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The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
→ High performance: core implementation in C, data locality, parallelism

→ Easy to use: “Dynamic” Object-Oriented interface in C++ [5]

Supported operations include:
FFTs, integer polynomial multiplication, modular dense polynomial
arithmetic, real root isolation (old news, see [6])
Big FFTs: Efficient and parallel FFTs over large characteristic [7]
Sparse polynomial arithmetic, pseudo-division, normal form [3]
Triangular decomposition via regular chains [2]
Lazy multivariate power series, Weierstrass preparation,
factorization via Hensel’s lemma [4]
Fourier-Motzkin elimination: new algorithm, complexity measures [8]
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C++ Templates for a Dynamic, Friendly Interface [5]
Motivation: encode the algebraic hierarchy as a class hierarchy for ease-of-use

field ⊂ Euclidean domain ⊂ GCD domain ⊂ integral domain ⊂ ring

Goal: maintain strict object type safety and mathematical type safety.
→ via polymorphism, a simple hierarchy has no mathematical type safety
→ e.g. Z⇑17Z, Q(︀𝑥⌋︀ are both Euclidean domains, but incompatible.

Solution: curiously recurring template pattern, template metaprogramming
→ Abstract class hierarchy encodes the interface of each algebraic type
→ Template parameter makes interface mathematically safe at compile-time
→ Polys automatically decide algebraic type (superclass) based on ground ring

1 template <class Derived >
2 class BPASRing { Derived add( Derived x, Derived y) };
3
4 template <class Derived >
5 class BPASEuclideanDomain : BPASGCDDomain <Derived >;
6
7 class Integer : BPASEuclideanDomain <Integer >;
8
9 template <class Ring , Deriverd >

10 class Polynomial : conditional < is_base_of <Ring , BPASField <Ring >,
BPASEuclideanDomain <Dervied >, BPASRing <Derived > >;
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Sparse Multivariate Polynomial Arithmetic [3]
Goal: highly efficient operations on multivariate polynomials to underlie
polynomial system solving, regular chains, triangular decomposition

Solution: “Alternating Array” for Q(︀𝑋⌋︀, Z(︀𝑋⌋︀ using exponent packing
→ per term data locality (cf. separate locality for coefficients and monomials)
→ optimizes Monagan’s heap arithmetic [9]; extends to pseudo-division & n.f.
→ dynamic unpacking (unpublished) supports unlimited variables (cf. 31 in [9])

13𝑥2𝑦3𝑧2
+ 5𝑥2𝑦 + 7𝑦3𝑧 + 11𝑦𝑧4 := 13 2⋃︀3⋃︀2 5 2⋃︀1⋃︀0 7 0⋃︀3⋃︀1 11 0⋃︀1⋃︀4
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Z(︀𝑋1, . . . , 𝑋5⌋︀ multiplication and Euclidean division (time (s) vs number of terms; varying sparsity)
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Parallel Triangular Decompositions [2]
Goal: parallelism in triangular decomposition despite geometric problems

Solution: exploit as much as is available
→ Coarse-grained: parallel calls intersects

on independent components.
→ Fine-grained: asynchronous generators

form a pipeline among subroutines.
→ DnC: removal of redundant components

Triangularize

RRCIntersect

IntersectFree

CleanChain
Intersect
AlgebraicRegularize

RegularGCD
Extend

Speed-up vs Serial runtime for 800+ systems
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Lazy Multivariate Power Series [4]
Goal: efficient multivariate power series and univar. polynomials over PS

Solution: a lazy design in C (compiled vs. scripting like Maple)
→ PS stored as dense array of homogeneous parts and a function pointer
→ PS hold “ancestors” to call ancestor generator in its own generator
→ Supports lazy Weierstrass preparation and lazy factorization via

Hensel’s lemma. Factors are returned immediately and can be
updated dynamically, without any re-computation.
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