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Introduction

What is the Fourier-Motzkin Elimination?

Fourier-Motzkin elimination (FME) is a method to project polyhedral sets
on to lower dimensions.

This idea is similar to Gaussian elimination (GE) for
equality systems.

−2 x1 + 4 x2 − 3 x3 = 0

−13 x1 + 24 x2 − 20 x3 = 0

−26 x1 + 54 x2 − 39 x3 = 0

1 step GE−−−−−−→

−2 x1 + 4 x2 − 3 x3 = 0

0 x1 − 2 x2 − 1
2 x3 = 0

0 x1 + 2 x2 − 0 x3 = 0

3 x1 − 2 x2 + 1 x3 ≤ 7

−2 x1 + 2 x2 − 1 x3 ≤ 12

−4 x1 + 1 x2 − 3 x3 ≤ 15

1 step FME−−−−−−−→
0 x1 + 2 x2 − 1 x3 ≤ 50

0 x1 − 5 x2 − 13 x3 ≤ 73
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Introduction

Example

Eliminating t1 from

A =


a1 : 3t1 − 2t2 + t3 ≤ 7
a2 : −2t1 + 2t2 − t3 ≤ 12
a3 : −4t1 + t2 + 3t3 ≤ 15

partition(A) = {a1}, {a2, a3}
combine(a1, a2) = combine(2a1 + 3a2) = 2t2 − t3 ≤ 50
combine(a1, a3) = combine(4a1 + 3a3) = −5t2 − 13t3 ≤ 73

A′ =
{

2t2 − t3 ≤ 50
−5t2 − 13t3 ≤ 73
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Introduction

Example

Eliminating t2 from

A′ =
{

a4 : 2t2 − t3 ≤ 50
a5 : −5t2 − 13t3 ≤ 73

partition(A) = {a4}, {a5}
combine(a1, a2) = combine(5a4 + 2a5) = −31t3 ≤ 396

A′′ =
{

−31t3 ≤ 396
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Introduction

Background
FME has many applications in computer science

Scheduling
Dependence analysis (automatic parallelization)

Originally proposed by Fourier (1827) and Motzkin (1936)
Complexity: O(m2d ) due to redundant inequalities
Optimization: Removing redundant inequalities improves efficiency and
output size
Using linear programming (LP): Complexity improves to
O(d2m2dLP(d , 2dhd2md)) for a polyhedron with dimension d , m facets
and coefficient height h.

Chernikov [Ch60] and Kohler [Ko67] proposed procedures for removing
redundant inequalities based on linear algebra instead of LP. The
current implementation in Maple uses matrix arithmetic by Jing,
Moreno-Maza and Talaashrafi [JMT20].
Jing, Moreno-Maza, Xie and Yuan [JMXY24] proposed a method using
Saturation Matrix.
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Introduction

Maple Package

FME algorithm is part by PolyhedralSets and RegularChains
library.

We have three redundacycheck algorithms for doing FME based on,
1 linear-programming
2 redundancy cone, which is Maple’s default
3 saturation matrix, which will be added in Maple 2025 release and will

become the default algorithm.
Users can access it using the following functions,

1 PolyhedralSets:-Project
2 RegularChains:-FMXelim
3 RegularChains:-SemiAlgebraicSetTools:-LinearSolve
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Introduction

Definition (H-representation)
A polyhedral set P is any {x | Ax <= b}, where A ∈ Qm×n and b ∈ Qm.
Such a linear system is called an H-representation of P.

Definition (V-representation)
Let V and R denote the set of vertices and rays of P. Then, the pair
VR(F ) = (V , R) is called a V-representation of P.

Definition
P is full-dimensional whenever dim(P) = n.
P is full-dimensional iff Ax <= b has no implicit equation.
P is pointed, if A is full column rank.

NOTE: From now, P is full-dimensional and pointed.
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Introduction

Definition
To eliminate x1 from two inequalities, a1x1 + · · · + anxn ≤ d1 and
b1x1 + · · · + bnxn ≤ d2 where a1 > 0 and b1 < 0, we can multiply the first
inequality by |b1| and the second one by a1 and add:

(a2|b1| + b2a1)x2 + · · · + (an|b1| + bna1)xn ≤ |b1|d1 + a1d2.

Definition
Having a linear inequality system S with m inequalities and n variables of
the form ai1x1 + · · · + ainxn ≤ di , We can partition the inequalities in three
groups with respect to x1:

A+ set of inequalities with positive x1 coefficient.
A− set of inequalities with negative x1 coefficient.
A0 set of inequalities with zero x1 coefficient.
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Introduction

Idea

Theorem
Let A′ be the set formed by the combining each inequality in A+ with each
inequality in A− and including inequalities in A0 such that A′ does not have
x1 term. Then,

(x2, · · · , xn) ∈ Sol(A′) ⇐⇒ ∃x1 (x1, x2, · · · , xn) ∈ Sol(A)

where Sol(A) is a set of points satisfying all inequalities in A.

FME Algorithm
Select each variable in turn.
Partition inequalities into A+, A− and A0 based on the variable’s
coefficient.
Combine inequalities in A+ and A− to form the resulting union.
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Introduction

Complexity

Eliminating variable x1 from a system with m inequalities and d variables:

Partitioning inequalities by x1 coefficient is O(m).
In the worst case, the system has m

2 positive coefficients and m
2

negative coefficients.
The final system would have O(m

2 )2 inequalities.
Hence, the complexity of eliminating d variables is O(m2d ).

Improve Complexity
FME’s complexity is double exponential.
Most of these generated inequalities are redundant.
Detecting and removing them can significantly improve the complexity.
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Introduction

Definition
For a consistent system of linear inequalities F : {Ax ≤ b} representing a
polyhedron P:

An inequality ℓ : atx ≤ b in F is redundant if F \ {ℓ} still represents P.
Otherwise, ℓ is irredundant.
Strongly redundant if atx < b for all x ∈ P.
Weakly redundant if atx = b holds for some x ∈ P.
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Double Description Method

The classical Double Description Method was introduced by Motzkin,
Raiffa, Thompson and Thrall in [MRTT53].

Recall that a polyhedral cone P can be represented as
1 intersection of finitely many half-spaces, called the H-representation,

P is an H-cone, i.e., ∃ matrix A such that P = {x | Ax >= 0}

2 by its vertices and rays, called the V-representation,

P is a V-cone, i.e., ∃ matrix R such that P = {x | x = Rλ, λ >= 0}.

The DD algorithm converts one representation to another; the pair
(A, R) is called a double description pair,

Ax >= 0 ⇐⇒ x = Rλ for some λ >= 0.

We focus on the version that takes as input the H-representation of P
and returns the V-representation of P.
The most efficient variant, proposed by Fukuda and Prodon in [FP96]
is implemented in the CDD library [cdd].
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Double Description Method

Given an inequality Aix >= 0, we partition the space Qd into three regions,
H+

i = {x ∈ Qd | Aix > 0}.
H−

i = {x ∈ Qd | Aix < 0}.
H0

i = {x ∈ Qd | Aix = 0}.

Let J be the set of column indices of R. The rays rj (j ∈ J) are then
partitioned as follows,

J+ = {j ∈ J | rj ∈ H+
i }.

J− = {j ∈ J | rj ∈ H−
i }.

J0 = {j ∈ J | rj ∈ H0
i }.

Lemma
Let (AK , R) be a DD pair and let i be a row index of A not in K. Then
(AK+i , R ′) is a DD pair, where R ′ is a d × |J ′| matrix with column vectors
rj (j ∈ J ′) defined by,

J ′ = J+ ∩ J0 ∩ (J+ × J−), and
rjj′ = (Ai rj)rj′ − (Ai rj′)rj for each (j , j ′) ∈ J+ × J−.
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Double Description Method

Let P be an H-cone defined by P = {x ∈ Rd | Ax >= 0}.

Lemma (DD Pair Duality)
For any A and R, (A, R) is a DD pair ⇐⇒ (RT , AT ) is a DD pair.

Definition
The zero set of u ∈ P, denoted Z (A) is the set of row indices i such that
Aiu = 0, where Ai is the i-th row of A.

Lemma (Adjacency Test)
Two distinct rays r and r ′ of the polyhedral cone P are called adjacent if
they span a 2-dimensional face of P, that is,

Rank(AZ(r)∩Z(r ′)) = d − 2.
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Double Description Method

Algorithm 1 Double Description Method
Require: 1. a matrix A ∈ Qm×n defining the H-representation of a polyhedral cone P;

2. P is full-dimensional and pointed.
Ensure: a matrix R defining the V-representation of P.
1: Let K be the set of the indices of A’s independent rows;
2: R′ := (AK )−1;
3: Let J be the set of the columns of R′;
4: while K ̸= {1, . . . , m} do do
5: Select a A-row index i /∈ K ;
6: Set R′ to empty matrix;
7: J+, J−, J0 := Partition(J, Ai );
8: Append J+ and J0 as columns in R′;
9: for p ∈ J+ do

10: for n ∈ J− do
11: if AdjacencyTest(AK , rp, rn) then
12: rnew := (Ai rp)rn − (Ai rn)rp;
13: Append rnew as a column to R′;
14: end if
15: end for
16: end for
17: Let J be the set of the columns of R′;
18: K = K ∪ {i};
19: end while
20: Let R be the matrix created by the vectors in J as its columns;
21: return R;
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Saturation Matrix

Saturation Matrix

Definition
A vertex v ∈ V of P saturates an inequality ℓ if v lies on the
hyperplane Hℓ, that is, if atv = b holds.
A ray r ∈ R of P saturates an inequality ℓ if r is parallel to the
hyperplane Hℓ, that is, if atr = 0 holds.

Notation:
Let ℓ be an inequality and u be any vertex or ray, we denote

SVR(ℓ): all vertices and rays in VR(F ) saturating ℓ.
SH(u): all hyperplanes that u saturates.
SH(SVR(ℓ)) =

⋂
u∈SVR(ℓ)

SH(u): inequalities saturated by all vertices or

rays saturating ℓ.
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Saturation Matrix

Definition
The saturation matrix of F is the boolean matrix satM(F ) ∈ Qm×k , where
each entry (i , j) is defined as follows:

1 if the j-th element of VR(F ) saturates the i-th inequality of F .
0 otherwise.
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Saturation Matrix

Example

F
ℓ1 : x + y ≤ 1
ℓ2 : −x − y ≤ 1
ℓ3 : x − y ≤ 1
ℓ4 : −x + y ≤ 1

VR(F )
v1 : (0, 1)
v2 : (1, 0)
v3 : (−1, 0)
v4 : (0, −1)

satM(F )
v1 v2 v3 v4

ℓ1 1 1 0 0
ℓ2 0 0 1 1
ℓ3 0 1 0 1
ℓ4 1 0 1 0
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Saturation Matrix

From the saturation matrix satM(F ) =


1 1 0 0
0 0 1 1
0 1 0 1
1 0 1 0

, it is easy to obtain

the following identities:

SVR(ℓ1) = {v1, v2}
SVR(ℓ2) = {v3, v4}
SVR(ℓ3) = {v2, v4}
SVR(ℓ4) = {v1, v3}

SH(v1) = {ℓ1, ℓ4}
SH(v2) = {ℓ1, ℓ3}
SH(v3) = {ℓ2, ℓ4}
SH(v4) = {ℓ2, ℓ3}
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Saturation Matrix

Updating the Saturation Matrix

The saturation matrix is processed in two ways:
Row-wise: to compute bit-wise AND.
Column-wise: to compute bit-wise OR.

SVR(ℓ) is found by taking bit-wise AND of the Boolean vectors
satM(F )[ℓpos ] and satM(F )[ℓneg ].
Merging: creates a saturation matrix for the subspace of the remaining
coordinates.
For any vertices or rays {u1, . . . , ue} where
proj(u1, {x}) = · · · = proj(ue , {x}):

Compute the bit-wise OR of the columns (regarded as bit-vectors) of
satM(F ) indexed by u1, . . . , ue .
Replace these columns with results of this bit-wise OR.

Chirantan Mukherjee (UWO) FME using Saturation Matrix November 11, 2024 24 / 42



Saturation Matrix

Updating the Saturation Matrix

The saturation matrix is processed in two ways:
Row-wise: to compute bit-wise AND.
Column-wise: to compute bit-wise OR.

SVR(ℓ) is found by taking bit-wise AND of the Boolean vectors
satM(F )[ℓpos ] and satM(F )[ℓneg ].

Merging: creates a saturation matrix for the subspace of the remaining
coordinates.
For any vertices or rays {u1, . . . , ue} where
proj(u1, {x}) = · · · = proj(ue , {x}):

Compute the bit-wise OR of the columns (regarded as bit-vectors) of
satM(F ) indexed by u1, . . . , ue .
Replace these columns with results of this bit-wise OR.

Chirantan Mukherjee (UWO) FME using Saturation Matrix November 11, 2024 24 / 42



Saturation Matrix

Updating the Saturation Matrix

The saturation matrix is processed in two ways:
Row-wise: to compute bit-wise AND.
Column-wise: to compute bit-wise OR.

SVR(ℓ) is found by taking bit-wise AND of the Boolean vectors
satM(F )[ℓpos ] and satM(F )[ℓneg ].
Merging: creates a saturation matrix for the subspace of the remaining
coordinates.

For any vertices or rays {u1, . . . , ue} where
proj(u1, {x}) = · · · = proj(ue , {x}):

Compute the bit-wise OR of the columns (regarded as bit-vectors) of
satM(F ) indexed by u1, . . . , ue .
Replace these columns with results of this bit-wise OR.

Chirantan Mukherjee (UWO) FME using Saturation Matrix November 11, 2024 24 / 42



Saturation Matrix

Updating the Saturation Matrix

The saturation matrix is processed in two ways:
Row-wise: to compute bit-wise AND.
Column-wise: to compute bit-wise OR.

SVR(ℓ) is found by taking bit-wise AND of the Boolean vectors
satM(F )[ℓpos ] and satM(F )[ℓneg ].
Merging: creates a saturation matrix for the subspace of the remaining
coordinates.
For any vertices or rays {u1, . . . , ue} where
proj(u1, {x}) = · · · = proj(ue , {x}):

Compute the bit-wise OR of the columns (regarded as bit-vectors) of
satM(F ) indexed by u1, . . . , ue .
Replace these columns with results of this bit-wise OR.

Chirantan Mukherjee (UWO) FME using Saturation Matrix November 11, 2024 24 / 42



Saturation Matrix

Updating the Saturation Matrix

The saturation matrix is processed in two ways:
Row-wise: to compute bit-wise AND.
Column-wise: to compute bit-wise OR.

SVR(ℓ) is found by taking bit-wise AND of the Boolean vectors
satM(F )[ℓpos ] and satM(F )[ℓneg ].
Merging: creates a saturation matrix for the subspace of the remaining
coordinates.
For any vertices or rays {u1, . . . , ue} where
proj(u1, {x}) = · · · = proj(ue , {x}):

Compute the bit-wise OR of the columns (regarded as bit-vectors) of
satM(F ) indexed by u1, . . . , ue .

Replace these columns with results of this bit-wise OR.

Chirantan Mukherjee (UWO) FME using Saturation Matrix November 11, 2024 24 / 42



Saturation Matrix

Updating the Saturation Matrix

The saturation matrix is processed in two ways:
Row-wise: to compute bit-wise AND.
Column-wise: to compute bit-wise OR.

SVR(ℓ) is found by taking bit-wise AND of the Boolean vectors
satM(F )[ℓpos ] and satM(F )[ℓneg ].
Merging: creates a saturation matrix for the subspace of the remaining
coordinates.
For any vertices or rays {u1, . . . , ue} where
proj(u1, {x}) = · · · = proj(ue , {x}):

Compute the bit-wise OR of the columns (regarded as bit-vectors) of
satM(F ) indexed by u1, . . . , ue .
Replace these columns with results of this bit-wise OR.

Chirantan Mukherjee (UWO) FME using Saturation Matrix November 11, 2024 24 / 42



Algorithms

Contents

1 Introduction

2 Double Description Method

3 Saturation Matrix

4 Algorithms

5 Benchmarking

6 References

Chirantan Mukherjee (UWO) FME using Saturation Matrix November 11, 2024 25 / 42



Algorithms

Algorithm 2 CheckRedundancy
Require: 1. the inequality system F with m inequalities;

2. the saturation matrix satM.
Ensure: the minimal system Firred and the corresponding saturation matrix satMirred.
1: Irredundant := {seq(i , i = 1..m)};
2: for i from 1 to m do
3: if the number of nonzero elements in satM[i] is less than n then
4: Irredundant := Irredundant \ {i};
5: next;
6: end if
7: for j in Irredundant \ {i} do
8: if satM[i] = satM[i]ANDsatM[j] then
9: Irredundant := Irredundant \ {i};

10: break;
11: end if
12: end for
13: end for
14: Firred := [seq(F [i], i in Irredundant)] and satMirred := [seq(satM[i], i in Irredundant)];
15: return Firred and satMirred;
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Algorithms

Algorithm 3 Minimal projected representation
Require: 1. an inequality system F ;

2. a variable order x1 > x2 > . . . > xn.
Ensure: the minimal projected representation res of F .
1: Compute the V-representation V of F by DD method;
2: Set res := table();
3: Sort the elements in V w.r.t. the reverse lexicographic order;
4: Compute the saturation matrix satM;
5: F , satM := CheckRedundancy(F , satM(F ));
6: res[x1] := F x1 ;
7: for i from 1 to n − 1 do
8: (F p , F n, F 0) := partition(F );
9: Vnew := proj(V , {xi });

10: Merging: satM := Merge(satM);
11: Let Fnew := F 0 and satMnew := satM[F 0];
12: for each fp ∈ F p and fn ∈ F n do
13: Append proj((fp , fn), {xi }) to Fnew ;
14: Append satM[fp ]ANDsatM[fn] to satMnew ;
15: end for
16: F , satM := CheckRedundancy(Fnew , satMnew );
17: V := Vnew and res[xi+1] := F xi+1 ;
18: end for
19: return res;
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Benchmarking

Complexity

Given a H-representation (A, b) with A ∈ Qm×n, b ∈ Qm and height([A, b]) = h.

Compute V-representation [Lemma 9 [JMT20]] : O(mn+2nω+εh1+ε).

Height of V-representation [Lemma 8 of [JMT20]] : O(mn+1n2+εh).

Compute initial satM : O(mn+1n2+εh).
Computed by multiplying A ∈ Qm×n with (V , R) ∈ Qn×k .
height((V , R)) is at most O(n log n + nh).
Multiplication requires O(mn+1n2+εh).

Redundancy detection in the initial input system: : O(mn+2) bit operations.
For each inequality ℓ in F , find the index set I of all the 1’s in satM[ℓ].
Apply bit-wise AND on column of satM[1.. − 1, I] requiring m · |I| bit
operations, where |I| < k.
Detectiing redundancy for one inequality requires mn+1; for all
inequalities: mn+2 bit operations.
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height((V , R)) is at most O(n log n + nh).
Multiplication requires O(mn+1n2+εh).

Redundancy detection in the initial input system: : O(mn+2) bit operations.
For each inequality ℓ in F , find the index set I of all the 1’s in satM[ℓ].
Apply bit-wise AND on column of satM[1.. − 1, I] requiring m · |I| bit
operations, where |I| < k.
Detectiing redundancy for one inequality requires mn+1; for all
inequalities: mn+2 bit operations.
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Benchmarking

Cuboctahedron

1 strongly redundannt inequalities
2 weakly redundant inequalities eliminated by cardinality
3 weakly redundancies inequalities eliminated by containment
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Benchmarking

Snub disphenoid (triangular dodecahedron)

1 strongly redundannt inequalities
2 weakly redundant inequalities eliminated by cardinality
3 weakly redundancies inequalities eliminated by containment
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Benchmarking

Truncated octahedron

1 strongly redundant inequalities
2 weakly redundant inequalities eliminated by cardinality
3 weakly redundancies inequalities eliminated by containment
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Benchmarking

Random 3D polyhedron

1 strongly redundant inequalities
2 weakly redundant inequalities eliminated by cardinality
3 weakly redundancies inequalities eliminated by containment
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Benchmarking

Random 10D polyhedron

1 strongly redundant inequalities
2 weakly redundant inequalities eliminated by cardinality
3 weakly redundancies inequalities eliminated by containment
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Benchmarking

Comparative experimentation

FME and mpr (this algorithm by Jing, Moreno-Maza, Xie and Yuan
[JMXY24]): Eliminates variables sequentially, uses both the H- and
V -representations, with redundancy check via the saturation matrix.

RTC and BPAS (by Jing, Moreno-Maza and Talaashrafi [JMT20]):
Eliminates variables sequentially, useing H- and V -representations, with
redundancy check via redundancy cones, thus linear algebra over Q.
cddlib(by Fukuda [cdd]): Eliminates multiple variables at once, works
with H-representation, with redundancy check via Linear Programming
(LP).
polylib(by Loechner [Lo99]): Eliminates multiple variables, works with
V -representation, can convert between H- and V -representation as
needed.
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Benchmarking

Each test case is associated with a triple (n, m, k) where n and m are the number of variables and inequalities in the input
inequality system, while k is the number of vertices and rays.

test case (n, m, k) FME C RTC FME DD FME VR mpr BPAS cdd polylib
32hedron (6, 32, 11) 8.00 849.00 363.00 14576.00 6.54 16.80 4183.08 1.92
64hedron (7,64,13) 25.00 3211.00 764.00 218833.00 13.05 52.42 >5min 1.67
francois (13,27,2304) 2.00 101.00 48.00 65.00 499.92 253.66 388.36 > 5min
francois2 (13,31,384) 2.00 99.00 57.00 89.00 41.80 140.34 55.17 80.63

xavi (2,7,5) 1.00 29.00 27.00 31.00 0.92 2.91 2.66 0.57
c6.in (11,17,31) 6.00 29.00 903.00 >5min 9.85 12.72 84.11 5.56
c9.in (16,18,140) 8.00 701.00 1685.00 >5min 25.08 65.54 151.17 131.53
c10.in (18,20,142) 9.00 722.00 2038.00 >5min 22.10 98.68 249.02 16.06
e2.in (6,9,8) 2.00 96.00 128.00 914.00 2.71 4.60 14.42 1.79
e7.in (4,7,5) 1.00 28.00 46.00 75.00 1.92 3.12 5.24 1.09
e8.in (3,6,4) 1.00 14.00 69.00 99.00 2.51 2.30 2.56 0.84
e13.in (6,9,18) 2.00 91.00 133.00 962.00 4.30 3.74 13.13 1.35
e14.in (5,7,10) 1.00 32.00 153.00 360.00 2.20 1.58 9.91 1.42
S24 (24, 25,25) 1802.00 1996.00 560.00 >5min 23.50 58.80 748.67 17.47
cube (10, 20,1024) 1.00 63.00 50.00 70.00 81.33 201.92 125.900 161.06
C56 (5, 6,6) 2.00 216.00 91.00 1399.00 3.67 4.09 11.81 0.79
C68 (6, 16,8) 1.00 132.00 50.00 82.00 4.18 10.13 505.00 1.86

C1011 (10, 11,11) 13.00 >5min 920.00 >5min 24.99 115.68 1716.25 9.99
C510 (5, 42,10) 14.00 314.00 355.00 188.00 12.00 40.01 >5min 4.42
T1 (5, 10,38) 3.00 655.00 216.00 2819.00 5.61 16.44 27.42 8.81
T3 (10,12,29) 18.00 >5min 1943.00 >5min 21.29 141.64 288.07 12.07
T5 (5, 10,36) 4.00 1088.00 411.00 3812.00 8.12 15.62 22.92 4.76
T6 (10,20,390) 44901.00 >5min >5min >5min 1142.9 23800.11 14937.61 >5min
T7 (5, 8,26) 2.00 670.00 262.00 3559.00 5.81 10.79 13.96 4.00
T9 (10,12,36) 21.00 >5min 2501.00 >5min 36.56 414.53 479.18 100.34
T10 (6, 8,24) 6.00 1228.00 263.00 7190.00 4.58 13.65 18.39 5.27
T12 (5, 11,42) 9.00 959.00 1144.00 8950.00 8.52 19.03 38.65 8.60

R_15_20 (15, 20,1328) 27800.00 >5min >5min >5min 28430.40 336035.00 38037.21 >5min

Chirantan Mukherjee (UWO) FME using Saturation Matrix November 11, 2024 38 / 42



References

Contents

1 Introduction

2 Double Description Method

3 Saturation Matrix

4 Algorithms

5 Benchmarking

6 References

Chirantan Mukherjee (UWO) FME using Saturation Matrix November 11, 2024 39 / 42



References

References I

T.S. Motzkin, H. Raiffa, GL. Thompson, and R.M. Thrall.
The double description method.
Princeton University Press. Princeton, 1953.

Komei Fukuda and Alain Prodon.
Double description method revisited.
Combinatorics and computer science. Springer, 1996.

Komei Fukuda.
cdd, cddplus and cddlib Homepage.
https://people.inf.ethz.ch/fukudak/cdd_home/

Vincent Loechner.
PolyLib: A library for manipulating parameterized polyhedra, 1999.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=
pdf&doi=f9c9cef7b2d16530573484664e0c2edba185c975

Chirantan Mukherjee (UWO) FME using Saturation Matrix November 11, 2024 40 / 42

https://people.inf.ethz.ch/fukudak/cdd_home/
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f9c9cef7b2d16530573484664e0c2edba185c975
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f9c9cef7b2d16530573484664e0c2edba185c975


References

References II

Komei Fukuda.
Frequently asked questions in polyhedral computation, 2004.
https:
//people.inf.ethz.ch/fukudak/Doc_pub/polyfaq040618.pdf

Rui-Juan Jing, Marc Moreno Maza, Yan-Feng Xie and Chun-Ming Yuan.

Efficient detection of redundancies in systems of linear inequalities.
Proceedings of ISSAC. ACM, 2024.

Rui-Juan Jing, Marc Moreno-Maza, and Delaram Talaashrafi.
Complexity estimates for Fourier-Motzkin elimination.
Proceedings of CASC. Springer, 2020.

Chirantan Mukherjee (UWO) FME using Saturation Matrix November 11, 2024 41 / 42

https://people.inf.ethz.ch/fukudak/Doc_pub/polyfaq040618.pdf
https://people.inf.ethz.ch/fukudak/Doc_pub/polyfaq040618.pdf


References

References III

Sergei N. Chernikov.
Contraction of systems of linear inequalities.
Dokl. Akad. Nauk SSSR, 1960.
D. A. Kohler.
Projections of convex polyhedral sets.
Technical report, California, University at Berkeley, Operations Research
Center, 1967.

Chirantan Mukherjee (UWO) FME using Saturation Matrix November 11, 2024 42 / 42


	Overview
	Introduction
	Double Description Method
	Saturation Matrix
	Algorithms
	Benchmarking
	References

