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Abstract

We present a stable and practical algorithm that uses QR factors of the Sylvester matrix
to compute the GCD of univariate approximate polynomials over R[z] or Clz]. An approximate
polynomial is a polynomial with coefficients that are not known with certainty. The algorithm
of this paper improves over previously published algorithms by handling the case when common
roots are near to or outside the unit circle, by splitting and reversal if necessary. The algorithm
has been tested on thousands of examples, including pairs of polynomials of up to degree 1000,
and is now distributed as the program QRGCD in the SNAP package of Maple 9.
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I. INTRODUCTION

For an introduction to and motivation for the problem studied in this paper, and a
brief survey of recent results and methods, see [1]. In short, the problem of finding a
polynomial greatest common divisor (GCD), when the coefficients of the polynomi-
als are not known exactly, is of great practical importance (for example in avoiding
spurious near pole-zero combinations in certain adaptive control applications) and is
of some mathematical difficulty, owing to the potential discontinuity (of the degree
of the GCD) as the coefficients are varied. Discontinuity is difficult to deal with,
both symbolically (with parameters) and numerically, where problems that are near
to points of discontinuity are ill-conditioned [2]. Some form of regularization must
therefore be used, and most of the work in this area can be considered to be examin-
ing the effects of different regularizations. The most successful regularization seems
to be to phrase the problem as an optimization problem, as in [3], [4], and [5]. For

an introduction to the mathematical problems in this area, see [6].

A. Notation: Approximate Polynomials and Approximate GCD

Several papers use distinct wording and notation for the objects under study
here. We follow [3] and say that an approximate polynomial is a polynomial with
coefficients that are not known exactly. We say that d(z) is an approximate GCD

of approximate polynomials f(z) and g(z) if there exist perturbations Af and Ag,
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which are small in a sense to be specified later, such that d(z) is a (true) GCD
of f+ Af and g + Ag. This can be contrasted with the notion of “quasi-GCD”
of [7], in which the input polynomials f and g are known at any time only to a
finite accuracy, but by some ‘oracle’ more digits of accuracy for any coefficient can
be obtained on demand. The notion of “quasi-GCD” thus fits in with mathematical
and computational studies of computable real numbers, but does not fit in with
engineering or empirical models where the input polynomials are known only to a
limited accuracy once and for all. The paper [8] uses (differently) the terms “quasi-
GCD” and “e-GCD” to distinguish two technical notions of approximate GCD.
The works by Pan (see e.g. [9]) show that it is also possible to compute approx-
imate GCD by first numerically finding the roots of each polynomial, and then
matching nearest approximate roots using a graph-theoretic technique. The algo-

rithm of this paper, in contrast, works directly on the coefficients.

B. QR factoring of the Sylvester matriz to find an approximate GCD

The paper [1] describes an efficient method to use QR factoring to compute an
approximate GCD, and their paper contains several important ideas and advances.
Like the contemporary paper [10], it uses the QR factoring for stability, and also
like [10], it uses Gauss elimination adapted to the structure of the Sylvester matrix
in order to speed up computation, lowering the cost from O((n + m)3) to O(n?).

The paper [10] is perhaps not as easily available to the audience of this paper as
the paper [1], and so we summarize it briefly here.

It is well known that Householder transformations and Givens rotations give sta-
ble methods to compute the QR factoring of a matrix. Householder transformations
are powerful tools for introducing zeros into vectors, whereas Givens rotations in-
troduce zeros into a vector one at a time. Therefore, Givens rotations are useful
for operating on structured matrices. The Sylvester matrix (2) is a block Toeplitz
matrix (R™* (7)) Re*("+m)) formed by the coefficient vectors from f and ¢ in equa-

tion (1) below!. If we apply Givens rotations to the 1st row and m + 1st row to

! All the results of this paper go through immediately in the case of complex coefficients, i.e. polynomials
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eliminate g,,, then the rows ¢+ and m+i for 7 from 2 to m can be changed in the same
way. The near Toeplitz structure will not be changed until we obtain the following

block matrix:

u v
0w

where U is an m X m upper triangular matrix, 0 is a matrix with all elements zero
and W is an n X n matrix. Since U is now an upper triangular matrix, Householder
transformations can then be applied to the submatrix W. The complexity advantage
of combining Given rotations with Householder transformations can be seen clearly.
The cost of a general QR decomposition is %(m—i— n)? flops. Using the above special

strategy, taking advantage of the structure, the flop count drops to 6nm + §n3.

This approach is similar in complexity to the non-orthogonal methods used in [1]
to condense the Sylvester matrix into a smaller matrix, but [10] uses (as this present

paper does) orthogonal reductions at all stages for stability reasons.

The paper [10] then goes on to use this method as a base method for multivariate

GCD computations.

II. QR FACTORING FOR A SYLVESTER MATRIX

Let given polynomials f, g have degree n > m respectively, where

f = fa2"+ fo12" '+ + fiz+ fo,

g = GmT" + g™+ -+ g1 + go. (1)

in Cl[z], if we replace orthogonal matrices by unitary matrices.
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The Sylvester matrix of f and g is

o Jar 0 fi So
fn fn—l
S(F.q) = J S )
9m Gm—1 - N 90
9m Im—1
9m GGm-1 - g1 Go |

Row Equilibration. We will henceforth assume that the input polynomials f
and ¢ have been scaled to have unit 2-norm, and thus the rows of S(f, g) will also
have unit 2-norm. This is known as row-equilibration, and to have beneficial effects
on the conditioning of the matrix in certain circumstances. Here, it will simplify our
error analysis somewhat, and increases the stability of the numerical computations,
in essence replacing the condition numbers that come up in the analysis with an
equivalent componentwise condition number [11]. This also makes the unit circle

special, i.e, that [, f*(2)f(z)dz = 1 where C is the unit circle.

Remark. Unless otherwise specified, ||- || denotes the vector 2-norm. The specific
notation || - || will sometimes be used for emphasis. Other notations include || - || ¢

for the Frobenius norm.

Theorem 1: [12] Suppose the QR factoring of (2) is S(f,g) = QR where @ €
R(m+nm)x(m+n) ig orthogonal? and R is upper triangular. Then, the last nonzero row

of R gives the coefficients of a GCD of f and g.

Proof. This theorem is proved in many places. See, for example, [12]. We include
the following proof here because it helps motivate the proof for the approximate
polynomial case.

2Q* is the Hermitian transpose, or transpose if Q is real.
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From the construction of the Sylvester matrix, we have

[ xm—lf T [ xn—f—m—l ] Tn—}—mfl(x)
f 2"t ra(z)
1 —Q-R -Q d (3)
" g 0
T
|9 . I 0 1

The polynomial r; of degree i is formed from the (n + m — i)-th nonzero row of R
foreo=d,d+1,....,n+m—1.

Suppose that z; is a common root of multiplicity e, of f(z) and g(x). Then
one can easily verify that SA is the (m +n — 1) X e, zero matrix, where A is the

(m+n — 1) X e; matrix parameterized by z; as follows:

[ 2 (b — 1)l e (b m — 1)aslgmee ]

Pt (n 4+ m — 2)gptm 3

(ep — 1)!
(4)
Ti 2%k
Tk 1
1

We denote a(a — 1) ---(a — b+ 1) by a2, following [13].

From this it is obvious that r4(x) and all its derivatives up to order e, — 1 are
zero at zx. Conversely, if r4(x) and all its derivatives up to order e, — 1 are zero at
T, then by using the upper triangular structure of R we may see that RA is zero.}

The GCD computation of f and g is equivalent to finding the null space of S(f, g),
i.e,
dt

FO(z) = ¢O(zy) =0 = 5 - xY =0, x{ = g Eia P |
X

Corollary 1: xy is a common zero of f and ¢ if and only if z; is a zero of r4, which

is the polynomial formed by multiplying the last nonzero row of R by xy.
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It is well known (see e.g. [11]) that QR factoring using Givens rotations or House-
holder transformations is numerically stable, in the following sense. Let R be a
computed upper triangular factor of S obtained via Givens rotations or Householder

transformations. Then there exists an orthogonal @ such that
S+ AS =QR, (6)

with [|[AS]|r < ||S||F, 7 = O(u), w is the unit roundoff, and || - || is the Frobenius
norm. Nevertheless, the small residual AS = QR — S for the factoring does not

guarantee a small forward error AR = R — R. Consider the following example.

Ezample 1:
f = (z=5)(z—1/2)(562° + 832" + 91z* — 922* + 93z — 91) (7)
g = (z—5)(r—1/2)(322° — 372° + 932° + 58" + 902* + 53) (8)

Computing the QR factoring of S(f/||f|l2, 9/|lgll2) numerically for Digits=10 in
Maple 7, and comparing with the exact solution (being careful about the possible

nonunique orderings of factors), we obtain that

|IAS|[p = 0.106-107%,
IAR||» > 0.11.

This shows that the forward error (AR) may be many orders of magnitude larger
than the backward error (AS). Due to the sensitivity of R, Theorem 1 and Corol-
lary 1 seem useless for numerically computing the GCD. For Example 1, the symbolic
(exact) QR factoring gives us 199 = r19 = 0 and the GCD (z — 5)(x — 1/2) can be
discovered from the polynomial 5. On the other hand, the numerical ()R factoring

gives us

r9 = —0.1133648381z + 0.05668241903
ro = —0.262-1071°

We see that the size of rig is too large to be neglected. From the equation for ryg,
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the common factor x — 1/2 can easily be found, but the other common factor z — 5
is lost. The reason is shown by the following analysis.

Theorem 2: Let f and g be given univariate approximate polynomials, with com-
mon roots z;, 1 < i < k, all lying inside the unit circle, |z;| < p; < 1. There may
be other common roots not inside the unit circle. Then the QR factoring of the
Sylvester matrix reveals (in the last nonzero row of ]A%) a factor of the approximate
GCD of f and ¢ that contains the zeros z;, 1 <1 < k.

Proof.

If S = QR and S+ AS = QR, and S is the Sylvester matrix of f + Af and
g+ Ag such that the null space N of S is parameterized by the zeros z; of the GCD
of f+ Af and g + Ag, then we have that

(S+AS)N=ASN = QRN

and so

RN =Q*ASN .
Interpreting this matrix equation as polynomial evaluation at the common zeros of
f+Af and g+ Ag, then we see that in particular the polynomial r4(x) arising from
the last nonzero row of R, when evaluated at the common zeros, will be bounded in

value by
ra(zi)| < [[AS|[|V]]

If the roots x; are less than 1 in magnitude, then the corresponding columns of
N form a subspace Ny that also satisfies the above equation. Therefore | Ni|| < ¢,
a constant that depends on the dimension of the problem and on the multiplicity
of the zeros, and we thus see that each z; is a pseudozero of ry(z). By the results
of [14], this polynomial is therefore close (in a dual norm) to the common divisor
Ry(x). h

Remark. A short calculation using the known structure of the null space shows
that ¢,, may be taken as (n + m)¢, where e is the maximum order of multiplicity

of any zero inside the unit circle. If p; is very close to 1, then this bound may
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be nearly attained in practice; and if the root is of maximum possible multiplicity,
namely m, then we see that this constant may grow exponentially with m, in these
special circumstances. Thus the only problem here is with a highly multiple root
x* close to the unit circle (close to zero is not a problem). If there is only one such
root z*, expanding the polynomial in the basis 1,z — z*, (zr — z*)?,... may improve
stability.

Theorem 3: If f and g are given as in Theorem 2, then it occurs in practice that
if any z; is outside the unit circle, it might not be detected by the QR factoring
algorithm.

Proof.

The numerical QR factoring gives us:

[ xm—lf ] [ xn—km—l T [ .Tn—l—m—l T
f ‘,L.nfl . . xnfl
g | T2° —Q- kK ©)
- g
X X
|9 ] 1] 1]

With high probability, ||AS - x|| ~ [|AS]|||x||, because usually (with probability 1)
AS not itself a Sylvester matrix and hence x is not nearly in its null space. The
common roots of f and g will still correspond to the null space of QR if and only if
the perturbation term AS - x can be neglected. Supposing ||f||2 = ||g|l2 = 1, then
1S]lr = v/n+m. If [z[ > 1, ||AS - x||2 may increase quickly with m + n. h

Let us check Example 1 again. For the common root z = 1/2,
|AS - x|, ~ 0.122 - 1075,
In contrast, for the common factor z — 5,
|AS - x|, ~ 0.206 - 10° .

The perturbation is large enough to disrupt the null space. Therefore, it is not a

surprise that the root x = 1/2 can be recovered from rj9 while the other common
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root x = 5 is missing. If we compute the QR factoring for Digits=20 in Maple,
|AS||F = 0.1526 - 1078 and

rs = 0.62543 — 0.13759z + 0.02501722,
re = 0.25195-107'' —0.5039- 10 'z,
reo = —0.12970-107%.

Both common roots can be recovered from rg since ||AS - x||s < 107 for z = 1/2,
and less than 107° for z = 5, because we worked to higher precision here (and the
input was in fact exact).

In the special case where all common roots of f and g lie inside the unit disc,
the last “non-zero” row of R as in Theorem 1 will give us a good candidate for the

GCD.

A. Reversals

Similarly, if all common roots of f, g lie outside the unit disc, the QR factoring of
S(f,g), where f =298/ f(1/z), g = 2989g(1/z), are the reversals (reciprocals) of f
and g, will provide us the reversal (reciprocal) of the GCD of f and g. Consequently,

we can detect relatively prime numerical polynomials from the QR factors of S(f, g)
and S(f,g).
B. Relative Primality

It has been proved in [8] that a lower bound for perturbations Af and Ag such
that f + Af and g + Ag have a common root is %, where

<
IS

K= (10)

u u
can be found from w,v,u, v, which are polynomials solving the Diophantine equa-
tions:
f-v+g-u=1,degu < deg f,degv < degyg (11)

frv+g-u=a"t"" degu < deg f,degv < degg, (12)
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which arise from imposing relative primality on f with g and f with g. We can find
this bound from the QR factoring used here, as follows. Suppose S(f,¢9) = Q- R
and S(f,g) = Q- R, u,u,v,v are obtained from the last rows of QT R, QT, R. Since
Q, @ are orthogonal, x is determined by the last rows of R and R.

We note that the complexity of [8] is typically O((m + n)?) which is therefore
“fast”. Here, since the Sylvester matrix consists of two Toeplitz blocks, we can
apply selected Given rotations to take advantage of the special structure of S and
obtain a more efficient QR factoring, as in [10]. The complexity is O(n?®). We use
orthogonal transformations in an effort to delay the accumulation of rounding errors.

Now that we have a stable and practical method, we may look for ways to make

it as fast as the weakly stable methods.

C. Common roots outside the unit circle

Since the common roots of f and ¢ inside the unit circle are easily identified by
using QR factoring, we can find an approximate common factor d; of f and g by QR
factoring of S(f, ¢g) and another common factor dy by applying the QR factoring to
S(f*,g*) where f* = d—fl,g* = - are the reversals of f and g, after having divided
out the common factor_already_found. For Example 1, after dividing out the factor

x — 1/2, the QR factoring of f*, g* for Digits=10 in Maple 7 returns:

ri; = 0.005438 — 0.02719z
rg = —0.267-107"

The common root x = 5 can be easily identified from ry;.

From our experiments with thousands of examples, of degrees up to approximately
1000, we find that about 90 percent of all problems can be solved in the above way.
The algorithm even works for polynomials of high degree. See the last several
examples in Table I. This can be explained by the rapid increase of ||AS - x|| for
|z| > 1 when the degrees of f and g are large. Therefore, there will be a clear

separation of common roots inside the unit circle from common roots outside the
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unit circle.

Ezample 2: (Random polynomials of large degree)

f —0.011637 + 0.011604z + - - - + 0.00355392'%? + 0.0044980°%,

g = 0.0060163 — 0.0023432 — - - - — 0.00673465"""? + 0.0121492'°%.
Suppose S(f,g) = QR. We observe that the norms of the right-bottommost

submatrices of R have a big jump in norm between the 16th and 15th last rows:
0.622-107%,0.146-1071°, .-, 0.646 - 107°,0.182 - 107%,0.376 - 10~®,0.00677 - - -

The 15th last row of R gives a common factor d; of f, g with backward error of the
order 10~7. The roots of d; are all inside the unit circle.

The QR factoring of S(f/dy, g/d1) gives us another common factor dy of degree 6

as the norm of R also has a big jump between the 7th and 6th last rows:
0.165-107%,0.439-10'2,0.133-10 !, 0.749-10 !, 0.148-101°, 0.320-10'°, 0.05 - - -

ds has all its roots outside the unit circle. The details of the backward errors are

given in the second last row in Table I.

D. Graeffe’s root-squaring to improve separation from the unit circle

Graeffe’s root-squaring technique is a classical technique to transform one poly-
nomial problem to another, hopefully simpler, problem. We give a brief overview of
this process here, but for details see any older numerical analysis text, e.g. [15]. The
basic idea is this: Suppose f(z) = fu(z — a1)(z — ag) - - - (£ — o) is the polynomial
whose zeros oy we wish to approximate.

Consider
fo(z) = (1)"f(—V2)f(V)
= (=)"filz —ol)(z —03)---(z —a). (13)

The first equation gives us a rational means to compute the coefficients of f,, while
the second equation shows that the roots of f5 are the squares of the roots of f. The

coefficients of f, can be computed using the FFT in time O(nlogn).
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Roots less than 1 in magnitude become smaller, therefore, while roots larger than
1 become larger. Thus, each step of the root-squaring process taken improves the
separation of the roots from the unit circle. One drawback is that initially close
complex zeros may become more separated (in angle and in magnitude) by this
process, so we do not wish to use too many root-squaring operations.

In practice, we find that only a few root-squaring steps are needed to give useful
improvements to the QR factoring. However, it is not a panacea, and for difficult

cases, a further refinement is needed.

III. SPLITTING POLYNOMIALS OVER THE UNIT CIRCLE

In our experiments, we noticed some difficult cases where ||AS - x|| is of moderate
size because there were common roots very close to the unit circle. Without a
refinement of the above technique, it is hard to compute the GCD correctly in such
a case. We now present one such refinement.

It is well-known that, for high degree polynomials with coefficients randomly
chosen from a normal or uniform distribution, the roots cluster about the unit
circle [16]. However, for many cases occurring in practice, the common roots of f
and ¢ are distributed randomly inside or outside the unit circle. If the common
roots are too close to the unit circle, the numerical QQR factoring may not give us
correct information about the GCD.

One possible solution is to split (factor) f or g over the unit circle. For example,
f(z) = fi(z) - A(x) - fo(x) where all zeros of f; lie inside the circle of radius p; < 1,
all zeros of f, lie outside the circle of radius ps > 1, and A(zx) has all its zeros in the
“ambiguous” annulus p; < [z| < p2. Then GCD(f1, g), GCD(f2, g) can be obtained
correctly by the QR factoring. We will discuss this approach in more detail in a
subsequent paper. For the rest of this paper, we assume that A(z) can always be
taken to be 1, i.e. that there are no common roots in the ambiguous annulus. This
can be made more nearly true always by using Graeffe’s root-squaring process. The
splitting helps the stability of the algorithm considerably.

Ezample 3: (A difficult example.) Let f = fi - hy, g = g1 - b1, f1, g1 are relatively
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prime and

fi = —26+31lz+ 182 + 562> + - - - + 6527 — 482 + 32" + 6427,
g1 = 37—31lz —452% — 802> + - - - + 852%° — 542 + 49227 + 79228,

hiy = 1+ 14z +902% — 42> + --- — 82 — 5522 — 6223 — 102,

The norms of the right bottommost submatrices of R increase steadily as:
164-107*, ..., .703-1078, .168-107 7, .156-107°, .157-107>, .758-107*,.139-103, .0111, - - -.

It is therefore hard to obtain a good approximation to h;.
However, if we split the polynomial f = f; - fo over the unit circle and S(fi,g) =
Q1 - R1, S(f2,9) = Q- Ry, the norms of the right-bottom submatrices of R, Ry

have a big jump in norm:
0.669-107'° 0.645-107°,0.140- 1078,0.225 - 107%,0.413 - 107%,0.00152, - - -

0.580-107"3,0.601 -107'%,0.411-107"*,---,0.336 - 107%,0.479 - 107?,0.00201, - - -

It follows that h; can be retrieved from the 6th last row of R; and the 10th last row
of Ry. In this case, there are no roots too close to the unit circle for this refinement,
and h; is correctly recovered by this refined technique.

The splitting can be performed in a classical way, using contour integrals. This
method has been discussed by many authors [17], [18], [19], [20] as a tool for finding
all roots of polynomials. The main steps are given in the following algorithm. It is
time-consuming to evaluate the contour integrals to high accuracy. Therefore, the
algorithm first splits the polynomial to a relatively low accuracy and then refines the
factoring by an iterative method. The first step, root-squaring, is used to push the
roots away from the unit circle. The FFT is used to accelerate the computation in
steps 1 and 2.1. Unlike the algorithm in [19], which uses the fast methods available
for Padé approximation in Step 3, we recursively make use of Q)R factoring for GCD
computation. The reason is that polynomials py_;(z) and Gj_j11(2?) only have
common zeros outside the unit circle since the all roots of G_;1 lie outside the
unit circle. Step 2.2.1 can also use QR factoring for the same reason because the

roots of Fy and G, are well separated by the unit circle.
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Step 2.2.2 needs a good algorithm for approximate division. See [21] for a descrip-
tion of the algorithm that we have used.
Algorithm Split
Input: One monic univariate polynomial p(z) with degree n, radius r = 1, toler-
ance ¢.
Output: Univariate polynomials F', G, such that ||[p— F - G|| < ¢, split by the unit
circle and center (0, 0).
Step 1. [recursive lifting] Apply k root-squaring Graeffe’s steps (usually % is 1, 2
or 3)

Step 2. [splitting py]
2.1 [rough approximation of F' and G]
2.1.1 Compute

1 Np;c(x)d Zv: N
sy =— | x T = 2
N omi o pr(z) — !

where C' is the unit circle; z; are all the roots of p; inside C, i.e.,the roots of Fj; v

is the integer closest to sg, i.e., the number of zeros of p; inside C.
2.1.2 From sy, s9, ..., 8, compute the coefficients of the polynomial F}.

2.1.3 Compute Gy = quo(pg, Fy)-
2.2 [Newton’s iteration, one step]

2.2.1 Compute u and v such that
u-F,+v-G,=1.
2.2.2 Compute AFy and AG} in higher precision as

AF, = polyrem(py - v, Fy)
AGk = polydiv(pk — Fk . Gk — AF - Gk, Fk)

2.2.3 Set Fk = Fk + AF]C, Gk = Gk + AG]C
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Step 3. [recursive descending] For i from 1 to k do

Groj = ged(pr—j(z), Gejr1(2?))

Fk_j = pOlydiV(pk_j, Gk_j)

Here polyrem(a,b) is the remainder on approximate division of a by b, while
polydiv is the best fit quotient on division of a by b, that is, it has the smallest
remainder in the 2-norm sense. The algorithm is expected to improve in performance

if this is replaced by approximate division using total least squares.

IV. THE ALGORITHM FOR GCD COMPUTATION

Algorithm GCD

Input: Two univariate polynomials f(x) and g(z), tolerance €.

Output: Univariate polynomials u, v, d such that ||f —d- fi|| <e¢, [[g—d- 1] < &,
|luf +vg —d|| < e and deg(u) < deg(g) — deg(d), deg(v) < deg(f) — deg(d).

Note that ||uf + vg — d|| < € can be rewritten as ||[uAf + vAg| < €, where
Af=f—d-f, and Ag=g—d- g;. This represents an extra constraint on u and
v, and thus disallows them from growing to be too large.

Step 1. [Initialization]

1.1 Make the input f and g to be unit 2-norm with positive leading coeflicients.
Step 2. [@R-factoring]

2.1 Form the Sylvester matrix S of f and g.

2.2 Compute the ) R—factoring for S = @) - R.

2.3 Suppose RS are the last (k+1) x (k+1) submatrices of R such that |[R%)|| > ¢
but [|RE || <e.

case 0. [ ||R%,|| > €]: di =1, u and v are formed by the last row of Q7.

(k)
case 1. ”R,fEIH > 0.1/¢]: di’s coeflicients are given by the first row of R
17552l &
(k1)
case 2. | d ki(biggest) such that ”R,fzil” > 0.1/¢|: di’s coefficients are given by
86 1B
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the first row of RSV,

case 3. [Difficult case]: Use the algorithm Split to find the common roots of f and
¢ inside the unit circle and form the divisor d;.

Step 3. [Coprime check]

3.1 Compute cofactors f; and g¢:

fl = pOIYdIV(fa dl)a

g = polydiv(g, dl)'

3.2 Apply Step 2 to z8U1) . £ (z71), 29°81) . g, (z71) to obtain dp.
3.3 Apply Step 2 to cofactors of f, g w.r.t. d =d; - dy to obtain u, v(case 0).
Step 4. Return u, v, d.

V. MuLTtIPLE COMMON ROOTS

The method given in this paper has no difficulty finding accurate common factors
of problems that have multiple approximate common roots; however, it is the coef-
ficients of the factors with multiple roots that are recovered, not the multiple roots
themselves. To accurately find the multiple roots from these approximate common

factors requires a separate analysis.

VI. THEORETICAL COMPLEXITY ANALYSIS

Suppose that the degree of f is n and the degree of g is m, and n > m. The
complexity of the main steps of Algorithm GCD (page 16) are:
1. Step 2.2: O(n?®) (see Section I-B)
2. Step 2.3: see below (Algorithm Split)
3. Step 3.1: O(n?), because the matrix involved in the polynomial division is a
Toeplitz matrix. The complexity can be achieved by using the algorithm in [22].
Supposing that the degree of the polynomial to be split is n, the complexity of
the main steps in Algorithm Split (page 15) are:
1. Step 1. O(knlogn), k is usually 1,2, or 3.
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2. Step 2.1 O(nlog?n).

3. Step 2.2.1 O(n?). Since the roots of two factors are well separated (with respect to
the unit circle), the Sylvester matrix is well conditioned. Moreover, since a Sylvester
matrix is a quasi-Toeplitz matrix, the method in [23] gives a fast stable way to find
u and v.

4. Step 2.2.2. O(n?).

5. Step 3. O(n®). We apply QR factoring to the reciprocal of the two polynomials

since the two polynomials only have common roots outside the unit circle.

VII. TeEsT RESULTS

A. Comparison with Example 2 of [1]

The Example 2 of [1] is as follows. Let A(z) = d(z)A;(z) and B(z) = d(z)Bi(z),

where

d(z) = 2°—0.62"—0.052* — 0.052> — 1.05z + 0.55 (14)
Bi(z) = 2°+1.952° +0.66992" + 0.19782° + 0.22712°
—1.56522* — 1.991182° — 0.74132% — 0.0801z + 0.0634  (15)
A(z) = 2% —1.62" +2.432% — 1.1482" + 1.22482° + 1.38752°
—0.98952* +0.97512% — 0.78132% — 0.6232 + 0.0692 . (16)

We note that d(z) has one root inside the unit circle, and four outside. Using the
technique of this paper, the root inside the unit circle is easily found by a QR
factoring of the Sylvester matrix of A and B, and the four roots outside are found
by a QR factoring of the reversals of A and B.

The paper [1] reported a failure of the condition estimator of the method of
that paper. We believe that this failure was, in essence, caused by the fact that
some of the common roots were inside and some were outside the unit circle. The
improvement of this present paper is sufficient to allow this example to be solved in
a straightforward way, even without the contour integral splitting refinement.

Assume A(z), B(z) are perturbed by noise uniformly distributed over the interval
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[—107*,107*], for example:

p = —0.000045z — 0.000026 z'* + 0.000027 z'* + 0.000007 27 + 0.000031 2% + 0.000097 25,
py = 0.000067 z'° + 0.000077 z'* + 0.000009 z° — 0.00009 z® + 0.000017 z” — 0.000007 z>.

What follows is the output of our prototype® Maple implementation of this algo-

rithm, with a “verbose” flag set to display diagnostics.

u,v,G:=GCD(A,B,z,10"(-4));

GCDAux1: "the norm of last row" .284656437560687029e-7
GCDAux1: "the norm of row i" .8316275671e-5

GCDAux1: "the norm of row i" .1481225254¢e-4

GCDAux1: "the norm of row i" .7056767811e-4

GCDAux1: "the norm of row i" .2704901034e-3

GCDAux1: "difficult case" 3.833059421

evalpower: "the number of evaluation points" 128
newtoncorr: "backward error before Newton correction"

.35477855478731733890e-8
newtoncorr: "backward error after Newton correction"

.49457664275585600318e-14

liftsplit: "the recursive lifting" 2

ged: "the norm of last row" .22953160554339941600e-19
ged: "the norm of row i" .46605225347743864345e-19
ged: "the norm of row i" .33792973353257670683e-18
ged: "the norm of row i" .97551297786436466787e-17
ged: "the norm of row i" .37999540616867081304
liftsplit: "the recursive lifting" 1

ged: "the norm of last row" .10664254136696871263e-18
ged: "the norm of row i" .26730184088293526629¢-18
ged: "the norm of row i" .47071096006575861955e-18

3 At the time this paper was written, only a prototype was available. Now, by the efforts of Lihong Zhi

and Hiroshi Kai, this algorithm has been incorporated into Maple 9 for public distribution.
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ged: "the norm of row i" .72594421795366104827e-18

ged: "the norm of row i" .49635707831783407565
GCDAux1: "Degree of GCD and backward error for f,g" 1
.2775811604e-5 .5520080356e-5

GCDAux2: "the norm of last row" .687906778348371770e-6
GCDAux2: "the norm of row i" .1446564243e-5

GCDAux2: "the norm of row i" .3282314241e-5

GCDAux2: "the norm of row i" .1167654451e-4

GCDAux2: "the norm of row i" .1251891406

GCDAux2: "quick decrease" 10721.42024

GCDAux2: "Degree of GCD and backward error for f,g" 4

.1128148472e-4 .8291147487e-5

u = —2.535456495 — 13.23934493 z — 25.83016828 22 — 17.92465245 2* + 3.008400870 z*
+4.855307551 2° + 11.934682742° + 24.99521476 27 + 12.24668103 2°,

v = 10.77657120 + 3.167861608 z — 3.131239168 22 — 3687451268 2* — 9.197080343 2*
—21.268446932° + 15.19657543 2° — 29.53533751 27 + 18.48136619 2° — 12.247267912°,

G = .279076256 — .7608296186 z — .0253504943 22 — 02532861052 2> — 3044336272 2*
+.5072422832 2°.

If we start with the (Q R-factorization of reciprocal of A and B, then no splitting is
needed. Since the final results are quite similar to the u,v, G above, we omit them

here, but just show the diagnostics.

GCDAux2: "the norm of last row" .827778337414056300e-6
GCDAux2: "the norm of row i" .1718129308e-5

GCDAux2: "the norm of row i" .2883180742e-5

GCDAux2: "the norm of row i" .1320829125e-4

GCDAux2: "the norm of row i" .1195369248

GCDAux2: "quick decrease"  9050.143015

GCDAux2: "Degree of GCD and backward error for f,g" 4
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.7347826910e-5 .7980726203e-5

GCDAux1: "the norm of last row" .102517511356116598e-6
GCDAux1: "the norm of row i" .1774173932e-2

GCDAux1: "quick decrease" 17306.05735

GCDAux1: "Degree of GCD and backward error for f,g" 1

.7987969771e-5 .1561375946e-4

B. Summary of tests with high degree random polynomials

See Table I.

VIII. CONCLUDING REMARKS

This paper identifies a difficulty with previous attempts at practical methods
for the computation of approximate GCD, and presents an improved alternative
together with an error analysis, theoretical complexity analysis, and experimental
results on several thousand examples. The method used in this paper seems to
be of potential use in practice, for polynomials of moderately large degree (up to
about 1000). One open problem of theoretical interest is what to do about common
roots in the (narrow) ambiguous annulus p; < [z| < py, and we will pursue this in
a future paper. Another open problem is whether fast O(n?) QR factoring [23] can

be stably used in this context.
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