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Introduction

What is the Fourier-Motzkin Elimination?

Fourier-Motzkin elimination (FME) is a method to project polyhedral sets on
lower dimensions.

The basic idea is similar to Gaussian elimination (GE) for
equality systems.

−2 x1 + 4 x2 − 3 x3 = 0

−13 x1 + 24 x2 − 20 x3 = 0

−26 x1 + 54 x2 − 39 x3 = 0

1 step GE−−−−−−→

−2 x1 + 4 x2 − 3 x3 = 0

0 x1 − 2 x2 − 1
2 x3 = 0

0 x1 + 2 x2 − 0 x3 = 0

3 x1 − 2 x2 + 1 x3 ≤ 7

−2 x1 + 2 x2 − 1 x3 ≤ 12

−4 x1 + 1 x2 − 3 x3 ≤ 15

1 step FME−−−−−−−→
0 x1 + 2 x2 − 1 x3 ≤ 50

0 x1 − 5 x2 − 13 x3 ≤ 73
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Introduction

Example

Eliminating t1 from

A =


a1 : 3t1 − 2t2 + t3 ≤ 7
a2 : −2t1 + 2t2 − t3 ≤ 12
a3 : −4t1 + t2 + 3t3 ≤ 15

partition(A) = {a1}, {a2, a3}
combine(a1, a2) = combine(2a1 + 3a2) = 2t2 − t3 ≤ 50
combine(a1, a3) = combine(4a1 + 3a3) = −5t2 − 13t3 ≤ 73

A′ =

{
2t2 − t3 ≤ 50
−5t2 − 13t3 ≤ 73
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Introduction

Example

Eliminating t2 from

A′ =

{
a4 : 2t2 − t3 ≤ 50
a5 : −5t2 − 13t3 ≤ 73

partition(A) = {a4}, {a5}
combine(a1, a2) = combine(5a4 + 2a5) = −31t3 ≤ 396

A′′ =
{
−31t3 ≤ 396
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Introduction

Background

Projection of polyhedral sets has many applications in computer science
scheduling
dependence analysis (automatic parallelization)

The basic algorithm, proposed by Fourier (1827) and Motzkin (1936), is
called Fourier-Motzkin Elimination (FME)

Its complexity is O(m2d

) due to many redundant inequalities
Removing intermediate redundant inequalities significantly improves
running time and output size
Using linear programming (LP) for removing redundant inequalities,
complexity drops to O(d2m2dLP(d , 2dhd2md )) for an input polyhedron
in dimension d , with m facets and coefficient height h.

Chernikov [Ch60] and Kohler [Ko67] proposed procedures for removing
redundant inequalities based on linear algebra instead of LP. The
current implementation in Maple uses matrix arithmetic [JMT20].
In [JMXY24] proposed a method using Saturation Matrix.
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Introduction

Definition (H-representation)

A polyhedron P is a set which can be expressed as the intersection of finite
number of (closed) half spaces, that is {−→x ∈ Rn | A−→x ≤

−→
b }.

Definition (V-representation)

The dual representation of the polyhedron P can be expressed as a
combination of rays R (forming the polyhedral cone) and vertices V
(forming the polytope), that is
{x ∈ Rn | µR + ρV such that µ, ρ ≥ 0 and µ+ ρ = 1}.

We will denote it as VR(F ), where F is the H-representation of P .
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Introduction

Definition
Having two inequality: a1x1 + · · ·+ anxn ≤ d1 and b1x1 + · · ·+ bnxn ≤ d2
such that a1 > 0 and b1 < 0, we can eliminate x1 by multiplying the first
inequality by |b1| and the second one by a1 and add them together. The
result of combining these inequalities is:

(a2|b1|+ b2a1)x2 + · · ·+ (an|b1|+ bna1)xn ≤ |b1|d1 + a1d2.

Definition
Having a linear inequality system S with m inequalities and n variables of
the form ai1x1 + · · ·+ ainxn ≤ di , We can partition the inequalities in three
groups with respect to x1:

A+ set of inequalities with positive x1 coefficient.
A− set of inequalities with negative x1 coefficient.
A0 set of inequalities with zero x1 coefficient.
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Introduction

Idea

Theorem

Let A′ be the union of combination of all inequalities in A+ with all
inequalities in A− and inequalities in A0 such that A′ does not have x1.
Then,

(x2, · · · , xn) ∈ Sol(A′) ⇐⇒ ∃x1 (x1, x2, · · · , xn) ∈ Sol(A)

where Sol(A) is a set of real points which satisfies all inequalities in A.

FME Algorithm
Select variables one after another.
Partition A+, A− and A0 with respect to the variable.
Combine inequalities in A+ and A− and form the resulting union.
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Introduction

Complexity

Eliminating variable x1 from a system with m inequalities with d variables:

Partitioning inequalities with positive and negative x1 coefficient is
O(m).
In the worst case, the system has m

2 positive coefficients and m
2

negative coefficients.
The final system would have O(m2 )

2 inequalities.

Hence, the complexity of eliminating d variables is O(m2d ).

Improve Complexity
FME’s complexity is double exponential. Most of the inequalities generated
by FME algorithm are redundant. Detecting these redundant inequalities and
removing them can significantly improve algorithm’s complexity.
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Introduction

Definition

For F : {A−→x ≤
−→
b } a consistent system of linear inequalities, P be the

polyhedron represented by F , an inequality ℓ : −→a t−→x ≤
−→
b of F is called,

Redundant in F , if F \ {−→a t−→x ≤
−→
b } represents the same polyhedron P .

Otherwise, it is irredundant.
Strongly redundant if −→a t−→x <

−→
b for all −→x ∈ P .

Weakly redundant if it is redundant and −→a t−→x =
−→
b holds for some

−→x ∈ P .
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Old Algorithms

Using LP

Removing all these redundancies is equivalent to giving a minimal
representation of the projected polyhedron.

Leonid Khachiyan explained in [Kh09] how linear programming (LP)
could be used to remove all redundant inequalities, thus reducing the
cost of Fourier-Motzkin elimination to a singly exponential time.
The earliest FME algorithms uses LP to detect redundancy.

It needs to run the Simplex algorithm [Sc86] for all inequalities.
It is not practical for large cases.

It neither has a good theoretical complexity, nor is it effective in
practice because of its dependence on LP solvers.
Since, FME are essentially an adaptation of GE, it is desirable to
achieve the redundancy via linear algebra instead of using LP.
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Old Algorithms

Definition
The projection proj(·, I ) acts on the V -representation of a polyhedron, and
returns a set of vertices and rays representing the projected polyhedron,
which can be obtained by simply erasing the coordinates corresponding to
the variables in I .

Example
Consider the polyhedron defined by
{x + 2 y − z ≤ 2, 2 x − 3 y + 6 z ≤ 2,−2 x + 3 y + 4 z ≤ 20}. Its projection
on [y , z ] is the polyhedron represented by {z ≤ 11

5 , y + 2
7z ≤ 24

7 }.
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Old Algorithms

In [Ba98], Balas observed that if the matrix B is invertible, then we can
find a cone such that its extreme rays are in one-to-one correspondence
with the facets of the projection of the polyhedron.

Using this fact, Balas developed an algorithm to find all redundant
inequalities.
Rui-Juan Jing, Marc Moreno-Maza, and Delaram Talaashrafi in
[JMT20] combined an improved version of Bala’s algorithm with
Kohler’s algorithm to detect all all redundant inequalities.

First construct the initial test cone from the input polyhedron.
This cone can be used to find the "polar cone" of the polyhedron after
projection.
Redundant inequalities can be detected using extreme rays of the polar
cone.

For a non-empty, full-dimensional, and pointed polyhedron P ⊂ Qn as
input, given by a system of m linear inequalities of height h, the
complexity is O(m

5n
2 nω+1+ϵh1+ϵ) bit operations, for any ϵ > 0, where

ω is the exponent of matrix multiplication.
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New Algorithm

New Algorithm in Maple
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New Algorithm

Saturation Matrix

Definition
The saturation matrix of a system of linear inequalities F is the Boolean
matrix satM(F ) ∈ Qm×k , whose (i , j)-th element is equal to 1, if the j-th
element of VR(F ) saturates the i-th inequality of F , 0 otherwise.

Example

Consider the system F with the set VR(F ) and the saturation matrix
satM(F ) given below.

F

ℓ1 : x + y ≤ 1
ℓ2 : −x − y ≤ 1
ℓ3 : x − y ≤ 1
ℓ4 : −x + y ≤ 1

VR(F )
−→v 1 : (0, 1)
−→v 2 : (1, 0)
−→v 3 : (−1, 0)
−→v 4 : (0,−1)

satM(F )
−→v 1

−→v 2
−→v 3

−→v 4
ℓ1 1 1 0 0
ℓ2 0 0 1 1
ℓ3 0 1 0 1
ℓ4 1 0 1 0
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New Algorithm

Notation:
Let ℓ in F be an inequality such that, we denote

SVR(ℓ), the collection of vertices and rays in VR(F ) saturated by the
hyperplane Hℓ of ℓ.
SH(−→v ), the collections of inequalities in F that −→v saturates.

Observation:

The composition of the above two can be denotes by SH(SVR(ℓ)), which is
the collection of inequalities saturated by all the vertices or rays saturating ℓ.
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New Algorithm

Theorem (Redundancy tests)

Let ℓ be an inequality in F . The following properties hold:

1 The inequality ℓ is strongly redundant in F if and only if SVR(ℓ) is
empty.

2 If SVR(ℓ) is non-empty and its cardinality is less than n, then the
inequality ℓ is weakly redundant in F .

3 The inequality ℓ is weakly redundant in F if and only if the set
SH(SVR(ℓ)) \ {ℓ} is not empty.

Corollary (Criteria using the saturation matrix)
1 If satM(F )[ℓ] contains zero elements, then ℓ is strongly redundant.
2 If the number of nonzero elements of satM(F )[ℓ] is positive and less

than the dimension n, then ℓ is weakly redundant.
3 If satM(F )[ℓ] is contained in satM(F )[ℓ1] for some ℓ1 ∈ F \ {ℓ}, then ℓ

is weakly redundant.
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New Algorithm

From the saturation matrix satM(F ) =


1 1 0 0
0 0 1 1
0 1 0 1
1 0 1 0

, it is easy to obtain

the following identities:

SVR(ℓ1) = {−→v 1,
−→v 2}

SVR(ℓ2) = {−→v 3,
−→v 4}

SVR(ℓ3) = {−→v 2,
−→v 4}

SVR(ℓ4) = {−→v 1,
−→v 3}

SH(−→v 1) = {ℓ1, ℓ4}
SH(−→v 2) = {ℓ1, ℓ3}
SH(−→v 3) = {ℓ2, ℓ4}
SH(−→v 4) = {ℓ2, ℓ3}
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New Algorithm

Algorithm 1 Check Redundancy
Require: 1. the inequality system F with m inequalities;

2. the saturation matrix satM(F ).
Ensure: the minimal irredundant system Fired.
1: Firred := { } and satMirred := [ ].
2: for i from 1 to m do
3: Let Redundant := False.
4: if the number of nonzero elements in satM[i ] is less than n then
5: next. /* Corollary 1 and 2*/
6: end if
7: for j from 1 to i − 1 do
8: if satM[i ] = satM[i ]&satM[j ] then
9: Redundant := True.

10: break. /* Corollary 3 */
11: end if
12: end for
13: if not Redundant then
14: Firred := Firred ∪ {fi} and append satM[i ] to satMirred.
15: end if
16: end for
17: return Firred and satMirred.Chirantan Mukherjee (UWO) Remove Redundant Inequalities June 25, 2024 20 / 28



New Algorithm

Updating the Saturation Matrix

The saturation matrix is traversed both row-wise (to compute bit-wise AND)
and column-wise (to compute bit-wise OR).

SVR(ℓ) is obtained by the bit-wise AND of the Boolean vectors
satM(F )[ℓpos ] and satM(F )[ℓneg ].
Merging is to form the saturation matrix corresponding to the subspace
of the remaining coordinates.
For any vertices {v1, . . . , ve} so that proj(v1, {x}) = · · · = proj(ve , {x})
holds, we merge in satM(F ) the saturation information contained by
these columns indexed by v1, . . . , ve as follows:

we compute the bit-wise OR of the columns (regarded as bit-vectors) of
satM(F ) indexed by v1, . . . , ve
we replace the columns indexed by v1, . . . , ve by this bit-wise OR.
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New Algorithm

Example

SVR(ℓ1) = {−→v 1,
−→v 2} and SVR(ℓ4) = {−→v 1,

−→v 3}.

Then, SVR(ℓ1) ∩ SVR(ℓ4) = {−→v 1} and
proj(SVR(ℓ1) ∩ SVR(ℓ4), {x}) = proj({−→v 1}, {x}) = {(1)}.
satM(F )[ℓ1] = (1, 1, 0, 0), satM(F )[ℓ4] = (1, 0, 1, 0).
So, we have satM(F )[ℓ1]&satM(F )[ℓ4] = (1, 0, 0, 0).
Note that proj({v2}, {x}) = proj({v3}, {x}) = (0), we should merge
the information on the second and third position in
satM(F )[ℓ1]&satM(F )[ℓ4].
Merge(satM(F )[ℓ1]&satM(F )[ℓ4]) = (1, 0, 0).
proj({ℓ1, ℓ4}, {x}) = {x ≤ 1}.
Among the four vertices, only proj(−→v 1, {x}) saturates
proj({ℓ1, ℓ4}, {x}).

With the techniques of updating the saturation matrix, we provide Algorithm
to compute the minimal projected representation of a polyhedron.
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New Algorithm

Algorithm 2 Minimal projected representation
Require: 1. an inequality system F ;

2. a variable order x1 > x2 > . . . > xd .
Ensure: the minimal projected representation res of F .
1: Compute the V-representation V of F ;
2: Set res := table().
3: Sort the elements in V w.r.t. the reverse lexico order.
4:
5: F := CheckRedundancy(F ).
6: res[x1] := F x1 .
7: for i from 1 to n − 1 do
8: (F p ,F n,F 0) := partition(F ).
9: Let Vnew := proj(V , {xi}).
10:
11: Let Fnew := F 0.
12: for each fp ∈ F p and fn ∈ F n do
13: Append proj((fp , fn), {xi}) to Fnew

14: end for
15: F := CheckRedundancy(Fnew ).
16: V := Vnew , res[xi+1] := F xi+1 .
17: end for
18: return res.
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Algorithm 3 Minimal projected representation
Require: 1. an inequality system F ;

2. a variable order x1 > x2 > . . . > xd .
Ensure: the minimal projected representation res of F .
1: Compute the V-representation V of F ;
2: Set res := table().
3: Sort the elements in V w.r.t. the reverse lexico order.
4: Compute the saturation matrix satM.
5: F , satM := CheckRedundancy(F , satM(F)).
6: res[x1] := F x1 .
7: for i from 1 to n − 1 do
8: (F p ,F n,F 0) := partition(F ).
9: Let Vnew := proj(V , {xi}).
10: Merging: satM := Merge(satM).
11: Let Fnew := F 0 and satMnew := satM[F 0].
12: for each fp ∈ F p and fn ∈ F n do
13: Append proj((fp , fn), {xi}) to Fnew

14: Append satM[fp ]&satM[fn] to satMnew .
15: end for
16: F , satM := CheckRedundancy(Fnew , satMnew).
17: V := Vnew , res[xi+1] := F xi+1 .
18: end for
19: return res.
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New Algorithm

Complexity

Input H-representation (A,
−→
b ) with A ∈ Qm×n,

−→
b ∈ Qm and height([A,

−→
b ]) = h.

Computing the V-representation [Lemma 9 [JMT20]] –> O(mn+2nω+εh1+ε).

Height of the V-representation [Lemma 8 of [JMT20]] –> O(mn+1n2+εh).

Computing the initial satM –> O(mn+1n2+εh).

It is obtained by multiplying A ∈ Qm×n and (V ,R) ∈ Qn×k .
Note that height((V ,R)) is at most O(n log n + nh).
This multiplication requires at most O(mn2+εkh) = O(mn+1n2+εh).

Redundancy detection in the initial input system: –> O(mn+2) bit operations.

For a fixed inequality ℓ in F , find the index set I of all the 1’s in satM[ℓ].
Then, apply bit-wise AND to column vectors of satM[1..− 1, I ]. This
requires m · |I | bit operations, where |I | < k is the cardinality of I .
Redundancy detection for one inequality requires at most mn+1 bit
operations. Therefore, the the redundancy detection for the input
system F requires at most mn+2 bit operations.
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Redundancy detection for one inequality requires at most mn+1 bit
operations. Therefore, the the redundancy detection for the input
system F requires at most mn+2 bit operations.
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Complexity
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−→
b ) with A ∈ Qm×n,

−→
b ∈ Qm and height([A,

−→
b ]) = h.
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Comparision of Algorithms

For a non-empty, full-dimensional, and pointed polyhedron P ⊂ Qn as input,
given by a system of m linear inequalities of height h, the complexity of
eliminating d (≤ n) variables, where ϵ > 0, ω denotes the exponent of
matrix multiplication and LP(d ,H) is an upper bound for the number of bit
operations required for solving a linear program in n variables and with total
bit size H.

FME Algorithms Complexity
Original O(m2d )

Linear Programming O(d2m2dLP(d , 2dhd2md))

Balas and Kohler Check O(m
5n
2 nω+1+ϵh1+ϵ)

Saturation Matrix O(m2nnω+ϵh1+ϵ)
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