What's new in BPAS?

M. Asadi, A. Brandt, R.-J. Jing, M. Kazemi, D. Mohajerani, R.H.C. Moir, M. Moreno Maza, D. Talaashrafi, L. Wang

Ontario Research Center for Computer Algebra
Department of Computer Science
University of Western Ontario, Canada
Friday June 19, 2020

The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
\rightarrow High performance: core implementation in C, data locality, parallelism
\rightarrow Easy to use: "Dynamic" Object-Oriented interface in C++ [5]

The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
\rightarrow High performance: core implementation in C, data locality, parallelism
\rightarrow Easy to use: "Dynamic" Object-Oriented interface in C++ [5]
Supported operations include:
■ FFTs, integer polynomial multiplication, modular dense polynomial arithmetic, real root isolation (old news, see [6])

The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
\rightarrow High performance: core implementation in C, data locality, parallelism
\rightarrow Easy to use: "Dynamic" Object-Oriented interface in C++ [5]
Supported operations include:
■ FFTs, integer polynomial multiplication, modular dense polynomial arithmetic, real root isolation (old news, see [6])
■ Big FFTs: Efficient and parallel FFTs over large characteristic [7]

The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
\rightarrow High performance: core implementation in C, data locality, parallelism
\rightarrow Easy to use: "Dynamic" Object-Oriented interface in C++ [5]
Supported operations include:
■ FFTs, integer polynomial multiplication, modular dense polynomial arithmetic, real root isolation (old news, see [6])

- Big FFTs: Efficient and parallel FFTs over large characteristic [7]
- Sparse polynomial arithmetic, pseudo-division, normal form [3]

The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
\rightarrow High performance: core implementation in C, data locality, parallelism
\rightarrow Easy to use: "Dynamic" Object-Oriented interface in C++ [5]
Supported operations include:
■ FFTs, integer polynomial multiplication, modular dense polynomial arithmetic, real root isolation (old news, see [6])

- Big FFTs: Efficient and parallel FFTs over large characteristic [7]
- Sparse polynomial arithmetic, pseudo-division, normal form [3]
- Triangular decomposition via regular chains [2]

The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
\rightarrow High performance: core implementation in C, data locality, parallelism
\rightarrow Easy to use: "Dynamic" Object-Oriented interface in C++ [5]
Supported operations include:

- FFTs, integer polynomial multiplication, modular dense polynomial arithmetic, real root isolation (old news, see [6])
- Big FFTs: Efficient and parallel FFTs over large characteristic [7]
- Sparse polynomial arithmetic, pseudo-division, normal form [3]
- Triangular decomposition via regular chains [2]
- Lazy multivariate power series, Weierstrass preparation, factorization via Hensel's lemma [4]

The BPAS Library

BPAS [1] provides high-performance polynomial algebra.
\rightarrow High performance: core implementation in C, data locality, parallelism
\rightarrow Easy to use: "Dynamic" Object-Oriented interface in C++ [5]
Supported operations include:
■ FFTs, integer polynomial multiplication, modular dense polynomial arithmetic, real root isolation (old news, see [6])

- Big FFTs: Efficient and parallel FFTs over large characteristic [7]
- Sparse polynomial arithmetic, pseudo-division, normal form [3]
- Triangular decomposition via regular chains [2]
- Lazy multivariate power series, Weierstrass preparation, factorization via Hensel's lemma [4]
- Fourier-Motzkin elimination: new algorithm, complexity measures [8]

C++ Templates for a Dynamic, Friendly Interface [5]

Motivation: encode the algebraic hierarchy as a class hierarchy for ease-of-use field \subset Euclidean domain \subset GCD domain \subset integral domain \subset ring

C++ Templates for a Dynamic, Friendly Interface [5]

Motivation: encode the algebraic hierarchy as a class hierarchy for ease-of-use
field \subset Euclidean domain \subset GCD domain \subset integral domain \subset ring
Goal: maintain strict object type safety and mathematical type safety.
\rightarrow via polymorphism, a simple hierarchy has no mathematical type safety
\rightarrow e.g. $\mathbb{Z} / 17 \mathbb{Z}, \mathbb{Q}[x]$ are both Euclidean domains, but incompatible.

C++ Templates for a Dynamic, Friendly Interface [5]

Motivation: encode the algebraic hierarchy as a class hierarchy for ease-of-use field \subset Euclidean domain \subset GCD domain \subset integral domain \subset ring

Goal: maintain strict object type safety and mathematical type safety.
\rightarrow via polymorphism, a simple hierarchy has no mathematical type safety
\rightarrow e.g. $\mathbb{Z} / 17 \mathbb{Z}, \mathbb{Q}[x]$ are both Euclidean domains, but incompatible.
Solution: curiously recurring template pattern, template metaprogramming
\rightarrow Abstract class hierarchy encodes the interface of each algebraic type
\rightarrow Template parameter makes interface mathematically safe at compile-time
\rightarrow Polys automatically decide algebraic type (superclass) based on ground ring

```
template <class Derived>
class BPASRing { Derived add(Derived x, Derived y) };
template <class Derived>
class BPASEuclideanDomain : BPASGCDDomain<Derived>;
class Integer : BPASEuclideanDomain<Integer>;
template <class Ring, Deriverd>
class Polynomial : conditional< is_base_of<Ring, BPASField<Ring>,
    BPASEuclideanDomain<Dervied>, BPASRing<Derived> >;
```


Sparse Multivariate Polynomial Arithmetic [3]

Goal: highly efficient operations on multivariate polynomials to underlie polynomial system solving, regular chains, triangular decomposition

Sparse Multivariate Polynomial Arithmetic [3]

Goal: highly efficient operations on multivariate polynomials to underlie polynomial system solving, regular chains, triangular decomposition

Solution: "Alternating Array" for $\mathbb{Q}[\underline{X}], \mathbb{Z}[\underline{X}]$ using exponent packing
\rightarrow per term data locality (cf. separate locality for coefficients and monomials)
\rightarrow optimizes Monagan's heap arithmetic [9]; extends to pseudo-division \& n.f.
\rightarrow dynamic unpacking (unpublished) supports unlimited variables (cf. 31 in [9])

Sparse Multivariate Polynomial Arithmetic [3]

Goal: highly efficient operations on multivariate polynomials to underlie polynomial system solving, regular chains, triangular decomposition

Solution: "Alternating Array" for $\mathbb{Q}[\underline{X}], \mathbb{Z}[\underline{X}]$ using exponent packing
\rightarrow per term data locality (cf. separate locality for coefficients and monomials)
\rightarrow optimizes Monagan's heap arithmetic [9]; extends to pseudo-division \& n.f.
\rightarrow dynamic unpacking (unpublished) supports unlimited variables (cf. 31 in [9])

$13 x^{2} y^{3} z^{2}+5 x^{2} y+7 y^{3} z+11 y z^{4}:=\underbrace{$| 13 | $2\|3\| 2$ | 5 | $2\|1\| 0$ | 7 | $0\|3\| 1$ | 11 | $0\|1\| 4$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Term 2 | | | | | | | |}$_{\text {Term 1 }} \underbrace{\text { Term 4 }}_{\text {Term 3 }}$

$\mathbb{Z}\left[X_{1}, \ldots, X_{5}\right]$ multiplication and Euclidean division (time (s) vs number of terms; varying sparsity)

[^0]
Parallel Triangular Decompositions [2]

Goal: parallelism in triangular decomposition despite geometric problems

Parallel Triangular Decompositions [2]

Goal: parallelism in triangular decomposition despite geometric problems
Solution: exploit as much as is available
\rightarrow Coarse-grained: parallel calls intersects on independent components.
\rightarrow Fine-grained: asynchronous generators form a pipeline among subroutines.
\rightarrow DnC: removal of redundant components

Parallel Triangular Decompositions [2]

Goal: parallelism in triangular decomposition despite geometric problems
Solution: exploit as much as is available
\rightarrow Coarse-grained: parallel calls intersects on independent components.
\rightarrow Fine-grained: asynchronous generators form a pipeline among subroutines.
\rightarrow DnC: removal of redundant components

Sys3295 Component Tree

Lazy Multivariate Power Series [4]

Goal: efficient multivariate power series and univar. polynomials over PS

Lazy Multivariate Power Series [4]

Goal: efficient multivariate power series and univar. polynomials over PS
Solution: a lazy design in C (compiled vs. scripting like Maple)

Lazy Multivariate Power Series [4]

Goal: efficient multivariate power series and univar. polynomials over PS
Solution: a lazy design in C (compiled vs. scripting like Maple)
\rightarrow PS stored as dense array of homogeneous parts and a function pointer
\rightarrow PS hold "ancestors" to call ancestor generator in its own generator

Lazy Multivariate Power Series [4]

Goal: efficient multivariate power series and univar. polynomials over PS
Solution: a lazy design in C (compiled vs. scripting like Maple)
\rightarrow PS stored as dense array of homogeneous parts and a function pointer
\rightarrow PS hold "ancestors" to call ancestor generator in its own generator
\rightarrow Supports lazy Weierstrass preparation and lazy factorization via Hensel's lemma. Factors are returned immediately and can be updated dynamically, without any re-computation.

Lazy Multivariate Power Series [4]

Goal: efficient multivariate power series and univar. polynomials over PS
Solution: a lazy design in C (compiled vs. scripting like Maple)
\rightarrow PS stored as dense array of homogeneous parts and a function pointer
\rightarrow PS hold "ancestors" to call ancestor generator in its own generator
\rightarrow Supports lazy Weierstrass preparation and lazy factorization via Hensel's lemma. Factors are returned immediately and can be updated dynamically, without any re-computation.

References

[1] M. Asadi, A. Brandt, C. Chen, S. Covanov, M. Kazemi, F. Mansouri, D. Mohajerani, R. H. C. Moir, M. Moreno Maza, D. Talaashrafi, L. Wang, N. Xie, and Y. Xie. Basic Polynomial Algebra Subprograms (BPAS). http://www.bpaslib.org. 2020.
[2] M. Asadi, A. Brandt, R. H. C. Moir, M. Moreno Maza, and Y. X. "On the Parallelization of Triangular Decomposition of Polynomial Systems". In: ISSAC 2020, Proceedings. (to appear). 2020.
[3] M. Asadi, A. Brandt, R. H. C. Moir, and M. Moreno Maza. "Algorithms and Data Structures for Sparse Polynomial Arithmetic". In: Mathematics 7.5 (2019), p. 441.
[4] A. Brandt, M. Kazemi, and M. Moreno Maza. "Power Series Arithmetic with the BPAS Library". In: CASC 2020. (submitted). 2020.
[5] A. Brandt, R. H. C. Moir, and M. Moreno Maza. "Employing C++ Templates in the Design of a Computer Algebra Library". In: Mathematical Software - ICMS 2020. (to appear). 2020.
[6] C. Chen, S. Covanov, F. Mansouri, M. Moreno Maza, N. Xie, and Y. Xie. "The Basic Polynomial Algebra Subprograms". In: ICMS 2014, Proceedings. 2014, pp. 669-676.
[7] S. Covanov, D. Mohajerani, M. Moreno Maza, and L. Wang. "Big Prime Field FFT on Multi-core Processors". In: ISSAC 2019, Proceedings. 2019, pp. 106-113.
[8] R.-J. Jing, M. Moreno Maza, and D. Talaashrafi. "Complexity Estimates for Fourier-Motzkin Elimination". In: CASC 2020. (submitted). 2020.
[9] M. B. Monagan and R. Pearce. "Sparse polynomial division using a heap". In: J. Symb. Comput. 46.7 (2011), pp. 807-822.

[^0]:

