
What’s new in BPAS?

M. Asadi, A. Brandt, R.-J. Jing, M. Kazemi, D. Mohajerani,
R.H.C. Moir, M. Moreno Maza, D. Talaashrafi, L. Wang

Ontario Research Center for Computer Algebra
Department of Computer Science

University of Western Ontario, Canada

Friday June 19, 2020
Alexander Brandt What’s new in BPAS? Friday June 19, 2020 1 / 7



The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
→ High performance: core implementation in C, data locality, parallelism

→ Easy to use: “Dynamic” Object-Oriented interface in C++ [5]

Supported operations include:
FFTs, integer polynomial multiplication, modular dense polynomial
arithmetic, real root isolation (old news, see [6])
Big FFTs: Efficient and parallel FFTs over large characteristic [7]
Sparse polynomial arithmetic, pseudo-division, normal form [3]
Triangular decomposition via regular chains [2]
Lazy multivariate power series, Weierstrass preparation,
factorization via Hensel’s lemma [4]
Fourier-Motzkin elimination: new algorithm, complexity measures [8]

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 2 / 7



The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
→ High performance: core implementation in C, data locality, parallelism

→ Easy to use: “Dynamic” Object-Oriented interface in C++ [5]

Supported operations include:
FFTs, integer polynomial multiplication, modular dense polynomial
arithmetic, real root isolation (old news, see [6])

Big FFTs: Efficient and parallel FFTs over large characteristic [7]
Sparse polynomial arithmetic, pseudo-division, normal form [3]
Triangular decomposition via regular chains [2]
Lazy multivariate power series, Weierstrass preparation,
factorization via Hensel’s lemma [4]
Fourier-Motzkin elimination: new algorithm, complexity measures [8]

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 2 / 7



The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
→ High performance: core implementation in C, data locality, parallelism

→ Easy to use: “Dynamic” Object-Oriented interface in C++ [5]

Supported operations include:
FFTs, integer polynomial multiplication, modular dense polynomial
arithmetic, real root isolation (old news, see [6])
Big FFTs: Efficient and parallel FFTs over large characteristic [7]

Sparse polynomial arithmetic, pseudo-division, normal form [3]
Triangular decomposition via regular chains [2]
Lazy multivariate power series, Weierstrass preparation,
factorization via Hensel’s lemma [4]
Fourier-Motzkin elimination: new algorithm, complexity measures [8]

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 2 / 7



The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
→ High performance: core implementation in C, data locality, parallelism

→ Easy to use: “Dynamic” Object-Oriented interface in C++ [5]

Supported operations include:
FFTs, integer polynomial multiplication, modular dense polynomial
arithmetic, real root isolation (old news, see [6])
Big FFTs: Efficient and parallel FFTs over large characteristic [7]
Sparse polynomial arithmetic, pseudo-division, normal form [3]

Triangular decomposition via regular chains [2]
Lazy multivariate power series, Weierstrass preparation,
factorization via Hensel’s lemma [4]
Fourier-Motzkin elimination: new algorithm, complexity measures [8]

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 2 / 7



The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
→ High performance: core implementation in C, data locality, parallelism

→ Easy to use: “Dynamic” Object-Oriented interface in C++ [5]

Supported operations include:
FFTs, integer polynomial multiplication, modular dense polynomial
arithmetic, real root isolation (old news, see [6])
Big FFTs: Efficient and parallel FFTs over large characteristic [7]
Sparse polynomial arithmetic, pseudo-division, normal form [3]
Triangular decomposition via regular chains [2]

Lazy multivariate power series, Weierstrass preparation,
factorization via Hensel’s lemma [4]
Fourier-Motzkin elimination: new algorithm, complexity measures [8]

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 2 / 7



The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
→ High performance: core implementation in C, data locality, parallelism

→ Easy to use: “Dynamic” Object-Oriented interface in C++ [5]

Supported operations include:
FFTs, integer polynomial multiplication, modular dense polynomial
arithmetic, real root isolation (old news, see [6])
Big FFTs: Efficient and parallel FFTs over large characteristic [7]
Sparse polynomial arithmetic, pseudo-division, normal form [3]
Triangular decomposition via regular chains [2]
Lazy multivariate power series, Weierstrass preparation,
factorization via Hensel’s lemma [4]

Fourier-Motzkin elimination: new algorithm, complexity measures [8]

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 2 / 7



The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
→ High performance: core implementation in C, data locality, parallelism

→ Easy to use: “Dynamic” Object-Oriented interface in C++ [5]

Supported operations include:
FFTs, integer polynomial multiplication, modular dense polynomial
arithmetic, real root isolation (old news, see [6])
Big FFTs: Efficient and parallel FFTs over large characteristic [7]
Sparse polynomial arithmetic, pseudo-division, normal form [3]
Triangular decomposition via regular chains [2]
Lazy multivariate power series, Weierstrass preparation,
factorization via Hensel’s lemma [4]
Fourier-Motzkin elimination: new algorithm, complexity measures [8]

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 2 / 7



C++ Templates for a Dynamic, Friendly Interface [5]
Motivation: encode the algebraic hierarchy as a class hierarchy for ease-of-use

field ⊂ Euclidean domain ⊂ GCD domain ⊂ integral domain ⊂ ring

Goal: maintain strict object type safety and mathematical type safety.
→ via polymorphism, a simple hierarchy has no mathematical type safety
→ e.g. Z⇑17Z, Q(︀𝑥⌋︀ are both Euclidean domains, but incompatible.

Solution: curiously recurring template pattern, template metaprogramming
→ Abstract class hierarchy encodes the interface of each algebraic type
→ Template parameter makes interface mathematically safe at compile-time
→ Polys automatically decide algebraic type (superclass) based on ground ring

1 template <class Derived >
2 class BPASRing { Derived add( Derived x, Derived y) };
3
4 template <class Derived >
5 class BPASEuclideanDomain : BPASGCDDomain <Derived >;
6
7 class Integer : BPASEuclideanDomain <Integer >;
8
9 template <class Ring , Deriverd >

10 class Polynomial : conditional < is_base_of <Ring , BPASField <Ring >,
BPASEuclideanDomain <Dervied >, BPASRing <Derived > >;

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 3 / 7



C++ Templates for a Dynamic, Friendly Interface [5]
Motivation: encode the algebraic hierarchy as a class hierarchy for ease-of-use

field ⊂ Euclidean domain ⊂ GCD domain ⊂ integral domain ⊂ ring
Goal: maintain strict object type safety and mathematical type safety.
→ via polymorphism, a simple hierarchy has no mathematical type safety
→ e.g. Z⇑17Z, Q(︀𝑥⌋︀ are both Euclidean domains, but incompatible.

Solution: curiously recurring template pattern, template metaprogramming
→ Abstract class hierarchy encodes the interface of each algebraic type
→ Template parameter makes interface mathematically safe at compile-time
→ Polys automatically decide algebraic type (superclass) based on ground ring

1 template <class Derived >
2 class BPASRing { Derived add( Derived x, Derived y) };
3
4 template <class Derived >
5 class BPASEuclideanDomain : BPASGCDDomain <Derived >;
6
7 class Integer : BPASEuclideanDomain <Integer >;
8
9 template <class Ring , Deriverd >

10 class Polynomial : conditional < is_base_of <Ring , BPASField <Ring >,
BPASEuclideanDomain <Dervied >, BPASRing <Derived > >;

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 3 / 7



C++ Templates for a Dynamic, Friendly Interface [5]
Motivation: encode the algebraic hierarchy as a class hierarchy for ease-of-use

field ⊂ Euclidean domain ⊂ GCD domain ⊂ integral domain ⊂ ring
Goal: maintain strict object type safety and mathematical type safety.
→ via polymorphism, a simple hierarchy has no mathematical type safety
→ e.g. Z⇑17Z, Q(︀𝑥⌋︀ are both Euclidean domains, but incompatible.

Solution: curiously recurring template pattern, template metaprogramming
→ Abstract class hierarchy encodes the interface of each algebraic type
→ Template parameter makes interface mathematically safe at compile-time
→ Polys automatically decide algebraic type (superclass) based on ground ring

1 template <class Derived >
2 class BPASRing { Derived add( Derived x, Derived y) };
3
4 template <class Derived >
5 class BPASEuclideanDomain : BPASGCDDomain <Derived >;
6
7 class Integer : BPASEuclideanDomain <Integer >;
8
9 template <class Ring , Deriverd >

10 class Polynomial : conditional < is_base_of <Ring , BPASField <Ring >,
BPASEuclideanDomain <Dervied >, BPASRing <Derived > >;

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 3 / 7



Sparse Multivariate Polynomial Arithmetic [3]
Goal: highly efficient operations on multivariate polynomials to underlie
polynomial system solving, regular chains, triangular decomposition

Solution: “Alternating Array” for Q(︀𝑋⌋︀, Z(︀𝑋⌋︀ using exponent packing
→ per term data locality (cf. separate locality for coefficients and monomials)
→ optimizes Monagan’s heap arithmetic [9]; extends to pseudo-division & n.f.
→ dynamic unpacking (unpublished) supports unlimited variables (cf. 31 in [9])

13𝑥2𝑦3𝑧2
+ 5𝑥2𝑦 + 7𝑦3𝑧 + 11𝑦𝑧4 := 13 2⋃︀3⋃︀2 5 2⋃︀1⋃︀0 7 0⋃︀3⋃︀1 11 0⋃︀1⋃︀4

Term 1 Term 2 Term 3 Term 4

2,000 4,000 6,000 8,000
0

20

40

200 400 600 800
10−4

10−2

100
Maple, 200
Maple, 100
Maple, 50
BPAS, 200
BPAS, 100
BPAS, 50

Z(︀𝑋1, . . . , 𝑋5⌋︀ multiplication and Euclidean division (time (s) vs number of terms; varying sparsity)

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 4 / 7



Sparse Multivariate Polynomial Arithmetic [3]
Goal: highly efficient operations on multivariate polynomials to underlie
polynomial system solving, regular chains, triangular decomposition

Solution: “Alternating Array” for Q(︀𝑋⌋︀, Z(︀𝑋⌋︀ using exponent packing
→ per term data locality (cf. separate locality for coefficients and monomials)
→ optimizes Monagan’s heap arithmetic [9]; extends to pseudo-division & n.f.
→ dynamic unpacking (unpublished) supports unlimited variables (cf. 31 in [9])

13𝑥2𝑦3𝑧2
+ 5𝑥2𝑦 + 7𝑦3𝑧 + 11𝑦𝑧4 := 13 2⋃︀3⋃︀2 5 2⋃︀1⋃︀0 7 0⋃︀3⋃︀1 11 0⋃︀1⋃︀4

Term 1 Term 2 Term 3 Term 4

2,000 4,000 6,000 8,000
0

20

40

200 400 600 800
10−4

10−2

100
Maple, 200
Maple, 100
Maple, 50
BPAS, 200
BPAS, 100
BPAS, 50

Z(︀𝑋1, . . . , 𝑋5⌋︀ multiplication and Euclidean division (time (s) vs number of terms; varying sparsity)

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 4 / 7



Sparse Multivariate Polynomial Arithmetic [3]
Goal: highly efficient operations on multivariate polynomials to underlie
polynomial system solving, regular chains, triangular decomposition

Solution: “Alternating Array” for Q(︀𝑋⌋︀, Z(︀𝑋⌋︀ using exponent packing
→ per term data locality (cf. separate locality for coefficients and monomials)
→ optimizes Monagan’s heap arithmetic [9]; extends to pseudo-division & n.f.
→ dynamic unpacking (unpublished) supports unlimited variables (cf. 31 in [9])

13𝑥2𝑦3𝑧2
+ 5𝑥2𝑦 + 7𝑦3𝑧 + 11𝑦𝑧4 := 13 2⋃︀3⋃︀2 5 2⋃︀1⋃︀0 7 0⋃︀3⋃︀1 11 0⋃︀1⋃︀4

Term 1 Term 2 Term 3 Term 4

2,000 4,000 6,000 8,000
0

20

40

200 400 600 800
10−4

10−2

100
Maple, 200
Maple, 100
Maple, 50
BPAS, 200
BPAS, 100
BPAS, 50

Z(︀𝑋1, . . . , 𝑋5⌋︀ multiplication and Euclidean division (time (s) vs number of terms; varying sparsity)

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 4 / 7



Parallel Triangular Decompositions [2]
Goal: parallelism in triangular decomposition despite geometric problems

Solution: exploit as much as is available
→ Coarse-grained: parallel calls intersects

on independent components.
→ Fine-grained: asynchronous generators

form a pipeline among subroutines.
→ DnC: removal of redundant components

Triangularize

RRCIntersect

IntersectFree

CleanChain
Intersect
AlgebraicRegularize

RegularGCD
Extend

Speed-up vs Serial runtime for 800+ systems

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 5 / 7



Parallel Triangular Decompositions [2]
Goal: parallelism in triangular decomposition despite geometric problems

Solution: exploit as much as is available
→ Coarse-grained: parallel calls intersects

on independent components.
→ Fine-grained: asynchronous generators

form a pipeline among subroutines.
→ DnC: removal of redundant components

Triangularize

RRCIntersect

IntersectFree

CleanChain
Intersect
AlgebraicRegularize

RegularGCD
Extend

Speed-up vs Serial runtime for 800+ systems

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 5 / 7



Parallel Triangular Decompositions [2]
Goal: parallelism in triangular decomposition despite geometric problems

Solution: exploit as much as is available
→ Coarse-grained: parallel calls intersects

on independent components.
→ Fine-grained: asynchronous generators

form a pipeline among subroutines.
→ DnC: removal of redundant components

Triangularize

RRCIntersect

IntersectFree

CleanChain
Intersect
AlgebraicRegularize

RegularGCD
Extend

Speed-up vs Serial runtime for 800+ systems

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 5 / 7



Lazy Multivariate Power Series [4]
Goal: efficient multivariate power series and univar. polynomials over PS

Solution: a lazy design in C (compiled vs. scripting like Maple)
→ PS stored as dense array of homogeneous parts and a function pointer
→ PS hold “ancestors” to call ancestor generator in its own generator
→ Supports lazy Weierstrass preparation and lazy factorization via

Hensel’s lemma. Factors are returned immediately and can be
updated dynamically, without any re-computation.

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 6 / 7



Lazy Multivariate Power Series [4]
Goal: efficient multivariate power series and univar. polynomials over PS

Solution: a lazy design in C (compiled vs. scripting like Maple)

→ PS stored as dense array of homogeneous parts and a function pointer
→ PS hold “ancestors” to call ancestor generator in its own generator
→ Supports lazy Weierstrass preparation and lazy factorization via

Hensel’s lemma. Factors are returned immediately and can be
updated dynamically, without any re-computation.

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 6 / 7



Lazy Multivariate Power Series [4]
Goal: efficient multivariate power series and univar. polynomials over PS

Solution: a lazy design in C (compiled vs. scripting like Maple)
→ PS stored as dense array of homogeneous parts and a function pointer
→ PS hold “ancestors” to call ancestor generator in its own generator

→ Supports lazy Weierstrass preparation and lazy factorization via
Hensel’s lemma. Factors are returned immediately and can be
updated dynamically, without any re-computation.

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 6 / 7



Lazy Multivariate Power Series [4]
Goal: efficient multivariate power series and univar. polynomials over PS

Solution: a lazy design in C (compiled vs. scripting like Maple)
→ PS stored as dense array of homogeneous parts and a function pointer
→ PS hold “ancestors” to call ancestor generator in its own generator
→ Supports lazy Weierstrass preparation and lazy factorization via

Hensel’s lemma. Factors are returned immediately and can be
updated dynamically, without any re-computation.

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 6 / 7



Lazy Multivariate Power Series [4]
Goal: efficient multivariate power series and univar. polynomials over PS

Solution: a lazy design in C (compiled vs. scripting like Maple)
→ PS stored as dense array of homogeneous parts and a function pointer
→ PS hold “ancestors” to call ancestor generator in its own generator
→ Supports lazy Weierstrass preparation and lazy factorization via

Hensel’s lemma. Factors are returned immediately and can be
updated dynamically, without any re-computation.

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 6 / 7



References
[1] M. Asadi, A. Brandt, C. Chen, S. Covanov, M. Kazemi, F. Mansouri, D. Mohajerani,

R. H. C. Moir, M. Moreno Maza, D. Talaashrafi, L. Wang, N. Xie, and Y. Xie. Basic
Polynomial Algebra Subprograms (BPAS). http://www.bpaslib.org. 2020.

[2] M. Asadi, A. Brandt, R. H. C. Moir, M. Moreno Maza, and Y. X. “On the Parallelization
of Triangular Decomposition of Polynomial Systems”. In: ISSAC 2020, Proceedings. (to
appear). 2020.

[3] M. Asadi, A. Brandt, R. H. C. Moir, and M. Moreno Maza. “Algorithms and Data
Structures for Sparse Polynomial Arithmetic”. In: Mathematics 7.5 (2019), p. 441.

[4] A. Brandt, M. Kazemi, and M. Moreno Maza. “Power Series Arithmetic with the BPAS
Library”. In: CASC 2020. (submitted). 2020.

[5] A. Brandt, R. H. C. Moir, and M. Moreno Maza. “Employing C++ Templates in the
Design of a Computer Algebra Library”. In: Mathematical Software – ICMS 2020. (to
appear). 2020.

[6] C. Chen, S. Covanov, F. Mansouri, M. Moreno Maza, N. Xie, and Y. Xie. “The Basic
Polynomial Algebra Subprograms”. In: ICMS 2014, Proceedings. 2014, pp. 669–676.

[7] S. Covanov, D. Mohajerani, M. Moreno Maza, and L. Wang. “Big Prime Field FFT on
Multi-core Processors”. In: ISSAC 2019, Proceedings. 2019, pp. 106–113.

[8] R.-J. Jing, M. Moreno Maza, and D. Talaashrafi. “Complexity Estimates for
Fourier-Motzkin Elimination”. In: CASC 2020. (submitted). 2020.

[9] M. B. Monagan and R. Pearce. “Sparse polynomial division using a heap”. In: J. Symb.
Comput. 46.7 (2011), pp. 807–822.

Alexander Brandt What’s new in BPAS? Friday June 19, 2020 7 / 7

http://www.bpaslib.org

