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Preface

This note is part of my project on “Differentiable Manifolds and Forms, de Rham
Cohomology” that I delivered on the January, 15 2021.

I have tried to provide a very “generalized” theory of the real manifolds (but almost
all the theory follows in the complex case with necessary changes) and covered almost
all background knowledge that would be required to understand about differential
forms and de Rham cohomology without any difficulty. There are 3 propositions in
this notes, for which I have intentionally skipped the proof, because understanding
the proof requires sophisticated techniques which we are not going to explore in this
note. I have also tried to make this note error-free to the best of my ability. But if
you notice any error or any inconsistency, please let me know.

Lastly, thank you for choosing to read my note. I hope you will enjoy it :)

Chirantan Mukherjee
c.mukherjee@student.uw.edu.pl
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1 Manifold

1.1 Topological Manifold

We first introduce the model space in the real case.

Definition 1.1. A topological manifold with boundary of dimension n is a

topological space M which:

1. is locally homeomorphic to Rn
± i.e. ∀p ∈ M, ∃U(p) open and p ∈ U(p) such

that U(p) ∼= V ⊂open Rn
±

2. is Hausdorff

3. is connected

4. is second countable

NOTE: The symbol Rn
± means: Rn = {(x1, . . . , xn) ∈ Rn}, Rn

+ = {(x1, . . . , xn) ∈
Rn | xn ≥ 0}, Rn

− = {(x1, . . . , xn) ∈ Rn | xn ≤ 0}.

Example 1. Every open set of Rn
± is a topological manifold with boundary. We can

choose an atlas which consists of only one coordinate chart U = Rn
±, and ϕ = Id.

Definition 1.2. A chart (U,ϕ) on M is given by an open set U ⊂ M and an

homeomorphism ϕ : U → D, onto an open set D of Rm
± .
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While using a paper map, we have to move from one map to another. To follow

our path we need to find the coordinates, in both maps, of the same point of our

position in that moment. The way to do so, is the following:

Definition 1.3. For every ordered pair of charts (Uα, ϕα) and (Uβ, ϕβ), the set of

{ϕαβ} is the set of transition functions, ϕαβ := ϕα ◦ ϕ−1β ,

i.e. ϕαβ = ϕα |Uα∩Uβ ◦ϕ−1β |ϕβ(Uα∩Uβ)
ϕαβ : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ).

Definition 1.4. An atlas for a topological spaceM is a family of charts {Uα, ϕα}α∈I
on M such that

⋃
α∈I Uα = M and all transition functions ϕαβ := ϕα ◦ ϕ−1β are

smooth.

The transition function satisfies the following cocylce conditions:

1. ∀α ∈ I, ϕαα = Id

2. ∀α, β ∈ I, ϕαβ = ϕ−1βα

3. ∀α, β, γ ∈ I, ϕαβ ◦ ϕβγ = ϕαγ

Example 2. Let M = Rn and take U = M with ϕ = Id. We could also take M
to be any open set in Rn.

A chart allows to use the coordinates of Rn to identify a point of the mapped object

U of the manifold M.

From now on we will denote by ui the i-th coordinate function on Rn



1 MANIFOLD 3

ui : Rn → R
(w1, . . . , wn)→ wi.

Each chart (U,ϕ) induces local coordinates (x1, . . . , xn) defined by

xi := ui ◦ ϕ : U → R.

Example 3. S1 = {(x, y) ∈ R | x2 + y2 = 1}
U0 = S1 \N and ϕ0 : U0 → R
U1 = S1 \N and ϕ1 : U1 → R
transition function ϕ01 is C∞.

Example 4. Sn = {(x0, . . . , xn) | Σi=n
i=0xi = 1}

where north pole N = (1, . . . , 0) and south pole S = (−1, . . . , 0)

charts U0 = Sn \N and U1 = Sn \ S
and stereographic projections ϕ0 : U0 → Rn is an isomorphism and ϕ1 : U1 → Rn is

an isomorphism.

Definition 1.5. A chart (V, ψ) is compatible with an atlas {(Uα, ϕα)}α∈I if

{(Uα, ϕα)}α∈I
⋃
{V, ψ} is still an atlas.

Similarly, two atlases {(Uα, ϕα)}α∈I and {(Vβ, ψβ)}β∈I′ are said to be compatible

if {(Uα, ϕα)}α∈I
⋃
{(Vβ, ψβ))}β∈I′ is still an atlas.

Two atlases are said to be equivalent if their union is also an atlas.

1.2 Differentiable Manifold

Definition 1.6. A differentiable structure on M is an equivalence class of at-

lases.

Definition 1.7. An differentiable manifold is a topological manifold M with a

differentiable structure.
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Example 5. All the examples in the last section are also examples of an differen-

tiable manifold.

Example 6. The n-dimensional real projective space Pn
R := P(Rn+1).

We say that a point p ∈ PnR has homogeneous coordinates (x0 : . . . : xn) if p is the

class of points (x0, . . . , xn) ⊂ Rn+1.

Note that every point can be represented by infinitely many different coordinates

pairwise related by the multiplication of a scalar. However,

1. The open set Uj := {xj 6= 0} is well defined ∀j.

2. The maps ϕj : Uj → Rn defined by,

ϕj(x0 : . . . : xn) = (x0
xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . , xn

xj
)

are well defined.

3. (Uj, ϕj) is an atlas for PnR.

P1
R P2

R

Definition 1.8. Let U be an open set of Rn
±. A function F : U → Rm is smooth if

there is an open set V ⊂ Rn with V ∩ Rn
± = U and a smooth function G : V → Rm

which extends F , i.e. such that G |U= F .

Definition 1.9. Let M be a manifold with atlas {(Uα, ϕα)}α∈I and N a manifold

with atlas {(Vβ, ψβ)}β∈I′.
A function f : M→N is smooth in a point p ∈M if, given a chart {(Uα, ϕα)}α∈I
with p ∈ Uα, and a chart {(Vβ, ψβ)}β∈I′ with f(p) ∈ Vβ,the function ψβ ◦ f ◦ ϕ−1β is

smooth.

Example 7. An important example of C∞ functions is a bump function on a

manifold M. More precisely, for any open sets U, V ⊂ M with U compact and
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U ⊂ V , there exists some f ∈ C∞(M), such that

f(x) =

1 x ∈ U,

0 q /∈ V.

Example 8. The natural projection π1 : M×N →M and π2 : M×N → N given

by π1(x, y) 7→ x and π2 : (x, y) 7→ y are smooth maps.

Example 9. Another important example of C∞ maps is a smooth curve on a

manifold M a C∞ map from some open interval I ⊂ R to M.

Definition 1.10. A diffeomorphism is a smooth function which is invertible and

whose inverse function is also smooth.

Example 10. Consider N = R with atlas (R, ϕ(p) = p), and M = R with at-

las (R, ψ(q) = q3). Clearly these define different differentiable structures (non-

compatible charts). Between N andM we consider the mapping f(p) = p
1
3 , which is

a homeomorphism between N andM. The claim is that f is also a diffeomorphism.

Take U = V = R, then ψ ◦ f ◦ ϕ−1(p) = ((p
1
3 )3) = p is the identity and thus C∞ on

R, and the same for ϕ ◦ f−1 ◦ ψ−1(q) = ((q3)
1
3 ) = q. The associated differentiable

structures are diffeomorphic. In fact the above described differentiable structures

correspond to defining the differential quotient via limh→0
f 3(p+ h)− f 3(p)

h
.



2 Forms

2.1 Tensor Algebra

In this section we develop some tools in advanced linear algebra.

Let V1, . . . , Vq be finite dimensional vector spaces over a field K of characteristic 0;

this includes R and C.

Definition 2.1. A map ω : V1×. . .×Vq → K. is multilinear or q-linear or tensor

of degree q if the following holds: ∀i ∈ {1, . . . , q} and ∀j 6= i of vectors vj ∈ Vj
the induced map ψ : Vi → K defined by ∀vi ∈ Vi, ψ(v) = (v1 . . . , vi−1, v, vi+1, . . . , vq)

is linear.

Example 11. The tensors of degree 1 form the dual space V ∗1 of V1.

Example 12. The tensors of degree 2 are bilinear maps as:

ω : V ×W → R
ω(λv1 + µv2, w) = λω(v1, w) + µω(v2, w)

ω(v, λw1 + µw2) = λω(v, w1) + µω(v, w2)

λ and µ are scalars in K.

Example 13. For every n ≥ 1 the map det : (Rn)n → R associating, to each ordered

list of n vectors in Rn, the determinant of the matrix whose columns are them, in

the same order is a tensor of degree n.

Definition 2.2. The space of multilinear maps from V1 × V2 × . . . Vq to K is a

vector space, which is the tensor product of V ∗1 , V
∗
2 , . . . , V

∗
q and is denoted by

V ∗1 ⊗ V ∗2 ⊗ . . .⊗ V ∗q .

Definition 2.3. Choose ∀i, 1 ≤ i ≤ q, an element ϕi ∈ V ∗i
Then define ϕ1 ⊗ . . .⊗ ϕq by

ϕ1 ⊗ . . .⊗ ϕq(v1, . . . , vq) = ϕ1(v1) · ϕ2(v2) · . . . · ϕq(vq).

These are the decomposable tensors in V ∗1 ⊗ V ∗2 ⊗ . . .⊗ V ∗q .

NOTE: If V1 = V2 = . . . = Vq =: V then we write (V ∗)⊗q := V ∗1 ⊗ V ∗2 ⊗ . . . ⊗ V ∗q
for short.

Definition 2.4. A tensor ω ∈ (V ∗)⊗q

1. is symmetric if ∀i 6= j,

ω(. . . , vi, . . . , vj, . . .) = ω(. . . , vj, . . . , vi, . . .)

The symmetric tensors form a vector subspace of (V ∗)⊗q usually denoted SymqV ∗
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2. is alternating or skew if ∀i 6= j,

ω(. . . , vi, . . . , vj, . . .) = −ω(. . . , vj, . . . , vi, . . .)

The skew tensors form a vector subspace of (V ∗)⊗q usually denoted ΛqV ∗

NOTE: We will concentrate only on skew tensors ΛqV ∗ in this project!

1. SymqV ∗
⋂

ΛqV ∗ = {0}, ∀q ≥ 2

2. Sym0V ∗ = K = Λ0V ∗

3. Sym1V ∗ = V ∗ = Λ1V ∗

Definition 2.5. ∀ϕ1, ϕ2 ∈ V ∗, and v1, v2 ∈ V we define the wedge product,

ϕ1 ∧ ϕ2 = 1
2
(ϕ1 ⊗ ϕ2 − ϕ2 ⊗ ϕ1) ∈ Λ2V ∗ as,

∧ : Λ1V ∗ × Λ1V ∗ → Λ2V ∗

(ϕ1, ϕ2) 7→ ϕ ∧ ϕ2

where,

ϕ ∧ ϕ2 : V × V → K

(v1, v2) 7→ 1
2
det

(
ϕ1(v1) ϕ1(v2)

ϕ2(v1) ϕ2(v2)

)

There is a natural extension of this idea to the ΛqV ∗.

Definition 2.6. We define the wedge product as

∧ : Λq1V ∗ × Λq2V ∗ → Λq1+q2V ∗

(ω1, ω2) 7→ ω ∧ ω2

where,

ω1 ∧ ω2 : V q1 × V q2 → K
(v1, . . . , vq1+q2) 7→

1

(q1 + q2)!

∑
σ∈Σq1+q2

ε(σ)ω1(vσ(1), . . . , vσ(q1))ω2(vσ(q1+1), . . . , vσ(q1+q2))

where
∑

k is the group of permutation of {1, . . . k} and ε(σ) ∈ {±1} is the sign of

permutation.

Proposition 1. Assume ϕ1, . . . , ϕq ∈ V ∗

Then, ϕ1 ∧ . . . ∧ ϕq(v1, . . . , vq) =
1

q!

∑
σ∈

∑
q

ε(σ)

q∏
i=1

ϕi(vσ(i)) =
1

q!
det(ϕi(vj))

where, ϕi(vj) denotes the matrix,
ϕ1(v1) . . . ϕ1(vq)

...
. . .

...

ϕq(v1) . . . ϕq(vq)

.
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Definition 2.7. A graded vector space V • is a vector space containing subspaces

V q, q ∈ Z such that V • :=
⊕

q V
q.

An element v ∈ V q is a homogeneous element of degree q.

Definition 2.8. The exterior algebra or Grassmann algebra is the graded al-

gebra Λ•V ∗ :=
⊕

q≥0 ΛqV ∗ considered with the internal product given by the wedge

product.

2.2 Fibre Bundles

Definition 2.9. Let F and B be topological spaces.

A fibre bundle over a base B with fibre F is a pair (E, π) where E is a topological

space, the total space, and π : E → B is a continuous map, the projection, such

that there exists an open cover {Uα}α∈I, and homeomorphism ϕα : E |Uα := π1(Uα)→
Uα × F such that the diagram commutes.

π−1Uα =: E |Uα Uα × F

Uα

ϕα

π
π1

The set {ϕα : E |Uα→ Uα × F}α∈I is called a trivialization of the bundle.
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Example 14. The trivial bundle is the product of topological spaces, with the

projection on one factor: E := B × F , π = π1 : B × F → B the map π(b, f) = b.

Another example from the theory of topological coverings,

Example 15. Fix d ∈ N and take E = B = S1 := {(cos θ, sin θ)} ⊂ R2 and

π : E → B defined by π(cos θ, sin θ) = (cos dθ, sin dθ). This is a fibre bundle with

fibre a discrete set of cardinality d.

Definition 2.10. For every ordered pair of charts (Uα, ϕα) and (Uβ, ϕβ), the set of

{ϕαβ} is the set of transition functions of the fibre bundles, ϕαβ := ϕα ◦ ϕ−1β =

(Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F .

They are of the form ϕαβ(p, f) = (p, gαβ(p)(f)) for some transition function gαβ : (Uα∩
Uβ)→ Aut(F ).

The transition function gαβ satisfies the following cocylce conditions:

1. ∀α ∈ I,∀p ∈ Uα, gαα(p) = IdF
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2. ∀α, β ∈ I,∀p ∈ Uα ∩ Uβ, gαβ(p) = g−1βα(p)

3. ∀α, β, γ ∈ I,∀p ∈ Uα ∩ Uβ ∩ Uγ, gαβ(p) ◦ gβγ(p) = gαγ(p)

Definition 2.11. Let π : E → B be a fibre bundle. A section of E is a continuous

map s : B → E such that π ◦ s = IdB.

Example 16. The zero section is a mapping s : B → E such that s(p) = 0 ∈ Ep
for all p ∈ B.

Definition 2.12. Let G be a subgroup of Aut(F ). A G-bundle is a fibre bundle

with fibre F admitting a trivialization whose cocycle is contained in G:

∀α, β ∈ I,∀p ∈ Uα ∩ Uβ, gαβ(p) ∈ G.

2.3 Vector Bundles and Tangent Bundles

Definition 2.13. A real vector bundle over B of rank r is a G−bundle with

fibre Rr where G is the group of the invertible linear applications GL(Rr). A line

bundle is a vector bundle of rank 1.

Example 17. The trivial vector bundle is the product of topological spaces, with

the projection on one factor: E := B×V , π = π1 : B×V → B the map π(b, f) = b,

where V is a vector space.

Proposition 2. Let B be a manifold, let U := {Uα}α ∈ I be an open cover of B,

r ∈ N. Assume we have ∀α, β ∈ I, a smooth map gαβ : Uα ∩ Uβ → GL(Rr) such

that

1. ∀α ∈ I, ∀p ∈ U, gαα(p) = Id

2. ∀α, β ∈ I, ∀p ∈ Uα ∩ Uβ, gαβ(p) = g−1βα(p)
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3. ∀α, β, γ ∈ I, ∀p ∈ Uα ∩ Uβ ∩ Uγ, gαβ(p)gβγ(p) = gαγ(p)

Then there is a unique, up to isomorphisms, real vector bundle E of rank r over B

having a trivialization with cocycle {gαβ}. Moreover E has a natural structure of

manifold such that the projection π : E → B and the zero section s0 : B → E are

smooth.

Moreover dimE = dimB + rankE = dimB + r, the differential of π is surjective at

every point and the differential of s0 is injective at every point.

We can now define the tangent bundle π : TM→M through its cocycle.

Definition 2.14. LetM be a manifold of dimension n. Choose an atlas {(Uα, ϕα)}α∈I.
Then the tangent bundle π : TM → M is the vector bundle of rank n given by

the cocycle gαβ(p) = J(ϕαβ)ϕβ(p), where J is a Jacobi matrix.

Example 18. For M = S1, the tangent bundle looks like

Definition 2.15. A vector field v of a manifold M is a section of the tangent

bundle v : M→ TM.

A vector field is smooth if it smooth among the map of manifolds.

The smooth vector fields forms the vector space X(M).

2.4 Differential Forms

We define the differential forms as sections of suitable vector bundles.

For every real manifoldM, the tangent bundle TM, which induces ∀1 ≤ q ≤ dimM,

by the theory of the vector bundles, a bundle ΛqT ∗M := Λq(TM)∗.
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Conventionally, we set Λ0T ∗M to be the trivial bundle of rank 1.

The bundle Λ1T ∗M is the cotangent bundle.

The bundle ΛdimMT ∗M is the canonical bundle.

Definition 2.16. A differential q-form on a manifold M is a map ω : M →
ΛqT ∗M such that π ◦ ω = IdM. The form is smooth if it is smooth as a map

among manifolds. The smooth q-forms form a vector space Ωq(M).

Conventionally, Ω0(M) = `∞(M), Ωq(M) = {0} for q < 0 or q > dimM,

Ω•(M) =
⊕

q∈Z Ωq(M).

Example 19. A 0−form is a section of Λ0T ∗ which by convention is just a smooth

function.

Example 20. A 1−form is a section of the cotangent bundle Λ1T ∗.

The q-forms act on X(M)q; that is we can see every q-form ω as a map ω : X(M)q →
C∞(M) as follow:

For every choice of q smooth vector fields v1, . . . , vq, ω(v1, . . . , vq) is the function

defined by ∀p, ω(v1, . . . , vq)(p) := ωp(v1(p), . . . , vq(p)).

Example 21. Consider M = R3, and use (x, y, z) to denote the canonical coordi-

nates of M

1. For a C∞ function f ,

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

2. For 1−form ω = adx+ bdy + cdz,

we have,

dω = (
∂a

∂x
dx+

∂a

∂y
dy +

∂a

∂z
dz) ∧ dx+ (

∂b

∂x
dx+

∂b

∂y
dy +

∂b

∂z
dz) ∧ dy

+(
∂c

∂x
dx+

∂c

∂y
dy +

∂c

∂z
dz) ∧ dz

= (
∂c

∂y
− ∂b

∂z
)dy ∧ dz + (

∂a

∂z
− ∂c

∂x
)dz ∧ dx+ (

∂b

∂x
− ∂a

∂y
)dx ∧ dy

3. For a 2−form,

ω = ady ∧ dz + bdz ∧ dx+ cdx ∧ dy,

we have,

dω = (
∂a

∂x
+
∂b

∂y
+
∂c

∂z
)dx ∧ dy ∧ dz



3 de Rham Cohomology

We can now define the de Rham cohomology of a real manifold.

LetM be a manifold, or a disjoint union of manifolds. Consider the graded algebra

Ω•(M) :=
⊕

q∈Z Ωq(M) and its exterior derivative (or differential), the operator of

degree 1, d : Ω•(M)→ Ω•(M).

Definition 3.1. Let ω ∈ Ω•(M), then,

1. ω is closed if dω = 0, i.e. ω ∈ Kerd

2. ω is exact if ∃η ∈ Ω•(M) such that ω = dη, i.e. ω ∈ Imd

Example 22. Let us consider the differential 1−form

ω = − y

x2 + y2
dx+

x

x2 + y2
dy

We claim that ω is a closed 1−form but not a exact 1−form. Infact let γ be a closed

curve such that

γ : [0, 2π]→ R2

θ 7→ (sin θ, cos θ)

Computing the line integral,∫
γ

ω =

∫
γ

− y

x2 + y2
dx+

x

x2 + y2
dy

=

∫ 2π

0

− sin θ

sin2 θ + cos2 θ
(− sin θ)dθ +

cos θ

sin2 θ + cos2 θ
(cos θ)dθ

=

∫ 2π

0

dt

= 2π

Since,
∫
ω 6= 0, ω is NOT exact 1−form.

On the other hand if we compute dω, we have

dω = dA ∧ dx+ dB ∧ dy,
where,

A = − y

x2 + y2
and B =

x

x2 + y2

dω = (∂A
∂x
dx+ ∂A

∂y
dy) ∧ dx+ (∂B

∂x
dx+ ∂B

∂y
dy) ∧ dy

=
∂A

∂y
dy ∧ dx+

∂B

∂x
dx ∧ dy

= −∂A
∂y

dx ∧ dy +
∂B

∂x
dx ∧ dy

= (−∂A
∂y

+
∂B

∂x
)dx ∧ dy

= 0

Thus ω is a closed 1−form.
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Proposition 3. There is a unique operator, called exterior derivative or differ-

ential d : Ω•(M)→ Ω•(M) of degree 1 such that

1. ∀f ∈ Ω0(M),∀v ∈ X(M), df(v) = v(f)

2. ∀q1, q2 ≥ 0,∀ω ∈ Ωq1(M),∀ω ∈ Ωq2(M), d(ω1 ∧ ω2) = dω1 ∧ (−1)q1ω1 ∧ dω2

3. d ◦ d = 0

If (U,ϕ) is a chart with coordinates x1, . . . , xn and on U

ω =
∑

1≤i1<...<iq≤n ωi1...iqdxi1 ∧ . . . ∧ dxiq ,
then,

dω =
∑

1≤i1<...<iq≤n

dωi1...iqdxi1 ∧ . . . ∧ dxiq ,

=
∑

1≤i1<...<iq≤n

n∑
i=1

∂ωi1...iq
∂xi

dxi1 ∧ . . . ∧ dxiq

= ϕ∗d((ϕ−1)∗ω).

By the property 2 of the last proposition, every exact form is closed.

Definition 3.2. A differential complex is a pair (V •, d) where V • =
⊕

q∈Z V
q is

a graded vector space and d : V • → V • is an operator of degree 1 such that d◦d = 0.

The last definition implies that (Ω•(M), d) is a differential complex.

Definition 3.3. If (V •, d) is a differential complex Imd ⊂ kerd and we can define

its cohomology H•d(V •) :=
kerd

Imd
.

For every ω ∈ kerd we denote by [ω] its class in H•d(V •).

H•d(V •) has a natural structure of graded vector space H•d(V •) =
⊕

q∈ZH
q
d(V •),

obtained by defining Hq
d(V •) := {[ω] ∈ H•d(V •) | ω ∈ V q}.

In particular Hq
d(V •) =

kerd |Vq
dVq−1

.

Definition 3.4. For every manifold (or disjoint union of manifolds) M the differ-

ential complex (Ω•(M), d) is the de Rham complex of M.

Its cohomology is the de Rham cohomology algebra or de Rham cohomol-

ogy ring (sometimes denoted just by de Rham cohomology for short) of M, the

graded algebra

H•DR(M) =
closed forms

exact forms
=
⊕

Hq
DR(M)
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where,

Hq
DR(M) =

closed q-forms

exact q-forms
is the qth de Rham cohomology group of M.

The algebra structure on H•DR(M) is defined by the wedge product of de Rham co-

homology classes [ω1] ∧ [ω2] := [ω1 ∧ ω2].

NOTE: Hq
DR(M), defined for all q ∈ Z, equals {0} unless 0 ≤ q ≤ dimM.

Example 23. For the n−sphere, Sn, and also when taken together with a product

of open intervals, we have the following. Let n > 0, m ≥ 0, and I be an open real

interval. Then

Hq
DR(Sn × Im) '

R q = 0 or q = n,

0 q 6= 0 and q 6= n.



4 Conclusion

de Rham cohomology is an analytical way of approaching the algebraic topology of

the manifold. It has been important in an enormous range of areas from algebraic

geometry to theoretical physics. More refined use of analysis requires extra data

on the manifold and we shall simply define and describe some basic features of

Riemannian metrics. These generalize the first fundamental form of a surface and,

in their Lorentzian guise, provide the substance of general relativity.

The importance of the theory is the introduction of the de Rham groups form a

perfect example of the interaction between analysis and topology. For instance, if

we know all about the differential forms of a manifold we can say something non-

trivial about it’s shape (is it diffeomorphic to a sphere, etc). Analogously, if we

know about the shape of a manifold we can often conclude something relevant with

respect to the functions on this manifold.
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