subproduct tree Mn is computed by means of a single multiplication algorithm, with

110

multiplication time2 M(n). In this context, Lemma 10.4 in [20] states that the total

number of operations for constructing the subproduct tree Mn is at most M(n) log2 n

operations in K. Lemma 8 below prepares to the study of our adaptive algorithm.

Lemma 8. Let 0 ≤ h1 < h2 ≤ k be integers. Assume that level h1 of Mn has

already been constructed. The total number of operations in K for constructing levels

h1 + 1, . . . , h2 in Mn is at most
∑h2

i=h1+1 2
k−iM(2i+1).

Proof ⊲ Recall that M(d) is an upper bound on the number of operations in K for

multiplying two univariate polynomials of degree less than d. Let h1 < i ≤ h2 be an

index. To construct the i-th level, we need 2k−i number of multiplications in degree

less than 2i+1. So the total cost to construct for level i is upper bounded 2k−iM(2i+1).

�

We can have an immediate consequence from Lemma 8 by setting h1 = 0 and

h2 = k.

Corollary 4. The number of operations for constructing the Mn is
∑k

i=1 2
k−iM(2i+1).

Remark 8. We do not store the leading coefficient of polynomials in Mn of levels

H + 1, . . . , k − 1. So, the length of a polynomial becomes 2i at level i. The objective

of this technique is to reduce the computation time for FFT based multiplication. As

the leading coefficient is always 1, we proceed as follows.

Let a, b ∈ K[x] be two monic and univariate polynomials. Let deg(a) = deg(b) =

d = 2e for some e ∈ N . Let a′ = a − xd and b′ = b − xd. Then, we have ab =

x2d + a′b′ + (a′ + b′)xd.

If we were to compute ab directly the cost would be O(MFFT(2d)). But if compute

it from a′b′ using the above formula, then the cost is reduced to O(MFFT(d) + d). On

the RAM model, this technique saves almost half of the computational time. On a

many-core machine, though the cost is not significant in theory, it saves O(d) memory

space and also saves about half of the work. In fact, this has a significant impact on

the computational time, as we could observe experimentally.

With Corollary 4, we turn our attention to the algebraic and space complexity of

our adaptive algorithm. Recall all of the formulas below are computed on the Maple

worksheet.

Proposition 21. The algebraic complexity of the adaptive algorithm for computing

Mn with threshold H is given below

2This notion is defined in Chapter 8 of [20]

111

(

−17

2
H + 2H +

19

2
log2(n) +

15

2
log2(n)

2 − 15

2
H2 − 1

2H

)

n.

Proof ⊲ We compute the algebraic complexity of constructing Mn with thresh-

old H from Corollary 4. We rely on the cost of polynomial multiplication given in

Notations 1 and 2. Note that, we apply the technique described in Remark 8 for FFT-

based multiplication to create the polynomials of level H+1, . . . , k of Mn. According

to our Maple worksheet, the algebraic complexity for computing levels 0, 1, . . . , H of

Mn using plain arithmetic is n
2

(

19 log2(n) + 15 log2(n)
2 − 19H − 15H2

)

coefficient

operations. For levels H + 1, . . . , k of Mn, the cost is n(H + 2H − 1
2H

) coefficient

operations. We obtain the algebraic complexity for constructing Mn by adding these

two quantities. �

Proposition 22. The amount of machine words required for storing Mn, with thresh-

old H is given below

(−H − 2)
(

n+
n

2H+1

)

+ 2nH

(

1 +
1

2H+2

)

+ n (log2(n)−H + 5) .

Proof⊲ Following our adaptive algorithm, we distinguish the nodes at levels 0, . . . H

from those at levels H+1, . . . , k. At level i ∈ {0, . . . H}, the number of coefficients of

each polynomial ofMn is 2
i+1 and all those coefficients are stored. We make a formula

in our Maple worksheet and compute the total number of coefficients over all polyno-

mials inMn for level {0, . . . , H}, which is (−H − 2)
(

n+ n
2H+1

)

+2nH
(

1 + 1
2H+2

)

+5n.

At level i ∈ {H + 1, . . . , k}, we use the implementation technique described in

Remark 8, that is, leading coefficients of each polynomial are not stored. So a poly-

nomial at level i requires 2i words of storage. From the same worksheet, we compute

the total number of words required to store polynomials at level {H+1 . . . , k}, which
is n (log2(n)−H).

�

Proposition 23. Span and overhead of Algorithm 24 for constructing Mn with thresh-

old H using our adaptive method are spanMn
and overheadMn

respectively, where

spanMn
=

9

2
H − 2 + 2H+1 +

15

2
(log2(n) + 1)2 − 7

2
log2(n)−

15

2
(H + 1)2

and

overheadMn
=
(

2H +
(

18 (log2(n) + 1)2 − 35 log2(n)− 18 (H + 1)2 + 35H
))

U.

112

Proof ⊲ Let us fix i with 0 ≤ i < H. At level i, our implementation uses plain

multiplication in order to compute the polynomials at level i + 1. Following Nota-

tion 1, the span and the parallelism overhead of this process are H − 2 + 2H+1 and

2HU , respectively. For level H ≤ i < k, each thread is participating to one FFT-

based multiplication and two coefficient additions (in order to implement the trick

of Remark 8). With Notation 2 and 5, we obtain the span and overhead for this

step from Maple worksheet as 15
2
(log2(n) + 1)2 − 7

2
log2(n)− 15

2
(H + 1)2 + 7

2
H and

(

18 (log2(n) + 1)2 − 35 log2(n)− 18 (H + 1)2 + 35H
)

U respectively. �

Remark 9. In order to determine the value H for which the algebraic complexity

given in Proposition 21 and the span and overhead given in Proposition 23 are mini-

mized, we computed the algebraic complexity, span and overhead for k = 5, . . . , 24 and

1 ≤ H ≤ k. Using our Maple worksheet, we found that, for H = 7 and 6 minimize

algebraic complexity and span respectively. But the parallelism overhead minimizes

for H = k. From Notation 1, we realize that we can not do plain multiplication of big

polynomials due to the space limitation in local memory. Because, each of the plain

multiplication is done on local memory by one thread block without communicating

with global memory until the multiplication ends. In fact, for our GPU card on which

we run all our experiments, we can not have H > 8. Considering all these facts, We

have set H = 8 for our implementation

10.4 Subinverse tree

Given a subproduct tree Mn, multi-point evaluation of a polynomial f ∈ K[x] of

degree less than n, on the point set {u0, . . . , un−1} can be done by calling the recursive

algorithm TopDownTraverse(f, k, 0,Mn, F) (Algorithm 26). This algorithm is called

with an array F of length n, to which the result is written as F [i] = f(ui). We

implement both fast division [20] (as in Algorithm 31) and plain division to compute

reminders like Remainder(f ′,Mi,j). Fast division is applied when polynomials are

large enough and, actually, can not be stored within the local memory of a streaming

multiprocessor. In our implementation, the call Remainder(f ′,Mi,j) is performed by

plain division, whenever i < H holds, where H is the threshold of Definition 5. Fast

division requires computing Inverse(rev2i(Mi,j), 2
i), for H ≤ i ≤ k and 0 ≤ j < 2k−i,

(see Algorithm 25).

Assume that we want to compute in parallel the inverses of a number of different

polynomials modulo the same power x, say modulo x2i . That means that the same

algorithm (Algorithm 25) runs on different streaming multiprocessors with different

113

polynomials. As mentioned in Notation 6, the for-loop in this algorithm can not

be converted to a parallel for-loop. Since the first iteration of this for-loop have

much less work than the last one, running this for-loop on a streaming multiprocessor

under-utilizes computing resources.

To overcome this performance issue we introduce a strategy that relies on a new

data structure called subinverse tree. In this section, we first define subinverse trees

and describe their implementation. We then analyze the complexity of building subin-

verse trees.

Algorithm 26: TopDownTraverse(f ′, k′, h′,Mn, F)

Input: f ′ ∈ K[x] and deg(f ′) ≤ 2k
′ − 1 , k′, h′ ∈ N and F is an array of length

n.
if deg(f ′) == 0 then1

F [h′] = f ′;2

return;3

f0 = Remainder(f ′,Mk−1,2h);4

f1 = Remainder(f ′,Mk−1,2h+1);5

TopDownTraverse(f0, k
′ − 1, 2h′,Mn, F);6

TopDownTraverse(f1, k
′ − 1, 2h′ + 1,Mn, F);7

Definition 6. Given a subproduct tree Mn := SubproductTree(u0, . . . , un−1), the

subinverse tree, InvMn associated with Mn, is a complete binary tree of the same

format as Mn. For 0 ≤ i ≤ k, for 0 ≤ j < 2k−i, the j-th node of level i in InvMn

contains the univariate polynomial InvMi,j of degree 2i − 1 defined by

InvMi,j rev2i(Mi,j) ≡ 1 mod x2i .

Since the purpose of the subinverse tree is to make the fast division efficient,

we do not store the polynomials of subinverse tree InvMn below level H. With this

assumption, the total space required to store the subinverse treeInvMn is given in

Proposition 24.

Proposition 24. Let InvMn be the subinverse tree associated with a subproduct tree

Mn, with threshold H < k. Then, the amount of space required for storing InvMn,

excluding its root and all levels i < H, is (k −H)n.

Proof ⊲ From the Definition 6, we realize the length of InvMi,j is 2
i. As the total

number of polynomials at level i in InvMn is 2k−i, we need 2k, that is, n machine words

to store all polynomials of level i. Here we are not considering the root of InvMn to

114

store because in evaluation or interpolation of an univariate polynomial, we do not

need this. �

Let R be a commutative ring with identity element. Let a, b, c ∈ R[x] be three

univariate polynomials such that c = ab and a(0) = b(0) = 1 hold. Thus, we have

c(0) = 1. Let d = deg(c)+1 Proposition 25 describes how we can compute Inverse(c, d)

mod xd from a and b.

Proposition 25. Inverse(c, d) ≡ Inverse(a, d) · Inverse(b, d) mod xd.

Proposition 25 is the main technical ingredient in creating a subinverse tree. We

can rewrite this proposition for the polynomials in Mn in Proposition 26.

Proposition 26. Let InvMi,j be the jth polynomial (from left to right) of the subin-

verse tree at level i, where 0 < i < k and 0 ≤ j < 2k−i. We have the following

InvMi,j ≡ Inverse(rev2i−1(Mi−1,2j), 2
i) · Inverse(rev2i−1(Mi−1,2j+1), 2

i) mod x2i ,

where InvMi,j = Inverse(rev2i(Mi,j), 2
i) from Definition 6.

The key observation is that computing InvMi,j requires Inverse(rev2i−1(Mi−1,2j), 2
i)

and Inverse(rev2i−1(Mi−1,2j+1), 2
i). However, at level i − 1, the nodes InvMi−1,2j and

InvMi−1,2j+1 are Inverse(rev2i−1(Mi−1,2j), 2
i−1) and Inverse(rev2i−1(Mi−1,2j+1), 2

i−1) re-

spectively. We describe how we use InvMi−1,2j and InvMi−1,2j+1 in order to apply

Proposition 26 and deduce InvMi,j .

The calculation of the subinverse tree InvMn can be described in a recursive way.

It is constructed in bottom-up fashion like the subproduct tree Mn.

The construction starts with the computation of all polynomials InvMH,j of

level H in InvMn from the corresponding polynomial MH,j in Mn using Al-

gorithm 25, where 0 ≤ j < 2k−H . Next, we assume that InvMi−1,j∗2

and InvMi−1,j∗2+1 have already been computed and show how to deduce

InvMi,j . We call OneStepNewtonIteration(rev2i−1(Mi−1,j∗2), InvMi−1,j∗2, i − 1) and

OneStepNewtonIteration(rev2i−1(Mi−1,j∗2+1), InvMi−1,j∗2+1, i−1) (see Algorithm 27) so

as to obtain Inverse(Mi−1,2j , 2
i) and Inverse(Mi−1,2j+1, 2

i) respectively. Algorithm 27

performs a single iteration of Newton iteration’s algorithm. Finally, we perform one

truncated polynomial multiplication, as shown in Proposition 26 to obtain InvMi,j .

We apply this technique to compute all the polynomials of level i of the subinverse

tree.

As we do not store the leading coefficients of the polynomials in the subproduct

tree, our implementation of Algorithm 27 is not straightforward. Algorithm 28 is the

115

modified implementation of Algorithm 27 considering to our specifications. We are

going to describe this algorithm below.

Algorithm 27: OneStepNewtonIteration(f, g, i)

Input: f ∈ R[x] such that f(0) = 1, where deg(f) = 2i and fg ≡ 1 mod x2i .
Output: g′ ∈ R[x] such that fg′ ≡ 1 mod x2i+1

.
g′ = (2g − fg2) mod x2i+1

;1

return g′;2

Let f = rev2i(Mi,j) and g = InvMi,j . From Definition 6, fg ≡ 1mod x2i . Note

that deg(fg) = 2i+1 − 1. Let e′ = −fg + 1. Thus e′ is a polynomial of degree

2i+1 − 1 and from the definition of subinverse tree, we know its least significant 2i

coefficients are zeros. Let e = e′/x2i . So deg(e) = 2i − 1. In Algorithm 27, we have

g′ ≡ g mod x2i . We can compute g′ from eg and g. The advantage of working with

e instead of e′ is that the degree of e′ is twice than that of e.

In Algorithm 28, we compute e in the following way,

e = −rev2i(Mi,j · rev2i−1(InvMi,j)− x2i+1−1)

by means of one convolution and three more polynomial operations. As we do not

store the leading coefficient of Mi,j , we need to do these three additional operations.

Algorithm 28: EfficientOneStep(M ′
i,j ,InvMi,j , i)

Input: M ′
i,j = Mi,j − x2i , InvMi,j is a polynomial in subinverse tree.

Output: g, such that g rev2i(Mi,j) ≡ 1 mod x2i+1
.

a =rev2i−1(InvMi,j);1

b = a− x2i−1;2

c =convolution(a,M ′
i,j , 2

i);3

d =rev2i(c+ b);4

e = −d;5

h = e InvMi,j mod x2i ;6

g = hx2i+InvMi,j ;7

return g;8

Middle product technique is an implementation trick used in Algorithms 25 and 27.

This improves the computational time significantly [28]. We do not apply middle

product technique directly in constructing subinverse tree. This technique works well

for the iterations of Algorithm 25 where the intermediate inverse polynomial gi is

smaller in degree than polynomial f . This is not the case in our Algorithm 28.

116

Algorithm 29 computes each polynomial, InvMi,j of InvMn, where H < i < k. It

calls Algorithm 28 twice to expand the inverse of both InvMi−1,2j and InvMi−1,2j+1.

Then it multiplies the expanded inverse polynomials and applies a mod operation.

Algorithm 30 is the top level algorithm to create InvMn. Each InvMi,j is created

by one call to Algorithm 29.

Algorithm 29: InvPolyCompute(Mn,InvMi,j)

Input: Mn, and InvM are the subproduct tree and subinverse tree respectively.
Output: c, such that c rev2i(Mi,j) ≡ 1 mod x2i .

M ′
i−1,2j = Mi−1,2j − x2i−1

;1

M ′
i−1,2j+1 = Mi−1,2j+1 − x2i−1

;2

a = EfficientOneStep(M ′
i−1,2j ,InvMi−1,2j , i− 1) ;3

b = EfficientOneStep(M ′
i−1,2j+1,InvMi−1,2j+1, i− 1) ;4

c = ab mod x2i ;5

return c;6

Algorithm 30: SubinverseTree(Mn, H)

Input: Mn is the subproduct tree and H ∈ N.
Output: subinverse tree, InvMn

each node in InvMn for level 0, . . . H − 1 contains a zero polynomial;1

for j = 0 . . . 2k−H − 1 do2

InvMH,j = Inverse(MH,j, deg(MH,j));3

for i = H + 1 . . . k − 1 do4

for j = 0 . . . 2k−i − 1 do5

InvMi,j = InvPolyCompute(Mn,InvMi,j);6

return InvMn;7

Proposition 27. For a given subproduct tree, Mn with threshold H, the algebraic

complexity for constructing the subinverse tree InvMn by Algorithm 30 is given below

n

(

− 1

3 · 2H + 2 +
16 42

H

3 · 2H − 2

2H−2H
− 10

(

−log2(n)− 3 log2(n)
2 + 7H + 3H2 + 4

)

)

.

Proof ⊲ At level H, we need to compute 2k−H polynomials. For each polynomials,

we need to call Algorithm 25, with a polynomial of subproduct tree at level H, whose

degree is 2H and the other parameter is 2H . So the loop in this algorithm runsH times.

We apply plain multiplications for this step. with the idea of middle product technique

117

to make the implementation fast. In middle product technique, we require convolution

to compute some coefficients of a polynomial multiplications. In plain arithmetic, we

can do the same in a direct way. For example, in the i-th iteration of the for-loop in

Algorithm 25 for i = 2, . . . , H, we need to to compute 2i−1 coefficients of gi. We can

treat both f and gi−1 as polynomials of degree less than 2i−1. Thus this multiplication

cost can be expressed as Mplain(2
i−1) We need two polynomial multiplications of this

type in each iteration. We also need some polynomial subtraction operations too.

Observe that computing g0 and g1 is trivial in Algorithm 25. We create a formula

in our Maple worksheet based on our implementation described with and Notation 1

to compute the total number of coefficient operations for construction the H-th level

of InvMn. According to our Maple worksheet the total number of operation is given

below

− n

3 · 2H + 2n+
16n 42

H

3 · 2H − 2n

2H−2H
.

After level H, each polynomial in InvMn is computed by the equation given in Propo-

sition 26. Note that, when we are constructing the i-th level of subinverse tree, it

is assumed that we have all the polynomials at level i − 1. All polynomial multipli-

cations in these levels are FFT-based. From Algorithm 28 and Proposition 26 along

with Notation 2, we compute the total number of operations required to compute the

polynomials from level H + 1 to k − 1 in our Maple worksheet. It is given below

−10
(

−log2(n)− 3 log2(n)
2 + 7H + 3H2 + 4

)

n.

We sum up these two complexity estimates and we get the result. �

Proposition 28. Given a subproduct treeMn with threshold H, the span and overhead

of constructing the corresponding subproduct tree InvMn by Algorithm 30 are span
InvMn

and overheadInvMn
respectively, where

span
InvMn

= 4 · 2H + 14 + 2 · 4H +
75

2
log2(n)

2 − 107

2
log2(n)−

75

2
H2 − 43

2
H

and

overheadInvMn
= U

(

2H+1 + 166 + 90 log2(n)
2 − 255 log2(n)− 90H2 + 75H

)

.

Proof⊲ The construction of InvMn can be divided into two steps. First, we compute

the polynomials at level H using plain arithmetic by Algorithm 25. During this step,

we assign one thread to compute one polynomial of InvMn. So its span is equal to

118

the complexity of Newton iteration algorithm that computes inverse of a polynomial

of degree 2H modular x2H . One kernel call is enough to compute this. Moreover each

thread is responsible to copy one polynomial at level H of the subproduct tree from

global memory to local memory. The span and overhead that we compute for this

step from our Maple worksheet are 4 · 2H − 2 + 2 · 4H and
(

2H+1 + 1
)

U respectively.

Second, we construct level H + 1, . . . , (k − 1) of InvMn. As mentioned before, we

do not construct the root of the subinverse tree. For a level above H, each thread

participates in three FFT-based multiplications and five other coefficient operations

(involving shifting, addition, copying). For each of the operations, except FFT-based

multiplication, each thread requires accessing at most three times in global mem-

ory. So the span and overhead for this step is computed from Notation 2 and 5

using our Maple worksheet and are 75
2
log2(n)

2 − 107
2
log2(n)− 75

2
H2 − 43

2
H + 16 and

15
(

6 log2(n)
2 − 17 log2(n)− 6H2 + 5H + 11

)

U respectively. �

10.5 Polynomial evaluation

Multi-point evaluation of polynomial f ∈ K[x] of degree less than n, for points in

{u0, . . . , un−1} can be done by Horner’s rule in O(n2) time. If we consider parallel

architecture to solve this problem, the span becomes O(n). Subproduct tree based

multi-point evaluation has better time complexity and span than that.

Algorithm 26 solves multi-point evaluation problem using subproduct tree tech-

nique. We construct subproduct tree Mn := SubproductTree(u0, . . . , un−1) with

threshold H and corresponding subinverse tree InvMn. Algorithm 26 requires polyno-

mial division operations. We implement both fast and plain division as described in

Section 10.4 for this purpose. In our implementation of fast division given in Algo-

rithm 31, we do not need to compute inverse(f, t− s+ 1), as it is already computed

and stored in the subinverse tree. Below level H, we apply plain division algorithm

to compute the remainder of polynomials.

Proposition 29. Given a subproduct tree Mn with threshold H and the corresponding

subinverse tree InvMn, the algebraic complexity of Algorithm 26 is given below

−30nH2 − 46nH + 74n+ 16
n

2H
+ 106nlog2(n) + 30nlog2(n)

2 − 8 + n 2H+1.

Proof ⊲ Our adaptive algorithm has two steps. First, we need to call Algorithm 31

for computing the remainder for k′ = k, . . . , (H +1). We do not need to compute the

inverses of polynomials as we have InvMn. All of the multiplications in this algorithm

119

are FFT-based. We need two multiplications and four other operations (polynomial

reversals and subtraction). Following Notations 2, 4 and 6, we obtain the algebraic

complexity of this step from our Maple worksheet as

−30nH2 − 46Hn+ 76n+ 16
n

2H
+ 106nlog2(n) + 30nlog2(n)

2 − 8.

Second, while k′ = H, . . . , 1 in Algorithm 31, we call plain division algorithm described

in Notation 3. The total number of operation that we obtain with this notation from

our Maple worksheet for this step is n 2H+1 − 2n. �

Remark 10. In [52], the algebraic complexity for solving multi-point evaluation is

O(log2(n)M(n/2)) using subproduct tree technique. In our proposed method, for con-

structing one polynomial in subinverse tree, we require two polynomial convolutions

and two polynomial multiplications between corresponding polynomials (children of

that polynomial) from subproduct tree and subinverse tree and one polynomial mul-

tiplication. We also require two more polynomial multiplications in Algorithm 31, if

subinverse tree is given. So in total, the algebraic complexity for solving multi-point

evaluation using our proposed method is O(log2(n)(4M(n/2)+2M(n/2)+2M(n/4))).

Considering our adaptive strategy, we compute the exact number of operations

in solving multi-point evaluation problem by adding the algebraic complexity of con-

structing Mn along with the corresponding InvMn and Algorithm 26 found in Propo-

sition 21, 27 and 29 respectively.

Proposition 30. Given a subproduct tree Mn with threshold H and the corresponding

subinverse tree InvMn, span and overhead of Algorithm 26 are span
eva

and overheadeva

respectively, where

span
eva

= −22H − 2 + 6 2H + 15 log2(n)
2 + 23 log2(n)− 15H2

and

overheadeva =
(

2H + 36log2(n)
2 + 3 log2(n)− 36H2

)

U.

Proof ⊲ From the proof of Proposition 29, we can compute the span and overhead

of Algorithm 26, when the value of k′ = k, . . . , (H +1), using Notations 2, 4 and 6 as

15 log2(n)
2 + 23 log2(n)− 15H2 − 23H

and

3U
(

12 log2(n)
2 + log2(n)− 12H2 −H

)

120

respectively. Once the Algorithm 26 depends on plain arithmetic for division that

means when k′ = H, . . . , 1, the span and overhead can be computed using Notation 3

asH−2+6 2H and 5HU respectively. We obtain this result from our Maple worksheet

too. �

Algorithm 31: FastRemainder(a, b)

Input: a, b ∈ R[x] with b 6= 0 monic.
Output: (q, r) such that a = bq + r and deg(r) < deg(b)
t = deg(a);1

s = deg(b);2

if t < s then3

q = 0;4

r = a;5

else6

f =revs(b);7

g =inverse(f, t− s+ 1);8

q =revt(a)g mod xt−s+1;9

/* revt(a) means to replace x by 1/x in a and then multiply a
with xt. */

q =revt−s(q);10

r = a− bq;11

return (q, r);12

10.6 Polynomial interpolation

Recall the Lagrange interpolation 10.2, We call visi, ci for 0 ≤ i < n. Assume that we

have computed {c0, . . . , cn−1}. For generating the result, we call Algorithm 32 which

proceeds from leaves of the existing subproduct tree to the root. This is based on the

recursive algorithm 10.9 [20].

Here, Ii,j means the intermediate result for corresponding j-th node from the left

at level i in the subproduct tree. The degree of Ii,j is 2
i−1. Finally the corresponding

result to the root of the subproduct tree is the polynomial which goes exactly through

the points which were used for constructing the subproduct tree. The degree of this

unique polynomial will be one less than m =
∏

0≤i<n(x− ui).

In this section, we study an adaptive algorithm stated in Definition 7 regarding

interpolating the unique univariate polynomial over a prime field.

Definition 7. Let H be a fixed integer with 1 ≤ H ≤ k. We call adaptive algorithm

for computing Ik,0 with threshold H the following procedure:

121

Algorithm 32: LinearCombination(Mn, c0, . . . , cn−1)

Input: Precomputed Subproduct Tree Mn for the points u0, . . . , un−1, and
c0, . . . , cn−1 ∈ K, and n = 2k for k ∈ N

Output:
∑

0≤i<n

cim/(x− ui) ∈ K[x], where m =
∏

0≤i<n(x− ui)

for j = 0 to n− 1 do1

I0,j = cj;2

for i = 1 to k do3

for j = 0 to 2k−i − 1 do4

Ii,j = Mi−1,2jIi−1,2j+1 +Mi−1,2j+1Ii−1,2j ;5

return Ik,0;6

1. For every intermediate result Ih,j where 1 ≤ h ≤ H and 0 ≤ j < 2k−h, we

compute the Ih,j using plain multiplication.

2. Then, for every intermediate result Ih,j for H +1 ≤ h ≤ k, we compute the Ih,j

using FFT-based multiplication.

In Theorem 10.10 [20], the complexity estimates of the Linear Combination is

stated as (M(n) +O(n)) log(n). Here we present a more precise estimates in Propo-

sition 31.

Proposition 31. Given a subproduct tree Mn with threshold H, the algebraic com-

plexity Algorithm 32 is given below

20nlog2(n) + 11n+ 15nlog2(n)
2 + 13nH − 15nH2 + n2H+1 − n21−H .

Proof ⊲ Each polynomial Ii,j for 0 ≤ i < k and 0 ≤ j < 2k−i is obtained by

two polynomial multiplications and one polynomial addition. For level i = 0, . . . , H,

by plain multiplication and addition, From our Maple worksheet with Notation 1

and 5, we obtain the total number of operations as 3Hn + 6n + n 2H+1 − n 21−H .

For the other levels, we apply FFT-based multiplication. From our Maple work-

sheet using Notation 2 and 5, we obtain the total number of operations as

5n
(

4 log2(n) + 1 + 3 log2(n)
2 + 2H − 3H2

)

. �

Finally we use Algorithm 33 in which we first compute c0, . . . , cn−1, and then we

call Algorithm 32. Algorithm 33 is adopted from Algorithm 10.11 [20]. The algebraic

complexity of polynomial interpolation by Algorithm 33 is stated in Remark 11.

Remark 11. In Algorithm 33, we need to compute multi-point evaluation followed by

Algorithm 32 for linear combination. In between these two major steps, we compute

122

Algorithm 33: FastInterpolation(u0, . . . , un−1, v0, . . . , vn−1)

Input: u0, . . . , un−1 ∈ K such that ui − uj is a unit for i 6= j, and
v0, . . . , vn−1 ∈ K, and n = 2k for k ∈ N

Output: The unique polynomial P ∈ K[x] of degree less than n such that
P (ui) = vi for 0 ≤ i < n

Mn = SubproductTree(u0, . . . , un−1);1

m′ = Derivation of m (the root of Mn);2

Construct the Subinverse Tree, InvMn;3

si0 . . . sin−1 = Evaluatem′ at u0, . . . , un−1 using Algorithm 26 with Mn and4

InvMn;
return LinearCombination(Mn, v0/si0, . . . , vn−1/sin−1);5

the derivation of the root of the subproduct tree, which can be done by n coefficient

operations. So the algebraic complexity of Algorithm 33 is the summation of that of

polynomial evaluation (from Remark 10), Proposition 31 and n for the derivation.

Proposition 32. Given a subproduct tree Mn with threshold H and the corresponding

subinverse tree InvMn, the Span and overhead of Algorithm 32 are span
lc
and overheadlc

respectively, where

span
lc
= −21

2
H − 2 + 2H+1 +

15

2
log2(n)

2 +
25

2
log2(n)−

15

2
H2

and

overheadlc = 4H + 18 log2(n)
2 + log2(n)− 18H2.

Proof ⊲ At level i for 0 ≤ i ≤ H, this algorithm does 2k−i polynomial plain

multiplications and 2k−i−1 polynomial additions. So each thread participates in one

coefficient multiplication and one addition. Thus with Notation 1 and 5 from our

Maple worksheet we compute the span and overhead as 2H − 2 + 2H+1 and 5HU

respectively.

For a level,i (i > H) we have same number of polynomial multiplications. But

each of the multiplication is done by FFT. As we do not store the leading coefficients

for both Mi,j , we need one more polynomial addition. So a thread participates in one

FFT-based multiplication and two coefficient additions. We compute the span and

overhead for this step as

15

2
log2(n)

2 +
25

2
log2(n)−

15

2
H2 − 25

2
H

123

K Teva Tmul Teva/Tmul ∗ k
10 0.11 0.0049 2.24
11 0.17 0.0051 3.03
12 0.21 0.0060 2.91
13 0.28 0.0061 3.53
14 0.36 0.0069 3.72
15 0.42 0.0070 4.00
16 0.56 0.0087 4.02
17 0.70 0.0111 3.70
18 1.01 0.0163 3.44
19 1.50 0.0256 3.08
20 2.52 0.0438 2.80
21 4.61 0.0862 2.54
22 9.08 0.1654 2.49
23 18.83 0.3416 2.39

Table 10.1: Computation time for random polynomials with different degrees (2K)
and points. All of the times are in seconds.

and

U
(

18 log2(n)
2 + log2(n)− 18H2 −H

)

respectively from our Maple worksheet using Notation 2 and 5. �

10.7 Experimentation results

In Table 10.1 we compare the time to do multi-point evaluation for polynomials with

different degrees with FFT-based polynomial multiplication of corresponding degrees

are compared. We found the ratios between these two quantities between [2.24, 4.02]

on GPU card NVIDIA Tesla C2050. In Corollary 10.8 of [20] this ratio is considered

as 11
2
. This is a promising result.

In Table 10.2 and Figure 10.2, we compare two implementations FFT-based poly-

nomial multiplication. The first one is implemented with CUDA [53]. The other one

is from FLINT library3. We executed our CUDA codes on a Nvidia Tesla M2050 GPU

and the other code on the same machine with Intel Xeon X5650 CPU with 2.67GHz

clock frequency. From the experimental data, it is clear that, our CUDA codes for

FFT-based multiplication does not perform well when the degree of the polynomial

is less than 216. This tells us that we need to implement another fast multiplication

3http://www.flintlib.org/

124

Degree GPU (s) FLINT (s) Speed-Up
9 0.001 0.001 0.602
10 0.0029 0 0
11 0.0019 0.002 1.029
12 0.0032 0.003 0.917
13 0.0023 0.008 3.441
14 0.0039 0.013 3.346
15 0.0032 0.023 7.216
16 0.0065 0.045 6.942
17 0.0084 0.088 10.475
18 0.0122 0.227 18.468
19 0.0198 0.471 23.738
20 0.0266 1.011 27.581
21 0.0718 2.086 29.037
22 0.1451 4.419 30.454
23 0.3043 9.043 29.717

Table 10.2: Execution times of multiplication

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 9 10 11 12 13 14

GPU
FLINT

Figure 10.2: Our GPU implementation versus FLINT for FFT-based polynomial
multiplication.

algorithm to have better performance in polynomial evaluation and interpolation. We

keep it as future work.

In Table 10.3 we compare our implementation of polynomial evaluation and in-

terpolation with that of FLINT library. We found that our implementation does not

perform well until the degree of the polynomial is more than 215. Though we are

about 21 times faster than FLINT for higher degree polynomials. We believe if our

125

Evaluation Interpolation
Degree GPU (s) FLINT (s) Speed-Up GPU (s) FLINT (s) Speed-Up
10 0.0843 0 0 0.0968 0.01 0.1032
11 0.1012 0.01 0.0987 0.1202 0.01 0.0831
12 0.1361 0.02 0.1468 0.1671 0.03 0.1794
13 0.1580 0.07 0.4429 0.1963 0.09 0.4584
14 0.2034 0.17 0.8354 0.2548 0.22 0.8631
15 0.2415 0.41 1.6971 0.3073 0.53 1.7242
16 0.3126 0.99 3.1666 0.4026 1.26 3.1294
17 0.4285 2.33 5.4375 0.5677 2.94 5.1780
18 0.7106 5.43 7.6404 0.9034 6.81 7.5379
19 1.0936 12.63 11.5484 1.3931 15.85 11.3768
20 1.9412 29.2 15.0420 2.4363 36.61 15.0268
21 3.6927 67.18 18.1923 4.5965 83.98 18.2702
22 7.4855 153.07 20.4486 9.2940 191.32 20.5851
23 15.796 346.44 21.9321 19.6923 432.13 21.9441

Table 10.3: Execution times of polynomial evaluation and interpolation.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 4 6 8 10 12 14 16

GPU
FLINT

Figure 10.3: Evaluation lower degrees

multiplication routine for polynomials of degrees 29 to 213 can improve, we would have

better performance in both polynomial evaluation and interpolation in these ranges.

Figure 10.3 and Figure 10.3 compares the polynomial evaluation between our

implementation and that of FLINT for lower degrees and higher degrees respectively.

Figure 10.4 and Figure 10.5 compares the polynomial interpolation between our

implementation and that of FLINT for lower degrees and higher degrees respectively.

One of the major factors of performance in GPU applications is usage of mem-

126

 0

 50

 100

 150

 200

 250

 300

 350

 16 17 18 19 20 21 22 23

GPU
FLINT

Figure 10.4: Evaluation higher degrees

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 4 6 8 10 12 14 16

GPU
FLINT

Figure 10.5: Interpolation lower degrees

127

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 16 17 18 19 20 21 22 23

GPU
FLINT

Figure 10.6: Interpolation higher degrees

Degree Evaluation (GB/S) Interpolation (GB/S)
4 0.0012 0.0013
5 0.0025 0.0026
6 0.0042 0.0045
7 0.0050 0.0060
8 0.0021 0.0029
9 0.0192 0.0318
10 0.0877 0.1228
11 0.2554 0.3403
12 0.5596 0.7054
13 1.2947 1.6182
14 2.5838 3.1445
15 5.2702 6.3464
16 9.6193 11.4143
17 16.4358 18.7800
18 22.6172 26.7590
19 32.3230 38.7674
20 40.4644 49.0012
21 46.7343 57.0978
22 50.8830 62.4516
23 52.9413 64.2464

Table 10.4: Effective memory bandwidth

ory bandwidth. For our algorithm this factor is presented for every degree we are

computing in the Table 10.4. The maximum memory bandwidth for our GPU is 148

GB/S.

128

10.8 Conclusion

We presented about implementation of fast evaluation and interpolation of univari-

ate polynomials over a finite field on GPU architectures using techniques such as

subproduct tree, subinverse tree, plain arithmetic, FFT-based arithmetic, etc. The

results are showing good performance for our implementations, but rooms for im-

provements still exist; especially proposing new algorithm or better implementation

for multiplications at levels 29 to 213 of subproduct and interpolation trees instead of

using FFT-based multiplications.

129

Chapter 11

Conclusion

This thesis has been devoted to the design and implementation of some basic routines

in computer algebra targeting multi-core and many-core architectures. Driven by

these motivations, we have developed new algorithms and implementations to support

bivariate polynomial systems solving.

We have investigated and demonstrated, in Chapter 6, a new reordering algorithm

for improving the data locality of basic routines dealing with vectors and sparse

matrices. In each case, we re-arrange the input data and amortize the cost of this

re-arrangement against the cost of calculations with the input data. We provide

cache complexity analysis whose favorable results are confirmed experimentally. The

cost for this preprocessing step can be easily amortized in conjugate gradient type

algorithms. Our reordering algorithm for sparse matrices is based on a new integer

sorting algorithm described in Chapter 5. This sorting algorithm can be implemented

on a multi-core machine. One of the important key routine in this algorithm is the

counting sort algorithm. We developed an efficient implementation of the counting

sort algorithm which is cache-oblivious, in Chapter 4.

In Chapter 10, we propose parallel algorithms for performing subproduct tree con-

struction, evaluation and interpolation and report on their implementation on many-

core GPUs. We enhance the traditional algorithms for polynomial evaluation and

interpolation based on subproduct-trees, by introducing the notion of a subinverse

tree. For subproduct-tree operations, we demonstrate the importance of adaptive

algorithms. That is, algorithms that adapt their behavior to the available comput-

ing resources. In particular, we combine parallel plain arithmetic and parallel fast

arithmetic.

We have implemented a condensation method for computing the determinant of

a matrix on many-core machine in Chapter 7.

130

Our proposed abstract computational model in Chapter 3, called many core ma-

chine model (MMM) is a simple model that captures all important features of a

many-core machine. Our model combinines the fork-join and SIMD parallelisms,

with an emphasis on estimating parallelism overheads, so as to reduce scheduling and

communication costs in GPU programs. We have applied this model and successfully

reduced parallelsim overheads for several basic routines in polynomial algebra.

As reported in Chapters 8 and 9, we have demonstrated that polynomial arith-

metic with small degrees can be made efficient with plain arithmetic on many-core

machines. For polynomial multiplication, our theoretical analysis allows us to reduce

parallelism overheads due not only to data transfer but also to code divergence. For

the Euclidean algorithm, our running time estimates match those obtained with the

Systolic VLSI Array Model [9]. Meanwhile, our CUDA code implementing this opti-

mized Euclidean algorithm runs within the same estimate analyzed by our model for

input polynomials with degree up to 100,000.

In this research, we propose some new algorithms and a new computational model.

We adopt some data structure and implementation tricks to have efficient implemen-

tations that are practical and efficient. We expect that these contributions will be

of help to other researchers in high performance computing, parallel computing or

symbolic computing areas in their works. All our GPU code is freely available in

source at www.cumodp.org

131

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley Publishing Company, 1974.

[2] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time? In

Proceedings of the 27th annual ACM symposium on theory of computing, STOC’

95, pages 427–436, New York, NY, USA, 1995. ACM.

[3] R. A. Arce-Nazario, E. Orozco, and D. Bollman. Reconfigurable hardware imple-

mentation of a multivariate polynomial interpolation algorithm. Int. J. Reconfig.

Comput., vol. 2010:2:1–2:14, 2010.

[4] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-

jkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the solution of

linear systems: Building blocks for iterative methods. SIAM, Philadelphia, PA,

1994.

[5] L. A. Belady. A study of replacement algorithms for virtual storage computers.

IBM Systems Journal, 5:78–101, 1966.

[6] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded

computations. In Proceedings of the 25th annual ACM symposium on theory of

computing, STOC’ 93, pages 362–371, New York, NY, USA, 1993. ACM.

[7] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. J. ACM, 46(5):720–748, sep 1999.

[8] R. P. Brent, P. Gaudry, E. Thomé, and P. Zimmermann. Faster multiplica-

tion in GF(2)[x]. In Proceedings of the 8th international conference on algo-

rithmic number theory, ANTS-VIII’08, pages 153–166, Berlin, Heidelberg, 2008.

Springer-Verlag.

132

[9] R. P. Brent and H. T. Kung. Systolic VLSI arrays for polynomial GCD compu-

tation. IEEE Trans. Computers, 33(8):731–736, 1984.

[10] R. P. Brent, H. T. Kung, and F. T. Luk. Some linear-time algorithms for systolic

arrays. In Proceedings of the IFIP Congress, pages 865–876, 1983.

[11] A. Brown, editor. VLSI Circuits and Systems in Silicon. McGraw-Hill, Inc., New

York, NY, USA, 1991.

[12] M. F. I. Chowdhury, M. Moreno Maza, W. Pan, and E. Schost. Complexity and

performance results for non FFT-based univariate polynomial multiplication. In

AIP conference proceedings, volume 1368, pages 259–262, 2011.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms (3. ed.). MIT Press, 2009.

[14] C. L. Dodgson. Condensation of determinants. In Proceedings of the Royal

Society of London, 15, pages 150–155, 1866.

[15] M. Frigo, P. Halpern, C. E. Leiserson, , and S. Lewin-Berlin. Reducers and

other Cilk++ hyperobjects. In Proceedings of the 21st annual symposium on

parallelism in algorithms and architectures, New York, NY, USA,, SPAA ’09,

pages 79–90. ACM, 2009.

[16] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. In

Proceedings of the IEEE, special issue on program generation, optimization, and

adaptation, volume 93, number 2, pages 216–231, 2005.

[17] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious

algorithms. In Proceedings of the 40th annual symposium on foundations of

computer science, FOCS ’99, pages 285 – 297, 1999.

[18] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5

multithreaded language. SIGPLAN Not., 33(5):212–223, May 1998.

[19] M. Frigo and V. Strumpen. The cache complexity of multithreaded cache oblivi-

ous algorithms. In Proceedings of the 18th annual ACM symposium on parallelism

in algorithms and architectures, SPAA’ 06, pages 271–280, New York, NY, USA,

2006. ACM.

[20] J. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University

Press, 1999.

133

[21] J. Gathen and J. Shokrollahi. Efficient FPGA-based Karatsuba multipliers for

polynomials over F2. In Proceedings of the 12th international conference on

selected areas in cryptography, pages 359–369. Springer-Verlag, Inc., 2006.

[22] P. B. Gibbons. A more practical PRAM model. In Proceedings of the 1st annual

ACM symposium on parallel algorithms and architectures, SPAA’ 89, pages 158–

168, New York, NY, USA, 1989. ACM.

[23] P. B. Gibbons, Y. Matias, and V. Ramachandran. The Queue-Read Queue-

Write PRAM model: Accounting for contention in parallel algorithms. SIAM J.

on Comput., 28(2):733–769, 1998.

[24] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. on Applied

Mathematics, 17(2):416–429, 1969.

[25] T. D. Han and T. S. Abdelrahman. Reducing branch divergence in GPU pro-

grams. In Proceeding of GPGPU-4, pages 3:1–3:8, 2011.

[26] Y. Han. Deterministic sorting in o(nlog logn) time and linear space. In Pro-

ceedings of the 34th annual ACM symposium on theory of computing, STOC’ 02,

pages 602–608, New York, NY, USA, 2002. ACM.

[27] Y. Han and M. Thorup. Integer sorting in o(n
√
log logn) expected time and

linear space. In Proceedings of the 43rd annual IEEE symposium on foundations

of computer science, 2002., pages 135–144, 2002.

[28] G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm I.

Appl. Algebra Eng., Commun. Comput., 14(6):415–438, March 2004.

[29] S. Haque. A computational study of sparse matrix storage scheme. M.Sc. thesis,

University of Lethbridge, Canada, 2008.

[30] S. Haque and M. Moreno Maza. Determinant computation on the GPU using

the condensation method. Journal of Physics: Conference series, 341(1):012031,

2012.

[31] S. Haque and M. Moreno Maza. Plain polynomial arithmetic on GPU. In J. of

Physics: Conference series, volume 385, page 12014. IOP Publishing, 2012.

[32] M. Harris. Optimizing parallel reduction in CUDA (online document, 2007).

http://developer.download.nvidia.com.

134

[33] W. Hart. Fast library for number theory: An introduction. In K. Fukuda,

J. van der Hoeven, M. Joswig, and N. Takayama, editors, mathematical software

- Proceedings of the 3rd international congress on mathematical software, Kobe,

Japan, volume 6327 of lecture notes in computer science, pages 88–91. Springer,

2010.

[34] M. A. Hasan and V. K. Bhargava. Bit-serial systolic divider and multiplier for

finite fields GF(2m). IEEE Trans. Comput., vol. 41, num. 8:972–980, 1992.

[35] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview scalability analyzer.

In Proceedings of the 22nd ACM symposium on parallelism in algorithms and

architectures, SPAA’ 10, pages 145–156, New York, NY, USA, 2010. ACM.

[36] J. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Pro-

ceedings of the symposium on theory of computing, pages 326 – 333, 1981.

[37] S. Hossain and T. Steihaug. Sparse matrix computations with application to solve

system of nonlinear equations. Wiley Interdisciplinary Reviews: Computational

Statistics, 5(5):372–386, 2013.

[38] E. Im. Optimizing the performance of sparse matrix-vector multiplication. PhD

hesis, University of California Berkeley, USA, 2000.

[39] D. G. Kirkpatrick and D. G. Reisch. Upper bounds for sorting integers on random

access machines. Theoretical computer science, 28:263–276, 1984.

[40] D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental Al-

gorithms, 3rd Edition. Addison-Wesley Professional, 1997.

[41] D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical

Algorithms, 3rd Edition. Addison-Wesley Professional, 1997.

[42] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and

Searching, 2nd Edition. Addison-Wesley Professional, 1998.

[43] D. Kreher and D. Stinson. Combinatorial Algorithms :Gen., Enum., and Search.

CRC Press, 1999.

[44] H. T. Kung and C. E. Leiserson. Algorithms for VLSI processor Arrays. In

Introduction to VLSI systems. Addison-Wesley, Reading, MA, 1980.

135

[45] C. E. Leiserson. The Cilk++ concurrency platform. In DAC’ 09: In Proceedings

of the 46th annual design automation conference, New York, NY, USA, pages

522–527. ACM, 2009.

[46] X. Li, M. Moreno Maza, R. Rasheed, and E. Schost. The modpn library: bringing

fast polynomial arithmetic into Maple. J. Symb. Comput., 46(7):841–858, July

2011.

[47] W. Liu, W. Muller-Wittig, and B. Schmidt. Performance predictions for general-

purpose computation on GPUs. In Proceedings of international conference on

parallel processing, ICPP’ 07, 2007.

[48] L. Ma, K. Agrawal, and R. D. Chamberlain. A memory access model for highly-

threaded many-core architectures. In Proceedings of international conference on

parallel and distributed systems, ICPADS’ 12, pages 339–347, 2012.

[49] L. Ma and R. D. Chamberlain. A performance model for memory bandwidth

constrained applications on graphics engines. In Proceedings of the IEEE inter-

national conference on application-specific systems, architectures and processors,

pages 24–31. IEEE Computer Society, 2012.

[50] L. Mirsky. A dual of Dilworth’s decomposition theorem. The American Math.

Monthly, 78(8):876–877, 1971.

[51] P. L. Montgomery. Modular multiplication without trial division. Inmathematics

of computation, 44(170), pages 519–521, 1985.

[52] P. L. Montgomery. An FFT Extension of the Elliptic Curve Method of Factor-

ization. PhD thesis, University of California Los Angeles, USA, 1992.

[53] M. Moreno Maza and W. Pan. Fast polynomial arithmetic on a GPU. J. of

Physics: Conference series, 256, 2010.

[54] M. Moreno Maza andW. Pan. Plain polynomial multiplication. Technical Report,

University of Western Ontario, Ontario, Canada, 2010.

[55] M. Moreno Maza and W. Pan. Solving bivariate polynomial systems on a GPU.

J. of Physics: Conference series, 341, 2012.

136

[56] M. Moreno Maza and Y. Xie. FFT-based dense polynomial arithmetic on multi-

cores. In high performance computing systems and applications. 23rd interna-

tional symposium HPCS 2009, revised selected papers. LNCS 5976, Springer,

pages 378–399, 2009.

[57] M. Moreno Maza and Y. Xie. Balanced dense polynomial multiplication on

multicores. Int. J. Found. Comput. Sci., 22(5):1035–1055, 2011.

[58] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming

with CUDA. Queue, 6(2):40–53, 2008.

[59] A. Pinar and M. Heath. Improving performance of sparse matrix-vector mul-

tiplication. In Proceedings of the supercomputing’ 99: Proceeding of the 1999

ACM/IEEE, 1999.

[60] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,

J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson,

and N. Rizzolo. SPIRAL: Code generation for DSP transforms. In Proceedings

of the IEEE, special issue on program generation, optimization, and adaptation,

volume 93, number 2, pages 232–275, 2005.

[61] N. Rahman and R. Raman. Analysing cache effects in distribution sorting. J.

Exp. Algorithmics, 5, December 2000.

[62] G. Ruetsch and P. Micikevicius. Optimizing matrix transpose in CUDA. NVIDIA

Corporation, 2009.

[63] A. Salem and K. Said. Condensation of determinants. Available at

http://arxiv.org/abs/0712.0822.

[64] J. E. Savage. Models of Computation. Addison-Wesley Longman, Boston, MA,

USA, 1998.

[65] J. E. Savage. Models of Computation. Addison-Wesley Longman, Boston, MA,

1998.

[66] L. J. Stockmeyer and U. Vishkin. Simulation of parallel random access machines

by circuits. SIAM J. Comput., 13(2):409–422, 1984.

[67] S. Tanaka, T. Chou, B. Yang, C. Cheng, and K. Sakurai. Efficient parallel

evaluation of multivariate quadratic polynomials on GPUs. In Proceedings of the

137

13th international workshop on information security applications, pages 28–42,

2012.

[68] O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on

caches. In Proceedings of supercomputing 92, pages 578–587, 1992.

[69] S. Toledo. Improving the memory-system performance of sparse-matrix vector

multiplication. IBM J. Res. Dev., 41(6):711–726, November 1997.

[70] J. Verschelde and G. Yoffe. Evaluating polynomials in several variables and their

derivatives on a GPU computing processor. In Proceedings of the 2012 IEEE 26th

international parallel and distributed processing symposium workshops & PhD

forum, pages 1397–1405, Washington, DC, USA, 2012. IEEE Computer Society.

[71] R. Vuduc. Automatic performance tuning of sparse matrix kernels. PhD thesis,

University of California Berkeley, USA, 2003.

[72] M. Moreno Maza X. Li and W. Pan. Computations modulo regular chains.

In Proceedings of the 2009 international symposium on symbolic and algebraic

computation, New York, NY, USA, SPAA’ 09, pages 239–246. ACM, 2009.

[73] D. Xavier, M. Moreno Maza, E. Schost, W. Wu, and Y. Xie. Lifting techniques for

triangular decompositions. In Proceedings of the 2005 international symposium

on Symbolic and algebraic computation, ISSAC’ 05, pages 108–115, New York,

NY, USA, 2005. ACM.

[74] A. N. Yzelman and R. H. Bisseling. Cache-oblivious sparse matrix-vector multi-

plication by using sparse matrix partitioning methods. SIAM J. Sci. Comput.,

31(4):3128–3154, July 2009.

138

Curriculum Vitae

Name: Sardar Anisul Haque

Post-

Secondary

Education and

Degrees:

The University of Western Ontario

London, Ontario, Canada

PhD in Computer Science, December 2013

The University of Lethbridge

Lethbridge, Alberta, Canada

M.Sc. in Computer Science, December 2008

Islamic University of Technology (IUT)

Gazipur, Bangladesh

B.Sc. in Computer Science and and Information Technology,

October 2002

Work

Experience:

Research Assistant, Teaching Assistant

University of Western Ontario, London, Canada

January 2009 - August 2013

Research Intern (Mitacs-Accelerate)

Maplesoft Inc., Waterloo, Ontario, Canada.

September 2012 - April 2013

139

Honours and

Awards:

Province of Ontario Graduate Scholarship, 2012-2013

Queen Elizabeth II Graduate Scholarships in Science and

Technology, 2011 - 2012

The University of Western Ontario Biocomputing Student

Award, May 2009

Selected

Publications:

Determinant Computation on the GPU using the

Condensation Method

With Marc Moreno Maza

Journal of Physics: Conference Series. 341 012031, 2012.

Plain Polynomial Arithmetic on GPU

With Marc Moreno Maza

Journal of Physics: Conference Series. 385 012014, 2012.

A Note on the Performance of Sparse Matrix-vector

Multiplication with Column Reordering

With Shahadat Hossain

Proceedings of International Computing Conference held in

Fullerton, California,April 2-4, 2009.

140

