The Polyhedral Model

Chirantan Mukherjee

University of Western Ontario

June 20, 2024

Content

- Iteration Domains
- 3 Data Dependence
- 4 Scheduling and Program Transformation

Chirantan Mukherjee (UWO)

A framework for performing loop transformation.

- A framework for performing loop transformation.
- 2 Loop representation: using polytopes to achieve fine-grain representation of program.

- A framework for performing loop transformation.
- Loop representation: using polytopes to achieve fine-grain representation of program.
- Loop transformation: transforming loop by doing affine transformation on polytopes.

- A framework for performing loop transformation.
- Loop representation: using polytopes to achieve fine-grain representation of program.
- Loop transformation: transforming loop by doing affine transformation on polytopes.
- Oppendency test: several mathematical methods for validating transformation on loop polytopes.

- A framework for performing loop transformation.
- Loop representation: using polytopes to achieve fine-grain representation of program.
- Loop transformation: transforming loop by doing affine transformation on polytopes.
- Oppendency test: several mathematical methods for validating transformation on loop polytopes.
- Solution: generate transformed code from loop polytopes.

Convexity is the central concept of polyhedral optimization

Chirantan Mukherjee (UWO)

Convexity is the central concept of polyhedral optimization

Definition

A set S is called convex if the line joining any two points in S is in S, i.e.,

$$\forall x, y \in S, \forall \lambda \in [0, 1], \lambda x + (1 - \lambda)y \in S.$$

4/36

A polyhedron P is a set which can be expressed as the intersection of finite number of (closed) half spaces, that is $\{\vec{x} \in \mathbb{R}^n \mid A\vec{x} \leq \vec{b}\}$.

A polyhedron P is a set which can be expressed as the intersection of finite number of (closed) half spaces, that is $\{\vec{x} \in \mathbb{R}^n \mid A\vec{x} \leq \vec{b}\}$.

Definition

A polytope is a bounded polyhedron.

A polyhedron P is a set which can be expressed as the intersection of finite number of (closed) half spaces, that is $\{\vec{x} \in \mathbb{R}^n \mid A\vec{x} \leq \vec{b}\}$.

Definition

A polytope is a bounded polyhedron.

Definition

A $\mathbb{Z}\text{-polyhedron}$ is a polyhedron where all its extreme points are integer valued.

In most situation loop counters are integers. So we use $\mathbb{Z}\text{-polyhedron}$ to represent loop iteration domain.

Chirantan Mukherjee (UWO)

1 Dimension of Iteration Domain: Decided by loop nesting levels

- **1** Dimension of Iteration Domain: Decided by loop nesting levels
- Bounds of Iteration Domain: Decided by loop bounds

- **1** Dimension of Iteration Domain: Decided by loop nesting levels
- Bounds of Iteration Domain: Decided by loop bounds

```
for(i = 1; i <= n; i++){
  for(j = 1; j <= n; j++){
    if (i <= n + 2 - j)
        b[j] = b[j] + a[i];
    }
}</pre>
```


- **1** Dimension of Iteration Domain: Decided by loop nesting levels
- Bounds of Iteration Domain: Decided by loop bounds

Inequalities:

$$1 \le i \le n$$
$$1 \le j \le n$$
$$i \le n + 2 - j$$

Dimension of Iteration Domain: Decided by loop nesting levels
Bounds of Iteration Domain: Decided by loop bounds

Representing iteration bounds by affine function

Chirantan Mukherjee (UWO)

The Polyhedral Model

June 20, 2024

7/36

Representing iteration bounds by affine function

$$1 \le i \le n \qquad \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \end{pmatrix} + \begin{pmatrix} -1 \\ n \end{pmatrix} \ge \overrightarrow{0}$$
$$1 \le j \le n \qquad \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} i \\ j \end{pmatrix} + \begin{pmatrix} -1 \\ n \end{pmatrix} \ge \overrightarrow{0}$$
$$1 \le n + 2 - j \le n \qquad (-1 \quad -1) \begin{pmatrix} i \\ j \end{pmatrix} + (n+2) \ge 0$$

Representing iteration bounds by affine function

$$1 \le i \le n \qquad \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \end{pmatrix} + \begin{pmatrix} -1 \\ n \end{pmatrix} \ge \overrightarrow{0}$$
$$1 \le j \le n \qquad \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} i \\ j \end{pmatrix} + \begin{pmatrix} -1 \\ n \end{pmatrix} \ge \overrightarrow{0}$$
$$\le n + 2 - j \le n \qquad (-1 \quad -1) \begin{pmatrix} i \\ j \end{pmatrix} + (n + 2) \ge 0$$

Iteration Domain:

1

$$\begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \\ -1 & -1 \end{pmatrix} \binom{i}{j} + \binom{-1}{n} \\ \binom{i}{n+2} \ge \overrightarrow{0}$$

Chirantan Mukherjee (UWO)

The Polyhedral Model

7/36

The integer hull P_I of a convex polyhedral set P is the convex hull of integer points of P.

Example

Chirantan Mukherjee (UWO)

The dual representation of the polyhedron P can be expressed as a combination of lines L, rays R (forming the polyhedral cone) and vertices V (forming the polytope), that is

 $\{x \in \mathbb{R}^n \mid \lambda L + \mu R + \rho V \text{ such that } \lambda, \mu, \rho \geq 0 \text{ and } \lambda + \mu + \rho = 1\}.$

The dual representation of the polyhedron P can be expressed as a combination of lines L, rays R (forming the polyhedral cone) and vertices V (forming the polytope), that is

 $\{x \in \mathbb{R}^n \mid \lambda L + \mu R + \rho V \text{ such that } \lambda, \mu, \rho \geq 0 \text{ and } \lambda + \mu + \rho = 1\}.$

Definition

A face of the polyhedron P is the intersection of P with the supporting hyperplane of P. A face of maximum dimension is called the facet of P.

The dual representation of the polyhedron P can be expressed as a combination of lines L, rays R (forming the polyhedral cone) and vertices V (forming the polytope), that is

 $\{x \in \mathbb{R}^n \mid \lambda L + \mu R + \rho V \text{ such that } \lambda, \mu, \rho \geq 0 \text{ and } \lambda + \mu + \rho = 1\}.$

Definition

A face of the polyhedron P is the intersection of P with the supporting hyperplane of P. A face of maximum dimension is called the facet of P.

Theorem (Fundamental theorem of polyhedral decomposition)

Every polyhedron P can be decomposed into a polytope V and a polyhedral cone L.

Given \overrightarrow{m} the vector of symbolic parameters, a parametric polyhedron P is defined by $\{\overrightarrow{x} \in \mathbb{R}^n \mid A\overrightarrow{x} \leq B\overrightarrow{m} + \overrightarrow{b}\}$.

Can we parallelize the two for-loops?

- Can we parallelize the two for-loops?
- Is there data dependence between two different iterations of the nest?

- Can we parallelize the two for-loops?
- Is there data dependence between two different iterations of the nest?
- In the solution of the following system of linear inequalities?

$$\begin{cases} 0 \le i_1 < n \\ i_1 + 1 \le j_1 < n \\ 0 \le i_2 < n \\ i_2 + 1 \le j_2 < n \\ i_1 \times n + j_1 = n \times j_2 - n + j_2 - i_2 - 1 \end{cases}$$

Linearized one-dimensional array

```
for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)
A[i * n + j] =
A[(n * j - n + j - i - 1];</pre>
```


Linearized one-dimensional array

Delinearized multi-dimensional array

Linearized one-dimensional array

Linearized one-dimensional array
for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)
A[i * n + j] =
A[(n * j - n + j - i - 1];

$$\begin{cases}
0 \le i_1 < n \\
i_1 + 1 \le j_1 < n \\
0 \le i_2 < n \\
i_2 + 1 \le j_2 < n \\
i_1 \times n + j_1 = n \times j_2 - n + j_2 - i_2 - 1
\end{cases}$$

Delinearized multi-dimensional array

12/36

$$\begin{array}{l} \text{Linearized one-dimensional array} \\ \text{for(int i = 0; i < n; i++)} \\ \text{for(int j = i + 1; j < n; j ++)} \\ \text{A[i * n + j] =} \\ \text{A[(n * j - n + j - i - 1];} \\ \text{Delinearized multi-dimensional array} \\ \text{for(int i = 0; i < n; i++)} \\ \text{for(int j = i + 1; j < n; j ++)} \\ \text{B[i][j] = B[j - 1][j - i - 1];} \\ \end{array} \begin{cases} 0 \leq i_1 < n \\ i_2 + 1 \leq j_2 < n \\ i_1 \times n + j_1 = n \times j_2 - n + j_2 - i_2 - 1 \\ 0 \leq i_1 < n \\ 0 \leq i_2 < n \\ i_2 + 1 \leq j_2 < n \\ i_2 + 1 \leq j_2 < n \\ i_2 + 1 \leq j_2 < n \\ i_1 = j_2 - 1 \\ j_1 = j_2 - i_2 - 1 \\ \end{array}$$

Linearized one-dimensional array
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j ++)
A[i * n + j] =
A[(n * j - n + j - i - 1];
Delinearized multi-dimensional array
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j ++)
B[i][j] = B[j - 1][j - i - 1];

$$\begin{cases}
0 \le i_1 < n \\
i_2 + 1 \le j_2 < n \\
i_1 \times n + j_1 = n \times j_2 - n + j_2 - i_2 - 1 \\
0 \le i_1 < n \\
0 \le i_2 < n \\
i_2 + 1 \le j_1 < n \\
0 \le i_2 < n \\
i_2 + 1 \le j_2 < n \\
i_1 = j_2 - 1 \\
j_1 = j_2 - i_2 - 1
\end{cases}$$

There is no integer solution, therefore, no dependence.

Definition

Given two references, there exists a dependence between them if the following conditions are satisfied:

- they reference the same array (cells)
- One of this access is a write
- Ithe two associated statements are executed

Definition

Given two references, there exists a dependence between them if the following conditions are satisfied:

- they reference the same array (cells)
- One of this access is a write
- Ithe two associated statements are executed

There are three types of dependencies:

True dependency (read-after-write), A = 3, B = A, C = B

Definition

Given two references, there exists a dependence between them if the following conditions are satisfied:

- they reference the same array (cells)
- one of this access is a write
- Ithe two associated statements are executed

There are three types of dependencies:

- True dependency (read-after-write), A = 3, B = A, C = B
- Anti-dependency (write-after-read), B = 3, A = B + 1, B = 7

Definition

Given two references, there exists a dependence between them if the following conditions are satisfied:

- they reference the same array (cells)
- one of this access is a write
- Ithe two associated statements are executed

There are three types of dependencies:

- True dependency (read-after-write), A = 3, B = A, C = B
- Anti-dependency (write-after-read), B = 3, A = B + 1, B = 7
- Output dependency (write-after-write), B = 3, B = 7

Compute the transitive closure of the access function

• transitive closure is not convex in general, and not even computable in many situations

- Compute the transitive closure of the access function
 - transitive closure is not convex in general, and not even computable in many situations
- 2 Compute an indicator of the distance between two dependent iterations
 - approximative for non-uniform dependences

- Compute the transitive closure of the access function
 - transitive closure is not convex in general, and not even computable in many situations
- Ompute an indicator of the distance between two dependent iterations
 - approximative for non-uniform dependences
- Oppendence cone: do the union of dependence relations
 - over-approximative as it requires union and transitive closure to model all dependences in a single cone

- Compute the transitive closure of the access function
 - transitive closure is not convex in general, and not even computable in many situations
- Ompute an indicator of the distance between two dependent iterations
 - approximative for non-uniform dependences
- Oppendence cone: do the union of dependence relations
 - over-approximative as it requires union and transitive closure to model all dependences in a single cone
- Dependence polyhedron, list of sets of dependent instances

Definition

A statement R is dependent on a statement S, denoted as $R \to S$ if there exists operations $S(\overrightarrow{x_S})$, $R(\overrightarrow{x_R})$ and a memory location m such that,

Definition

A statement R is dependent on a statement S, denoted as $R \to S$ if there exists operations $S(\overrightarrow{x_S})$, $R(\overrightarrow{x_R})$ and a memory location m such that,

• $S(\overrightarrow{x_S})$ and $R(\overrightarrow{x_R})$ refers to the same memory location *m*, and atleast one of them writes to that location

Definition

A statement R is dependent on a statement S, denoted as $R \to S$ if there exists operations $S(\overrightarrow{x_S})$, $R(\overrightarrow{x_R})$ and a memory location m such that,

- $S(\overrightarrow{x_S})$ and $R(\overrightarrow{x_R})$ refers to the same memory location *m*, and atleast one of them writes to that location
- **2** $\overrightarrow{x_S}$ and $\overrightarrow{x_R}$ belongs to the iteration domain S and R respectively

Definition

A statement R is dependent on a statement S, denoted as $R \to S$ if there exists operations $S(\overrightarrow{x_S})$, $R(\overrightarrow{x_R})$ and a memory location m such that,

- $S(\overrightarrow{x_S})$ and $R(\overrightarrow{x_R})$ refers to the same memory location *m*, and atleast one of them writes to that location
- **2** $\overrightarrow{x_S}$ and $\overrightarrow{x_R}$ belongs to the iteration domain S and R respectively
- Solution In the original sequential order $S(\overrightarrow{x_S})$ is executed before $R(\overrightarrow{x_R})$.

Definition

A statement R is dependent on a statement S, denoted as $R \to S$ if there exists operations $S(\overrightarrow{x_S})$, $R(\overrightarrow{x_R})$ and a memory location m such that,

- $S(\overrightarrow{x_S})$ and $R(\overrightarrow{x_R})$ refers to the same memory location *m*, and atleast one of them writes to that location
- 2 $\overrightarrow{x_S}$ and $\overrightarrow{x_R}$ belongs to the iteration domain S and R respectively
- **③** In the original sequential order $S(\overrightarrow{x_S})$ is executed before $R(\overrightarrow{x_R})$.

Using this we can describe the dependence polyhedra of each dependence relation between two statements. It is a subset of cartesian product of iteration space R and S.

In dependence polyhedra every integral point represents a dependence between two instances of the corresponding statements with components:

In dependence polyhedra every integral point represents a dependence between two instances of the corresponding statements with components:

• Same memory location: equality of the subscript functions of a pair of references to the same array, $F_S \vec{x_S} + a_S = F_R \vec{x_R} + a_R$.

In dependence polyhedra every integral point represents a dependence between two instances of the corresponding statements with components:

- Same memory location: equality of the subscript functions of a pair of references to the same array, $F_S \overrightarrow{x_S} + a_S = F_R \overrightarrow{x_R} + a_R$.
- ② Iteration domains: both S and R iteration domains can be described using affine inequalities: $A_S \overrightarrow{x_S} + c_S \ge 0$ and $A_R \overrightarrow{x_R} + c_R \ge 0$ respectively.

In dependence polyhedra every integral point represents a dependence between two instances of the corresponding statements with components:

- Same memory location: equality of the subscript functions of a pair of references to the same array, $F_S \overrightarrow{xS} + a_S = F_R \overrightarrow{xR} + a_R$.
- ② Iteration domains: both S and R iteration domains can be described using affine inequalities: $A_S \overrightarrow{x_S} + c_S \ge 0$ and $A_R \overrightarrow{x_R} + c_R \ge 0$ respectively.
- Precedence order: each case corresponds to a common loop depth, and is called a dependence level.

For each dependence level I, the precedence constraints are the equality of the loop index variables at depth lesser to I: $x_{R,i} = x_{S,i}$ for i < I and $x_{R,I} > x_{S,I}$ if I is less than the common nesting loop level. Otherwise, there is no additional constraint and dependence exists if S is before Such constraints can be written using linear inequalities, $P_{I,S}\overrightarrow{x_{S}} - P_{I,R}\overrightarrow{x_{R}} + \overrightarrow{b} \ge 0.$ Algorithm 1 A Dependence Polyhedra Construction Algorithm

Require: Initialize reduced dependence graph with one node per statement **Ensure:** Dependence polyhedra

- 1: for all pair R, S do
- 2: for all distinct references f_R , f_S to the same array do
- 3: **if** commonLoops $(R, S) = \emptyset$ **then**
- 4: minDepth = 0

5: else

6:

```
minDepth = 1
```

- 7: end if
- 8: **for** I = minDepth to |commonLoops| **do**
- 9: Build $\mathcal{D}_{R,S}$
- 10: if $\mathcal{D}_{R,S} \neq \emptyset$ then
- 11: type = concatenate(type(f_R), A, type(f_S)) { WAW, RAW, WAR, RAR}
- 12: end if

```
13: addDegree(R, S, \{I, D_{R,S}, type\})
```

- 14: end for
- 15: **end for**
- 16: end for

Chirantan Mukherjee (UWO)

Iteration Domain:

$$\mathcal{D}_{S1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \ge \overrightarrow{0}$$

Iteration Domain:

$$\mathcal{D}_{S1} = egin{pmatrix} 1 & 0 & 0 & 0 \ -1 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & -1 & 1 & 0 \end{pmatrix} egin{pmatrix} i \ j \ n \ 1 \end{pmatrix} \geq \overrightarrow{0}$$

Array Reference Function:

$$F_{A}\overrightarrow{x_{S1}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \qquad F'_{A}\overrightarrow{x_{S1}} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$

Chirantan Mukherjee (UWO)

The Polyhedral Model

Precedence Order:

For statement S1 in two consecutive loop, i - i' = 1, j - j' = 1,

$$P_{51} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$

To satisfy, $P_{S1}\overrightarrow{x_{S1}} - P_R\overrightarrow{x_R} + \overrightarrow{b} \ge \overrightarrow{0}$, where $\overrightarrow{b} \in [-1, 1]$.

Chirantan Mukherjee (UWO)

The Polyhedral Model

June 20, 2024

20/36

Source iteration must be executed before target iteration

Source iteration must be executed before target iteration

Definition

Given a statement S, a p-dimensional affine schedule Θ_S is an affine form on the outer loop iterators $\overrightarrow{x_S}$ and the global parameters \overrightarrow{n} ,

$$\Theta_{\mathcal{S}}(\overrightarrow{x_{\mathcal{S}}}) = T_{\mathcal{S}}\begin{pmatrix}\overrightarrow{x_{\mathcal{S}}}\\\overrightarrow{n}\\1\end{pmatrix}$$

where $T_{S} \in \mathbb{R}^{p \times \dim(\overrightarrow{x_{S}}) + \dim(\overrightarrow{n}) + 1}$.

Source iteration must be executed before target iteration

Definition

Given a statement S, a p-dimensional affine schedule Θ_S is an affine form on the outer loop iterators $\overrightarrow{x_S}$ and the global parameters \overrightarrow{n} ,

$$\Theta_{S}(\overrightarrow{x_{S}}) = T_{S}\begin{pmatrix}\overrightarrow{x_{S}}\\\overrightarrow{n}\\1\end{pmatrix}$$

where $T_{S} \in \mathbb{R}^{p \times \dim(\overrightarrow{x_{S}}) + \dim(\overrightarrow{n}) + 1}$.

- If T_S is a vector, Θ_S is called a one-dimensional schedule.
- If T_S is a matrix, Θ_S is called a multi-dimensional schedule.

A schedule can assign a time point for every iteration, and a code generator can generate code that will scan them in that specified order.

- A schedule can assign a time point for every iteration, and a code generator can generate code that will scan them in that specified order.
- Schedules in our context are assumed to be affine functions, hence affine schedule.

- A schedule can assign a time point for every iteration, and a code generator can generate code that will scan them in that specified order.
- Schedules in our context are assumed to be affine functions, hence affine schedule.
- A one-dimensional schedule, expresses the program as a single sequential loop, possibly enclosing one or more parallel loops.

- A schedule can assign a time point for every iteration, and a code generator can generate code that will scan them in that specified order.
- Schedules in our context are assumed to be affine functions, hence affine schedule.
- A one-dimensional schedule, expresses the program as a single sequential loop, possibly enclosing one or more parallel loops.
- A multidimensional schedule expresses the program as one or more nested sequential loops, possibly enclosing one or more parallel loops.

- A schedule can assign a time point for every iteration, and a code generator can generate code that will scan them in that specified order.
- Schedules in our context are assumed to be affine functions, hence affine schedule.
- A one-dimensional schedule, expresses the program as a single sequential loop, possibly enclosing one or more parallel loops.
- A multidimensional schedule expresses the program as one or more nested sequential loops, possibly enclosing one or more parallel loops.
- Program transformation in the polyhedral model can be specified by a well chosen scheduling function.

- A schedule can assign a time point for every iteration, and a code generator can generate code that will scan them in that specified order.
- Schedules in our context are assumed to be affine functions, hence affine schedule.
- A one-dimensional schedule, expresses the program as a single sequential loop, possibly enclosing one or more parallel loops.
- A multidimensional schedule expresses the program as one or more nested sequential loops, possibly enclosing one or more parallel loops.
- Program transformation in the polyhedral model can be specified by a well chosen scheduling function.
- Opendence graph can be used to represent scheduling constraints between the program operations.

- A schedule can assign a time point for every iteration, and a code generator can generate code that will scan them in that specified order.
- Schedules in our context are assumed to be affine functions, hence affine schedule.
- A one-dimensional schedule, expresses the program as a single sequential loop, possibly enclosing one or more parallel loops.
- A multidimensional schedule expresses the program as one or more nested sequential loops, possibly enclosing one or more parallel loops.
- Program transformation in the polyhedral model can be specified by a well chosen scheduling function.
- Dependence graph can be used to represent scheduling constraints between the program operations.
- Ø Hyperplanes can be interpreted as schedules.

Example of one-dimensional schedule

Time	Code	Time Stamp
T = 0	x = a + b; //S1	$T_{S1} = 0;$
T = 1	y = a + b; //S2	$T_S2 = 1;$
T = 2	z = x + y; //S3	$T_{S3} = 2;$

Function T returns the logical date of each statement.

Example of multi-dimensional schedule

TimeCodeTime Stamp
$$T = 0$$
 $x = a + b; //S1$ $T_S1 = (0);$ $T = 1$ for (i = 0; i < 2; i ++){ $i = 0$ $a[i] = x; //S2$ $T_S2(0) = (1,0);$ $i = 1$ $\}$ $T_S2(1) = (1,1);$ $T = 2$ $z = x + y; //S3$ $T_S3 = (2);$

Function T returns the logical date of each statement. Logical dates may be multi-dimensional:

• Lexicographical Order: $T_{S1} < T_{S2} < T_{S3} \iff (0) < (1, i) < (2).$

Unlike one-dimensional schedules, it is always possible to build a legal multidimensional schedule for a SCoP.

Theorem ([Fea97])

Every static control program has a multi-dimensional affine schedule.

- **1** Bernstein conditions are useful to decide if a program transformation is legal if $\begin{cases} \mathcal{W}_a \cap \mathcal{W}_b = \emptyset \\ \mathcal{W}_a \cap \mathcal{R}_b = \emptyset \\ \mathcal{R}_a \cap \mathcal{W}_b = \emptyset \end{cases}$
- A transformation is illegal if a dependence crosses the hyperplane backwards.

- **1** Bernstein conditions are useful to decide if a program transformation is legal if $\begin{cases} \mathcal{W}_a \cap \mathcal{W}_b = \emptyset \\ \mathcal{W}_a \cap \mathcal{R}_b = \emptyset \\ \mathcal{R}_a \cap \mathcal{W}_b = \emptyset \end{cases}$
- A transformation is illegal if a dependence crosses the hyperplane backwards.
- A dependence going forward between 2 hyperplanes indicates sequentiality.

- **1** Bernstein conditions are useful to decide if a program transformation is legal if $\begin{cases} \mathcal{W}_a \cap \mathcal{W}_b = \emptyset \\ \mathcal{W}_a \cap \mathcal{R}_b = \emptyset \\ \mathcal{R}_a \cap \mathcal{W}_b = \emptyset \end{cases}$
- A transformation is illegal if a dependence crosses the hyperplane backwards.
- A dependence going forward between 2 hyperplanes indicates sequentiality.
- No dependence between any point of the hyperplane indicates parallelism.

- **3** Bernstein conditions are useful to decide if a program transformation is legal if $\begin{cases} \mathcal{W}_a \cap \mathcal{W}_b = \emptyset \\ \mathcal{W}_a \cap \mathcal{R}_b = \emptyset \\ \mathcal{R}_a \cap \mathcal{W}_b = \emptyset \end{cases}$
- A transformation is illegal if a dependence crosses the hyperplane backwards.
- A dependence going forward between 2 hyperplanes indicates sequentiality.
- No dependence between any point of the hyperplane indicates parallelism.

Definition (Precedence condition)

 Θ_R and Θ_S are legal schedule for instances R and S respectively if for all $\langle \overrightarrow{x_R}, \overrightarrow{x_S} \rangle \in \mathcal{D}_{R,S}$ then $\Theta_R(\overrightarrow{x_R}) < \Theta_S(\overrightarrow{x_S})$ holds.

Original

Original

Original

Original

Original Schedule

 $T_S1(i,j) = (i,j);$

Original	New	
<pre>for(i = 1; i <= 2; i++){ for(j = 1; j <= 3; j++) b[i][j] =; } //S1</pre>	<pre>for(j = 1; j <= 3; j++){ for(i = 1; i <= 2; i++) b[i][j] =; } //S1</pre>	
Original Schedule		
$T_S1(i,j) = (i,j);$		

Original	New	
<pre>for(i = 1; i <= 2; i++){ for(j = 1; j <= 3; j++) b[i][j] =; } //S1</pre>	<pre>for(j = 1; j <= 3; j++){ for(i = 1; i <= 2; i++) b[i][j] =; } //S1</pre>	
Original Schedule	New Schedule	
T_S1(i,j) = (i ,j);	T_S1(i,j) = (j ,i);	

Original	New		
<pre>for(i = 1; i <= 2; i++){ for(j = 1; j <= 3; j++) b[i][j] =; } //S1</pre>	<pre>for(j = 1; j < for(i = 1; i b[i][j]</pre>	= 3; j++){ <= 2; i++) =; } //S1	
Original Schedule	New Schedu	le	
T_S1(i,j) = (i ,j);	T_S1(i,j) = (j	,i);	
$T_{S1}(i,j) = \underbrace{\begin{pmatrix} 0\\1 \end{pmatrix}}_{I}$	$\underbrace{\begin{pmatrix} 1\\ 0 \end{pmatrix}}_{i} \qquad \underbrace{\begin{pmatrix} i\\ j \end{pmatrix}}_{i} =$	$\begin{pmatrix} j \\ i \end{pmatrix}$	
Transfor	mation Iteration vector	New Schedule	Western
Chirantan Mukherjee (UWO)	The Polyhedral Model	June 20, 2024	28 / 36

Original

Original

Original

Original

Original Schedule

 $T_S1(i,j) = (i,j);$

Original	New	
<pre>for(i = 1; i <= 2; i++){ for(j = 1; j <= 3; j++) b[i][j] =; } //S1</pre>	<pre>for(i = -1; i >= -2; i){ for(j = 1; j <= 3; j++) b[i][j] =; } //S1</pre>	
Original Schedule		
T_S1(i,j) = (i ,j);		

Original	New	
<pre>for(i = 1; i <= 2; i++){ for(j = 1; j <= 3; j++) b[i][j] =; } //S1</pre>	<pre>for(i = -1; i >= -2; i){ for(j = 1; j <= 3; j++) b[i][j] =; } //S1</pre>	
Original Schedule	New Schedule	
T_S1(i,j) = (i ,j);	T_S1(i,j) = (-i ,j);	

Original	New	
<pre>for(i = 1; i <= 2; i++){ for(j = 1; j <= 3; j++) b[i][j] =; } //S1</pre>	<pre>for(i = -1; i >= -2; i){ for(j = 1; j <= 3; j++) b[i][j] =; } //S1</pre>	
Original Schedule	New Schedule	
T_S1(i,j) = (i ,j);	T_S1(i,j) = (-i ,j);	
$T_{S1}(i,j) = \underbrace{\begin{pmatrix} -1 & 0 \\ 0 & 1 \\ Transforma \end{pmatrix}}_{Transforma}$	$\underbrace{\binom{i}{j}}_{\text{tion Iteration vector}} \underbrace{\binom{-i}{j}}_{\text{New Schedule}}.$	Western

Loop Tiling

Loop tiling [IT88, WL91, Xue00] is a key transformation in optimizing for parallelism and data locality.

Loop Tiling

Loop tiling [IT88, WL91, Xue00] is a key transformation in optimizing for parallelism and data locality.

Theorem

Two one-dimensional schedules are valid tiling hyperplanes if and only if they satisfy the precedence conditions.

Example of Tiling: Transpose matrix vector multiply [BRS10]

Original code

```
for(i = 0; i < N; i++){
  P: x[i] = 0;
  for(j = 0; j < N; j++)
      Q: x[i] += a[j][i] * y[j];
}</pre>
```


Example of Tiling: Transpose matrix vector multiply [BRS10]

Original code

Iteration Space

$$\mathcal{D}_{Q}^{\mathsf{orig}}\begin{pmatrix}i\\j\\N\\1\end{pmatrix}\geq 0, \ \mathcal{D}_{Q}^{\mathsf{tiled}}\begin{pmatrix}it\\jt\\i\\j\\N\\1\end{pmatrix}\geq 0$$

Chirantan Mukherjee (UWO)

32 / 36

Example of Tiling: Transpose matrix vector multiply [BRS10]

Drawbacks of the Polyhedral Model

Drawbacks of the Polyhedral Model

Compile-time efficiency, most optimization problems in the polyhedral model are modeled as Integer Linear Programming, which is NP-hard.

Drawbacks of the Polyhedral Model

- Compile-time efficiency, most optimization problems in the polyhedral model are modeled as Integer Linear Programming, which is NP-hard.
- Ø Building polyhedrons in compile time is also memory consuming.

References I

Louis-Noël Pouchet.

Polyhedral Compilation Foundations, 2010. https://www.cs.colostate.edu/~pouchet/lectures/888.11.

lect1.html#lect1

Cédric Bastoul. Improving Data Locality in Static Control Programs. Ph.D. Thesis, 2004.

Fangzhou Jiao.

An Overview to Polyhedral Model, 2010.

https://homes.luddy.indiana.edu/achauhan/Teaching/B629/

2010-Fall/StudentPresns/PolyhedralModelOverview.pdf

References II

Paul Feautrier.

Some efficient solutions to the affine scheduling problem: Part II Multidimensional time nternational Journal of Parallel Programming, 1997.

Francois Irigoin and Rémi Triolet. Supernode partitioning. ACM SIGPLAN Principles of Programming Languages, 1988.

 Michael E. Wolf and Monica S. Lam.
 A data locality optimizing algorithm.
 ACM SIGPLAN symposium on Programming Languages Design and Implementation, 1991.

References III

Jingling Xue. Loop tiling for parallelism.

Kluwer Academic Publishers, 2000.

Muthu Manikandan Baskaran, Jeyakumar Ramanujam and Ponnuswamy Sadayappan.

Automatic C-to-CUDA Code Generation for Affine Programs. International Conference on Compiler Construction, 2010.

