
Aldor Generics

in Software Component Architectures

(Spine title: Aldor Generics in Software Component Architectures)

(Thesis Format: Monograph)

by

Michael Llewellyn Lloyd

Graduate Program
in

Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Masters

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario
October, 2007

c© Michael Llewellyn Lloyd 2007

THE UNIVERSITY OF WESTERN ONTARIO
FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Supervisor Examiners

Dr. Stephen M. Watt Dr. David Jeffrey

Supervisory Committee

Dr. Hanan Lutfiyya

Dr. Eric Schost

The thesis by
Michael Llewellyn Lloyd

entitled

Aldor Generics

in Software Component Architectures

is accepted in partial fulfillment of the
requirements for the degree of

Masters

Date Chair of the Thesis Examination
Board

ii

Abstract

With the introduction of the Generic Interface Definition Language(GIDL), Software

Component Architectures may now use Parameterized types between languages at

a high level. Using GIDL, generic programming to be used between programming

modules written in different programming languages. By exploiting this mechanism,

GIDL creates a flexible programming environment where, each module may be coded

in a language appropriate to its function. Currently the GIDL architecture has been

implemented for C++ and Java, both object-oriented languages which support com-

pile time binding for generic types. This thesis examines an implementation of GIDL

for the Aldor language, an imperative language with some aspects of functional pro-

gramming, particularly suited for representing algebraic types. In particular, we ex-

periment with Aldors implementation of runtime binding for generic types, and show

how GIDL allows programmers to use a rich set of generic types across language

barriers.

Keywords: Aldor, Generic Interface Definition Language, GIDL, Corba.

iii

Acknowledgments

I would like to thank my supervisor, Dr. Stephen M. Watt, for his continued support

and guidance.

I also wish to thank Cosmin Oancea, for his guidance and insights through the

world of GIDL, and the many valuable discussions exploring the benefits of Aldor

generics.

Lastly, I wish to thank my colleagues at the University of Western Ontario OR-

CCA lab for making the experience both challenging and fun, and for the many

contributions made to this work.

iv

Glossary

CLR Common Language Runtime

CORBA Common Object Request Broker Architecture

GIDL Generic Interface Definition Language

IDL Interface Definition Language

MSIL Microsoft Intermediate Language

OMG Object Management Group

SCA Software Component Architecture

v

Table of Contents

1 Introduction 1

2 Background and Related Work 6

2.1 OMG CORBA . 6

2.2 GIDL . 9

2.3 Aldor . 12

3 Problem and Approaches 14

3.1 Overview of ORBit . 14

3.2 Initial Experiments . 15

3.3 The Single-Level Approach . 16

3.3.1 Overview . 16

3.3.2 Details of the Single-Level Approach 17

3.3.3 Difficulties in Passing Function Pointers 22

3.4 The Two-Level Approach . 25

4 A Closer Look at the Two-Level Approach 26

4.1 File Structure . 26

4.2 Type Mapping . 29

4.2.1 Basic Types . 29

4.2.2 Types and Scoping . 32

4.2.3 Type Definitions . 34

4.2.4 The Any Type . 35

4.2.5 Interfaces . 35

vi

4.2.6 Enumerated Types . 36

4.2.7 Parameterized Types . 36

4.2.8 Providing Inheritance . 38

4.2.9 The Stub Implementation . 40

4.2.10 The Skeleton Implementation 40

5 Example Programs 43

5.1 Echo . 43

5.1.1 Aldor . 44

5.1.2 C++ . 48

5.2 An Implement-Restricted List Example 49

6 Conclusions 56

6.1 Advantages of a Semantic Matching between Template and Functional
Generic types . 56

6.2 Why the Two-Level Compile Method Was Best 57

6.3 A Comparison of GIDL and .Net . 58

6.4 Inter-Operation of Compile-time and Runtime Generics 59

vii

List of Figures

1.1 Example of a Type-Unsafe Parameterized type in C++ 3

2.1 Overview of CORBA Framework . 7

3.1 GIDL definition for List . 17

3.2 Stub cons Method Generated from List.idl 18

3.3 Overview of Request Call Flow . 22

4.1 Overview of GIDL for Aldor files . 27

4.2 Parameterized GIDL Definition for List 28

4.3 OMG IDL File Generated from List 28

4.4 IDL File using an Internal Structure Definition 33

4.5 Aldor Definitions Showing an Internal Structure 33

5.1 Generated Client Stub for Echo.idl 44

5.2 ORBit2 Generated Stub Code for Echo.idl 45

5.3 Part of the Skeleton for Echo.idl . 46

5.4 Implementation of the Aldor Echo Client (Block #1) 46

5.5 Implementation of the Aldor Echo Client (Block #2) 47

5.6 Implementation of the Aldor Echo Client (Block #3) 48

5.7 C++ Server Side Implementation of Echo 49

5.8 GIDL Definition for a Parameterized Linked List 50

5.9 Client Side Implementation for a Comparator Domain 50

5.10 The Aldor Client for a Parameterized Linked List 51

5.11 The Aldor Client for a Parameterized Linked List 52

viii

5.12 The Aldor Client Body for a Parameterized Linked List 53

5.13 Definition of the CompareCategoryMacro 54

5.14 Server Side Implementation of a Sortable List Domain 55

6.1 Overview of .Net Framework CLR (Source: http://en.wikipedia.org,
Valid November 22, 2007) . 59

ix

1

Chapter 1

Introduction

The field of computer science boasts vast array of programming languages, most

geared toward a specific set or subset of problems. However, large projects often

consist of several smaller problems and components. To better find solutions to such

diverse problems, it is useful to use a variety of programming languages even within

a single project, each suited to its own task.

Software component architectures (SCAs) allow developers to choose an appro-

priate language for each modular task and create interfaces between modules written

in different languages. Independently developed modules and libraries may be inte-

grated, regardless of programming language. Each aspect of a software project may

be solved in a programming language to which it is well suited, then combined with

other solutions to form a cohesive whole.

One of the motivations for our research is to demonstrate how languages with

distinct binding times for generic types may be integrated into a software component

architecture.

2

The term ”Parametric Polymorphism” refers to the idea by which definitions for

programming language types and functions may be used with different types of data,

with the types given as parameters. Since its one of its early appearances in the

functional language ML [11], parametric polymorphism, sometimes called generic

programming or programming with templates, has become a useful feature in both

object oriented languages such as C++ and Java, and statically typed functional

programming languages.

We contend that the ability to program generically would be desirable when devel-

oping in a multi-language environment. In any case, with the resounding popularity

of parametric polymorphism in object-oriented languages, it is an interesting topic

to explore. One could argue that when working in multiple languages any feature

that can be reasonably and easily used between languages becomes extremely useful.

Though only recently introduced to Java, parameterized types have been in common

use in imperative and functional languages such as ML, Aldor, C++ and many others.

The type parameters supplied to a parameterized type can have various binding

times based on the implementation of the language. Some languages implement

compile time binding for generic types, where types for each instance of the generic

type are created during compilation. Some functional languages use run-time binding

for generic types, where new types are created at run time based on the supplied

parameters. One of the drawbacks with the C++ implementation of compile time

generics is that generic types are not checked for type safety; the compiler can give

no guarantee that the generic type will compile with all intended parameters. Figure

1.1 demonstrates how type-unsafe generic types may be created using compile time

generic languages. The parameterized List type shown in figure 1.1, will compile

provided that the type substituted for T is a class that provides a print() function.

3

Figure 1.1 Example of a Type-Unsafe Parameterized type in C++

template <class T>

class List {

private:

T car;

List<T> cdr;

public:

List(T c){

car = c;

};

List(T c, List<T> cd){

car = c;

cdr = cd;

};

print(){

car.print();

cdr.print();

};

};

However, if included in a library, the class created is dependent on its usage within

a program, and is may fail cryptically when used with incorrect arguments. For this

reason it may be advantageous for a programmer to develop parameterized types in

a language with support for type checked generics, which can verify validity for a

declared subset of types during the first compilation.

With several languages supporting some form of parametric polymorphism, there

exists an opportunity to extend software component architectures to use polymorphic

types. The Generic Interface Definition Language (GIDL) project[8] at the University

of Western Ontario is such an architecture. GIDL is a general Software Component

Architecture (SCA) designed to provide generics. In order to provide generics for the

wide variety of programming languages, GIDL defines a variety of semantic forms for

parametric polymorphism in order to facilitate languages outside of current main-

4

stream programming.

The Aldor programming language provides an opportunity to extend GIDL to

include a language with run-time generics. Aldor was originally developed by IBM

as an extension language for AXIOM, a system for computer algebra. Aldor treats

functions and types as first class values, allowing both to be passed as arguments or

created at runtime. This uniform treatment of functions and types creates a powerful

programming environment and provides an interesting challenge to map to an object

oriented architecture.

This thesis will demonstrate how GIDL allows a language using runtime binding

for generic types to be integrated with languages using compile time binding. In

addition we will examine possibilities for related research, such as automated library

translation to GIDL, and using Aldor’s foreign function interface as an intermediate

to expose additional languages to GIDL.

Chapter 2 will cover some of the background projects and software that are related

to this thesis. We provide some details on the CORBA software component archi-

tecture, covering its basic approach and uses. We detail the GIDL project in section

2.2 and examine its motivation and goals in bringing parameterized types to software

component architectures. Section 2.3 will cover the Aldor language and its particular

interest to us in providing an interesting language to experiment with different types

of generics.

Chapter 3 covers our initial approaches to the implementing the GIDL architec-

ture for Aldor. We briefly review our initial experiments in providing a suitable type

mapping between GIDL and Aldor. We also touch on one of the possible extensions to

this work. Chapter 3.2 overviews our first major approach to providing a fully func-

5

tional Aldor Object Request Broker (ORB) for use with GIDL. This section details

our single-compiler approach in which the GIDL IDL compiler is used to generate

ORB code directly for use in the Aldor language. Finally section 3.2 examines our

final design and our reasoning for adopting a two-compiler model.

Chapter 4 describes the implementation of the two-compiler method. We exam-

ine how all GIDL basic types are mapped in to the Aldor language, detailing some

of the problems encountered when mapping constructed types and providing GIDL

equivalent type scope. In this chapter we also detail our mapping for GIDL inter-

faces to Aldor category/domain pairs, the three types of GIDL generics and how we

have simulated GIDL inheritance functionality. Sections 4.2.9 and 4.2.10 examine

the generated stub and skeleton code. Later sections of this chapter examine some of

the interesting details and problems that arose in mapping GIDL to Aldor and some

techniques used to marry these two languages with very different type models.

Chapter 5 shows some test programs using our GIDL/Aldor mapping. These test

cases are included to give an idea of what a GIDL/Aldor program looks like and

demonstrate some of its capabilities.

Chapter 6 provides our final overview of the project, conclusions and examines

some of the further possibilities for GIDL/Aldor. We also discuss some of the benefits

of a SCA with support for generics.

6

Chapter 2

Background and Related Work

2.1 OMG CORBA

Originally developed (v1.0) in 1989 and extended in 1994 (v2.0)[1], the Common

Object Request Broker Architecture (CORBA) is a well established SCA with support

for more than thirty programming languages. However, the CORBA object-oriented

model does not support the use of parametric polymorphism.

CORBA was designed as a language-independent software component architec-

ture for creating distributed systems. Using an Interface Definition Language (IDL)

to define abstract classes to be ‘shared‘ between components, CORBA acts as a

compatibility layer between languages and systems. This approach allows CORBA

objects to be used by any platform and any system which implements a CORBA

Object Request Broker (ORB).

CORBA applications are modeled on an object oriented, tiered, distributed sys-

tem, usually with one component acting as a client which makes requests to one or

7

more servers. The server component may additionally act as a client to other compo-

nents. For the sake of simplicity, we will only consider in detail a single client/single

server model, relying on compositions of this relation to build more general architec-

tures.

Figure 2.1 Overview of CORBA Framework

The key to understanding CORBA is in understanding how IDL can be used to

communicate across programming languages. A CORBA application is constructed

of five main conceptual components; the Client, Stub, ORB, Skeleton, and Server.

The ORB provides the core functionality for sending and handling requests between

the client and server. The Stub is generated by the IDL compiler and may differ

between CORBA implementations. The role of the stub is to provide a transparent

interface between the user’s program and any remote or CORBA controlled objects

being used. The exported functions defined in IDL become exports of the generated

domain, with similar type signatures. When called from a client program, the stub

functions marshal parameters given for transmission to a server.

8

Similar to the Stub, the Skeleton file is generated from the IDL file for each

application. The role of the Skeleton is to receive function call requests from the

Stub and call the corresponding function implemented by the user.

The Client and Server files are written solely by the developer and constitute the

program being developed. Typically the Client embodies the logic of the program

with one or more of the implementation modules being implemented on the Server.

A CORBA mapping for a programming language consists of a library of CORBA

types, programming types representing the basic types and programming objects de-

fined by the CORBA standard, a definition for how IDL interfaces and definitions

may be represented in the target language, and (optionally) a compiler which follows

the definitions and generates Stub and Skeleton code in the target language. The

OMG CORBA standard itself defines a set of basic types, programming objects, and

the inter-operable object reference (IOR) and GIOP data representations. CORBA

defines value ranges and sizes for basic types such as 32, 64 bit integer, float, double,

string, character, octet, etc, and variable length types such as array, and sequence.

Standard accessor functions are defined for the Portable Object Adaptor(POA) which

is used by the ORB to manage servants (user written objects) to be accessed re-

motely. In addition, the CORBA standard contains specification for naming services,

CORBA objects which may be used to locate and return other CORBA objects.

It is not the intention of this thesis to create a complete CORBA language mapping

for Aldor. Instead, we hope to demonstrate how the GIDL SCA may be mapped to

a language with support for run-time generic types. With this goal in mind, only the

basic CORBA functionality to create inter-language generic programming has been

included in this project. Many OMG CORBA features, such as naming services and

9

extensive memory management systems, are left to the CORBA developers of the

underlying CORBA ORB GIDL-ALDOR interacts with.

2.2 GIDL

With parametric polymorphism slowly being introduce into mainstream programming

languages such as C++ and Java, the possibility for an SCA with support for generic

languages presented itself. The FRISCO project experimented with using generics

between Aldor and C++. The motivation for FRISCO was Aldor, providing a rich

data type structure for mathematical programming with support for generic types,

and the C++ PoSSo library, a fast C++ library for computer algebra making heavy

use of templates. The FRISCO project provided many insights into mapping object-

oriented data types to Aldor, and provided evidence that the use of generics in inter-

language programming would be a valuable feature.

Motivated by the FRISCO project, the Generic Interface Definition Language was

developed to provided a solid SCA with support for generic types. Generic Interface

Definition Language (GIDL)[8] is an extension to OMG IDL. GIDL allows for the

definition of parameterized interfaces which may then be translated into equivalent

data-types in any implemented language. Currently, mappings for GIDL exist for

C++ and Java, allowing polymorphic types to be used between these languages[8].

A GIDL encapsulation of the C++ Standard Template Library has been developed

by Cosmin Oancea (University of Western Ontario, ORCCA) as validation of GIDLs

capabilities.

GIDL is an implementation-independent framework to provide generics over an

existing Software Component Architecture. In order to provide for the varying models

10

for generics in different languages, GIDL defines three types of generics;

non-restricted types are types accept any type as a parameter.

extend-restricted types are given a restricting type in their definition. Only types

belonging to the restricting types inheritance tree may be bound. Inheritance

follows standard object oriented sub-typing rules.

implement-restricted type are more permissive than extend-restricted types, in

that types that fully provide the exports of the restricting type may be bound.

Bound types need not belong to the inheritance tree of the restricting type.

Only exact matching of each export signature is accepted.

GIDL provides an extension for CORBA-IDL to allow definition of generic inter-

faces. At this time, generic functions are not included as CORBA-IDL has no support

for static methods, and some generic languages, such as ML, do not support it. GIDL

generic interfaces are based loosely on those found in C++ or Java and follow similar

scoping and inheritance rules. Parameterized types may inherit or be inherited, how-

ever a type List does not extend List <A> even if B extends A. In addition to

allowing three different kinds of generic type parameters, GIDL interfaces may also

include non-type class template parameters. These parameters allow a generic type

to be supplied a constant value, such as an array size, on instantiation.

GIDLs model for generics was based on four primary rationale [8]:

• The type of any expression should be context independent.

• The model for generics should allow the restrictions placed on generic types to

provide easy extensibility and readability.

11

• Mappings should allow programming languages with support for parameterized

types to make use of them in a natural way.

• GIDLs model should allow for backward compatibility with CORBA applica-

tions that do not have support for generic types. In addition, client applications

written in languages with no support for generic should still be able to inter-

operate with server applications that do.

Apart from allowing generic types, the GIDL compiler makes no modification

to the OMG IDL language, allowing standard OMG IDL to be used with GIDL.

GIDL parameterized types remain backwards compatible with OMG-CORBA IDL

and inter-operable.

In order to accomplish backward compatibility with OMG-CORBA mappings,

GIDL utilizes a type-erasure technique similar to that found in Java 5. Function

parameters dependent on the generic type are converted to a general IDL type prior

to transmission. The transmitted type loses some of its type information during

transfer. The transmitted argument then has its type rebuilt in an implementation-

dependent manner when received. Using this technique GIDL provides polymorphic

exports without modification of the underlying SCAs transmission protocol.

GIDL-generated types act as wrappers for CORBA-IDL generated types. When

a GIDL method is invoked on the client, the generated GIDL method erases the

parameterized type information and calls the corresponding generated IDL method

on the downcast parameters.

Type-erasure for non-restricted types is accomplished by replacing all instances

of the scope name with the any type. This ensures that any possible type will be

accepted and allows for the type to be re-cast by the GIDL server after transmission.

12

Extend-restricted types are recast to the highest level type accepted by the generic

type, allowing OMG-IDL to enforce strong type restrictions on the erased type with-

out restricting functionality.

In order to provide type-erasure for implement-restricted, GIDL reduces these

types to extend-restricted types using a most general generic unifier (MGGU). The

MGGU is a constructed interface making use of only non-restricted generic types, and

provides the full list of exports described in the given to be implemented type. All

GIDL types that fully implement the exports declared in the MGGU (and therefore

the base restricting type) are made to extend the MGGU. This reduces implement-

restricted generics to a form of the extend restricted type, which is then type-erased

as described.

2.3 Aldor

The Aldor programming language is a strongly-typed imperative programming lan-

guage that uses functions and types as first class run-time values. Originally devel-

oped by IBM as an extension to Axiom[5], Aldor has strong support for symbolic and

numeric computation and type safe generic programming.

Current trends in computer languages increasingly favor methods of dynamic pro-

gramming. With the introduction of templates to C++ and Java, languages must

take care to continue to provide safety and program variability. In this trade off

between dynamic flexibility and compile time verification the Aldor language sits

comfortably by allowing strong typing as well as the use of dependent types and the

treatment of functions as first class values. Dependant types provide the functionality

of templates of other languages.

13

Aldor creates domains (types) dynamically at runtime, providing a flexible envi-

ronment for generic types well suited for the runtime generics required in GIDL. As

such, Aldor is a good candidate for experimentation with generic types in software

component architectures. The Aldor foreign function interface allows the execution

of C functions from within Aldor, which permits the use of an existing CORBA C im-

plementation to be used instead of implementing the OMG CORBA standard strictly

in Aldor.

Objects in Aldor may be represented by a category/domain pair [2]. Categories in

Aldor are similar to interfaces in Java or abstract classes in C++. The purpose of the

category is to export public function definitions for the domain as well as inheritance

information.

Domains provide the implementation of functions. Domains may implement a de-

fault category to automatically export all functions within the domain. This simply

provides a way to organize and separate groups of functions, categories and domains,

similar to a C++ namespace. A domain may also provide an implementation of a

specific category, in which case it implements functions defined as exports of the cat-

egory. This provides a two-tier type structure. In addition, domains may provide a

representation type, which determines how a value belonging to the domain is repre-

sented in memory as well as which functions are internally available to the domain

when instantiated.

14

Chapter 3

Problem and Approaches

3.1 Overview of ORBit

This section provides a brief overview of the C language CORBA ORB ORBit and

highlights details of its implementation that are important to this thesis.

According to its documentation, ORBit is a CORBA 2.4-compliant Object Re-

quest Broker implemented in C and distributed freely under the Lesser Gnu Public

License (LGPL). ORBit is included in most Linux distributions and is featured as a

component of the GNU Object Model Environment (GNOME). ORBit was chosen as

our underlying ORB implementation when experimenting with GIDL due to its wide

availability, open source code, and C language implementation that can be is easily

accessible through Aldor’s foreign function interface.

ORBit client structures are fairly straightforward and their implementation does

not significantly affect the Aldor mapping. Interface definitions are mapped to a

named structure that holds the IOR used to identify the object on a remote server,

15

and a set of accessor functions in accordance to OMG CORBA C language naming

standards. The implementation of these accessor functions varies between ORBit

versions, however. In our implementation, these functions are either replaced (as in

the Single-Level approach) or called directly (Two-Level approach).

3.2 Initial Experiments

In order to show that a GIDL mapping for Aldor could be successfully built using

an existing C CORBA implementation we conducted a series of experiments using

a direct straightforward approach. The goal was to develop a working client/server

side CORBA compliant mapping without support for generics, in order to determine

whether an existing implementation could be used directly and experiment with var-

ious methods for mapping Aldor types to GIDL. We created thin wrapper domains

for all conceptual types used in the underlying ORBit library. These types contained

little or no information about their representation, save for a pointer to the data,

which could be stored and passed to the underlying ORBit function calls as required.

Using this mechanism, client Aldor client programs could call Corba exported func-

tions through an existing C language ORB using the C Foreign function interface and

thinly wrapped types. This experiment proved that there was no need to implement

a fully functional CORBA ORB in Aldor.

Aldor provides the ability to extend existing types to belong to new categories and

provide additional functionality. Using this post-facto extension feature, we sought

to extend existing Aldor library types to include the required functionality to be

used with GIDL. This approach provided many hypothetical advantages over re-

implementing the existing types, chiefly the extended types would be able to be

16

transparently used between pure libAldor functions and remote GIDL functions

without the need to re-cast to an appropriate GIDL type. Unfortunately difficulties

in successfully implementing a large number of extended types prevented this feature

from being fully explored within our time frame and the simpler, more direct approach

of re-implementation was adapted.

3.3 The Single-Level Approach

3.3.1 Overview

Our initial approach taken when building a GIDL Aldor SCA was to build directly

upon an existing C implementation for CORBA. This approach allowed us to work

around the significant overhead that exists when using the high level interface pro-

vided by most ORB implementations. Allowing Aldor to directly call and use the

underlying library code, we are able to avoid unnecessary or redundant type manip-

ulation.

CORBA GIOP (Generic Inter Object Protocol) is a specification language used to

describe how data is structured when communicating between CORBA modules. In

order to allow GIDL Aldor programs to compile and run without an additional third

party IDL compiler (see section 3.4), generated Aldor stub and skeleton functions

included a significant amount of code used to handle GIOP communication. In ad-

dition, every basic GIDL type mapped to Aldor required several additional functions

to allow for this communication. Marshaling functions were required to translate

each type to a GIOP compliant format and provide correct byte alignment within the

message buffer supplied by the underlying ORBit library. Demarshaling functions

17

for each type read from the receive buffer and reconstruct the type. GIOP does not

specify a byte order for its communication, but instead relies on the receiving mod-

ule to perform any byte re-ordering that may be required for the architecture. Each

demarshaling function was required to potentially re-order received data.

Each type requires a Type Code structure used to describe the type for a number

of internal functions and when converting to and from the Any type. Type Code

structures are specified by the OMG CORBA standard, and implemented in the

Aldor mapping by a getTypeCode function within each domain which returned the

specific structure for each basic type.

Figure 3.1 GIDL definition for List

interface Comparator<S>{

boolean compare(in S x, in S y);

};

interface List<S; C:) Comparator<S> >{

List<S; C> sort(in C c);

List<S; C> cons(in S x);

};

3.3.2 Details of the Single-Level Approach

The goal of the single-level approach was to take advantage of the open source nature

of the ORBit CORBA object request broker. By calling ORBit functions directly from

the Aldor code generated by GIDL, we could eliminate the need to use the ORBit

18

compiler completely. This created a simplified, one step compilation to produce

an Aldor-GIDL program and allowed for some simplification of the mapping, since

marshaling could be done directly from Aldor and is therefore not restricted by the

C language mapping.

Figure 3.2 Stub cons Method Generated from List.idl

cons(__this:%, __a0GIDL:S,

__env:CorbaEnvironment):(List__ref(S, C))==

{

__cnx:GIOPConnection == getConnection(__this);

(__sndBuff:SendBuffer, __requestId:CorbaLongLong) ==

use(__cnx,"cons",%,__this);

if nil?(__sndBuff) then {

setSystemException(__env, ex__CORBA__COMM__FAILURE,

CORBA__COMPLETED__NO);

throw CorbaSystemException;

}

marshal(__sndBuff, __a0GIDL);

write(__sndBuff);

unuse(__sndBuff);

__recBuff:ReceiveBuffer == use(__cnx, __requestId, true);

if nil?(__recBuff) then {

setSystemException(__env, ex__CORBA__COMM__FAILURE,

CORBA__COMPLETED__MAYBE);

throw CorbaSystemException;

}

__ret:List__ref(S, C) == demarshal(__recBuff);

unuse(__recBuff);

return (__ret);

};

Figure 3.2 shows the client stub code generated for the cons function from List.idl

(Figure 3.1). The first three lines retrieve the connection information associated with

this object using getConnection, an Aldor wrapper for an imported ORBit C function.

The use function creates a new SendBuffer type to use for marshaling parameters

19

and creates the GIOP header for the request. In addition to the function name, the

GIOP request header will also contain information such as the endian orientation of

the machine, GIOP version, and several other parameters used on the server side,

most of which will be parsed out when the request is received by the server and is

not relevant to GIDL.

Following a check for a nil or invalid SendBuffer, the functions arguments are

converted to GIOP format and copied into the buffer using the marshal method for

each type in the mapping. In the case of unrestricted template types, the type is first

coerced to the Any type before marshaling.

Lastly, the ReceiveBuffer is created to hold the reply from the server, and the

return types are demarshaled and returned by the function.

The portable object adaptor holds pointers to active POA servants. Each POA

servant is responsible for dispatching the requested function on the user’s object and

marshaling the result back to the client. The details of the POA and POA manager

are handled through ORBit, however since the POA servant type for each interface de-

fined in IDL is generated by the ORBit IDL compiler, we generate a similar structure

from the GIDL compiler. The ORBit POA servant type is represented in C as three

nested structures which we will designate POA, VEPV, and EPV. The POA for each

object is used by ORBit to handle requests for that object’s functions and provide a

reference to the user’s object. The POA object is represented by a category/domain

pair. The POA category for the object should extend a basic CorbaSkel category

which provides exports for functions common to all POA objects, such as getSkel. The

generated POA category must also provide exports for the object’s method dispatch

function(s). The POA domain for the object must correctly implement all functions

20

defined in the POA category and must also provide the representative structure for

the POA object.

The top level POA structure serves as a container for the VEPV structure as well

as the classid structure, containing the interface name, and two pointers to functions,

one required to initialize a local reference to the object and the other to the C-viewable

getskel function used to retrieve the methods of the object by name. This POA type

exports all the functions that are required to connect the underlying ORBit libraries

with the user’s code. This includes the getskel function, which is used internally to

return required function pointers to the ORBit libraries, the init function, which is

used by the user to create an instance of the POA type, and a demarshaling function

for each function defined for this interface in the IDL, used to retrieve parameter

values for the function call from the client.

The VEPV structure contains a pointer to the base epv structure, a structure used

internally by ORBit, and the EPV structure.

The EPV structure is the most important of these structures for this paper. The

EPV in ORBit implementation contains a private pointer, which may be used by the

programmer to store private variables for the type, followed by a list of pointers to

the user’s implementation of each method of the object. In order to handle generic

types, this structure has been modified to contain an EPV2 structure for each of

the functions defined in the IDL. An EPV2 structure holds a pointer to the Aldor

closure representing the user’s implementation of the function, a pointer to the specific

Aldor demarshaling function for the function, and a pointer to the user’s domain

instantiation for the type. This allows for the Aldor language to call the correct

instance of the demarshaling function when using generic types. It also allows Aldor

21

maintain type information after the demarshaling function is returned from the getskel

method, which must return a Pointer type.

For each interface defined in the GIDL, a category/domain pair is generated for

each of the above POA types. The category for each type exports the generic tie-ins

apply, set! and bracket both for internal use and for advanced user’s who may wish

to modify the structures themselves. In addition, the top-level POA type exports the

init, getskel and demarshaling functions, making them available outside the domain.

In order to understand the functionality of these structures, one must understand the

basic flow of how a CORBA request in handled.

When the client stub makes a method execution request, it includes a reference for

the desired object converted to a string (”stringified”), the method’s name, and the

parameters on which the method is to be executed. The Object Request Broker uses

the stringified reference to retrieve the POA structure corresponding to the requested

object from the interface repository [1], and executes the getskel function (contained

within the POA structure).

The getskel function compares the method name passed by the client stub to its

list of methods. If the method name is not found, an exception is returned to the

client stub. If the method is found, the function returns a pair of pointers. The first

references the demarshaling function used for the requested method, which is later

called to rebuild arguments from their GIOP representation. The second pointer

references a structure containing the user’s instantiation of the object and the EVP2

structure for the requested function, both of which are retrieved from within the EPV

structure.

After calling the getskel function, the ORBit server then calls the demarshalling

22

Figure 3.3 Overview of Request Call Flow

STUB

CLIENT

OBJECT REQUEST BROKER

Demarshal Function

User Function

getSkel Function

POA

Demarshal and User function
are retrieved from the POA
and returned to the ORB

function for the requested method using the function pointer returned from getskel. It

passes the structure returned by getskel as an argument to the demarshaling function.

The demarshaling function provides the main functionality of the skeleton. This

function is responsible for retrieving the requested methods parameter values from

the input buffer, casting the function pointer passed within the EPV2 structure to

the correct type and executing the resulting function on the retrieved parameter

values. When the user’s function returns, the return values are converted to Internet

Inter-Orb Protocol (IIOP) compatible format and placed on the output buffer to be

returned to the client.

3.3.3 Difficulties in Passing Function Pointers

The passing of function pointers is necessary as the ORBit libraries have no knowledge

of the function structure names which are to represent the interface defined in IDL,

23

hence linking cannot be done at compile time. Only by passing function and structure

pointers to the ORBit library functions at run-time can the skeleton and user functions

be executed. This is an extremely useful aspect of the ORBit implementation, it does

however introduce a problem when passing pointers to Aldor functions into C space.

One of the difficulties in this approach was producing an effective method to pass

function pointers between the generated Aldor skeleton and the ORBit C library

functions. In order for the C library functions to call the Aldor skeleton functions,

pointers to those functions must be contained within structures and passed as argu-

ments to the ORBit library initialization functions. This allows the ORBit library to

store and later retrieve and call functions which were not available when the library

was compiled. Although Aldor is capable of calling functions implemented in C, and

of exporting its own functions so that they may be linked to C programs using the

Aldor foreign function interface [5], passing functions as arguments between the two

languages presented problems.

Aldor is a functional language, and as such each Aldor function is represented

by a closure structure containing a pointer to the actual function and a pointer to

the environment in which the function was created. In addition the actual function

takes the environment structure as its first argument. These two properties of Aldor

prevent the straight passing of function pointers into C. In addition, when an Aldor

function is exported to C, the Aldor compiler generates two separate function versions,

one which can be linked from the C program and the other which is referenced from

the within the Aldor program. Any attempt to reference the exported function from

within the Aldor program returns a pointer to the ALDOR version of the function,

which is unusable in C.

24

In order to circumvent this problem and allow the passing of the correct function

pointer to the ORBit library, a special set of C functions were created. Any Aldor

function that must be called from within the ORBit library functions, namely the

getskel function for the interface and the dispatch functions for each method declared

in IDL, must be declared at the top level and exported to C. In addition, a special

C function is generated for each of the Aldor functions. These C functions take no

arguments and return an untyped pointer to the exported Aldor function. The C

functions are then imported into the initialization function of each POA domain so

their values can be stored in the POA::classid structure and passed to the ORBit

library.

This method has an added effect when applied to parameterized types. Only a

single function with a unique name can be exported to C. To allow for parameterized

polymorphisms, we provide an additional mechanism to determine the correct de-

marshaling function, based on the object on which the method is requested. For this

purpose the Aldor function pointer (which is a closure structure and so can only be

executed from within Aldor) for the correct dispatch method is stored in the EPV2

structure. Since the types for the dispatch functions are known when the domain is

created, these function pointers refer to the correct version of the dispatch function

for the bound type. The duty of the top level dispatch function for the method is to

retrieve the closure for the correct functionS from the EPV2 structure and execute it.

The drawback to this method is that it forces the GIDL/Aldor compiler to generate

an additional C module which must be compiled and linked to the generated ALDOR

code. It does however allow the Aldor skeleton to make use of run-time generic types

without modification of the IIOP protocol or the ORBit library functions.

25

3.4 The Two-Level Approach

While the single level approach provided the desired functionality, it failed in one of

the goals of GIDL: it was not portable. While the specification for the exported func-

tions of a Portable Object Adapter are well defined, the underlying library functions

differ between CORBA implementations. In order to address this issue, we chose an

approach closer to that taken by the original GIDL project.

In the two-level approach, the GIDL source is used to generate both stub and

skeleton code in the desired target language, and a OMG IDL file containing properly

substituted IDL types in place of any parameterized definitions declared in GIDL[4].

The OMG IDL file is then compiled into the target language using a third party

compiler. The GIDL generated stub and skeleton interface provide type erasure and

reconstruction for parameterized types, and forward call requests through the stub

and skeleton code generated from the IDL compiler. The two-level approach ensures

portability between underlying CORBA implementation since all connecting points

between the two levels are standardized by OMG CORBA.

In the case of the our Aldor GIDL compiler, we use Aldor’s foreign function

interface to connect with generated C language code. This is necessary since there is

currently no OMG CORBA ORB written for the Aldor language.

26

Chapter 4

A Closer Look at the Two-Level

Approach

In this section we take a closer look at the implementation details of the two-level

approach. We examine the GIDL to Aldor mapping for basic and constructed types,

our mapping for interfaces, and details on how type relationships are modeled. Later

in this section we give a brief overview of the execution flow of a method invocation,

and detail how the server side generated code operates.

4.1 File Structure

The file structure of the Two-Level Code Generation approach is based largely on

that of the GIDL project. GIDL definitions are compiled by the GIDL compiler to

produce stub and skeleton and linking code in the target language, and an additional

IDL file containing unparameterized definitions of interfaces. In the case of our Aldor

mapping, the IDL definitions are then compiled using a standardized C CORBA

27

Figure 4.1 Overview of GIDL for Aldor files

compiler to produce stub and skeleton code in the C programming language. The C

language and Aldor stubs are then compiled and linked with a client program written

by the user and the Aldor type mapping library to produce the client executable. C

language and Aldor skeleton files are compiled and linked with the user written server

file, the Aldor type mapping libraries, and an additional linking module provides

compatible function signatures between Aldor and C. The result is an executable

Aldor client program which may use the GIDL defined types written and compiled in

any GIDL language, and an Aldor server which supplies functionality for the GIDL

defined types to a client written in any GIDL implemented language.

The Generated IDL definitions are functionally equivalent to the GIDL definitions.

GIDL to IDL translation is accomplished by first removing parameterization from

types, then replacing non-restricted and implement-restricted type variables with the

28

Figure 4.2 Parameterized GIDL Definition for List

interface Comparator<S>{

boolean compare(in S x, in S y);

};

interface List<S; C:) Comparator<S> >{

List<S; C> sort(in C c);

List<S; C> cons(in S x);

};

Figure 4.3 OMG IDL File Generated from List

interface Comparator

{

boolean compare (in any x , in any y) ;

} ;

interface List

{

List sort (in Object c) ;

List cons (in any x) ;

} ;

CorbaAny type. Extend-restricted types are substituted with the unparameterized

type representing the GIDL interface they are supposed to extend[4]. The result is an

OMG IDL file providing equivalent exports to those declared in the GIDL definition.

Consider Figure 4.2, in this case we have two parameterized interfaces, List and

Comparator. List defines a Lisp-like list of elements of the non-restricted type S,

which may be sorted by a boolean function defined in any type belonging to the class

29

hierarchy of C which implements the exports of Comparator of S. The resulting IDL

file can be seen in Figure 4.3.

4.2 Type Mapping

This section contains an overview of how GIDL types are mapped to Aldor domains.

We also examine how the generated Aldor stub/skeleton code translates GIDL in

order to provide equivalent type scoping and inheritance rules within Aldor.

4.2.1 Basic Types

Basic types are mapped by creating a new domain/type using an existing equivalent

Aldor base type (from the axllib library) as its representation.

Integer Types

OMG IDL provides standardized integer types based on possible value ranges [1].

The Aldor abstract machine supports integers of different widths, but not all of them

have full high-level functionality. In Aldor, we represent each Integer type with Aldor

type/domain extending the most functional equivalent type supplied by Aldor. Thus,

for long we generate a new Aldor type extending the SingleInteger domain. The short

integer type has no equivalent rich domain in Aldor, so the Sint$Machine type is used.

Floating-Point Types

Floating point types are defined by the IEEE Standard for Binary Floating-Point

Arithmetic. We represent these types using new Aldor domains extending the Sin-

30

gleFloat and DoubleFloat1 domains for single and double precision floating point

numbers, respectively.

Character Types

The GIDL character type in Aldor uses the Character Aldor type for its represen-

tation. This type may be coerced to and from either its representation type from

the Aldor library, or a C style machine type. Coercion to a machine type is done

transparently when required to pass character types to underlying C functions.

Boolean and Octet

Similar to the Character type, Boolean and Octet types in GIDL Aldor use Aldor

library types for their representation. These types may be cast between their corre-

sponding machine types or their representative types via the coerce function.

Constructed Types

Constructed types consist of the struct and union types. The struct type is similar

to that found in C or C++, providing a single type with accessible named fields. In

Aldor, the IDL struct type is represented as an equivalent Record type. However,

several problems occur in this mapping. Internally declared structure types must

be declared as exports of the enclosing scope (see Types and Scoping). The Record

domain does not have a corresponding category. This causes difficulty when declaring

1Aldor in fact represents the Double Float type as a ‘pointer to a IEEE double precision floating

point number. This wrapping is transparent when working within an Aldor program, but can cause

confusion when passing DoubleFloat arguments through the Foreign function interface, or when

doing low level memory manipulation.

31

the Record type itself as an export. In order to correct this, every struct type declared

in IDL creates a helper category/domain pair with a unique identifier at the top lexical

scope. The helper Category provides exports for apply, set! and bracket while the

domain acts as a thin wrapper for Record. This gives IDL structure types a well

defined mapping to the Aldor language.

Structures are mapped to an equivalent Record() type in ALDOR. Structures

maintain their position in the scope hierarchy in ALDOR, this is accomplished by

creating domain and category generating functions in the outer scope with unique

names and calling them from the correct scope.

This mapping allows programmers familiar with object oriented languages such as

C++ which allow type definitions within classes or functions, to use defined structures

in a familiar and natural way. Defining the structures uniquely at the top level

eliminates difficulties encountered when attempting to define new structures within

interfaces. Also, since the type returned by the Record type from axlib.as does

not have a category which may be extended or referenced, the Record type could

not be properly exported from within a category without the first defining a new

category at the top level. In the case of structures within interfaces, the translator will

generate the appropriate definitions for the structure within the interface category.

The assignment will be generated in the interface domain. All CorbaStructure types

export the basic functions required for marshaling, conversion to the CorbaAny type,

and the generic tie-ins:

apply:(%, ’id’) -> T;

set!(%, ’id’, T) -> T;

For each aggregate type T in the structure, and:

32

dispose!:(%) ->(); (from CorbaRootCategory);

bracket:(Tuple Type);

for destruction and creation of the structures. Note that % is an ALDOR symbol

representing the type currently being defined.

4.2.2 Types and Scoping

OMG IDL name scoping is very similar to that found in languages such as C++

and Java. Nested lexical scopes are formed within the IDL file by module, interface,

structure, union, operation and exceptions declarations.

Aldor provides similar scoping declarations, nested lexical scopes in Aldor are

introduced by the following expressions:

• E where Definitions

• +->

• with

• add

• for i in ...

• Applications, e.g. Record(i: Integer == 12) [5]

Similar scope rules are achieved through mapping IDL scope defining definitions

to equivalent Aldor scoping expressions. For instance, modules and interfaces are

easily mapped to the add domain creation expression, IDL structures are mapped to

Record types, etc. While this straightforward approach provides similar scope rules

at a high level, several differences appear upon implementation.

33

Internally Scoped Type Definitions

Type definitions that are contained within an IDL scope definition, such as an inter-

face, must be treated as an export of the mapped Aldor definition. Since Aldor types

belong to categories or views, every type declared within a domain must be accessible

from outside its immediate scope. In addition, since when mapping inherited inter-

faces to Aldor we duplicate inherited types and methods within the child domain,

scope names within all parent interfaces must be accessible to allow for proper type

checking.

Figure 4.4 IDL File using an Internal Structure Definition

interface A{

struct a { long f1; short f2; };

void op1(in a p1);

};

interface B:A {

void op2(in a p1);

};

Figure 4.5 Aldor Definitions Showing an Internal Structure

define ACategory:Category == with {

a:aA____GIDL__Category;

op1:(__this:%, __a0GIDL:a, __env:CorbaEnvironment) -> ();

};

define BCategory:Category == Join(ACategory) with {

op2:(__this:%, __a0GIDL:a, __env:CorbaEnvironment) -> ();

};

The Aldor is not an object-oriented language. As such, in order to give correct

34

representation of inherited operations in domains, exports from parent interfaces are

duplicated within the child domain. In the case of internal types inherited from the

parent, the duplicated type is an alias of its parent type. Had the actual internal

type been re-created, then a$A and a$B (from Figure 4.4, 4.5) would be identical but

distinct types in Aldor.

4.2.3 Type Definitions

Type definitions given by typedef in IDL are mapped to assignments in Aldor. The

actual ALDOR code that is generated by the translator depends on the location of

the typedef in the IDL header and the type being defined. If the typedef statement is

located within an interface and is a typedef of an interface then two lines are generated

within the interface category, one defining the new typedef’ed category and another

defining the new typedef’ed domain, the assignments for these definitions are included

in default statements in the category as well as in the domain of that interface. If the

typedef statement is of an interface but is outside of an interface then the ’in category’

definitions are omitted and only the assignments are generated. Note: Definitions of

an interface within itself are replaced with the % symbol (as in above case). Basic

types (such as CorbaLong, CorbaShort, CorbaString, etc) are similar but do not have

a category definition. Constructed types are assigned to a call to the CorbaAlias

Domain (see Arrays and Sequences). This mapping allows for typedef’ed types and

constructed types to maintain the same scope as they did in the IDL definition and

allows them to be referred to in the program by their path names or if in the same

scope by just their identifier names.

The declarations of typedefs in the generated code is purely for the user’s con-

35

venience. In order to prevent multiple definitions of the same function when working

with inherited functions, all type defined types are replaced with the original type

value during code generation. This prevents a situation where a parent interface

would define a function using a typedef’ed type, while its child redefines the function

using the original type, causing two versions of the same function to be exported by

the child interface.

4.2.4 The Any Type

CorbaAnys are represented as a Record (structure) containing a pointer to a Type-

Code, a pointer to a type, and a boolean value. Conversion to a CorbaAny type

from another type first retrieves the TypeCode for the type using the getTypeCode()

function exported from that type. Conversion from a CorbaAny to a type first checks

the TypeCode stored in the CorbaAny against the TypeCode for the target type. If

the types do not match a ’CorbaBadTypeCastException’ is thrown. All conversions

to and from the CorbaAny type are done through the coerce function in each type.

4.2.5 Interfaces

Interfaces in IDL are used to declare types and their exports which will be accessible

between client and server. Interfaces may provide operational exports, constructed

types, constants and exceptions within their scope. Interfaces may also inherit exports

from previously declared interfaces. Properties of inherited objects follow similar

inheritance rules to that found in C++. Child objects inherit all exports of their

parents, and are considered to be valid substitutions for their parents in any argument.

In order to create a new type with supplied exports for each interface in Aldor,we

36

must create a category/domain pair to represent each interface declared in IDL. For

the client side, each interface is represented by a reference domain that provides

marshaling functionality for each of the declared exports. This marshaling function

converts all received arguments to IIOP format and transmits the result along with

the export signature and identifier of the calling type to the server. In order to

properly represent the type, a category is also created to declare the exports of the

interface. All inheritance relationships between interfaces are handled at the category

level, each category includes exports from its parents through the Join operation.

This structure allows for IDL inheritance rules within Aldor without compromising

the type safety of the Aldor language.

4.2.6 Enumerated Types

Enumerated types (as defined by GIDL) are similar to those found in languages such

as C++/C/Java. Enumerated types allow programmers to create a set of named

values, each of which represent an unspecified ordinal value and allow relational op-

erations to be performed between them. Enumerations in IDL do not however allow

for a specific ordinal value to be assigned to the types.

4.2.7 Parameterized Types

The GIDL [8] extension defines three distinct types of parameterized interfaces. These

interfaces are handled as follows:

Implement-restricted templates allow any type satisfies all exports of the quali-

fier to be supplied as a parameter. In Aldor we create a category/domain pair

37

using unnamed category with the qualifier exports. Using an unnamed cate-

gory allows the Aldor compiler to verify valid type satisfaction based on the

type structure, instead of type checking by name. In addition to the exports

declared in the GIDL declaration of the qualifier type, the unnamed category

must also export functionality for basic CORBA operations (i.e. those exports

declared in CorbaRootCategory). To enforce this, the unnamed category ex-

tends CorbaBasicCategory ensuring the supplied type belongs to the basic set

of Corba compliant types. As such, for any implement restricted parameter A

in interface B<A:-C>, a valid type for A must supply all exports declared in C

and belong to the Category, or a sub-category of, CorbaRootCategory.

Extend-restricted templates allow for type that directly or indirectly inherits

from the restricting interface to be supplied as a parameter to the type. Since

Aldor inheritance is simulated at the category level, parameterized interfaces

require a domain that belongs to or inherits from the restricting category.

Non-restricted templates allow any type belonging to the CORBA/GIDL type

hierarchy to be supplied as a parameter to the interface. These types most

closely resemble unrestricted templates in C++. In Aldor, these types may

accept any type belonging to the CorbaRootCategory Category as a parameter.

Since the GIDL specification for parameterized types uses a type erasure tech-

nique[8], whereby type information of parameterized types passed as arguments are

removed during transmission, all parameterized types are marshaled as the CORBA-

Any type. Lost type information is regained using the generated client/server code

after transmission. Details of this process are examined in section 4.2.10.

38

4.2.8 Providing Inheritance

One of the fundamental principles of GIDL and other object-oriented architectures

is the concept of inheritance relationships. In GIDL, any interface may inherit from

zero or more interfaces, provided that the resulting inheritance tree is acyclic. Such

child interfaces inherit all exports of its parent interfaces and are considered to be

valid substitutions for any interface higher in the inheritance tree for the purposes of

type checking.

Since Aldor is not an object-oriented language, we must model these inheritance

relations artificially within an aspect-oriented environment. As previously mentioned,

GIDL interfaces may be represented by category domain pairs. Categories provide

all valid exports of both interface and parents through the Join category operation,

which also provides part of the substitution functionality we require. The domain

provides definition of the interface type and belongs to its corresponding category.

Since domains belong not only to their own category, but every category included

in the Join operation, each domain type belongs to every category representing its

parent interfaces. Using this property, child for parent substitutions are allowed by

supplying the type, quantified as belonging to a specific category representing an

interface, followed by a variable of the supplied type. From this it is easy to see that

only valid types belonging to the inheritance tree rooted at the required interface may

be supplied to a function, and only a valid variable of the supplied type may be used

by a function. This technique allows for sufficient inheritance emulation on the client,

allowing interface method to accept the same range of types as defined by GIDL.

Since the server is required to provide actual functionality for inherited interfaces,

the implementation on the server side is more complicated. In order to fully explain

39

how inheritance is achieved, we must first examine the difference between reference

types and actual types. Reference Types are the same reference objects used on the

client side to provide access to an object located on a server. These types provide

no implementation other than to initiate a remote method call on the referenced

object, as such, these objects may be type cast into another reference object with

the same exports without ill effect, as the actual object being referenced does not

change. Actual Types are the actual implementation types for a defined interface.

These types exist only on the server. When a method call is executed, the reference

is used by the server to retrieve the Portable Object Adaptor which contains the actual

domain implementation. The POA is then used determine the method being called,

demarshal the methods arguments, and call the method on the actual instance. All

demarshaled arguments are guaranteed to be either reference types or basic types.

Hence, the only time the actual type of a Domain is seen is when it is executing a

function that belongs to it.

Aldor type casts erase all knowledge of an object’s original domain. If domain A

and domain B both provide an export op1, then an instance of domain A may be cast

to domain B, however attempting to call op1 on the newly cast function will execute

the code found in domain B. This behavior is contrary to what would be expected in

a GIDL environment between related interfaces.

Since all arguments are reference types, any argument may be type cast to its

parent type without violating type safety. A method requiring an argument of ref-

erence type A may be supplied a reference type B, and safely treat it as reference

type A within the function. Since stringified reference of the reference type remains

unchanged, all method calls made to the object will be invoked on the original type

B implementation. We can now be assured that even if a child reference interface is

40

supplied in place of a parent when calling a method, the correct functions from the

child interface will be called.

4.2.9 The Stub Implementation

The purpose of the GIDL stub code is to act as an interface to the IDL generated stub

and to provide the type structure necessary to use the GIDL defined type naturally

within ALDOR programs. To accomplish this we create a reference type for each

interface declared in GIDL. Reference types are artificial Category/Domain pairs

used to represent a remote type/object within the local program. Within Aldor,

these types are wrappers for the stub code found in the underlying SCA.

Stub classes in CORBA are representations for an IOR (Inter-operable Object

Reference). An IOR is a unique string identifying an actual object located on a

server. Within an aldor program the IOR forms the underlying representation for

a complete domain type, which provides exports for methods declared in its GIDL

definition.

4.2.10 The Skeleton Implementation

The GIDL compiler would produce two sets of POA (Portable Object Adapter) code

for each interface defined in GIDL. If the GIDL interface was a parameterized type,

then one of the pair of POA types generated would share the same parameters as

the interface definition, the second is type-erased and has no parameters but has an

identical memory representation as the parameterized POA. The type-erased POA

contains a pointer to its parameterized type, stored as a value. When any function

implementation is called belonging to the type-erased POA, the parameterized POA

41

type is retrieved and the POA argument is re-cast and the function re-called. This

shows us one of the major advantages to working with aldor, in that since types may

be treated as values any structured type may contain a type field and therefore be

re-created after type-erasure.

In ORBit, when a client request was received, the ORB uses the transmitted IOR

to retrieve a type-erased POA containing the servant (user implemented) type. The

ORB then calls a dispatch function belonging to the POA. The dispatch function is

responsible for parsing the invoked function name (passed as a string) and returning

a function pair, a function used to demarshal the function arguments, and the user

implemented function (impl). The impl arguments are then demarshaled and the

function invoked.

In Aldor, we use the generated Clink file to overwrite the impl POA structure

generated by ORBit. Instead the GIDL compiler produces an identical structure

with an additional pointer field used to store the parameterized type value of the

POA, and a pointer field to store the user implementation of the domain, which may

be arbitrary. Within the aldor skel file, the impl POA structure is recreated for

each interface as a domain with exports for initialization and all methods declared

in the GIDL definition. If the GIDL interface is generic then the impl POA type is

parameterized according to our mapping for parameterized types, also an additional

type-erased POA domain is created. Within the Aldor POA domains, the call to init

calls the generated ORBit init function, and stores the POA type as a value within

the structure. This type field is used after type erasure to restore the generic type

information lost between client and server.

Implementation functions for the generic impl POA type are written by the user.

42

Functionality may be supplied at this level, or these functions may be made to call

equivalent functions belonging to an underlying type, stored in impl POA.obj. User

functionality is provided at the POA level so that structures such as the CORBA ORB

and POA are available in the event that they are required for the implementation,

such as the creation and return of new CORBA controlled objects.

The connection between the ORBit and Aldor skeleton is provided by the Clink

file. Each Aldor impl function is exported to C via the foreign function interface.

In the case of generic types, the impl functions from the type-erased domain are

exported. Clink provides one function for every export, with a function signature

conforming with the CORBA C language mapping standard, which invokes the ex-

ported Aldor methods. This additional level of redirection is required since Aldor

functions are exported to C with a specific type signature which differs from that

required by C CORBA mappings. Attempting to construct Aldor functions which

export directly to the required C function signature would have severely limited the

GIDL to Aldor function mapping and would have resulted in a more cumbersome

solution.

43

Chapter 5

Example Programs

In this section we introduce some basic examples of Aldor/Corba programs. These

examples are intended to show the basic structure described in previous chapters.

Section 5.1 introduces a simple text program in which strings sent from an Aldor

client are printed from a server implemented in C++.

Section 5.2 discusses an Aldor server for the an implement-restricted parameter-

ized linked list. The purpose of these examples is not to show the complete working

code, but rather to give an overview of concepts described in previous chapters.

5.1 Echo

The echoString example should be familiar to anyone who has read any CORBA

tutorial book. One of the simplest possible examples, we use Echo to introduce the

basic operations of Aldor/GIDL.

The Echo program is similar to the classic ’Hello World’ program introduced in

Kernighan and Ritchie’s ”The C Programming Language”, but with a slight twist.

44

Echo will pass the string from an Aldor client to a C++ implemented server for

printing.

5.1.1 Aldor

Figure 5.1 Generated Client Stub for Echo.idl

define EchoCategory:Category == with {

echo__string:(__this:%, __a0GIDL:CorbaString,

__env:CorbaEnvironment) -> (CorbaString);

};

define Echo__refCategory:Category == Join (EchoCategory,

CorbaObjectCategory) with {};

Echo__ref:Echo__refCategory == CorbaObject add {

Rep == CorbaObject;

echo__string(__this:%, __a0GIDL:CorbaString,

__env:CorbaEnvironment):(CorbaString) == {

import {

echo__echo__string:(%, CorbaString, CorbaEnvironment)

-> CorbaString

} from Foreign C;

echo__echo__string(__this, __a0GIDL, __env);

};

};

The generated code for Echo is fairly simple. Figure 5.1 shows part of the gen-

erated stub code. The GIDL compiler produces a small category declaring exports,

and a ref category used to define exports for the reference type.

The echo string function imports the generated ORBit stub function shown in

Figure 5.2 and calls it directly.

Figure 5.2 shows the ORBit stub function generated by the ORBit2 IDL compiler.

45

Figure 5.2 ORBit2 Generated Stub Code for Echo.idl

void echo_echo_string(echo _obj, const CORBA_char *f1,

CORBA_Environment *ev){

gpointer _args[1];

_args[0] = (gpointer &f1);

ORBit_c_stub_invoke (_obj, &echo__iinterface.methods,

0, NULL, _args, NULL, ev, echo__classid,

G_STRUCT_OFFSET(POA_echo__epv, echostring),

(ORBITSmallSkeleton)

_ORBIT_skel_small_echo_echostring

);

}

Notice the call to ORBit c stub invoke, the ORBit2 function which will marshal the

given arguments and transmit the request for the server. Unlike ORBit (version

1.5) which generated the marshaling code within the stub functions, ORBit2 makes

extensive use of structures generated at IDL compile time, which are used to store data

about each IDL defined interface. Structures such as echo iinterface are referenced

to determine at runtime each arguments type and size when marshaling. In ORBit,

these attributes would be determined at compile time and a more specialized function

would have been generated. This difference between CORBA ORBs produced by the

same vendor illustrate one of the primary reasons for the two-stage compiler approach.

Figure 5.3 shows the generated POA category for Echo. These functions provide

wrappers for the POA generated by the ORBit2 IDL compiler.

Figure 5.4 shows the client implementation for Echo.idl. This code shows the

main body of the client program and is written entirely by an end user, no generated

code is included. The Aldor Echo client is divided into blocks (Figure 5.4, Figure 5.5

and 5.6) for easier discussion, each block is denoted by an Aldor comment similar to

”Code Block #1 Begins” and is ended with the comment ”Code Block #2 Begins”.

46

Figure 5.3 Part of the Skeleton for Echo.idl

define POA__EchoCategory:Category == with {

activate:(CorbaPortableServerPOA,

CorbaObjectID,

%, CorbaEnvironment) -> ();

servantToReference:(CorbaPortableServerPOA, %,

CorbaEnvironment) -> Echo__ref;

New:(Echo) -> %;

init:(Echo, CorbaEnvironment) -> %;

...

};

Figure 5.4 Implementation of the Aldor Echo Client (Block #1)

#include "echo-stub.as"

--Code Block #1 Begins

import from CorbaEnvironment, CorbaORB;

env:CorbaEnvironment == init();

orb:CorbaORB == init(env);

--Code Block #1 Ends

This section is described in more detail to give an understanding of how an end

user fits into the CORBA model, and also a limited understanding of Aldor syntax.

Readers are encouraged to consult the Aldor.org web site [5] for more information on

the Aldor language and syntax.

Code Block #1 (Figure 5.4) shows our initialization calls for the CORBA ORB

and CORBA Environment wrappers. The CORBA environment type is passed to

all CORBA functions as the final argument and provides context information to the

underlying ORB.

Code Block #2 (Figure 5.5) first redefines the Echo ref type introduced in Figure

47

Figure 5.5 Implementation of the Aldor Echo Client (Block #2)

--Code Block #2 Begins

Echo ==> Echo__ref;

file:FileName == filename("./echo.ior");

fp:TextReader == reader(file);

ior:CorbaString == readline!(fp)::CorbaString;

print <<$String "using " << ior << newline << newline;

try {

echoclient:Echo == stringToObject(orb , ior, env);

if (nil? echoclient) then

never;

} catch E in {

print <<$String "FAIL" << newline;

};

-- Code Block #2 Ends

5.1 to Echo using an Aldor macro definition(==>). The server generated IOR referenc-

ing the Echo object on the server is read from the ”echo.ior” file and a new Echo ref

domain is created using the stringToObject function included from the CorbaObject

domain (Echo ref’s parent). Notice that although defined in CorbaObject, the type

of the return from stringToObject is an Echo ref domain, illustrating one of the nicer

aspects of Aldor static polymorphism. Under the hood, stringToObject makes a call

to the underlying CORBA ORB to contact the server, which is encoded within the

IOR, and validate that our Echo object exists. Upon a successful return, echoclient

represents a validated reference to an Echo object to used as if it were a local domain.

Code Block #3 (Figure 5.6) shows the body of the Echo program, simply reading

text from standard input and calling the echo string function (shown in Figure 5.1).

48

Figure 5.6 Implementation of the Aldor Echo Client (Block #3)

-- Code Block #3 Begins

while (x:CorbaString := rightTrim(readline! stdin, newline))

~= "." repeat{

try {

print <<$String "client: "

<< echo__string(echoclient, x, env)

<< newline;

} catch E in {

if hasException?(env) then {

print <<$String "an exception has occurred"

<< getException(env)

<< newline;

never;

};

}

-- Code Block #3 Ends

};

The given argument (a CorbaString), is passed to the ORBit generated stub function

shown in Figure 5.2 and marshaled to the server.

5.1.2 C++

The Echo Server

The Echo.idl server implementation is fairly straight forward with respect to its func-

tionality. The following section presents the MICO C++ ORB code for the Echo

server, this code is included for completeness with our Aldor Echo client, and is not

intended to be a full description of C++ Corba. Describing the grit of CORBA is

well beyond the scope of this thesis.

Figure 5.7 shows the user implementation of the Echo type. The echo string

49

Figure 5.7 C++ Server Side Implementation of Echo

namespace GIDLImplem

{

class Echo_Impl : public virtual POA_GIDL::Echo,

public virtual ::PortableServer

::RefCountServantBase

{

public:

Echo_Impl(){}

virtual GIDL::String_GIDL

echo_stringGIDL(GIDL::String_GIDL a1_GIDL)

throw (CORBA::SystemException)

{

cout << a1_GIDL.getValue() << endl;

return a1_GIDL;

}

}

}

function is coded similar to any other C++ member function, and simply prints its

argument to standard output.

5.2 An Implement-Restricted List Example

This section gives an overview of the Aldor client and server implementation for an

parameterized List type in Aldor. The List interface is the same as defined in 4.2,

using an unrestricted type for storage, and a implement-restricted template to restrict

the Comparator type, the GIDL definition is presented in Figure 5.8. The result is a

sortable linked list implementation that can be supplied a comparator function from

any GIDL enabled language.

Unfortunately the generated source code is quite long to be included as an example

50

Figure 5.8 GIDL Definition for a Parameterized Linked List

interface Comparator<S>{

boolean compare(in S x, in S y);

};

interface List<S; C:) Comparator<S> >{

List<S; C> sort(in C c);

List<S; C> cons(in S x);

C getC();

};

(spanning several pages) and is presented only as an overview of the capabilities of

GIDL and Aldor.

Figure 5.9 Client Side Implementation for a Comparator Domain

Comp(S:CorbaLongCategory):ComparatorCategory(S) ==

Comparator(S) add {

compare(__this:%, x:S, y:S, __env:CorbaEnvironment)

:CorbaBoolean == {

import from S;

return (x > y)::CorbaBoolean;

}

}

51

Figure 5.10 The Aldor Client for a Parameterized Linked List

--Code Block #2

--start a server to handle request to a ’Comp’ Object.

poa:CorbaPortableServerPOA ==

resolveInitialReferences(orb, "RootPOA", env);

import from Pointer;

if (nil? poa) then

if (hasException? env) then {

import from CorbaException;

}

print <<$String "POA init OK" << newline;

myPOA:POAComparator(CorbaLong, Comp(CorbaLong)) == init(

0$SingleInteger pretend Comp(CorbaLong)

, env);

mangr:CorbaPortableServerManager == getPOAManager(poa, env);

activate(mangr, env);

objid:CorbaObjectID := [0, 5 , "list"];

activate(poa, objid , myPOA, env);

comp__serv:Comparator__ref(CorbaLong) ==

servantToReference(poa, myPOA, env);

-- End of Block #2

Figure 5.11 shows the basic client body using a the List type defined in Figure

5.8. For brevity, ”Code Block #1” is omitted and remains identical to that described

in Figure 5.4. Figure 5.10 shows a small section omitted from Figure 5.11 in place of

”Code Block #2”. This block creates a CORBA server to supply an implementation

for a Comparator domain. This allows our client to act as a server for a user im-

plemented Comparator function (wrapped in a domain) implemented in Figure 5.9.

A reference domain named comp serv is created and passed as an argument to the

List server in from the sort function in Figure 5.11. Notice that no IOR is generated

52

Figure 5.11 The Aldor Client for a Parameterized Linked List

import from CorbaEnvironment, CorbaORB;

-- Code Block #1

...

-- End Code Block #1

list ==> List__ref(CorbaLong, Comparator__ref(CorbaLong));

import from list;

ior:CorbaString == readline!(fp)::CorbaString;

print <<$String "using " << ior << newline << newline;

-- Code Block #2

-- Described in separate figure

-- End of Block #2

--run the program

try {

listclient:list := stringToObject(orb , ior, env);

if (nil? listclient) then

never;

} catch E in {

print <<$String "FAIL" << newline;

};

for the Comparator type, the server receives a complete reference through comp serv,

routing function calls made to that domain back to the client. The remaining logic

is shown in Figure 5.12, and simply creates a list using cons and calls sort, passing

in the domain wrapped comparison function.

In implementation of the List domain presented in Figure 5.14. Several interesting

aspects of the Aldor Corba are included in Figure 5.14, the first showing the imple-

mentation of implement-restricted template in Aldor. The second parameter of List

53

Figure 5.12 The Aldor Client Body for a Parameterized Linked List

try {

import from CorbaLong;

for i in 1..20 repeat {

print <<$String "adding " << i* 31 mod 19

<<$String " to list"

<<newline;

listclient := cons(listclient,

(i * 31 mod 19)::CorbaLong,

env);

};

sort(listclient, comp__serv, env);

} catch E in {

import from CorbaException;

if hasException?(env) then

{

print <<$String "an exception has occured"

<< getException(env) << newline;

never;

};

}

does not restrict the domain C to a defined Category, but rather an unnamed category

build from the ComparatorCategoryMacro defined in Figure 5.13. This allows any

domain which implements the functions declared in ComparatorCategory to be used

, without requiring the extension of ComparatorCategory. Essentially, any Corba

GIDL declared reference type declaring a compare function over S may be used.

The Aldor library defined List type is used as the representation for this domain.

Using the rep and per macros to convert or type to its representation and GIDL List

type respectively, we are able to effectively wrap the List library type and export it

through GIDL. In order to sort our wrapped list, we create a function closure f, which

54

Figure 5.13 Definition of the CompareCategoryMacro

ComparatorCategoryMACRO(S) ==> with {

-- sequences/arrays

compare:(__this:%,

__a0GIDL:S,

__a1GIDL:S,

__env:CorbaEnvironment) -> (CorbaBoolean);

marshal:(SendBuffer, %) -> ();

demarshal:(ReceiveBuffer) -> %;

marshaltemplate:(SendBuffer, %) -> ();

demarshaltemplate:(ReceiveBuffer) -> %;

objectToReference:(%,

CorbaPortableServerPOA,

CorbaEnvironment) -> CorbaObject;

coerce:(CorbaAny) -> %;

coerce:(%) -> CorbaAny;

};

calls the compare function (implemented on the client) using a0GIDL, and env

from the enclosing scope. This allows a true binary comparator function over S to

be passed to the underlying representation List type, showing the advantages gained

through the use of Aldor.

55

Figure 5.14 Server Side Implementation of a Sortable List Domain

List(S:CorbaRootCategory,

C: with ComparatorCategoryMACRO(S)):ListCategory(S, C) == add {

Rep == Record(__poa:CorbaPortableServerPOA, l:List(S));

cons(__this:%, __a0GIDL:S, __env:CorbaEnvironment):

(List__ref(S, C)) == {

import from Rep;

l:% == per [(rep __this).__poa,

cons(__a0GIDL, (rep __this).l)$List(S)];

--lift the List(S) instance to a corba controlled __ref type

a:List__ref(S,C) == objectToReference(l,

(rep __this).__poa,

__env);

return a;

};

sort(__this:%, __a0GIDL:C, __env:CorbaEnvironment):

(List__ref(S, C)) == {

f(x:S, y:S):Boolean == {

compare(__a0GIDL, x, y, __env)::Boolean;

};

l:% == per [(rep __this).__poa, sort!(f, (rep __this).l)];

objectToReference(l, (rep __this).__poa, __env);

};

};

56

Chapter 6

Conclusions

6.1 Advantages of a Semantic Matching between

Template and Functional Generic types

With the introduction of GIDL for Aldor, programmers are able to use Aldor’s in-

tuitive type system for mathematical objects from any programming environment

implementing GIDL. One distinct advantage to this approach is that C++ program-

mers can utilize generic libraries that can be pre-compiled and compile time-check for

type safety within Aldor. Since Aldor compiles and type-checks generic types during

compilation and generates instantiated types at runtime, Aldor provides a much safer

generic programming environment than the C++ substitution approach to generic li-

braries. This makes finding bugs in a program far easier and more reliable since

programmers need not sift through errors in library code generated by a simple type

mismatch or undefined symbol. In addition, Aldor programmers may use GIDL to

take advantage of the numerous libraries written for C++, making full use of generic

57

types while still programming within Aldors intuitive type system.

6.2 Why the Two-Level Compile Method Was Best

The OMG CORBA standards do not specify the internal workings of the CORBA

ORB. Instead the standards specify sets of exports for the POA, function signatures

for IDL defined methods in each language, and the GIOP language and protocol used

to transmit between client and server. Since the details of the ORB are left to the

implementer, attempting to build an extension such as GIDL by directly linking with

an existing ORB cause severe problems when attempting to change ORB implemen-

tations or versions. The two-level approach allows the level of portability we were

attempting to achieve in this project. By generating an accessor layer of Aldor code

to work on top of an existing C language SCA, we can ensure that we use only OMG

standard function calls and in doing so ensure that our implementation may be used

with any Standard ORB implementation with minimal modification. In addition, by

simply changing the code generated in the C-Link file, which acts as a compatibility

layer between the generated Aldor code and underlying SCA, it should be possible to

use our implementation with similar SCA such as SOAP, or DCOM.

At the time of this writing, most major SCAs still in use do not support pa-

rameterized types. The one exception is the Microsoft .Net framework. Unlike other

software component architectures, such as CORBA and SOAP, which define interfaces

which may be used between components, the .Net framework instead compiles all im-

plemented languages down to the same intermediate language (MSIL) which runs

on a common language runtime environment (CLR). This approach allows .Net to

unify multiple languages without requiring the end-user programmer to worry about

58

infrastructure details such as marshaling or client/server implementation. However

one could reason that the disadvantage is the requirement that new compilers must

be created in order to accommodate new languages.

As documented in [12], the proposed .Net support for generics implements generic

types directly within the Common Runtime Library, allowing languages with support

for parameterized types to translate easily to generic MSIL types. This approach

provides more native support for generics than simply attempting to ’compile-away’

parameterized types.

6.3 A Comparison of GIDL and .Net

To contrast to .Net, GIDL behaves similarly to previous Software Component Ar-

chitectures by allowing programmers to define a set of shared objects using an IDL.

Instead of compiling program components down to a shared intermediate language,

the GIDL compiler produces marshaling code for source languages which may then

be compiled using a third party compiler. GIDL users are not required to use a

specific language compiler but may use any compiler for the implemented language

they desire. In addition, languages with no support for generics may still use generic

types imported from generic languages through GIDL, it is unclear if this feature is

available through .NET.

59

Figure 6.1 Overview of .Net Framework CLR (Source: http://en.wikipedia.org, Valid
November 22, 2007)

6.4 Inter-Operation of Compile-time and Runtime

Generics

Compile time generics, such as those found in C++, have several advantages over the

runtime generics presented in a statically typed language such as Aldor. C++ for

example allows generic types to be defined using unrestricted template parameters,

which can accept any type. Such template parameters are substituted at compile time,

and using lazy instantiation, need only provide the properties required to compile

functions which are called within the compiling program. This allows for types to be

used in a template that would break several functions provided those functions are

60

never called. Additionally, these generic types can be extremely small when compiled,

as only types and functions which are used will appear in the compiled program. For

these reasons, as well as the prevalence of C++ libraries and functions already using

compile-time generics, interacting with these languages from other generic languages.

Run-time generics also have their advantages, namely that new types can be

created and used as template parameters without needing to recompile the generic

type. For strongly typed languages such as Aldor, the added advantage comes when

creating pre-compiled libraries exporting parameterized types. Since all type checking

is done when the library is compiled, programs can use the exported types without the

added compilation overhead or cryptic compilation errors that can result from using

incorrect parameters (such as types that fail to implement a particular interface).

This allows libraries written in these languages to more clearly and openly expose

there generic types.

By using both together we can take advantage of both, for instance, by fully

exporting a C++ template library through GIDL to Aldor, we can use Aldor generics

to type check all potential arguments and operations at compile time, based on the

restrictions defined in GIDL. When done correctly, the GIDL functions as a screening

layer, validating types within the Aldor client. Of course this would still require

the server side library to be recompiled when adding a new template parameter.

However, with the use of implement restricted templates, a single reference type of

the desired interface may be supplied as a template parameter. Thus allowing new

types to be used from the client side without compilation, provided of course that all

functions within the generic type respect the defined interface. Alternatively, using

Aldor function closures, Aldor library types can be pre-compiled and easily exported

to languages such as GIDL. Even types accepting functions as parameters (such as

61

the example in Figure 5.14) can be exported without requiring excessive work. Using

GIDL, languages with distinct binding times for generics can inter-operate, creating

a rich and powerful programming environment.

62

References

[1] Object Model Group (OMG). Common Object Request Broker Architecture –
OMG IDL Syntax and Semantics. Revision 2.4 (October 2000), OMG Specifica-
tion, 2000.

[2] Oancea, Watt. Generic IDL: Parametric Polymorphism for Software Component
Architectures (2001).

[3] Henning, Vinoski. Advanced CORBA Programming with C++. Addison-Wesley
Boston, New York, Toronto (1999).

[4] Oancea, Watt. Parametric Polymorphism for Software Component Architectures.
University of Western Ontario (2005).

[5] Aldor User Guide, http://www.aldor.org/aldoruserguide/, 2003. (Valid on De-
cember 22, 2005).

[6] FRISCO project. ESPRIT Fourth Framework project. LtR 21.024.

[7] ORBit Corba 2.2 compliant Object Request Broker.
http://www.gnome.org/projects/ORBit2/. (Valid on October 22, 2007).

[8] Chicha, Lloyd, Oancea, Watt. Parametric Polymorphism for Computer Algebra
Software Components. Ontario Research Center for Computer Algebra – Univer-
sity of Western Ontario, 2004.

[9] Java 2 Standard Edition, version 1.4.2. http://java.sun.com/1.4.2/index.jsp
(Valid on December 22, 2005).

[10] Grabmeir, Kaltofen, Weispfenning (Eds.). Computer Algebra Handbook.
Springer-Verlag Berlin Heidelberg New York (2000).

[11] Sethi. Programming Languages, Concepts & Constructs 2nd Edition. Addison-
Wesley Longman Inc. AT&T (1996).

[12] Kennedy, Syme. Design and Implementation of Generics for the .Net Common
Language Runtime.Microsoft Research, Cambridge, UK. Conference on Program-
ming Language Design and Implementation (PLDI) (2001).

63

[13] Vandevoorde, Josuttis. C++ Templates: The Complete Guide.Addison-Wesley
Pearson Education Inc. (2003).

[14] Stroustrup. The C++ Programming Language, Third Edition. Addison-Wesley
AT&T Labs, Murray Hill, New Jersey. (1997).

64

Vita

Name: Michael Lloyd

Post-secondary University of Western Ontario
Education and London Ontario, Canada
Degrees 1999-2003 B.Sc

Honours and Awards: Natural Sciences and Engineering
Research Council (NSERC)
Undergraduate Summer Research Student Award
(2003).

Related Work Teaching Assistant
Experience: University of Western Ontario.

London, Ontario
2003-2004

Research Assistant
University of Western Ontario.
London, Ontario
2003-2006

Publications:

Y. Chicha, M. Lloyd, C. E. Oancea, and S. M. Watt,
“Parametric Polymorphism for Computer Algebra Software Components,”
6th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing SYNASC’04, Sept. 2004, Universidad de Santander, Spain.

