<l

P4

We;stern
O’ Science

Department of Computer Science

CS3307A Course Outline - Fall 2024

1. Course Information

Course Information
COMPSCI 3307A - OBJECT-ORIENTED DESIGN & ANALYSIS

Time/Place
9:30-10:30 AM, Tuesday-
9:30-11:30 AM, Thursday-

2. Instructor Information

Instructors Email Office Phone Office Hours

Dr. Umair Rehman
(Course Coordinator)

MS Teams, Tuesd
wchmens@uuoce | NN | |50 pw-300Pm

Course Communication Guidelines

Primary Channels for Communication

Email: Formal communication, such as course updates and assignment submissions, should be
conducted via email. Students are required to use their Western (@uwo.ca) email addresses
when contacting instructors. This is essential for maintaining a formal and secure line of
communication.

MS Teams: For real-time interactions, queries about course material, and brief updates, MS
Teams will be utilized. This platform facilitates more immediate and interactive communication.

Email Etiquette

Subject Line: When sending an email, students must include the course number followed by a
brief description of the email's purpose in the subject line. For example, "CS3307 — Project Query"
or "CS3307 — Request for Meeting".

Instructor Messaging: The instructor’s email is integrated into MS Teams, allowing students to
message the instructor directly through the platform. This should be used for quick questions or
clarifications.

3. Course Description

In today’s software development landscape, Object-Oriented Design and Analysis (OODA) is an essential
approach for building complex, high-quality systems. This course delves into the key aspects of OODA,
focusing on the process of analyzing system requirements and translating them into effective, scalable
software designs. You will explore the use of Unified Modeling Language (UML) to model system
interactions, structures, and behaviors, and learn how to leverage established design patterns to
optimize the development process.

Through this course, you will gain a deep understanding of how to design software systems that meet
user requirements and operate efficiently within their intended environments. By working with C++, you
will implement these designs and understand how object-oriented principles are applied in real-world
programming. The course includes a combination of theoretical learning, practical assignments, and a
significant project where you will design and implement a large-scale system using C++.

Course Goal

The goal of this course is to equip students with the expertise to perform rigorous system analysis and
create robust, maintainable software designs using Object-Oriented methodologies. By the end of the
course, students will be proficient in using UML for modeling, applying design patterns to streamline the
design process, and implementing their designs in C++. This will prepare them to tackle complex software
development challenges and deliver high-quality solutions in professional settings.

Learning Outcomes
By the end of this course, students will be able to:

1. Clearly articulate the fundamental concepts of object-oriented design, including encapsulation,
inheritance, polymorphism, and abstraction, and effectively apply these principles in designing
software systems.

2. Demonstrate proficiency in identifying and applying appropriate design patterns to address
common software design challenges, ensuring that systems are flexible, reusable, and
maintainable.

3. Create detailed and accurate UML diagrams, including class diagrams, sequence diagrams, and
use case diagrams, to visually represent and communicate complex software designs.

4. Critically evaluate existing software codebases, identify areas for improvement, and implement
refactoring strategies to enhance the structure, performance, and maintainability of the code.

5. Develop software systems that adhere to key quality attributes such as scalability, security, and
performance, using best practices and design principles to ensure the system meets both current
and future requirements.

6. Convert software requirements and use cases into effective and efficient design specifications,
ensuring alignment with business needs and technical constraints.

7. Reflect on the evolution of software systems, manage technical debt, and apply refactoring and
design evolution techniques to maintain and enhance software quality over time.

4. Course Schedule

Week Topics

Week 1: Introduction to
Object-Oriented Design and
Analysis

Sept 5, 2024

1. Objects and Classes: Introduction to classes, objects, attributes,
methods, access specifiers, and encapsulation in C++.

2. Object-Oriented Design and Analysis (OODA): Focus on
designing systems with key objects and relationships, using use
cases and step-by-step OOD.

3. OODA vs. Functional Programming: Comparison of core
philosophies, state management, modularity, and error handling
between OODA and functional programming.

4. Cohesion and Coupling: Importance of high cohesion and low
coupling in system design, with examples of modular,
maintainable software architectures.

Week 2: Core Object-Oriented
Concepts

Sept 10 and Sept 12, 2024

1. Encapsulation: Definition, importance, implementation, and
examples.

2. Inheritance: Concept, types (single, multiple, hierarchical),
benefits, and pitfalls.

3. Polymorphism: Types (compile-time, runtime), role in
maintainable code, and examples.

4, Abstraction: Definition, comparison with encapsulation, use of
abstract classes/interfaces.

5. Real-World Case Studies: Analysis of software systems to
illustrate OOD concepts and their impact on software quality.

Week 3: SOLID Principles and
Design Practices

Sept 17 and Sept 19, 2024

1. Introduction to SOLID Principles: Overview and significance in
software design.

2. Single Responsibility Principle (SRP): Definition, importance,
examples, and refactoring strategies.

3. Open/Closed Principle (OCP): Understanding OCP,
implementation, and case studies.

4. Liskov Substitution Principle (LSP): Explanation, impact on
inheritance, and examples.

5. Interface Segregation Principle (ISP): Importance, design of fine-
grained interfaces.

6. Dependency Inversion Principle (DIP): High-level vs. low-level
modules, reducing coupling, and dependency injection.

Week 4: Requirements
Gathering and Use Case
Modeling

Sept 24 and Sept 26, 2024

1. Introduction to Requirements Gathering: Importance in the
software lifecycle, functional vs. non-functional requirements.
2. Techniques for Gathering Requirements: Interviews, surveys,
observation, workshops.

3. Use Case Modeling: Purpose, elements (actors, scenarios),
writing effective descriptions.

4, Identifying Use Cases: Techniques, prioritization, creating
diagrams.

5. Practical Application: Hands-on exercises and case studies.

Week 5: Class and Object
Modeling & UML Techniques

Oct 1 and Oct 3, 2024

1. Identifying Classes and Relationships: Extract objects from use
cases and define relationships (association, inheritance,
composition).

2. Class Diagram Notation: Use UML to represent classes,
attributes, methods, and relationships with clarity.

3. Refining Class Diagrams: Iteratively improve diagrams for
consistency and simplicity.

4. Sequence and Use Case Diagrams: Model object interactions
and user-system behavior using lifelines and scenarios.

5. Best Practices in UML: Tips to create effective, clear, and
consistent UML diagrams, avoiding common pitfalls.

Week 6: Design Patterns (Part
1) - Creational Patterns

Oct 8 and Oct 10, 2024

1. Introduction to Design Patterns: Importance and categories
(Creational, Structural, Behavioral).

2. Singleton Pattern: Ensuring a single instance, implementation,
and use cases.

3. Factory Method Pattern: Object creation, design variations, and
real-world examples.

4, Abstract Factory Pattern: Creating families of related objects,
comparison with Factory Method.

5. Builder Pattern: Step-by-step construction, differences from
Factory patterns, examples.

Reading Week

Week 7: Design Patterns (Part
2) - Structural and Behavioral
Patterns

Oct 22 and Oct 24, 2024

1. Adapter Pattern: Adapting interfaces, implementation, and case
studies.

2. Composite Pattern: Treating objects and compositions
uniformly, GUI/file system examples.

3. Decorator Pattern: Adding responsibilities dynamically,
comparison with other patterns.

4, Observer Pattern: One-to-many dependency, implementation,
and common applications.

5. Strategy Pattern: Family of algorithms, interchangeability, and
real-world examples.

6. Command Pattern: Encapsulating requests, implementing
undo/redo, use cases.

Week 9: Software Architecture
and Design Patterns

Oct 29 and Oct 31, 2024

1. Introduction to Software Architecture: Definition, significance,
and distinction between software architecture and design.

2. Common Architectural Styles: Overview of styles such as
layered, client-server, microservices, and event-driven
architectures.

3. Integrating Design Patterns with Architecture: How design
patterns align with architectural concerns to solve specific
problems.

4. Examples of Architectural and Design Patterns: Includes MVC,
Repository, SOA, and structural/behavioral patterns like Facade,
Proxy, and Chain of Responsibility.

5. Case Studies and Best Practices: Analysis of systems using a
combination of architectural styles and design patterns, along with
criteria for selecting patterns.

Week 8: Design for
Maintainability and Reusability

Nov 5 and Nov 7, 2024

1. Introduction to Software Quality Attributes: Overview of key
attributes like maintainability, reusability, performance, scalability,
and security.

2. Design for Maintainability and Reusability: Principles of
simplicity, modularity, refactoring, creating reusable components,
and using version control.

3. Performance and Scalability: Metrics, bottlenecks, optimization
techniques, and strategies for horizontal/vertical scaling.

4, Security Considerations: Secure design principles, common
threats, and best practices to safeguard systems.

5. Case Studies and Practical Applications: Analysis of systems
focusing on maintainability, reusability, performance optimization,
scalability, and security.

Week 10: Refactoring and
Evolution of Software Design

Nov 12 and Nov 14, 2024

1. Understanding Refactoring: Importance, signs that refactoring is
needed.

2. Refactoring Techniques: Improving readability/maintainability,
refactoring to patterns, automated tools.

3. Managing Technical Debt: Definition, impact, strategies for
management and prioritization.

4. Continuous Integration and Continuous Deployment (CI/CD):
Role in modern development, integrating refactoring into CI/CD
pipelines.

5. Case Studies: Successful software evolution, challenges, and
strategies for evolving legacy systems.

Week 11: Quality Assurance
and Usability Testing

Nov 19 and Nov 21, 2024

1. Code Inspections: Highlight the importance of reviewing object
relationships, design patterns, and principles for maintainability
and correctness.

2. Automated Testing: Introduce unit and integration testing to
ensure object behavior and system integrity.

3. Design for Usability: Emphasize modularity and encapsulation to
create user-friendly, adaptable designs.

4. Usability Testing: Show how OOD supports usability testing,
such as through Ul logging and patterns like MVC.

5. Iterative Development: Stress the role of iterative design, where
inspections and usability feedback guide continuous refactoring.

Week 11: Case Studies and
Real-World Applications

Nov 26 and Nov 28, 2024

1. Comprehensive Case Studies: Analysis of complex systems,
architectural/design decisions.

2. Industry Insights and Best Practices: Guest lectures,
contemporary issues in software design.

3. Lessons from Real-World Failures: Case studies of failed designs,
root causes, preventive measures.

4, Ethical Considerations in Software Design: Discussing ethical
implications, ensuring fairness, accountability, transparency.

Week 12: Industry Talk and
Course Review

Dec 3 and Dec 5, 2024

5. Course Materials

Course Reference Material
There are no required textbooks for this course. However, the following books are recommended as
valuable references:

e The C++ Programming Language, 4th Edition by Bjarne Stroustrup

e Programming Principles and Practice Using C++, 2nd Edition by Bjarne Stroustrup

e Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma et al.

e UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd Edition by Martin

Fowler
e Object-Oriented Analysis and Design with Applications, 3rd Edition by Grady Booch et al.
e Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux by Derek Molloy

Additional references will be provided as needed. Please check Brightspace for updates.

Lecture Notes and Brightspace
e Lecture materials will be available on Brightspace (Online Web Learning) prior to each class.
e Regular checking of the course site on Brightspace is essential for news and updates. It is the
primary method of information dissemination for this course.
e Assistance with the site can be sought on the Brightspace help page or by contacting the Western
Technology Services Helpdesk at phone number 519-661-3800 or ext. 83800.

Course Delivery and Format
e The course is planned to be delivered in-person for the entire term, subject to any unforeseen
complications.
e Any changes aligning with University guidelines will be communicated through announcements
via Brightspace.

6. Methods of Evaluation

Final Project (80%)

The final project for CS3307A involves designing, modeling, and implementing a real-world software
system using Object-Oriented Design and Analysis (OODA) principles in C++. Students may work
individually (preferred) or in teams of two. Students will engage in requirements gathering, UML system
modeling, and the application of design patterns to ensure their system is scalable, maintainable, and
efficient. The project will unfold in three phases: a project proposal, an intermediate design with partial
implementation, and a final submission with complete system implementation and documentation.

6

Students will be evaluated on their system design, UML diagrams, implementation, and testing, with a
strong emphasis on the correct application of object-oriented principles and design patterns. Detailed
guidelines and submission timelines are provided on Brightspace.

Final Exam (20%)

The final exam will evaluate your overall understanding of the course content, encompassing both
fundamental and advanced OOD principles. The exam will include a mix of multiple-choice, short answer,
and problem-solving questions. It will test your ability to apply the concepts and techniques discussed
throughout the course. More information on the format and topics covered will be shared on Brightspace
as the exam date approaches.

Due Dates of Deliverables

Deliverable Due Date Weight
Project Proposal October 22, 2024 20%
Intermediate Design and Partial Implementation | November 19, 2024 | 30%
Final Project Submission December 17, 2024 | 30%
Final Exam December 12, 2024 | 20%

7. Student Absences

Forthe 2024-2025 academic year, the handling of absences in this course will follow Western University’s
updated Academic Consideration for Student Absences policy. The approach to academic considerations
for each assessment type is outlined below:

Project Proposal (20%) — No built-in flexibility

Extensions for this component will only be granted through formal academic consideration. If a student
is unable to submit the proposal by the deadline, they must request an academic consideration through
the appropriate channels.

Intermediate Design and Partial Implementation (30%) — Limited built-in flexibility
Students are allowed to use one late coupon to extend the deadline by up to 48 hours without needing
documentation. Beyond this, academic considerations will be required.

Final Project Submission (30%) — No built-in flexibility
Due to the importance of the final project and the proximity to the course end date, this submission will
not have built-in flexibility. Extensions will only be granted under formal academic consideration.

Final Exam (20%) — No built-in flexibility
The final exam must be completed as scheduled unless a formal academic consideration is granted. In
such cases, a makeup exam will be arranged.

The new academic considerations policy allows students to self-report absences for up to 48 hours
without documentation. For more details on how to request academic considerations, please refer to
the full policy here:

https://www.uwo.ca/univsec/pdf/academic_policies/appeals/academic_consideration_Sep24.pdf.

8. Accommodation and Accessibility

Religious Accommodation

When a course requirement conflicts with a religious holiday that requires an absence from the
University or prohibits certain activities, students should request accommodation for their absence in
writing at least two weeks prior to the holiday to the course instructor and/or the Academic Counselling
office of their Faculty of Registration. Please consult University's list of recognized religious holidays
(updated annually) at

https://multiculturalcalendar.com/ecal/index.php?s=c-univwo

Accommodation Policies

Students with disabilities are encouraged to contact Accessible Education, which provides
recommendations for accommodation based on medical documentation or psychological and
cognitive testing. The policy on Academic Accommodation for Students with Disabilities can be found
at

https://www.uwo.ca/univsec/pdf/academic_policies/appeals/Academic Accommodation_disabilities.pdf.

9. Academic Policies

The website for Registrarial Services is http://www.registrar.uwo.ca.

In accordance with policy,
https://www.uwo.ca/univsec/pdf/policies_procedures/section1/mapp113.pdf,

the centrally administered e-mail account provided to students will be considered the individual’s official
university e-mail address. It is the responsibility of the account holder to ensure that e-mail received
from the University at their official university address is attended to in a timely manner.

Scholastic offences are taken seriously and students are directed to read the appropriate policy,
specifically, the definition of what constitutes a Scholastic Offence, at the following Web site:

http://www.uwo.ca/univsec/pdf/academic_policies/appeals/scholastic_discipline_undergrad.pdf.

All required submissions may be subject to submission for textual similarity review to the commercial
plagiarism detection software under license to the University for the detection of plagiarism. All papers
submitted for such checking will be included as source documents in the reference database for the
purpose of detecting plagiarism of papers subsequently submitted to the system. Use of the service is
subject to the licensing agreement, currently between The University of Western Ontario and
Turnitin.com (http://www.turnitin.com).

10. Support Services

Please visit the Science & Basic Medical Sciences Academic Counselling webpage for information on
adding/dropping courses, academic considerations for absences, appeals, exam conflicts, and many
other academic related matters: https://www.uwo.ca/sci/counselling/.

Students who are in emotional/mental distress should refer to Mental Health@Western
(https://uwo.ca/health/) for a complete list of options about how to obtain help.

Western is committed to reducing incidents of gender-based and sexual violence and providing
compassionate support to anyone who has gone through these traumatic events. If you have
experienced sexual or gender-based violence (either recently or in the past), you will find information
about support services for survivors, including emergency contacts at

https://www.uwo.ca/health/student_support/survivor_support/get-help.html.

To connect with a case manager or set up an appointment, please contact support@uwo.ca.

Please contact the course instructor if you require lecture or printed material in an alternate format or
if any other arrangements can make this course more accessible to you. You may also wish to contact
Accessible Education at

http://academicsupport.uwo.ca/accessible_education/index.html

if you have any questions regarding accommodations.

Learning-skills counsellors at the Student Development Centre (https://learning.uwo.ca) are ready to
help you improve your learning skills. They offer presentations on strategies for improving time
management, multiple-choice exam preparation/writing, textbook reading, and more. Individual
support is offered throughout the Fall/Winter terms in the drop-in Learning Help Centre, and year-round
through individual counselling.

Western University is committed to a thriving campus as we deliver our courses in the mixed model of
both virtual and face-to-face formats. We encourage you to check out the Digital Student Experience

website to manage your academics and well-being: https://www.uwo.ca/se/digital/.

Additional student-run support services are offered by the USC, https://westernusc.ca/services/.

