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Introduction

What is the Polyhedral Model?

1 A framework for performing loop transformation.
2 Loop representation: using polytopes to achieve fine-grain

representation of program.
3 Loop transformation: transforming loop by doing affine transformation

on polytopes.
4 Dependency test: several mathematical methods for validating

transformation on loop polytopes.
5 Code generation: generate transformed code from loop polytopes.
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Introduction

Convexity is the central concept of polyhedral optimization

Definition
A set S is called convex if the line joining any two points in S is in S , i.e.,

∀x , y ∈ S ,∀λ ∈ [0, 1], λx + (1 − λ)y ∈ S .
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Introduction

Definition
A polyhedron P is a set which can be expressed as the intersection of finite
number of (closed) half spaces, that is {−→x ∈ Rn | A−→x ≤

−→
b }.

Definition
A polytope is a bounded polyhedron.

Definition
A Z-polyhedron is a polyhedron where all its extreme points are integer
valued.

In most situation loop counters are integers. So we use Z-polyhedron to
represent loop iteration domain.
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Iteration Domains

Modeling Iteration Domains

1 Dimension of Iteration Domain: Decided by loop nesting levels
2 Bounds of Iteration Domain: Decided by loop bounds

for(i = 1; i <= n; i++){
for(j = 1; j <= n; j++){

if (i <= n + 2 - j)
b[j] = b[j] + a[i];

}
}

Inequalities:

1 ≤ i ≤ n

1 ≤ j ≤ n

i ≤ n + 2 − j
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Iteration Domains

Representing iteration bounds by affine function
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Iteration Domains

Definition
The integer hull PI of a convex polyhedral set P is the convex hull of integer
points of P .

Example

A B

C

D E

FH

G

B ′

C ′

B ′′A′
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Iteration Domains

Definition
The dual representation of the polyhedron P can be expressed as a
combination of lines L, rays R (forming the polyhedral cone) and vertices V
(forming the polytope), that is
{x ∈ Rn | λL+ µR + ρV such that λ, µ, ρ ≥ 0 and λ+ µ+ ρ = 1}.

Definition
A face of the polyhedron P is the intersection of P with the supporting
hyperplane of P . A face of maximum dimension is called the facet of P .

Theorem (Fundamental theorem of polyhedral decomposition)

Every polyhedron P can be decomposed into a polytope V and a polyhedral
cone L.
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Iteration Domains

Definition

Given −→m the vector of symbolic parameters, a parametric polyhedron P is
defined by {−→x ∈ Rn | A−→x ≤ B−→m +

−→
b }.
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Data Dependence

One-dimensional array

for(int i = 0; i < n; i++){
for(int j = i + 1; j < n; j ++)

A[i * n + j] = A[(n * j - n + j - i - 1];
}

1 Can we parallelize the two for-loops?
2 Is there data dependence between two different iterations of the nest?
3 Are there integer solutions to the following system of linear inequalities?

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1
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Data Dependence

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

A[i * n + j] =
A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];



0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 =j2 − 1
j1 =j2 − i2 − 1

There is no integer solution, therefore, no dependence.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 12 / 36



Data Dependence

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

A[i * n + j] =
A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];



0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 =j2 − 1
j1 =j2 − i2 − 1

There is no integer solution, therefore, no dependence.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 12 / 36



Data Dependence

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

A[i * n + j] =
A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];



0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1



0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 =j2 − 1
j1 =j2 − i2 − 1

There is no integer solution, therefore, no dependence.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 12 / 36



Data Dependence

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

A[i * n + j] =
A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];



0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 =j2 − 1
j1 =j2 − i2 − 1

There is no integer solution, therefore, no dependence.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 12 / 36



Data Dependence

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

A[i * n + j] =
A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];



0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 =j2 − 1
j1 =j2 − i2 − 1

There is no integer solution, therefore, no dependence.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 12 / 36



Data Dependence

Bernstein Conditions

Definition
Given two references, there exists a dependence between them if the
following conditions are satisfied:

1 they reference the same array (cells)
2 one of this access is a write
3 the two associated statements are executed

There are three types of dependencies:
1 True dependency (read-after-write), A = 3, B = A, C = B
2 Anti-dependency (write-after-read), B = 3, A = B + 1, B = 7
3 Output dependency (write-after-write), B = 3, B = 7
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Data Dependence

Dependence Analysis Methods

1 Compute the transitive closure of the access function
transitive closure is not convex in general, and not even computable in
many situations

2 Compute an indicator of the distance between two dependent iterations
approximative for non-uniform dependences

3 Dependence cone: do the union of dependence relations
over-approximative as it requires union and transitive closure to model
all dependences in a single cone

4 Dependence polyhedron, list of sets of dependent instances
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Data Dependence

Dependence Relation

Definition
A statement R is dependent on a statement S , denoted as R −→ S if there
exists operations S(−→xS), R(−→xR) and a memory location m such that,

1 S(−→xS) and R(−→xR) refers to the same memory location m, and atleast
one of them writes to that location

2 −→xS and −→xR belongs to the iteration domain S and R respectively
3 In the original sequential order S(−→xS) is executed before R(−→xR).

Using this we can describe the dependence polyhedra of each dependence
relation between two statements. It is a subset of cartesian product of
iteration space R and S .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 15 / 36



Data Dependence

Dependence Relation

Definition
A statement R is dependent on a statement S , denoted as R −→ S if there
exists operations S(−→xS), R(−→xR) and a memory location m such that,

1 S(−→xS) and R(−→xR) refers to the same memory location m, and atleast
one of them writes to that location

2 −→xS and −→xR belongs to the iteration domain S and R respectively
3 In the original sequential order S(−→xS) is executed before R(−→xR).

Using this we can describe the dependence polyhedra of each dependence
relation between two statements. It is a subset of cartesian product of
iteration space R and S .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 15 / 36



Data Dependence

Dependence Relation

Definition
A statement R is dependent on a statement S , denoted as R −→ S if there
exists operations S(−→xS), R(−→xR) and a memory location m such that,

1 S(−→xS) and R(−→xR) refers to the same memory location m, and atleast
one of them writes to that location

2 −→xS and −→xR belongs to the iteration domain S and R respectively

3 In the original sequential order S(−→xS) is executed before R(−→xR).

Using this we can describe the dependence polyhedra of each dependence
relation between two statements. It is a subset of cartesian product of
iteration space R and S .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 15 / 36



Data Dependence

Dependence Relation

Definition
A statement R is dependent on a statement S , denoted as R −→ S if there
exists operations S(−→xS), R(−→xR) and a memory location m such that,

1 S(−→xS) and R(−→xR) refers to the same memory location m, and atleast
one of them writes to that location

2 −→xS and −→xR belongs to the iteration domain S and R respectively
3 In the original sequential order S(−→xS) is executed before R(−→xR).

Using this we can describe the dependence polyhedra of each dependence
relation between two statements. It is a subset of cartesian product of
iteration space R and S .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 15 / 36



Data Dependence

Dependence Relation

Definition
A statement R is dependent on a statement S , denoted as R −→ S if there
exists operations S(−→xS), R(−→xR) and a memory location m such that,

1 S(−→xS) and R(−→xR) refers to the same memory location m, and atleast
one of them writes to that location

2 −→xS and −→xR belongs to the iteration domain S and R respectively
3 In the original sequential order S(−→xS) is executed before R(−→xR).

Using this we can describe the dependence polyhedra of each dependence
relation between two statements. It is a subset of cartesian product of
iteration space R and S .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 15 / 36



Data Dependence

Dependence Polyhedra

In dependence polyhedra every integral point represents a dependence
between two instances of the corresponding statements with components:

1 Same memory location: equality of the subscript functions of a pair of
references to the same array, FS−→xS + aS = FR

−→xR + aR .
2 Iteration domains: both S and R iteration domains can be described

using affine inequalities: AS
−→xS + cS ≥ 0 and AR

−→xR + cR ≥ 0
respectively.

3 Precedence order: each case corresponds to a common loop depth, and
is called a dependence level.
For each dependence level l , the precedence constraints are the equality
of the loop index variables at depth lesser to l : xR,i = xS ,i for i < l and
xR,l > xS ,l if l is less than the common nesting loop level. Otherwise,
there is no additional constraint and dependence exists if S is before R .
Such constraints can be written using linear inequalities,
Pl ,S

−→xS − Pl ,R
−→xR +

−→
b ≥ 0.
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Data Dependence

Algorithm 1 A Dependence Polyhedra Construction Algorithm
Require: Initialize reduced dependence graph with one node per statement
Ensure: Dependence polyhedra
1: for all pair R, S do
2: for all distinct references fR , fS to the same array do
3: if commonLoops(R,S) = ∅ then
4: minDepth = 0
5: else
6: minDepth = 1
7: end if
8: for l = minDepth to |commonLoops| do
9: Build DR,S

10: if DR,S ̸= ∅ then
11: type = concatenate(type(fR), A, type(fS)) { WAW, RAW, WAR,

RAR}
12: end if
13: addDegree(R,S , {l ,DR,S , type})
14: end for
15: end for
16: end for
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Data Dependence

Example of Dependence Polyhedron

for (i = 0; i <= n; i++){
for (j = 0; j <= n; j++)

a[i][j] = a[i+1][j+1]; //S1 }

Iteration Domain:

DS1 =


1 0 0 0
−1 0 1 0
0 1 0 0
0 −1 1 0




i
j
n
1

 ≥ −→
0

Array Reference Function:

FA
−→xS1 =

(
1 0 0 0
0 1 0 0

)
i
j
n
1

 F ′
A
−→xS1 =

(
1 0 0 1
0 1 0 1

)
i
j
n
1


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Data Dependence

Example of Dependence Polyhedron

for (i = 0; i <= n; i++){
for (j = 0; j <= n; j++)

a[i][j] = a[i+1][j+1]; //S1 }

Precedence Order:

For statement S1 in two consecutive loop, i - i’ = 1, j - j’ = 1,

PS1 =

(
1 0 0 0
0 1 0 0

)
i
j
n
1


To satisfy, PS1

−→xS1 − PR
−→xR +

−→
b ≥ −→

0 , where
−→
b ∈ [−1, 1].
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Data Dependence

Example of Dependence Polyhedron

for (i = 0; i <= n; i++){
for (j = 0; j <= n; j++)
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Scheduling and Program Transformation

Source iteration must be executed before target iteration

Definition
Given a statement S , a p-dimensional affine schedule ΘS is an affine form
on the outer loop iterators −→xS and the global parameters −→n ,

ΘS(
−→xS) = TS

−→xS−→n
1


where TS ∈ Rp×dim(−→xS )+dim(−→n )+1.

If TS is a vector, ΘS is called a one-dimensional schedule.
If TS is a matrix, ΘS is called a multi-dimensional schedule.
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Scheduling and Program Transformation

1 A schedule can assign a time point for every iteration, and a code
generator can generate code that will scan them in that specified order.

2 Schedules in our context are assumed to be affine functions, hence
affine schedule.

3 A one-dimensional schedule, expresses the program as a single
sequential loop, possibly enclosing one or more parallel loops.

4 A multidimensional schedule expresses the program as one or more
nested sequential loops, possibly enclosing one or more parallel loops.

5 Program transformation in the polyhedral model can be specified by a
well chosen scheduling function.

6 Dependence graph can be used to represent scheduling constraints
between the program operations.

7 Hyperplanes can be interpreted as schedules.
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Scheduling and Program Transformation

Example of one-dimensional schedule

Time Code Time Stamp
T = 0 x = a + b; //S1 T_S1 = 0;
T = 1 y = a + b; //S2 T_S2 = 1;
T = 2 z = x + y; //S3 T_S3 = 2;

Function T returns the logical date of each statement.
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Scheduling and Program Transformation

Example of multi-dimensional schedule

Time Code Time Stamp
T = 0 x = a + b; //S1 T_S1 = (0);
T = 1 for (i = 0; i < 2; i ++){

i = 0 a[i] = x; //S2 T_S2(0) = (1,0);
i = 1 } T_S2(1) = (1,1);

T = 2 z = x + y; //S3 T_S3 = (2);

Function T returns the logical date of each statement.
Logical dates may be multi-dimensional:

Lexicographical Order: TS1 < TS2 < TS3 ⇐⇒ (0) < (1, i) < (2).
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Scheduling and Program Transformation

Unlike one-dimensional schedules, it is always possible to build a legal
multidimensional schedule for a SCoP.

Theorem ([Fea97])

Every static control program has a multi-dimensional affine schedule.
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Scheduling and Program Transformation

1 Bernstein conditions are useful to decide if a program transformation is

legal if


Wa ∩Wb = ∅
Wa ∩Rb = ∅
Ra ∩Wb = ∅

.

2 A transformation is illegal if a dependence crosses the hyperplane
backwards.

3 A dependence going forward between 2 hyperplanes indicates
sequentiality.

4 No dependence between any point of the hyperplane indicates
parallelism.

Definition (Precedence condition)

ΘR and ΘS are legal schedule for instances R and S respectively if for all
< −→xR ,−→xS >∈ DR,S then ΘR(

−→xR) < ΘS(
−→xS) holds.
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Scheduling and Program Transformation

Example of Transformation (Loop Interchange)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


1 0
−1 0
0 1
0 −1

(
i
j

)
+


1
2
−1
3

 ≥ −→
0

New

for(j = 1; j <= 3; j++){
for(i = 1; i <= 2; i++)

b[i][j] = ...; } //S1


0 1
0 −1
1 0
−1 0

(
i ′

j ′

)
+


1
2
−1
3

 ≥ −→
0

Transformation Function:
(
i ′

j ′

)(
0 1
1 0

)
+

(
i
j

)
≥ −→

0 .
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1
2
−1
3

 ≥ −→
0
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(
i ′

j ′

)(
0 1
1 0

)
+
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i
j

)
≥ −→
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Scheduling and Program Transformation

Example of Transformation (Loop Interchange)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

Original Schedule

T_S1(i,j) = (i ,j);

New

for(j = 1; j <= 3; j++){
for(i = 1; i <= 2; i++)

b[i][j] = ...; } //S1

New Schedule

T_S1(i,j) = (j ,i);

TS1(i , j) =

(
0 1
1 0

)
︸ ︷︷ ︸

Transformation

(
i
j

)
︸︷︷︸

Iteration vector

=

(
j
i

)
︸︷︷︸

New Schedule

.
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Scheduling and Program Transformation

Example of Transformation (Loop Reversal)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


1 0
−1 0
0 1
0 −1

(
i
j

)
+


1
2
−1
3

 ≥ −→
0

New

for(i = -1; i >= -2; i--){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


−1 0
1 0
0 1
0 −1

(
i ′

j ′

)
+


1
2
−1
3

 ≥ −→
0

Transformation Function:
(
i ′

j ′

)(
−1 0
0 1

)
+

(
i
j

)
≥ −→

0 .
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Scheduling and Program Transformation

Example of Transformation (Loop Reversal)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

Original Schedule

T_S1(i,j) = (i ,j);

New

for(i = -1; i >= -2; i--){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

New Schedule

T_S1(i,j) = (-i ,j);

TS1(i , j) =

(
−1 0
0 1

)
︸ ︷︷ ︸

Transformation

(
i
j

)
︸︷︷︸

Iteration vector

=

(
−i
j

)
︸ ︷︷ ︸

New Schedule

.
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Scheduling and Program Transformation

Loop Tiling

Loop tiling [IT88, WL91, Xue00] is a key transformation in optimizing for
parallelism and data locality.

Theorem
Two one-dimensional schedules are valid tiling hyperplanes if and only if they
satisfy the precedence conditions.
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Scheduling and Program Transformation

Example of Tiling: Transpose matrix vector multiply [BRS10]

Original code

for(i = 0; i < N; i++){
P: x[i] = 0;
for(j = 0; j < N; j++)

Q: x[i] += a[j][i] * y[j];
}

Iteration Space

Dorig
Q


i
j
N
1

 ≥ 0, Dtiled
Q



it
jt
i
j
N
1

 ≥ 0

Tiled code

for(it = 0; it <= floord(N - 1, 32); it++){
for(jt = 0; jt <= floord(N - 1, 32); jt++){

if(jt == 0){
for(i = max(32 * it, 0);

i <= min(32 * it + 31, N - 1); i++){
P: x[i] = 0;
Q: x[i] = x[i] + a[0][i] * y[0];
}

}
for(i = max(32 * it, 0);

i <= min(32 * it + 31, N - 1); i++){
for(j = max(32 * jt, 1);

j <= min(32 * jt + 31, N - 1); j++){
Q: x[i] = x[i] + a[j][i] * y[j];

}
}

}
}

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 32 / 36



Scheduling and Program Transformation

Example of Tiling: Transpose matrix vector multiply [BRS10]

Original code

for(i = 0; i < N; i++){
P: x[i] = 0;
for(j = 0; j < N; j++)

Q: x[i] += a[j][i] * y[j];
}

Iteration Space

Dorig
Q


i
j
N
1

 ≥ 0, Dtiled
Q



it
jt
i
j
N
1

 ≥ 0

Tiled code

for(it = 0; it <= floord(N - 1, 32); it++){
for(jt = 0; jt <= floord(N - 1, 32); jt++){

if(jt == 0){
for(i = max(32 * it, 0);

i <= min(32 * it + 31, N - 1); i++){
P: x[i] = 0;
Q: x[i] = x[i] + a[0][i] * y[0];
}

}
for(i = max(32 * it, 0);

i <= min(32 * it + 31, N - 1); i++){
for(j = max(32 * jt, 1);

j <= min(32 * jt + 31, N - 1); j++){
Q: x[i] = x[i] + a[j][i] * y[j];

}
}

}
}

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 32 / 36



Scheduling and Program Transformation

Example of Tiling: Transpose matrix vector multiply [BRS10]

Original code

for(i = 0; i < N; i++){
P: x[i] = 0;
for(j = 0; j < N; j++)

Q: x[i] += a[j][i] * y[j];
}

Iteration Space

Dorig
Q


i
j
N
1

 ≥ 0, Dtiled
Q



it
jt
i
j
N
1

 ≥ 0

Tiled code

for(it = 0; it <= floord(N - 1, 32); it++){
for(jt = 0; jt <= floord(N - 1, 32); jt++){

if(jt == 0){
for(i = max(32 * it, 0);

i <= min(32 * it + 31, N - 1); i++){
P: x[i] = 0;
Q: x[i] = x[i] + a[0][i] * y[0];
}

}
for(i = max(32 * it, 0);

i <= min(32 * it + 31, N - 1); i++){
for(j = max(32 * jt, 1);

j <= min(32 * jt + 31, N - 1); j++){
Q: x[i] = x[i] + a[j][i] * y[j];

}
}

}
}Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 32 / 36



Scheduling and Program Transformation

Drawbacks of the Polyhedral Model

1 Compile-time efficiency, most optimization problems in the polyhedral
model are modeled as Integer Linear Programming, which is NP-hard.

2 Building polyhedrons in compile time is also memory consuming.
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