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Preface

This note is part of my seminar on “Polish Spaces” that I delivered on the 12 and
the 14 of November 2020.
Polish spaces are so named because they were first extensively studied by Polish
topologists and logicians—Sierpiński, Kuratowski, Tarski and others. However, Pol-
ish spaces are mostly studied today because they are the primary setting for descrip-
tive set theory, including the study of Borel equivalence relations. Polish spaces are
also a convenient setting for more advanced measure theory, in particular in proba-
bility theory.

The contents of this notes are mostly based from the book of Alexander S. Kechris,
“Classical Descriptive Set Theory” published by Springer in 1995 (AK). We are es-
sentially going to study: definitions and examples of Polish spaces, countable prod-
ucts, Gδ subspaces and [AK, Theorem 3.11]. Sets with Baire property and Baire mea-
surable function. The Baire category: meager and residual sets, Baire spaces, Baire
category theorem [AK, Theorem 8.4], the Kuratowski-Ulam theorem [AK, Theorem
8.41], Baire measurable functions are continuous on a residual set [AK, Theorem
8.38].
I have tried to provide a somewhat ’simplified’ proofs of the results and covered
almost all background knowledge that would be required to read this notes without
any difficulty. I have also tried to make this notes error-free to the best of my ability.
But if you notice any error or any inconsistency, please let me know.

Lastly, thank you for choosing to read my notes. I hope you enjoy it :)

Chirantan Mukherjee
c.mukherjee@student.uw.edu.pl
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1 Introduction

1.1 Topological Spaces

Definition 1.1. A topological space is an ordered pair (X, τ), where X is a set

and τ is a collection of subsets of X, satisfying the following axioms:

1. The empty set φ and X itself belong to τ .

2. Any arbitrary (finite or infinite) union of members of τ still belongs to τ .

3. The intersection of any finite number of members of τ still belongs to τ .

The elements of τ are called open sets and the collection τ is called a topology

on X.

The complement of open sets are called closed sets. φ and X are both open and

closed, otherwise known as clopen sets.

Definition 1.2. In a topological space a Gδ set is a countable intersection of open

sets. And an Fσ set is a countable union of closed sets.

Example 1. Each open set is trivially a Gδ set.

Example 2. Similarly, each closed set is trivially an Fσ set.

Example 3. The irrational numbers can be written as R \Q = R \
⋃
q∈Q{q} =⋂

q∈Q(R \ {q}) is a Gδ set.

Example 4. Similarly, the set of rationals Q is an Fσ set.

Definition 1.3. If X is a set, then a basis is a collection B of subsets of X called

basis elements such that:

1. For each x ∈ X there is at least one basis element B containing x.

2. If x ∈ B1 ∩ B2, where B1 and B2 are basis elements then there is a basis

element B3 such that x ∈ B3 ⊆ B1 ∩B2.

If B satisfies the above two conditions then the topology τ generated by B is: A

subset U of X is said to be open in X, if for each x ∈ U , there is a basis element

B ∈ B such that x ∈ B and B ⊂ U .

NOTE: Each basis element is itself an element in τ .
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Definition 1.4. A subbasis for the topology of X is a collection S ⊆ τ with the

property that the set of finite intersections of sets in S is a basis for the topology of

X.

Definition 1.5. Let (Xi, τi)i∈I be a family of topological spaces. The product

topology on
∏
i∈I

Xi is the topology whose open sets are the unions of the products of

the form
∏
i∈I

Ui, where Ui ∈ τi for each i ∈ I, and Ui = Xi except for finitely many

i’s in I.

The basis for the product topology is B := {
∏
i∈I

Bi | Bi ∈ Xi is a basis for the

topology on Xi}.

Example 5. If one starts with the standard topology on the real line R and defines

a topology on the product of n copies of R in this fashion, one obtains the ordinary

Euclidean topology on Rn.

1.2 Metric Spaces

Definition 1.6. Let X be a set, and d : X×X → [0,∞) be a function. We say that

d is a metric on X if, for x, y, z ∈ X which satisfies:

1. d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y)

We say that (X, d) is a metric space if X is a set and d is a metric on X.

Example 6. X = R, equipped with d defined by d(x, y) := |x− y|, is a metric space.

Definition 1.7. An open ball with center x ∈ X and radius r of a metric

space (X, d) is B(x, r) := {y ∈ X | d(x, y) < r}.

Open balls form the basis of the topology of the metric spaces.

Definition 1.8. A topological space X is called metrizable if there exists a metric

d so that τ is the topology of (X, d). In this case we say d is compatible with τ .
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NOTE: If τ is metrizable with compatible metric d, then d′ =
d

1 + d
is also com-

patible.

Definition 1.9. The product of a sequence of metric spaces (Xn, dn) is the metric

space (
∏
n

Xn, d) where the distance d(x, y) =
∞∑
n=0

2−(n+1) dn(xn, yn)

1 + dn(xn, yn)
with x = (xn)

and y = (yn).

Definition 1.10. Let X and Y be metric spaces with metrics dX and dY . A map

f : X → Y is called an isometry or distance preserving if for any a, b ∈ X one

has dY (f(a), f(b)) = dx(a, b).

Definition 1.11. A topological space X is second countable if there is a countable

basis for its topology.

Example 7. Let n ∈ N. Consider the Euclidean space Rn with its Euclidean metric

topology. Then Rn is second countable.

1.3 Separation

Definition 1.12. If X is a topological space, we say X is T1 if every singleton of

X is closed.

Example 8. The empty space and one point space are T1, because the condition for

two points is vacuously satisfied.

Example 9. More generally, any finite discrete space – a finite topological space

where all subsets are open is T1.

Example 10. All one point space in an Euclidean space is closed, hence is T!.

Definition 1.13. If X is a topological space, we say X is regular if, for any x in

X and any open neighborhood N of x, there is an open neighborhood U of x such

that U ⊆ N .

Theorem 1 (Urysohn Metrization Theorem). Let, X be a second countable

topological space. Then X is metrizable iff X is T1 and regular.

Definition 1.14. A subset D ⊆ X of a topological space is dense if it meets every

non-empty open sets.
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Definition 1.15. A topological space X is separable if it has a countable dense

subset.

Example 11. R,C with their standard topology are separable metric spaces.

Theorem 2. A second countable space is separable.

Proof. Let (X, τ) be a second countable topological space. Then there exists a

countable basis B = {B1, B2, . . . , Bn . . .} of τ . Since B is a basis of τ we have that

every open set U ∈ τ can be expressed as the union of sets in some subcollection

B∗ ⊂ B. In particular U =
⋃
B∈B∗B.

We must now construct a countable dense subset of X. Assume that B does not

contain the empty set. If it does contain the empty set then we can discard it. Then

for each Bn ∈ B take x ∈ Bn and define the set A as: A = {xn | xn is any element

in Bn, n = 1, 2, . . .}.
Then, A is a countable subset of X since we take one element from each set in the

countable basis.

Furthermore, for all U ∈ τ \ {φ} we have that A ∩ U 6= φ because A contains one

element from each of the basis sets and U is the union of some subcollection of the

basis sets. Therefore A is a dense subset of X.

Hence, A is a countable dense subset of X, so (X, τ) is a separable topological

space.

NOTE: The converse of the above theorem is not true in general.

Example 12. If X is a finite set and τ is the discrete topology on X then (X, τ) is

a separable topological space.

Let X be a finite set with n elements. Then X = {a1, a2, . . . , an}. If τ is the discrete

topology on X then τ = P(X). Clearly every subset of X is countable since X is a

finite set, so we only need to find a dense subset of X.

Take A = X. Then for all U ∈ τ \ {φ} we have that U ⊆ A. So A ∩ U 6= φ. Hence,

A is a countable and dense subset of X so (X, τ) is a separable topological space.

Example 13. If X is a countable set and τ is the discrete topology on X then (X, τ)

is a separable topological space.

If X is countable then X is either finite or countably infinite. Example 12 shows

that if X is finite and τ is the discrete topology on X then (X, τ) is a separable
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topological space. We will now show that if X is countably infinite then (X, τ) is

also a separable topological space.

If X is countably infinite then: X = {a1, a2, . . .}
If we let A = X then every U ∈ τ \{φ} is such that U ⊆ A so A∩U 6= φ. Therefore

A is a countable (and dense) subset of X, so (X, τ) is separable.

Theorem 3 (Urysohn’s Lemma). Let X be a metrizable space. If A and B are

two disjoint closed subsets of X, there is a continuous function f : X → [0, 1] such

that f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ B.

Theorem 4 (Tietze Extension Theorem). Let X be a metrizable space. If

A ⊆ X is closed and f : A→ R is continuous, there is a function f̂ : X → R which

is continuous and extends f . Moreover, if f is bounded by M i.e. |f(x)| ≤ M for

all x ∈ A then so is f̂ .



2 Polish Spaces

2.1 Properties

Let (X, d) be a metric space. A sequence (xn) of points of X is called a Cauchy

sequence if for every positive real number ε > 0 there is a positive integer N such

that for all positive integers m,n > N the distance d(xn, xm) < ε.

Definition 2.1. A metric space (X, d) in which every Cauchy sequence converges

to an element of X is called complete.

Example 14. The real or complex numbers with the standard metric is a complete

metric space.

Example 15. Finite dimensional real and complex vector spaces are are complete.

Example 16. The space of square integrable function on the unit interval L2([0, 1])

is complete.

Definition 2.2. Given a metric space (X, d) there is a complete metric space (X̂, d̂))

such that (X, d) is a subspace of (X̂, d̂) and X is dense in X̂. This space is unique

upto isometry and called completion of (X, d).

Theorem 5. X̂ is separable iff X is separable.

Definition 2.3. A topological space (X, τ) is called completely metrizable if it

admits a compatible metric d such that (X, d) is complete.

Definition 2.4 (Polish space). A topological space (X, τ) is called Polish if it is

separable and completely metrizable.

The completion of a separable metric space is Polish.

Example 17. R,C equipped with their standard topology are Polish spaces.

Theorem 6. The class of:

1. completely metrizable spaces is closed under countable products and topological

sums,

2. Polish spaces is closed under countable products and countable topological sums.

Proof. Let (Xi)i ∈ I be a sequence of completely metrizable spaces. Then:
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1. We saw that
∏
i∈I

Xi is metrizable if I is countable. Assume that the Xi’s

are completely metrizable. The proof of this fact shows that if ((xni )i∈I)n∈N

is Cauchy, then (xni )n∈N is Cauchy for each i ∈ I, so that (xni )n∈N converges

to xi ∈ Xi. Now ((xni )i∈I)n∈N converges to (xi)i∈I . Thus,
∏
i∈I

Xi is com-

pletely metrizable. Let di be a metric on Xi defining its topology. We set

d((i, x), (j, y)) := di(x, y) if i = j, 1 otherwise. Then d is a metric on
⊕

i∈I Xi

defining its topology, and we can check that it is complete.

2. We apply (1) and the fact that the class of separable spaces is closed under

countable products and countable topological sums.

Example 18. Rn,Cn,RN,CN with the product topology are Polish.

Example 19. The open unit interval (0, 1), the unit interval I = [0, 1], the unit

circle S1, R \ Q, the n-dimensional cube In, the Hilbert cube IN, the n-

dimensional torus Tn := S1 × . . . × S1 (n-copies), the infinite dimensional

torus TN are Polish.

Example 20. Any set A with discrete topology is completely metrizabe and if it is

countable, it is Polish. Hence, AN is also Polish. In particular, the Cantor space

C := {0, 1}N = 2N and the Baire space N := NN are Polish spaces with the product

topology of the discrete topologies.

Example 21. The topology of any (real or complex) Banach space is completely

metrizable, and for separable Banach Spaces, it is Polish.

2.2 Kuratowski Theorem

Theorem 7. Let X be a metrizable space, and A be a closed subset of X. Then A

is Gδ.

Proof. Let d be a metric defining the topology of X. Note that A =
⋂
n∈N{x ∈ X |

d(x,A) < 1
n+1
}, so we are done since x→ d(x,A) is continuous.

Definition 2.5. Let, (X, d) be a metric space and A ⊆ X, then the diameter of A

is diam(A) := sup{d(x, y) | x, y ∈ A}.
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Definition 2.6. Let, (X, τ) be a topological space and (Y, d) be a metric space, and

let f : A → Y where A ⊆ X, then the oscillation of f at x ∈ X, oscf (x) :=

inf{diam(f(U ∩ A) | U is an open neighbourhood of x ∈ X)}.

NOTE: If x ∈ A then x is a continuity point of f iff oscf (x) = 0.

Theorem 8 (Kuratowski). Let X be a metrizable space, Y be a completely metriz-

able space, A ⊆ X and f : A→ Y be a continuous function. Then we can find a Gδ

subset G of X with A ⊆ G ⊆ A and g : G→ Y continuous extension of f .

Proof. We set G := A∩{x ∈ X | oscf (x) = 0}. Note that oscf (x) = 0 ⇐⇒ ∀n ∈ N
there is a neighbourhood U of x with diameter diam(f(U ∩ A)) < 1

n+1
, so that

{x ∈ X | oscf (x) = 0} is a Gδ set, as well as the closed set A, by Theorem 7. Thus

G is Gδ and contained in A. If x ∈ A, then x ∈ A and oscf (x) = 0 since f is

continuous.

Now, let x ∈ G. As x ∈ A, there is a sequence (xn) of points of A converging to

x. Then diam(f({xn+1, xn+2, . . .}))n∈N converges to 0, so that the sequence f(xn) is

Cauchy and thus converges to g(x) ∈ Y . Note that g is well defined, and extends f .

In order to see that g is continuous, we need to check that oscg(x) = 0 for each x ∈ G.

If U is open in X, then g(U ∩G) ⊆ f(U ∩A), so diam(g(Y ∩G)) ≤ diam(f(U ∩A))

and oscg(x) = oscf (x) = 0.

2.3 Polish Subspaces

Theorem 9. If X is metrizable and Y ⊆ X is completely metrizable, then Y is a

Gδ set in X. Conversely, if X is a completely metrizable space and Y ⊆ X is a Gδ

set, then Y is completely metrizable.

In particular, a subspace of Polish space is Polish iff it is a Gδ set.

Proof. The first assertion follows from Kurtowski’s Theorem. Consider the identity

function on Y , IdY : Y → Y . It is continuous, so there is a Gδ set call it G, with

Y ⊆ G ⊆ Y . There is also a continuous extension g : G → Y of IdY . Since, Y is

dense in G, so g = IdG. Hence, Y = G.

Conversely, let Y =
⋂
n Un, where Un is open subset of X. Let Fn = X \ Un.

Let, d be a complete compatible metric on X. Define a new metric d′ on X as

d′ := d(x, y) +
∞∑
n=0

min {2−(n+1),

∣∣∣∣ 1

1− d(x, Fn)
− 1

1− d(y, Fn)

∣∣∣∣}.
This metric is compatible with the topology of Y . We show that (Y, d) is complete.
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Let, (yi) be a Cauchy sequence in (Y, d′). Then, it is Cauchy in (X, d). So, yi → y

in X. But, also for each n, limi,j→∞

∣∣∣∣ 1

1− d(x, Fn)
− 1

1− d(y, Fn)

∣∣∣∣ = 0. So, for each

n,
1

d(yi, Fn)
converges in R, so d(yi, Fn) is bounded away from 0. Since, d(yi, Fn)→

d(y, Fn), we have d(y, Fn) 6= 0 for all n, so y /∈ Fn for all n, i.e., y ∈ Y . Clearly,

yi → y in (Y, d′).



3 Baire Categoty

3.1 Meager Sets

Definition 3.1. Let (X, τ) be a topological space. We say that A ⊆ X is nowhere

dense if its closure A has empty interior Int(A) = φ

Example 22. The boundary of every open set and of every closed set is nowhere

dense.

Example 23. The cantor set C is nowhere dense.

Example 24. In a T1 space, any singleton set that is not an isolated point is nowhere

dense.

Example 25. Z is nowhere dense in R and R is nowhere dense in R2.

Example 26. The set S = { 1
n
| n ∈ N} is nowhere dense in R.

Definition 3.2. Let (X, τ) be a topological space. We say that A ⊆ X is meager

(or of the first category) if it is a countable union of nowhere dense set, i.e.

A =
⋃
n∈N{An | Int(An) = φ}.

A non-meager set is also called a set of the second category.

Example 27. A singleton set is always a non-meager subspace.

Example 28. The cantor set C is meager in R because it is closed and has empty

interior.

Example 29. An countable Hausdorff space without isolated points is meager.

Example 30. Any topological space that contains an isolated point is non-meager.

Example 31. The set Q is meager in R because it is enumerable, so that we can

write Q = {q1, q2, . . .} =
⋃∞
i=1{qi} where {qi} is nowhere dense for all i ∈ N.

Definition 3.3. Let (X, τ) be a topological space. We say that A ⊆ X is comeager

(or residual) if its complement is meager.

A set is residual iff it contains the intersection of a countable family of dense open

sets.

Example 32. Z is residual in Z because in Z every set is open.
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3.2 Baire Space

Definition 3.4. A topological space (X, τ) is called a Baire space if it satisfies the

following equivalent conditions:

1. Every non-empty open set in X is non-meager.

2. Every residual set in X is dense.

3. The intersection of countably many dense open sets in X is dense.

Example 33. The space R of real numbers with the standard topology, is a Baire

space.

Example 34. The Cantor set C is a Baire space.

Example 35. The space of rational numbers Q with the standard topology inherited

from the reals R is not a Baire space, since it is the union of countably many closed

sets without interior, the singletons.

Theorem 10 (Baire Category Theorem). Every completely metrizable space is

Baire. Every locally compact Hausdorff space is Baire.

Proof. Let X be a completely metrizable space and let d be a complete metric on

X compatible with the topology. Suppose that An are dense open subsets of X. To

show that
⋂
n∈NAn is dense it suffices to show that for any nonempty open subset

A of X,
⋂
n∈N(A ∩ An) = A ∩

⋂
n∈NAn 6= φ.

Because, A is a nonempty open set it contains an open ball B1 of radius < 1 with

B1 ⊂ A1. Since, A1 is dense and B1 is open, B1 ∩A1 6= φ and is open because both

B1 and A1 are open. As B1∩A1 is a nonempty open set it contains an open ball B2

of radius < 1
2

with B2 ⊂ B1∩A1. Suppose that n > 1 and that Bn is an open ball of

radius < 1
n

with Bn ⊂ Bn−1∩An−1. Since An is dense and Bn is open, Bn ⊂ An 6= φ

and is open because both Bn and An are open. As Bn ⊂ An is a nonempty open set

it contains an open ball Bn+1 of radius < 1
n+1

with Bn+1 ⊂ Bn ⊂ An. Then, we have

Bn+1 ⊂ Bn for each n ∈ N. Letting xi be the center of Bi, we have d(xj, xi) <
1
i

for j > i, and hence xi is a Cauchy sequence. Since (X, d) is a complete metric

space, there is some x ∈ X such that xi → x. For any m there is some i0 such

that i ≥ i0 implies that d(xi, x) < 1
m

, and hence x ∈ Bm =
⋂m
n=1Bn. Therefore,

x ∈
⋂
n∈NBn ⊂n∈N (A ∩ An), which shows that

⋂
n∈NAn is dense and hence that X

is a Baire space.
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Let X be a locally compact Hausdorff space. Suppose that An are dense open

subsets of X and that A is a nonempty open set. Let x1 ∈ A, and because X is

a locally compact Hausdorff space there is an open neighborhood V1 of x1 with V1

compact and V1 ⊂ A. Since A1 is dense and A1 is open, there is some x2 ∈ V1 ∩A1.

As V1 ∩ A1 is open, there is an open neighborhood V2 of x2 with V2 compact and

V2 ⊂ V1 ⊂ A1. Thus, Vn are compact and satisfy Vn+1 ⊂ Vn for each n, and hence⋂
n∈N Vn 6= φ. This intersection is contained in

⋂
n∈N(A ∩ An) which is therefore

nonempty, showing that
⋂
n∈NAn is dense and hence that X is a Baire space.

3.3 Baire Measurability

We now introduce a notion of regularity, being equal to an open set modulo a meager

set.

Definition 3.5. Let X be a set. Then a σ−ideal on X is a collection I of subsets

of X such that:

1. If A ⊂ B and B ∈ I, then A ∈ I

2. If A1, A2, . . . ∈ I, then there exists B such that B ∈ I and
⋃
iAi ⊆ B

3. φ ∈ I

Let, I be a σ−ideal on a set X. If A,B ⊆ X we say that A,B are equal modulo

I, denoted as A =I B if the symmetric difference A∆B := (A\B)∪ (B \A) ∈ I.

In particular if I is the σ−ideal of meager sets of topological space, we write A =∗ B

if A and B are equal modulo meager sets.

Definition 3.6. Let, (X, τ) be a topological space. A set A ⊆ X has the Baire

property (BP) if A =∗ U for some U ⊆ X.

Theorem 11. Let X be a topological space. The class of sets having Baire property

is a σ−algebra on X. It is the smallest σ−algebra containing all open sets and

meager sets.

Proof. If U is open, then U \U is closed nowhere dense and so is meager. Similarly,

if F is closed, then F \ Int(F ) is closed nowhere dense. Thus, U =∗ U and F =∗

Int(F ).

Now, if A has the BP, so that A =∗ U for some open U, then X \ A =∗ X \ U =∗
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Int(X \ U), so X \ A has the BP. Finally, if each An has the BP, An =∗ Un, where

Un is open, then
⋃
nAn =∗

⋃
Un, so

⋃
nAn has the BP.

The last assertion follows from the fact that if A =∗ U , where U is open, then with

M = A∆U , M is meager, and A = M∆U .

NOTE: All Fσ and Gδ sets have the BP but the converse is not true.

Theorem 12. Let, X be a topological space and A ⊆ X. Then the following state-

ments are equivalent:

1. A has the BP

2. A = G ∪M where G is Gδ and M is meager set

3. A = F \M where F is Fσ and M is meager set

Proof. By Theorem 11, (2) =⇒ (1) and (3) =⇒ (1).

To show (1) =⇒ (2) let U be open and F a meager Fσ set with A∆U ⊆ F . Then,

G = U \ F is Gδ and G ⊆ A. Also, M = A \G ⊆ F is meager.

To show (1) =⇒ (3) follows from (2) using X \ A.

3.4 Baire Measurable Functions

Definition 3.7. Let, X, Y be topological spaces and f : X → Y be a function, we

say that f is Baire measurable if the inverse image of any open subset of Y has

the Baire property in X.

NOTE: If Y is second countable it is clearly enough to only consider the inverse

images of a countable basis of Y .

For example, every continuous function is Baire measurable. If Y is metrizable then

any function that is a pointwise limit of a sequence of continuous functions is Baire

measurable.

Theorem 13. Let X and Y be topological spaces and f : X → Y be Baire measur-

able. If Y is second countable there is a set G ⊆ X that is a countable intersection

of dense open sets such that f
∣∣
G

is continuous. In particular if X is Baire, f is

continuous on a dense Gδ set.
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Proof. Let {Un} be a basis of Y . Then f−1(Un) has a BP onX, so let Vn be open inX

and let Fn be a countable union of closed nowhere dense sets with f−1(Un)∆Vn ⊆ Fn.

Then G = X \ Fn is a countable intersection of dense open sets and so G =
⋂
nGn.

Since, f−1(Un) ∩G = Vn ∩G, f
∣∣
G

is continuous.

3.5 Kuratowski-Ulam Theorem

We now consider sets in product spaces. We will see a Fubini-like theorem for Baire

category.

Theorem 14. Let X be a topological space, Y be a second countable space, S ⊆
X × Y , x ∈ X and Sx := {y ∈ Y | (x, y) ∈ S} be the vertical section of S at x.

1. If S is nowhere dense, then Sx is nowhere dense in Y for comeagerly many

x ∈ X.

2. If S is meager, then Sx is meager in Y for comeagerly many x ∈ X.

Proof. 1. We can assume that Y is not empty and S is closed. Let U be the

complement of S. It is enough to show that Ux is dense for comeagerly many

x ∈ X. Let {Yn} be a basis for the topology of Y made of nonempty sets.

Then Un := projX(U ∩ (X × Yn)) is dense open in X. If x ∈
⋂
n∈N Un, then

Ux ∩ Yn is not empty for all n, i.e., Ux is dense.

2. Follows from (1)

Theorem 15. Let X, Y be countable spaces, A ⊆ X and B ⊆ Y . Then A × B is

meager if and only if A is meager or B is meager.

Proof. If A × B is meager and A is not meager, then there is x ∈ X such that

(A×B)x = B is meager, by Theorem 14.

Conversely, if A is meager and A =
⋃
n∈NNn with Nn nowhere dense, then A×B =⋃

n∈NNn × B, so it is enough to show that Nn × B is nowhere dense. This comes

from the fact that if U is dense open in X, then U × Y is dense open in X × Y .

Theorem 16 (Kuratowski-Ulam Theorem). Let X, Y be second countable

spaces, and S ⊆ X × Y having the BP.
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1. Sx has the BP for comeagerly many x ∈ X. Similarly, Sy := {x ∈ X | (x, y) ∈
S} has the BP for comeagerly many y ∈ Y

2. S is meager is equivalent to Sx is meager for comeagerly many x ∈ X, and to

Sy is meager for comeagerly many y ∈ Y

3. S is comeager is equivalent to Sx is comeager for comeagerly many x ∈ X,

and to Sy is comeager for comeagerly many y ∈ Y

Proof. Let U be an open set and M be a meager set with S∆U ⊆M .

1. For any x ∈ X, Sx∆Ux ⊆Mx. By Theorem 14, Sx has the BP for comeagerly

many x ∈ X.

2. By Theorem 14, if S is meager, then Sx is meager for comeagerly many x ∈ X.

Conversely, if S is not meager, then U is not meager, which gives open sets

V ⊆ X and W ⊆ Y such that V ×W ⊆ U and V ×W is not meager. By

Theorem 15, V,W are not meager. This gives x ∈ V such that Sx and Mx are

meager. As W \Mx ⊆ Ux \Mx ⊆ Sx,W ⊆ Sx∪Mx is meager, a contradiction.

3. This comes from (2).

NOTE: Kuratowski-Ulam Theorem fails if S does not have the BP. For example,

using the axiom of choice, there exists a non-meager set S ⊆ [0, 1]2 so that no three

points of S are in a straight line.
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