
The Polyhedral Model

Chirantan Mukherjee

University of Western Ontario

June 20, 2024

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 1 / 36



Overview

Content

1 Introduction

2 Iteration Domains

3 Data Dependence

4 Scheduling and Program Transformation

5 References

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 2 / 36



Introduction

What is the Polyhedral Model?

1 A framework for performing loop transformation.
2 Loop representation: using polytopes to achieve fine-grain

representation of program.
3 Loop transformation: transforming loop by doing affine transformation

on polytopes.
4 Dependency test: several mathematical methods for validating

transformation on loop polytopes.
5 Code generation: generate transformed code from loop polytopes.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 3 / 36



Introduction

What is the Polyhedral Model?

1 A framework for performing loop transformation.

2 Loop representation: using polytopes to achieve fine-grain
representation of program.

3 Loop transformation: transforming loop by doing affine transformation
on polytopes.

4 Dependency test: several mathematical methods for validating
transformation on loop polytopes.

5 Code generation: generate transformed code from loop polytopes.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 3 / 36



Introduction

What is the Polyhedral Model?

1 A framework for performing loop transformation.
2 Loop representation: using polytopes to achieve fine-grain

representation of program.

3 Loop transformation: transforming loop by doing affine transformation
on polytopes.

4 Dependency test: several mathematical methods for validating
transformation on loop polytopes.

5 Code generation: generate transformed code from loop polytopes.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 3 / 36



Introduction

What is the Polyhedral Model?

1 A framework for performing loop transformation.
2 Loop representation: using polytopes to achieve fine-grain

representation of program.
3 Loop transformation: transforming loop by doing affine transformation

on polytopes.

4 Dependency test: several mathematical methods for validating
transformation on loop polytopes.

5 Code generation: generate transformed code from loop polytopes.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 3 / 36



Introduction

What is the Polyhedral Model?

1 A framework for performing loop transformation.
2 Loop representation: using polytopes to achieve fine-grain

representation of program.
3 Loop transformation: transforming loop by doing affine transformation

on polytopes.
4 Dependency test: several mathematical methods for validating

transformation on loop polytopes.

5 Code generation: generate transformed code from loop polytopes.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 3 / 36



Introduction

What is the Polyhedral Model?

1 A framework for performing loop transformation.
2 Loop representation: using polytopes to achieve fine-grain

representation of program.
3 Loop transformation: transforming loop by doing affine transformation

on polytopes.
4 Dependency test: several mathematical methods for validating

transformation on loop polytopes.
5 Code generation: generate transformed code from loop polytopes.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 3 / 36



Introduction

Convexity is the central concept of polyhedral optimization

Definition
A set S is called convex if the line joining any two points in S is in S , i.e.,

∀x , y ∈ S ,∀λ ∈ [0, 1], λx + (1 − λ)y ∈ S .

yx

x

y

x
y

yx

ConvexConvex Non-Convex Non-Convex

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 4 / 36



Introduction

Convexity is the central concept of polyhedral optimization

Definition
A set S is called convex if the line joining any two points in S is in S , i.e.,

∀x , y ∈ S ,∀λ ∈ [0, 1], λx + (1 − λ)y ∈ S .

yx

x

y

x
y

yx

ConvexConvex Non-Convex Non-Convex
Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 4 / 36



Introduction

Definition
A polyhedron P is a set which can be expressed as the intersection of finite
number of (closed) half spaces, that is {−→x ∈ Rn | A−→x ≤

−→
b }.

Definition
A polytope is a bounded polyhedron.

Definition
A Z-polyhedron is a polyhedron where all its extreme points are integer
valued.

In most situation loop counters are integers. So we use Z-polyhedron to
represent loop iteration domain.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 5 / 36



Introduction

Definition
A polyhedron P is a set which can be expressed as the intersection of finite
number of (closed) half spaces, that is {−→x ∈ Rn | A−→x ≤

−→
b }.

Definition
A polytope is a bounded polyhedron.

Definition
A Z-polyhedron is a polyhedron where all its extreme points are integer
valued.

In most situation loop counters are integers. So we use Z-polyhedron to
represent loop iteration domain.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 5 / 36



Introduction

Definition
A polyhedron P is a set which can be expressed as the intersection of finite
number of (closed) half spaces, that is {−→x ∈ Rn | A−→x ≤

−→
b }.

Definition
A polytope is a bounded polyhedron.

Definition
A Z-polyhedron is a polyhedron where all its extreme points are integer
valued.

In most situation loop counters are integers. So we use Z-polyhedron to
represent loop iteration domain.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 5 / 36



Iteration Domains

Modeling Iteration Domains

1 Dimension of Iteration Domain: Decided by loop nesting levels
2 Bounds of Iteration Domain: Decided by loop bounds

for(i = 1; i <= n; i++){
for(j = 1; j <= n; j++){

if (i <= n + 2 - j)
b[j] = b[j] + a[i];

}
}

Inequalities:

1 ≤ i ≤ n

1 ≤ j ≤ n

i ≤ n + 2 − j

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 6 / 36



Iteration Domains

Modeling Iteration Domains

1 Dimension of Iteration Domain: Decided by loop nesting levels

2 Bounds of Iteration Domain: Decided by loop bounds

for(i = 1; i <= n; i++){
for(j = 1; j <= n; j++){

if (i <= n + 2 - j)
b[j] = b[j] + a[i];

}
}

Inequalities:

1 ≤ i ≤ n

1 ≤ j ≤ n

i ≤ n + 2 − j

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 6 / 36



Iteration Domains

Modeling Iteration Domains

1 Dimension of Iteration Domain: Decided by loop nesting levels
2 Bounds of Iteration Domain: Decided by loop bounds

for(i = 1; i <= n; i++){
for(j = 1; j <= n; j++){

if (i <= n + 2 - j)
b[j] = b[j] + a[i];

}
}

Inequalities:

1 ≤ i ≤ n

1 ≤ j ≤ n

i ≤ n + 2 − j

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 6 / 36



Iteration Domains

Modeling Iteration Domains

1 Dimension of Iteration Domain: Decided by loop nesting levels
2 Bounds of Iteration Domain: Decided by loop bounds

for(i = 1; i <= n; i++){
for(j = 1; j <= n; j++){

if (i <= n + 2 - j)
b[j] = b[j] + a[i];

}
}

Inequalities:

1 ≤ i ≤ n

1 ≤ j ≤ n

i ≤ n + 2 − j

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 6 / 36



Iteration Domains

Modeling Iteration Domains

1 Dimension of Iteration Domain: Decided by loop nesting levels
2 Bounds of Iteration Domain: Decided by loop bounds

for(i = 1; i <= n; i++){
for(j = 1; j <= n; j++){

if (i <= n + 2 - j)
b[j] = b[j] + a[i];

}
}

Inequalities:

1 ≤ i ≤ n

1 ≤ j ≤ n

i ≤ n + 2 − j

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 6 / 36



Iteration Domains

Modeling Iteration Domains

1 Dimension of Iteration Domain: Decided by loop nesting levels
2 Bounds of Iteration Domain: Decided by loop bounds

for(i = 1; i <= n; i++){
for(j = 1; j <= n; j++){

if (i <= n + 2 - j)
b[j] = b[j] + a[i];

}
}

Inequalities:

1 ≤ i ≤ n

1 ≤ j ≤ n

i ≤ n + 2 − j

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 6 / 36



Iteration Domains

Representing iteration bounds by affine function

1 ≤ i ≤ n

(
1 0
−1 0

)(
i
j

)
+

(
−1
n

)
≥ −→

0

1 ≤ j ≤ n

(
0 1
0 −1

)(
i
j

)
+

(
−1
n

)
≥ −→

0

1 ≤ n + 2 − j ≤ n
(
−1 −1

)(i
j

)
+ (n + 2) ≥ 0

Iteration Domain:


1 0
−1 0
0 1
0 −1
−1 −1


(
i
j

)
+


−1
n
−1
n

n + 2

 ≥ −→
0

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 7 / 36



Iteration Domains

Representing iteration bounds by affine function

1 ≤ i ≤ n

(
1 0
−1 0

)(
i
j

)
+

(
−1
n

)
≥ −→

0

1 ≤ j ≤ n

(
0 1
0 −1

)(
i
j

)
+

(
−1
n

)
≥ −→

0

1 ≤ n + 2 − j ≤ n
(
−1 −1

)(i
j

)
+ (n + 2) ≥ 0

Iteration Domain:


1 0
−1 0
0 1
0 −1
−1 −1


(
i
j

)
+


−1
n
−1
n

n + 2

 ≥ −→
0

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 7 / 36



Iteration Domains

Representing iteration bounds by affine function

1 ≤ i ≤ n

(
1 0
−1 0

)(
i
j

)
+

(
−1
n

)
≥ −→

0

1 ≤ j ≤ n

(
0 1
0 −1

)(
i
j

)
+

(
−1
n

)
≥ −→

0

1 ≤ n + 2 − j ≤ n
(
−1 −1

)(i
j

)
+ (n + 2) ≥ 0

Iteration Domain:


1 0
−1 0
0 1
0 −1
−1 −1


(
i
j

)
+


−1
n
−1
n

n + 2

 ≥ −→
0

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 7 / 36



Iteration Domains

Definition
The integer hull PI of a convex polyhedral set P is the convex hull of integer
points of P .

Example

A B

C

D E

FH

G

B ′

C ′

B ′′A′

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 8 / 36



Iteration Domains

Definition
The dual representation of the polyhedron P can be expressed as a
combination of lines L, rays R (forming the polyhedral cone) and vertices V
(forming the polytope), that is
{x ∈ Rn | λL+ µR + ρV such that λ, µ, ρ ≥ 0 and λ+ µ+ ρ = 1}.

Definition
A face of the polyhedron P is the intersection of P with the supporting
hyperplane of P . A face of maximum dimension is called the facet of P .

Theorem (Fundamental theorem of polyhedral decomposition)

Every polyhedron P can be decomposed into a polytope V and a polyhedral
cone L.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 9 / 36



Iteration Domains

Definition
The dual representation of the polyhedron P can be expressed as a
combination of lines L, rays R (forming the polyhedral cone) and vertices V
(forming the polytope), that is
{x ∈ Rn | λL+ µR + ρV such that λ, µ, ρ ≥ 0 and λ+ µ+ ρ = 1}.

Definition
A face of the polyhedron P is the intersection of P with the supporting
hyperplane of P . A face of maximum dimension is called the facet of P .

Theorem (Fundamental theorem of polyhedral decomposition)

Every polyhedron P can be decomposed into a polytope V and a polyhedral
cone L.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 9 / 36



Iteration Domains

Definition
The dual representation of the polyhedron P can be expressed as a
combination of lines L, rays R (forming the polyhedral cone) and vertices V
(forming the polytope), that is
{x ∈ Rn | λL+ µR + ρV such that λ, µ, ρ ≥ 0 and λ+ µ+ ρ = 1}.

Definition
A face of the polyhedron P is the intersection of P with the supporting
hyperplane of P . A face of maximum dimension is called the facet of P .

Theorem (Fundamental theorem of polyhedral decomposition)

Every polyhedron P can be decomposed into a polytope V and a polyhedral
cone L.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 9 / 36



Iteration Domains

Definition

Given −→m the vector of symbolic parameters, a parametric polyhedron P is
defined by {−→x ∈ Rn | A−→x ≤ B−→m +

−→
b }.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 10 / 36



Data Dependence

One-dimensional array

for(int i = 0; i < n; i++){
for(int j = i + 1; j < n; j ++)

A[i * n + j] = A[(n * j - n + j - i - 1];
}

1 Can we parallelize the two for-loops?
2 Is there data dependence between two different iterations of the nest?
3 Are there integer solutions to the following system of linear inequalities?

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 11 / 36



Data Dependence

One-dimensional array

for(int i = 0; i < n; i++){
for(int j = i + 1; j < n; j ++)

A[i * n + j] = A[(n * j - n + j - i - 1];
}

1 Can we parallelize the two for-loops?

2 Is there data dependence between two different iterations of the nest?
3 Are there integer solutions to the following system of linear inequalities?

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 11 / 36



Data Dependence

One-dimensional array

for(int i = 0; i < n; i++){
for(int j = i + 1; j < n; j ++)

A[i * n + j] = A[(n * j - n + j - i - 1];
}

1 Can we parallelize the two for-loops?
2 Is there data dependence between two different iterations of the nest?

3 Are there integer solutions to the following system of linear inequalities?

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 11 / 36



Data Dependence

One-dimensional array

for(int i = 0; i < n; i++){
for(int j = i + 1; j < n; j ++)

A[i * n + j] = A[(n * j - n + j - i - 1];
}

1 Can we parallelize the two for-loops?
2 Is there data dependence between two different iterations of the nest?
3 Are there integer solutions to the following system of linear inequalities?

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 11 / 36



Data Dependence

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

A[i * n + j] =
A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];



0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 =j2 − 1
j1 =j2 − i2 − 1

There is no integer solution, therefore, no dependence.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 12 / 36



Data Dependence

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

A[i * n + j] =
A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];



0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 =j2 − 1
j1 =j2 − i2 − 1

There is no integer solution, therefore, no dependence.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 12 / 36



Data Dependence

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

A[i * n + j] =
A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];



0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1



0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 =j2 − 1
j1 =j2 − i2 − 1

There is no integer solution, therefore, no dependence.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 12 / 36



Data Dependence

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

A[i * n + j] =
A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];



0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 =j2 − 1
j1 =j2 − i2 − 1

There is no integer solution, therefore, no dependence.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 12 / 36



Data Dependence

Delinearize the array accesses

Linearized one-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

A[i * n + j] =
A[(n * j - n + j - i - 1];

Delinearized multi-dimensional array

for(int i = 0; i < n; i++)
for(int j = i + 1; j < n; j ++)

B[i][j] = B[j - 1][j - i - 1];



0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 × n + j1 = n × j2 − n + j2 − i2 − 1

0 ≤i1 < n

i1 + 1 ≤j1 < n

0 ≤i2 < n

i2 + 1 ≤j2 < n

i1 =j2 − 1
j1 =j2 − i2 − 1

There is no integer solution, therefore, no dependence.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 12 / 36



Data Dependence

Bernstein Conditions

Definition
Given two references, there exists a dependence between them if the
following conditions are satisfied:

1 they reference the same array (cells)
2 one of this access is a write
3 the two associated statements are executed

There are three types of dependencies:
1 True dependency (read-after-write), A = 3, B = A, C = B
2 Anti-dependency (write-after-read), B = 3, A = B + 1, B = 7
3 Output dependency (write-after-write), B = 3, B = 7

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 13 / 36



Data Dependence

Bernstein Conditions

Definition
Given two references, there exists a dependence between them if the
following conditions are satisfied:

1 they reference the same array (cells)
2 one of this access is a write
3 the two associated statements are executed

There are three types of dependencies:
1 True dependency (read-after-write), A = 3, B = A, C = B

2 Anti-dependency (write-after-read), B = 3, A = B + 1, B = 7
3 Output dependency (write-after-write), B = 3, B = 7

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 13 / 36



Data Dependence

Bernstein Conditions

Definition
Given two references, there exists a dependence between them if the
following conditions are satisfied:

1 they reference the same array (cells)
2 one of this access is a write
3 the two associated statements are executed

There are three types of dependencies:
1 True dependency (read-after-write), A = 3, B = A, C = B
2 Anti-dependency (write-after-read), B = 3, A = B + 1, B = 7

3 Output dependency (write-after-write), B = 3, B = 7

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 13 / 36



Data Dependence

Bernstein Conditions

Definition
Given two references, there exists a dependence between them if the
following conditions are satisfied:

1 they reference the same array (cells)
2 one of this access is a write
3 the two associated statements are executed

There are three types of dependencies:
1 True dependency (read-after-write), A = 3, B = A, C = B
2 Anti-dependency (write-after-read), B = 3, A = B + 1, B = 7
3 Output dependency (write-after-write), B = 3, B = 7

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 13 / 36



Data Dependence

Dependence Analysis Methods

1 Compute the transitive closure of the access function
transitive closure is not convex in general, and not even computable in
many situations

2 Compute an indicator of the distance between two dependent iterations
approximative for non-uniform dependences

3 Dependence cone: do the union of dependence relations
over-approximative as it requires union and transitive closure to model
all dependences in a single cone

4 Dependence polyhedron, list of sets of dependent instances

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 14 / 36



Data Dependence

Dependence Analysis Methods

1 Compute the transitive closure of the access function
transitive closure is not convex in general, and not even computable in
many situations

2 Compute an indicator of the distance between two dependent iterations
approximative for non-uniform dependences

3 Dependence cone: do the union of dependence relations
over-approximative as it requires union and transitive closure to model
all dependences in a single cone

4 Dependence polyhedron, list of sets of dependent instances

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 14 / 36



Data Dependence

Dependence Analysis Methods

1 Compute the transitive closure of the access function
transitive closure is not convex in general, and not even computable in
many situations

2 Compute an indicator of the distance between two dependent iterations
approximative for non-uniform dependences

3 Dependence cone: do the union of dependence relations
over-approximative as it requires union and transitive closure to model
all dependences in a single cone

4 Dependence polyhedron, list of sets of dependent instances

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 14 / 36



Data Dependence

Dependence Analysis Methods

1 Compute the transitive closure of the access function
transitive closure is not convex in general, and not even computable in
many situations

2 Compute an indicator of the distance between two dependent iterations
approximative for non-uniform dependences

3 Dependence cone: do the union of dependence relations
over-approximative as it requires union and transitive closure to model
all dependences in a single cone

4 Dependence polyhedron, list of sets of dependent instances

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 14 / 36



Data Dependence

Dependence Relation

Definition
A statement R is dependent on a statement S , denoted as R −→ S if there
exists operations S(−→xS), R(−→xR) and a memory location m such that,

1 S(−→xS) and R(−→xR) refers to the same memory location m, and atleast
one of them writes to that location

2 −→xS and −→xR belongs to the iteration domain S and R respectively
3 In the original sequential order S(−→xS) is executed before R(−→xR).

Using this we can describe the dependence polyhedra of each dependence
relation between two statements. It is a subset of cartesian product of
iteration space R and S .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 15 / 36



Data Dependence

Dependence Relation

Definition
A statement R is dependent on a statement S , denoted as R −→ S if there
exists operations S(−→xS), R(−→xR) and a memory location m such that,

1 S(−→xS) and R(−→xR) refers to the same memory location m, and atleast
one of them writes to that location

2 −→xS and −→xR belongs to the iteration domain S and R respectively
3 In the original sequential order S(−→xS) is executed before R(−→xR).

Using this we can describe the dependence polyhedra of each dependence
relation between two statements. It is a subset of cartesian product of
iteration space R and S .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 15 / 36



Data Dependence

Dependence Relation

Definition
A statement R is dependent on a statement S , denoted as R −→ S if there
exists operations S(−→xS), R(−→xR) and a memory location m such that,

1 S(−→xS) and R(−→xR) refers to the same memory location m, and atleast
one of them writes to that location

2 −→xS and −→xR belongs to the iteration domain S and R respectively

3 In the original sequential order S(−→xS) is executed before R(−→xR).

Using this we can describe the dependence polyhedra of each dependence
relation between two statements. It is a subset of cartesian product of
iteration space R and S .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 15 / 36



Data Dependence

Dependence Relation

Definition
A statement R is dependent on a statement S , denoted as R −→ S if there
exists operations S(−→xS), R(−→xR) and a memory location m such that,

1 S(−→xS) and R(−→xR) refers to the same memory location m, and atleast
one of them writes to that location

2 −→xS and −→xR belongs to the iteration domain S and R respectively
3 In the original sequential order S(−→xS) is executed before R(−→xR).

Using this we can describe the dependence polyhedra of each dependence
relation between two statements. It is a subset of cartesian product of
iteration space R and S .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 15 / 36



Data Dependence

Dependence Relation

Definition
A statement R is dependent on a statement S , denoted as R −→ S if there
exists operations S(−→xS), R(−→xR) and a memory location m such that,

1 S(−→xS) and R(−→xR) refers to the same memory location m, and atleast
one of them writes to that location

2 −→xS and −→xR belongs to the iteration domain S and R respectively
3 In the original sequential order S(−→xS) is executed before R(−→xR).

Using this we can describe the dependence polyhedra of each dependence
relation between two statements. It is a subset of cartesian product of
iteration space R and S .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 15 / 36



Data Dependence

Dependence Polyhedra

In dependence polyhedra every integral point represents a dependence
between two instances of the corresponding statements with components:

1 Same memory location: equality of the subscript functions of a pair of
references to the same array, FS−→xS + aS = FR

−→xR + aR .
2 Iteration domains: both S and R iteration domains can be described

using affine inequalities: AS
−→xS + cS ≥ 0 and AR

−→xR + cR ≥ 0
respectively.

3 Precedence order: each case corresponds to a common loop depth, and
is called a dependence level.
For each dependence level l , the precedence constraints are the equality
of the loop index variables at depth lesser to l : xR,i = xS ,i for i < l and
xR,l > xS ,l if l is less than the common nesting loop level. Otherwise,
there is no additional constraint and dependence exists if S is before R .
Such constraints can be written using linear inequalities,
Pl ,S

−→xS − Pl ,R
−→xR +

−→
b ≥ 0.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 16 / 36



Data Dependence

Dependence Polyhedra

In dependence polyhedra every integral point represents a dependence
between two instances of the corresponding statements with components:

1 Same memory location: equality of the subscript functions of a pair of
references to the same array, FS−→xS + aS = FR

−→xR + aR .

2 Iteration domains: both S and R iteration domains can be described
using affine inequalities: AS

−→xS + cS ≥ 0 and AR
−→xR + cR ≥ 0

respectively.
3 Precedence order: each case corresponds to a common loop depth, and

is called a dependence level.
For each dependence level l , the precedence constraints are the equality
of the loop index variables at depth lesser to l : xR,i = xS ,i for i < l and
xR,l > xS ,l if l is less than the common nesting loop level. Otherwise,
there is no additional constraint and dependence exists if S is before R .
Such constraints can be written using linear inequalities,
Pl ,S

−→xS − Pl ,R
−→xR +

−→
b ≥ 0.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 16 / 36



Data Dependence

Dependence Polyhedra

In dependence polyhedra every integral point represents a dependence
between two instances of the corresponding statements with components:

1 Same memory location: equality of the subscript functions of a pair of
references to the same array, FS−→xS + aS = FR

−→xR + aR .
2 Iteration domains: both S and R iteration domains can be described

using affine inequalities: AS
−→xS + cS ≥ 0 and AR

−→xR + cR ≥ 0
respectively.

3 Precedence order: each case corresponds to a common loop depth, and
is called a dependence level.
For each dependence level l , the precedence constraints are the equality
of the loop index variables at depth lesser to l : xR,i = xS ,i for i < l and
xR,l > xS ,l if l is less than the common nesting loop level. Otherwise,
there is no additional constraint and dependence exists if S is before R .
Such constraints can be written using linear inequalities,
Pl ,S

−→xS − Pl ,R
−→xR +

−→
b ≥ 0.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 16 / 36



Data Dependence

Dependence Polyhedra

In dependence polyhedra every integral point represents a dependence
between two instances of the corresponding statements with components:

1 Same memory location: equality of the subscript functions of a pair of
references to the same array, FS−→xS + aS = FR

−→xR + aR .
2 Iteration domains: both S and R iteration domains can be described

using affine inequalities: AS
−→xS + cS ≥ 0 and AR

−→xR + cR ≥ 0
respectively.

3 Precedence order: each case corresponds to a common loop depth, and
is called a dependence level.
For each dependence level l , the precedence constraints are the equality
of the loop index variables at depth lesser to l : xR,i = xS ,i for i < l and
xR,l > xS ,l if l is less than the common nesting loop level. Otherwise,
there is no additional constraint and dependence exists if S is before R .
Such constraints can be written using linear inequalities,
Pl ,S

−→xS − Pl ,R
−→xR +

−→
b ≥ 0.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 16 / 36



Data Dependence

Algorithm 1 A Dependence Polyhedra Construction Algorithm
Require: Initialize reduced dependence graph with one node per statement
Ensure: Dependence polyhedra
1: for all pair R, S do
2: for all distinct references fR , fS to the same array do
3: if commonLoops(R,S) = ∅ then
4: minDepth = 0
5: else
6: minDepth = 1
7: end if
8: for l = minDepth to |commonLoops| do
9: Build DR,S

10: if DR,S ̸= ∅ then
11: type = concatenate(type(fR), A, type(fS)) { WAW, RAW, WAR,

RAR}
12: end if
13: addDegree(R,S , {l ,DR,S , type})
14: end for
15: end for
16: end for

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 17 / 36



Data Dependence

Example of Dependence Polyhedron

for (i = 0; i <= n; i++){
for (j = 0; j <= n; j++)

a[i][j] = a[i+1][j+1]; //S1 }

Iteration Domain:

DS1 =


1 0 0 0
−1 0 1 0
0 1 0 0
0 −1 1 0




i
j
n
1

 ≥ −→
0

Array Reference Function:

FA
−→xS1 =

(
1 0 0 0
0 1 0 0

)
i
j
n
1

 F ′
A
−→xS1 =

(
1 0 0 1
0 1 0 1

)
i
j
n
1



Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 18 / 36



Data Dependence

Example of Dependence Polyhedron

for (i = 0; i <= n; i++){
for (j = 0; j <= n; j++)

a[i][j] = a[i+1][j+1]; //S1 }

Iteration Domain:

DS1 =


1 0 0 0
−1 0 1 0
0 1 0 0
0 −1 1 0




i
j
n
1

 ≥ −→
0

Array Reference Function:

FA
−→xS1 =

(
1 0 0 0
0 1 0 0

)
i
j
n
1

 F ′
A
−→xS1 =

(
1 0 0 1
0 1 0 1

)
i
j
n
1



Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 18 / 36



Data Dependence

Example of Dependence Polyhedron

for (i = 0; i <= n; i++){
for (j = 0; j <= n; j++)

a[i][j] = a[i+1][j+1]; //S1 }

Iteration Domain:

DS1 =


1 0 0 0
−1 0 1 0
0 1 0 0
0 −1 1 0




i
j
n
1

 ≥ −→
0

Array Reference Function:

FA
−→xS1 =

(
1 0 0 0
0 1 0 0

)
i
j
n
1

 F ′
A
−→xS1 =

(
1 0 0 1
0 1 0 1

)
i
j
n
1


Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 18 / 36



Data Dependence

Example of Dependence Polyhedron

for (i = 0; i <= n; i++){
for (j = 0; j <= n; j++)

a[i][j] = a[i+1][j+1]; //S1 }

Precedence Order:

For statement S1 in two consecutive loop, i - i’ = 1, j - j’ = 1,

PS1 =

(
1 0 0 0
0 1 0 0

)
i
j
n
1


To satisfy, PS1

−→xS1 − PR
−→xR +

−→
b ≥ −→

0 , where
−→
b ∈ [−1, 1].

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 19 / 36



Data Dependence

Example of Dependence Polyhedron

for (i = 0; i <= n; i++){
for (j = 0; j <= n; j++)

a[i][j] = a[i+1][j+1]; //S1 }

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 20 / 36



Scheduling and Program Transformation

Source iteration must be executed before target iteration

Definition
Given a statement S , a p-dimensional affine schedule ΘS is an affine form
on the outer loop iterators −→xS and the global parameters −→n ,

ΘS(
−→xS) = TS

−→xS−→n
1


where TS ∈ Rp×dim(−→xS )+dim(−→n )+1.

If TS is a vector, ΘS is called a one-dimensional schedule.
If TS is a matrix, ΘS is called a multi-dimensional schedule.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 21 / 36



Scheduling and Program Transformation

Source iteration must be executed before target iteration

Definition
Given a statement S , a p-dimensional affine schedule ΘS is an affine form
on the outer loop iterators −→xS and the global parameters −→n ,

ΘS(
−→xS) = TS

−→xS−→n
1


where TS ∈ Rp×dim(−→xS )+dim(−→n )+1.

If TS is a vector, ΘS is called a one-dimensional schedule.
If TS is a matrix, ΘS is called a multi-dimensional schedule.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 21 / 36



Scheduling and Program Transformation

Source iteration must be executed before target iteration

Definition
Given a statement S , a p-dimensional affine schedule ΘS is an affine form
on the outer loop iterators −→xS and the global parameters −→n ,

ΘS(
−→xS) = TS

−→xS−→n
1


where TS ∈ Rp×dim(−→xS )+dim(−→n )+1.

If TS is a vector, ΘS is called a one-dimensional schedule.
If TS is a matrix, ΘS is called a multi-dimensional schedule.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 21 / 36



Scheduling and Program Transformation

1 A schedule can assign a time point for every iteration, and a code
generator can generate code that will scan them in that specified order.

2 Schedules in our context are assumed to be affine functions, hence
affine schedule.

3 A one-dimensional schedule, expresses the program as a single
sequential loop, possibly enclosing one or more parallel loops.

4 A multidimensional schedule expresses the program as one or more
nested sequential loops, possibly enclosing one or more parallel loops.

5 Program transformation in the polyhedral model can be specified by a
well chosen scheduling function.

6 Dependence graph can be used to represent scheduling constraints
between the program operations.

7 Hyperplanes can be interpreted as schedules.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 22 / 36



Scheduling and Program Transformation

1 A schedule can assign a time point for every iteration, and a code
generator can generate code that will scan them in that specified order.

2 Schedules in our context are assumed to be affine functions, hence
affine schedule.

3 A one-dimensional schedule, expresses the program as a single
sequential loop, possibly enclosing one or more parallel loops.

4 A multidimensional schedule expresses the program as one or more
nested sequential loops, possibly enclosing one or more parallel loops.

5 Program transformation in the polyhedral model can be specified by a
well chosen scheduling function.

6 Dependence graph can be used to represent scheduling constraints
between the program operations.

7 Hyperplanes can be interpreted as schedules.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 22 / 36



Scheduling and Program Transformation

1 A schedule can assign a time point for every iteration, and a code
generator can generate code that will scan them in that specified order.

2 Schedules in our context are assumed to be affine functions, hence
affine schedule.

3 A one-dimensional schedule, expresses the program as a single
sequential loop, possibly enclosing one or more parallel loops.

4 A multidimensional schedule expresses the program as one or more
nested sequential loops, possibly enclosing one or more parallel loops.

5 Program transformation in the polyhedral model can be specified by a
well chosen scheduling function.

6 Dependence graph can be used to represent scheduling constraints
between the program operations.

7 Hyperplanes can be interpreted as schedules.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 22 / 36



Scheduling and Program Transformation

1 A schedule can assign a time point for every iteration, and a code
generator can generate code that will scan them in that specified order.

2 Schedules in our context are assumed to be affine functions, hence
affine schedule.

3 A one-dimensional schedule, expresses the program as a single
sequential loop, possibly enclosing one or more parallel loops.

4 A multidimensional schedule expresses the program as one or more
nested sequential loops, possibly enclosing one or more parallel loops.

5 Program transformation in the polyhedral model can be specified by a
well chosen scheduling function.

6 Dependence graph can be used to represent scheduling constraints
between the program operations.

7 Hyperplanes can be interpreted as schedules.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 22 / 36



Scheduling and Program Transformation

1 A schedule can assign a time point for every iteration, and a code
generator can generate code that will scan them in that specified order.

2 Schedules in our context are assumed to be affine functions, hence
affine schedule.

3 A one-dimensional schedule, expresses the program as a single
sequential loop, possibly enclosing one or more parallel loops.

4 A multidimensional schedule expresses the program as one or more
nested sequential loops, possibly enclosing one or more parallel loops.

5 Program transformation in the polyhedral model can be specified by a
well chosen scheduling function.

6 Dependence graph can be used to represent scheduling constraints
between the program operations.

7 Hyperplanes can be interpreted as schedules.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 22 / 36



Scheduling and Program Transformation

1 A schedule can assign a time point for every iteration, and a code
generator can generate code that will scan them in that specified order.

2 Schedules in our context are assumed to be affine functions, hence
affine schedule.

3 A one-dimensional schedule, expresses the program as a single
sequential loop, possibly enclosing one or more parallel loops.

4 A multidimensional schedule expresses the program as one or more
nested sequential loops, possibly enclosing one or more parallel loops.

5 Program transformation in the polyhedral model can be specified by a
well chosen scheduling function.

6 Dependence graph can be used to represent scheduling constraints
between the program operations.

7 Hyperplanes can be interpreted as schedules.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 22 / 36



Scheduling and Program Transformation

1 A schedule can assign a time point for every iteration, and a code
generator can generate code that will scan them in that specified order.

2 Schedules in our context are assumed to be affine functions, hence
affine schedule.

3 A one-dimensional schedule, expresses the program as a single
sequential loop, possibly enclosing one or more parallel loops.

4 A multidimensional schedule expresses the program as one or more
nested sequential loops, possibly enclosing one or more parallel loops.

5 Program transformation in the polyhedral model can be specified by a
well chosen scheduling function.

6 Dependence graph can be used to represent scheduling constraints
between the program operations.

7 Hyperplanes can be interpreted as schedules.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 22 / 36



Scheduling and Program Transformation

Example of one-dimensional schedule

Time Code Time Stamp
T = 0 x = a + b; //S1 T_S1 = 0;
T = 1 y = a + b; //S2 T_S2 = 1;
T = 2 z = x + y; //S3 T_S3 = 2;

Function T returns the logical date of each statement.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 23 / 36



Scheduling and Program Transformation

Example of multi-dimensional schedule

Time Code Time Stamp
T = 0 x = a + b; //S1 T_S1 = (0);
T = 1 for (i = 0; i < 2; i ++){

i = 0 a[i] = x; //S2 T_S2(0) = (1,0);
i = 1 } T_S2(1) = (1,1);

T = 2 z = x + y; //S3 T_S3 = (2);

Function T returns the logical date of each statement.
Logical dates may be multi-dimensional:

Lexicographical Order: TS1 < TS2 < TS3 ⇐⇒ (0) < (1, i) < (2).

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 24 / 36



Scheduling and Program Transformation

Unlike one-dimensional schedules, it is always possible to build a legal
multidimensional schedule for a SCoP.

Theorem ([Fea97])

Every static control program has a multi-dimensional affine schedule.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 25 / 36



Scheduling and Program Transformation

1 Bernstein conditions are useful to decide if a program transformation is

legal if


Wa ∩Wb = ∅
Wa ∩Rb = ∅
Ra ∩Wb = ∅

.

2 A transformation is illegal if a dependence crosses the hyperplane
backwards.

3 A dependence going forward between 2 hyperplanes indicates
sequentiality.

4 No dependence between any point of the hyperplane indicates
parallelism.

Definition (Precedence condition)

ΘR and ΘS are legal schedule for instances R and S respectively if for all
< −→xR ,−→xS >∈ DR,S then ΘR(

−→xR) < ΘS(
−→xS) holds.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 26 / 36



Scheduling and Program Transformation

1 Bernstein conditions are useful to decide if a program transformation is

legal if


Wa ∩Wb = ∅
Wa ∩Rb = ∅
Ra ∩Wb = ∅

.

2 A transformation is illegal if a dependence crosses the hyperplane
backwards.

3 A dependence going forward between 2 hyperplanes indicates
sequentiality.

4 No dependence between any point of the hyperplane indicates
parallelism.

Definition (Precedence condition)

ΘR and ΘS are legal schedule for instances R and S respectively if for all
< −→xR ,−→xS >∈ DR,S then ΘR(

−→xR) < ΘS(
−→xS) holds.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 26 / 36



Scheduling and Program Transformation

1 Bernstein conditions are useful to decide if a program transformation is

legal if


Wa ∩Wb = ∅
Wa ∩Rb = ∅
Ra ∩Wb = ∅

.

2 A transformation is illegal if a dependence crosses the hyperplane
backwards.

3 A dependence going forward between 2 hyperplanes indicates
sequentiality.

4 No dependence between any point of the hyperplane indicates
parallelism.

Definition (Precedence condition)

ΘR and ΘS are legal schedule for instances R and S respectively if for all
< −→xR ,−→xS >∈ DR,S then ΘR(

−→xR) < ΘS(
−→xS) holds.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 26 / 36



Scheduling and Program Transformation

1 Bernstein conditions are useful to decide if a program transformation is

legal if


Wa ∩Wb = ∅
Wa ∩Rb = ∅
Ra ∩Wb = ∅

.

2 A transformation is illegal if a dependence crosses the hyperplane
backwards.

3 A dependence going forward between 2 hyperplanes indicates
sequentiality.

4 No dependence between any point of the hyperplane indicates
parallelism.

Definition (Precedence condition)

ΘR and ΘS are legal schedule for instances R and S respectively if for all
< −→xR ,−→xS >∈ DR,S then ΘR(

−→xR) < ΘS(
−→xS) holds.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 26 / 36



Scheduling and Program Transformation

1 Bernstein conditions are useful to decide if a program transformation is

legal if


Wa ∩Wb = ∅
Wa ∩Rb = ∅
Ra ∩Wb = ∅

.

2 A transformation is illegal if a dependence crosses the hyperplane
backwards.

3 A dependence going forward between 2 hyperplanes indicates
sequentiality.

4 No dependence between any point of the hyperplane indicates
parallelism.

Definition (Precedence condition)

ΘR and ΘS are legal schedule for instances R and S respectively if for all
< −→xR ,−→xS >∈ DR,S then ΘR(

−→xR) < ΘS(
−→xS) holds.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 26 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Interchange)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


1 0
−1 0
0 1
0 −1

(
i
j

)
+


1
2
−1
3

 ≥ −→
0

New

for(j = 1; j <= 3; j++){
for(i = 1; i <= 2; i++)

b[i][j] = ...; } //S1


0 1
0 −1
1 0
−1 0

(
i ′

j ′

)
+


1
2
−1
3

 ≥ −→
0

Transformation Function:
(
i ′

j ′

)(
0 1
1 0

)
+

(
i
j

)
≥ −→

0 .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 27 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Interchange)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


1 0
−1 0
0 1
0 −1

(
i
j

)
+


1
2
−1
3

 ≥ −→
0

New

for(j = 1; j <= 3; j++){
for(i = 1; i <= 2; i++)

b[i][j] = ...; } //S1


0 1
0 −1
1 0
−1 0

(
i ′

j ′

)
+


1
2
−1
3

 ≥ −→
0

Transformation Function:
(
i ′

j ′

)(
0 1
1 0

)
+

(
i
j

)
≥ −→

0 .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 27 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Interchange)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


1 0
−1 0
0 1
0 −1

(
i
j

)
+


1
2
−1
3

 ≥ −→
0

New

for(j = 1; j <= 3; j++){
for(i = 1; i <= 2; i++)

b[i][j] = ...; } //S1


0 1
0 −1
1 0
−1 0

(
i ′

j ′

)
+


1
2
−1
3

 ≥ −→
0

Transformation Function:
(
i ′

j ′

)(
0 1
1 0

)
+

(
i
j

)
≥ −→

0 .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 27 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Interchange)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


1 0
−1 0
0 1
0 −1

(
i
j

)
+


1
2
−1
3

 ≥ −→
0

New

for(j = 1; j <= 3; j++){
for(i = 1; i <= 2; i++)

b[i][j] = ...; } //S1


0 1
0 −1
1 0
−1 0

(
i ′

j ′

)
+


1
2
−1
3

 ≥ −→
0

Transformation Function:
(
i ′

j ′

)(
0 1
1 0

)
+

(
i
j

)
≥ −→

0 .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 27 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Interchange)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


1 0
−1 0
0 1
0 −1

(
i
j

)
+


1
2
−1
3

 ≥ −→
0

New

for(j = 1; j <= 3; j++){
for(i = 1; i <= 2; i++)

b[i][j] = ...; } //S1


0 1
0 −1
1 0
−1 0

(
i ′

j ′

)
+


1
2
−1
3

 ≥ −→
0

Transformation Function:
(
i ′

j ′

)(
0 1
1 0

)
+

(
i
j

)
≥ −→

0 .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 27 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Interchange)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

Original Schedule

T_S1(i,j) = (i ,j);

New

for(j = 1; j <= 3; j++){
for(i = 1; i <= 2; i++)

b[i][j] = ...; } //S1

New Schedule

T_S1(i,j) = (j ,i);

TS1(i , j) =

(
0 1
1 0

)
︸ ︷︷ ︸

Transformation

(
i
j

)
︸︷︷︸

Iteration vector

=

(
j
i

)
︸︷︷︸

New Schedule

.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 28 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Interchange)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

Original Schedule

T_S1(i,j) = (i ,j);

New

for(j = 1; j <= 3; j++){
for(i = 1; i <= 2; i++)

b[i][j] = ...; } //S1

New Schedule

T_S1(i,j) = (j ,i);

TS1(i , j) =

(
0 1
1 0

)
︸ ︷︷ ︸

Transformation

(
i
j

)
︸︷︷︸

Iteration vector

=

(
j
i

)
︸︷︷︸

New Schedule

.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 28 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Interchange)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

Original Schedule

T_S1(i,j) = (i ,j);

New

for(j = 1; j <= 3; j++){
for(i = 1; i <= 2; i++)

b[i][j] = ...; } //S1

New Schedule

T_S1(i,j) = (j ,i);

TS1(i , j) =

(
0 1
1 0

)
︸ ︷︷ ︸

Transformation

(
i
j

)
︸︷︷︸

Iteration vector

=

(
j
i

)
︸︷︷︸

New Schedule

.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 28 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Interchange)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

Original Schedule

T_S1(i,j) = (i ,j);

New

for(j = 1; j <= 3; j++){
for(i = 1; i <= 2; i++)

b[i][j] = ...; } //S1

New Schedule

T_S1(i,j) = (j ,i);

TS1(i , j) =

(
0 1
1 0

)
︸ ︷︷ ︸

Transformation

(
i
j

)
︸︷︷︸

Iteration vector

=

(
j
i

)
︸︷︷︸

New Schedule

.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 28 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Interchange)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

Original Schedule

T_S1(i,j) = (i ,j);

New

for(j = 1; j <= 3; j++){
for(i = 1; i <= 2; i++)

b[i][j] = ...; } //S1

New Schedule

T_S1(i,j) = (j ,i);

TS1(i , j) =

(
0 1
1 0

)
︸ ︷︷ ︸

Transformation

(
i
j

)
︸︷︷︸

Iteration vector

=

(
j
i

)
︸︷︷︸

New Schedule

.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 28 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Reversal)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


1 0
−1 0
0 1
0 −1

(
i
j

)
+


1
2
−1
3

 ≥ −→
0

New

for(i = -1; i >= -2; i--){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


−1 0
1 0
0 1
0 −1

(
i ′

j ′

)
+


1
2
−1
3

 ≥ −→
0

Transformation Function:
(
i ′

j ′

)(
−1 0
0 1

)
+

(
i
j

)
≥ −→

0 .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 29 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Reversal)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


1 0
−1 0
0 1
0 −1

(
i
j

)
+


1
2
−1
3

 ≥ −→
0

New

for(i = -1; i >= -2; i--){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


−1 0
1 0
0 1
0 −1

(
i ′

j ′

)
+


1
2
−1
3

 ≥ −→
0

Transformation Function:
(
i ′

j ′

)(
−1 0
0 1

)
+

(
i
j

)
≥ −→

0 .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 29 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Reversal)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


1 0
−1 0
0 1
0 −1

(
i
j

)
+


1
2
−1
3

 ≥ −→
0

New

for(i = -1; i >= -2; i--){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


−1 0
1 0
0 1
0 −1

(
i ′

j ′

)
+


1
2
−1
3

 ≥ −→
0

Transformation Function:
(
i ′

j ′

)(
−1 0
0 1

)
+

(
i
j

)
≥ −→

0 .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 29 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Reversal)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


1 0
−1 0
0 1
0 −1

(
i
j

)
+


1
2
−1
3

 ≥ −→
0

New

for(i = -1; i >= -2; i--){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


−1 0
1 0
0 1
0 −1

(
i ′

j ′

)
+


1
2
−1
3

 ≥ −→
0

Transformation Function:
(
i ′

j ′

)(
−1 0
0 1

)
+

(
i
j

)
≥ −→

0 .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 29 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Reversal)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


1 0
−1 0
0 1
0 −1

(
i
j

)
+


1
2
−1
3

 ≥ −→
0

New

for(i = -1; i >= -2; i--){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1


−1 0
1 0
0 1
0 −1

(
i ′

j ′

)
+


1
2
−1
3

 ≥ −→
0

Transformation Function:
(
i ′

j ′

)(
−1 0
0 1

)
+

(
i
j

)
≥ −→

0 .

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 29 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Reversal)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

Original Schedule

T_S1(i,j) = (i ,j);

New

for(i = -1; i >= -2; i--){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

New Schedule

T_S1(i,j) = (-i ,j);

TS1(i , j) =

(
−1 0
0 1

)
︸ ︷︷ ︸

Transformation

(
i
j

)
︸︷︷︸

Iteration vector

=

(
−i
j

)
︸ ︷︷ ︸

New Schedule

.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 30 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Reversal)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

Original Schedule

T_S1(i,j) = (i ,j);

New

for(i = -1; i >= -2; i--){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

New Schedule

T_S1(i,j) = (-i ,j);

TS1(i , j) =

(
−1 0
0 1

)
︸ ︷︷ ︸

Transformation

(
i
j

)
︸︷︷︸

Iteration vector

=

(
−i
j

)
︸ ︷︷ ︸

New Schedule

.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 30 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Reversal)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

Original Schedule

T_S1(i,j) = (i ,j);

New

for(i = -1; i >= -2; i--){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

New Schedule

T_S1(i,j) = (-i ,j);

TS1(i , j) =

(
−1 0
0 1

)
︸ ︷︷ ︸

Transformation

(
i
j

)
︸︷︷︸

Iteration vector

=

(
−i
j

)
︸ ︷︷ ︸

New Schedule

.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 30 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Reversal)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

Original Schedule

T_S1(i,j) = (i ,j);

New

for(i = -1; i >= -2; i--){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

New Schedule

T_S1(i,j) = (-i ,j);

TS1(i , j) =

(
−1 0
0 1

)
︸ ︷︷ ︸

Transformation

(
i
j

)
︸︷︷︸

Iteration vector

=

(
−i
j

)
︸ ︷︷ ︸

New Schedule

.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 30 / 36



Scheduling and Program Transformation

Example of Transformation (Loop Reversal)

Original

for(i = 1; i <= 2; i++){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

Original Schedule

T_S1(i,j) = (i ,j);

New

for(i = -1; i >= -2; i--){
for(j = 1; j <= 3; j++)

b[i][j] = ...; } //S1

New Schedule

T_S1(i,j) = (-i ,j);

TS1(i , j) =

(
−1 0
0 1

)
︸ ︷︷ ︸

Transformation

(
i
j

)
︸︷︷︸

Iteration vector

=

(
−i
j

)
︸ ︷︷ ︸

New Schedule

.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 30 / 36



Scheduling and Program Transformation

Loop Tiling

Loop tiling [IT88, WL91, Xue00] is a key transformation in optimizing for
parallelism and data locality.

Theorem
Two one-dimensional schedules are valid tiling hyperplanes if and only if they
satisfy the precedence conditions.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 31 / 36



Scheduling and Program Transformation

Loop Tiling

Loop tiling [IT88, WL91, Xue00] is a key transformation in optimizing for
parallelism and data locality.

Theorem
Two one-dimensional schedules are valid tiling hyperplanes if and only if they
satisfy the precedence conditions.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 31 / 36



Scheduling and Program Transformation

Example of Tiling: Transpose matrix vector multiply [BRS10]

Original code

for(i = 0; i < N; i++){
P: x[i] = 0;
for(j = 0; j < N; j++)

Q: x[i] += a[j][i] * y[j];
}

Iteration Space

Dorig
Q


i
j
N
1

 ≥ 0, Dtiled
Q



it
jt
i
j
N
1

 ≥ 0

Tiled code

for(it = 0; it <= floord(N - 1, 32); it++){
for(jt = 0; jt <= floord(N - 1, 32); jt++){

if(jt == 0){
for(i = max(32 * it, 0);

i <= min(32 * it + 31, N - 1); i++){
P: x[i] = 0;
Q: x[i] = x[i] + a[0][i] * y[0];
}

}
for(i = max(32 * it, 0);

i <= min(32 * it + 31, N - 1); i++){
for(j = max(32 * jt, 1);

j <= min(32 * jt + 31, N - 1); j++){
Q: x[i] = x[i] + a[j][i] * y[j];

}
}

}
}

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 32 / 36



Scheduling and Program Transformation

Example of Tiling: Transpose matrix vector multiply [BRS10]

Original code

for(i = 0; i < N; i++){
P: x[i] = 0;
for(j = 0; j < N; j++)

Q: x[i] += a[j][i] * y[j];
}

Iteration Space

Dorig
Q


i
j
N
1

 ≥ 0, Dtiled
Q



it
jt
i
j
N
1

 ≥ 0

Tiled code

for(it = 0; it <= floord(N - 1, 32); it++){
for(jt = 0; jt <= floord(N - 1, 32); jt++){

if(jt == 0){
for(i = max(32 * it, 0);

i <= min(32 * it + 31, N - 1); i++){
P: x[i] = 0;
Q: x[i] = x[i] + a[0][i] * y[0];
}

}
for(i = max(32 * it, 0);

i <= min(32 * it + 31, N - 1); i++){
for(j = max(32 * jt, 1);

j <= min(32 * jt + 31, N - 1); j++){
Q: x[i] = x[i] + a[j][i] * y[j];

}
}

}
}

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 32 / 36



Scheduling and Program Transformation

Example of Tiling: Transpose matrix vector multiply [BRS10]

Original code

for(i = 0; i < N; i++){
P: x[i] = 0;
for(j = 0; j < N; j++)

Q: x[i] += a[j][i] * y[j];
}

Iteration Space

Dorig
Q


i
j
N
1

 ≥ 0, Dtiled
Q



it
jt
i
j
N
1

 ≥ 0

Tiled code

for(it = 0; it <= floord(N - 1, 32); it++){
for(jt = 0; jt <= floord(N - 1, 32); jt++){

if(jt == 0){
for(i = max(32 * it, 0);

i <= min(32 * it + 31, N - 1); i++){
P: x[i] = 0;
Q: x[i] = x[i] + a[0][i] * y[0];
}

}
for(i = max(32 * it, 0);

i <= min(32 * it + 31, N - 1); i++){
for(j = max(32 * jt, 1);

j <= min(32 * jt + 31, N - 1); j++){
Q: x[i] = x[i] + a[j][i] * y[j];

}
}

}
}Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 32 / 36



Scheduling and Program Transformation

Drawbacks of the Polyhedral Model

1 Compile-time efficiency, most optimization problems in the polyhedral
model are modeled as Integer Linear Programming, which is NP-hard.

2 Building polyhedrons in compile time is also memory consuming.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 33 / 36



Scheduling and Program Transformation

Drawbacks of the Polyhedral Model

1 Compile-time efficiency, most optimization problems in the polyhedral
model are modeled as Integer Linear Programming, which is NP-hard.

2 Building polyhedrons in compile time is also memory consuming.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 33 / 36



Scheduling and Program Transformation

Drawbacks of the Polyhedral Model

1 Compile-time efficiency, most optimization problems in the polyhedral
model are modeled as Integer Linear Programming, which is NP-hard.

2 Building polyhedrons in compile time is also memory consuming.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 33 / 36



References

References I

Louis-Noël Pouchet.
Polyhedral Compilation Foundations, 2010.
https://www.cs.colostate.edu/~pouchet/lectures/888.11.
lect1.html#lect1

Cédric Bastoul.
Improving Data Locality in Static Control Programs.
Ph.D. Thesis, 2004.

Fangzhou Jiao.
An Overview to Polyhedral Model, 2010.
https://homes.luddy.indiana.edu/achauhan/Teaching/B629/
2010-Fall/StudentPresns/PolyhedralModelOverview.pdf

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 34 / 36

https://www.cs.colostate.edu/~pouchet/lectures/888.11.lect1.html#lect1
https://www.cs.colostate.edu/~pouchet/lectures/888.11.lect1.html#lect1
https://homes.luddy.indiana.edu/achauhan/Teaching/B629/2010-Fall/StudentPresns/PolyhedralModelOverview.pdf
https://homes.luddy.indiana.edu/achauhan/Teaching/B629/2010-Fall/StudentPresns/PolyhedralModelOverview.pdf


References

References II

Paul Feautrier.
Some efficient solutions to the affine scheduling problem: Part II
Multidimensional time
nternational Journal of Parallel Programming, 1997.

Francois Irigoin and Rémi Triolet.
Supernode partitioning.
ACM SIGPLAN Principles of Programming Languages, 1988.

Michael E. Wolf and Monica S. Lam.
A data locality optimizing algorithm.
ACM SIGPLAN symposium on Programming Languages Design and
Implementation, 1991.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 35 / 36



References

References III

Jingling Xue.
Loop tiling for parallelism.
Kluwer Academic Publishers, 2000.

Muthu Manikandan Baskaran, Jeyakumar Ramanujam and Ponnuswamy
Sadayappan.
Automatic C-to-CUDA Code Generation for Affine Programs.
International Conference on Compiler Construction, 2010.

Chirantan Mukherjee (UWO) The Polyhedral Model June 20, 2024 36 / 36


	Overview
	Introduction
	Iteration Domains
	Data Dependence
	Scheduling and Program Transformation
	References

