Using Saturation Matrix to Efficiently Remove Redundant Inequalities

Chirantan Mukherjee

University of Western Ontario

June 25, 2024

Remove Redundant Inequalities

Content

Chirantan Mukherjee (UWO)

What is the Fourier-Motzkin Elimination?

Fourier-Motzkin elimination (FME) is a method to project polyhedral sets on lower dimensions.

What is the Fourier-Motzkin Elimination?

Fourier-Motzkin elimination (FME) is a method to project polyhedral sets on lower dimensions. The basic idea is similar to Gaussian elimination (GE) for equality systems.

$$-2x_{1} + 4x_{2} - 3x_{3} = 0 \qquad -2x_{1} + 4x_{2} - 3x_{3} = 0$$

$$-13x_{1} + 24x_{2} - 20x_{3} = 0 \xrightarrow{1 \text{ step } GE} 0x_{1} - 2x_{2} - \frac{1}{2}x_{3} = 0$$

$$-26x_{1} + 54x_{2} - 39x_{3} = 0 \qquad 0x_{1} + 2x_{2} - 0x_{3} = 0$$

What is the Fourier-Motzkin Elimination?

Fourier-Motzkin elimination (FME) is a method to project polyhedral sets on lower dimensions. The basic idea is similar to Gaussian elimination (GE) for equality systems.

$$\begin{array}{rcl} -2x_1 + 4x_2 - 3x_3 = 0 & -2x_1 + 4x_2 - 3x_3 = 0 \\ -13x_1 + 24x_2 - 20x_3 = 0 & \xrightarrow{1 \text{ step } GE} & 0x_1 - 2x_2 - \frac{1}{2}x_3 = 0 \\ -26x_1 + 54x_2 - 39x_3 = 0 & 0x_1 + 2x_2 - 0x_3 = 0 \end{array}$$

$$3x_{1} - 2x_{2} + 1x_{3} \le 7$$

$$-2x_{1} + 2x_{2} - 1x_{3} \le 12 \xrightarrow{1 \text{ step FME}} 0x_{1} + 2x_{2} - 1x_{3} \le 50$$

$$-4x_{1} + 1x_{2} - 3x_{3} \le 15 \xrightarrow{0 x_{1} - 5x_{2} - 13x_{3} \le 73}$$

Eliminating t_1 from

$$A = \begin{cases} a_1 : 3t_1 - 2t_2 + t_3 \le 7\\ a_2 : -2t_1 + 2t_2 - t_3 \le 12\\ a_3 : -4t_1 + t_2 + 3t_3 \le 15 \end{cases}$$

Chirantan Mukherjee (UWO)

Eliminating t_1 from

$$A = \begin{cases} a_1 : 3t_1 - 2t_2 + t_3 \le 7\\ a_2 : -2t_1 + 2t_2 - t_3 \le 12\\ a_3 : -4t_1 + t_2 + 3t_3 \le 15 \end{cases}$$

$$partition(A) = \{a_1\}, \{a_2, a_3\}$$

Chirantan Mukherjee (UWO)

Eliminating t_1 from

$$A = \begin{cases} a_1 : 3t_1 - 2t_2 + t_3 \le 7\\ a_2 : -2t_1 + 2t_2 - t_3 \le 12\\ a_3 : -4t_1 + t_2 + 3t_3 \le 15 \end{cases}$$

$$partition(A) = \{a_1\}, \{a_2, a_3\}$$

 $combine(a_1, a_2) = combine(2a_1 + 3a_2) = 2t_2 - t_3 \le 50$
 $combine(a_1, a_3) = combine(4a_1 + 3a_3) = -5t_2 - 13t_3 \le 73$

$$A' = \begin{cases} 2t_2 - t_3 \le 50\\ -5t_2 - 13t_3 \le 73 \end{cases}$$

Eliminating t_2 from

$$\mathcal{A}' = \begin{cases} a_4 : 2t_2 - t_3 \le 50\\ a_5 : -5t_2 - 13t_3 \le 73 \end{cases}$$

Chirantan Mukherjee (UWO)

Eliminating t_2 from

$$\mathsf{A}' = \begin{cases} \mathsf{a}_4 : 2t_2 - t_3 \le 50\\ \mathsf{a}_5 : -5t_2 - 13t_3 \le 73 \end{cases}$$

$$partition(A) = \{a_4\}, \{a_5\}$$

Chirantan Mukherjee (UWO)

Eliminating t_2 from

$$\mathsf{A}' = \begin{cases} \mathsf{a}_4 : 2t_2 - t_3 \le 50\\ \mathsf{a}_5 : -5t_2 - 13t_3 \le 73 \end{cases}$$

$$partition(A) = \{a_4\}, \{a_5\}$$

 $combine(a_1, a_2) = combine(5a_4 + 2a_5) = -31t_3 \le 396$

$$A^{\prime\prime} = \Big\{ -31t_3 \le 396$$

- Projection of polyhedral sets has many applications in computer science
 - scheduling
 - dependence analysis (automatic parallelization)

- Projection of polyhedral sets has many applications in computer science
 - scheduling
 - dependence analysis (automatic parallelization)
- The basic algorithm, proposed by Fourier (1827) and Motzkin (1936), is called *Fourier-Motzkin Elimination* (FME)

- Projection of polyhedral sets has many applications in computer science
 - scheduling
 - dependence analysis (automatic parallelization)
- The basic algorithm, proposed by Fourier (1827) and Motzkin (1936), is called *Fourier-Motzkin Elimination* (FME)
 - Its complexity is $\mathcal{O}(m^{2^d})$ due to many redundant inequalities

- Projection of polyhedral sets has many applications in computer science
 - scheduling
 - dependence analysis (automatic parallelization)
- The basic algorithm, proposed by Fourier (1827) and Motzkin (1936), is called *Fourier-Motzkin Elimination* (FME)
 - Its complexity is $\mathcal{O}(m^{2^d})$ due to many redundant inequalities
 - Removing intermediate redundant inequalities significantly improves running time and output size

- Projection of polyhedral sets has many applications in computer science
 - scheduling
 - dependence analysis (automatic parallelization)
- The basic algorithm, proposed by Fourier (1827) and Motzkin (1936), is called *Fourier-Motzkin Elimination* (FME)
 - Its complexity is $\mathcal{O}(m^{2^d})$ due to many redundant inequalities
 - Removing intermediate redundant inequalities significantly improves running time and output size
 - Using linear programming (LP) for removing redundant inequalities, complexity drops to $\mathcal{O}(d^2m^{2d}LP(d,2^dhd^2m^d))$ for an input polyhedron in dimension d, with m facets and coefficient height h.

- Projection of polyhedral sets has many applications in computer science
 - scheduling
 - dependence analysis (automatic parallelization)
- The basic algorithm, proposed by Fourier (1827) and Motzkin (1936), is called *Fourier-Motzkin Elimination* (FME)
 - Its complexity is $\mathcal{O}(m^{2^d})$ due to many redundant inequalities
 - Removing intermediate redundant inequalities significantly improves running time and output size
 - Using linear programming (LP) for removing redundant inequalities, complexity drops to $\mathcal{O}(d^2m^{2d}LP(d,2^dhd^2m^d))$ for an input polyhedron in dimension d, with m facets and coefficient height h.
- Chernikov [Ch60] and Kohler [Ko67] proposed procedures for removing redundant inequalities based on linear algebra instead of LP. The current implementation in Maple uses matrix arithmetic [JMT20].

- Projection of polyhedral sets has many applications in computer science
 - scheduling
 - dependence analysis (automatic parallelization)
- The basic algorithm, proposed by Fourier (1827) and Motzkin (1936), is called *Fourier-Motzkin Elimination* (FME)
 - Its complexity is $\mathcal{O}(m^{2^d})$ due to many redundant inequalities
 - Removing intermediate redundant inequalities significantly improves running time and output size
 - Using linear programming (LP) for removing redundant inequalities, complexity drops to $\mathcal{O}(d^2m^{2d}LP(d,2^dhd^2m^d))$ for an input polyhedron in dimension d, with m facets and coefficient height h.
- Chernikov [Ch60] and Kohler [Ko67] proposed procedures for removing redundant inequalities based on linear algebra instead of LP. The current implementation in Maple uses matrix arithmetic [JMT20].
- In [JMXY24] proposed a method using Saturation Matrix.

Definition (H-representation)

A polyhedron P is a set which can be expressed as the intersection of finite number of (closed) half spaces, that is $\{\vec{x} \in \mathbb{R}^n \mid A\vec{x} \leq \vec{b}\}$.

Definition (H-representation)

A polyhedron P is a set which can be expressed as the intersection of finite number of (closed) half spaces, that is $\{\overrightarrow{x} \in \mathbb{R}^n \mid A\overrightarrow{x} \leq \overrightarrow{b}\}$.

Definition (V-representation)

The dual representation of the polyhedron P can be expressed as a combination of rays R (forming the polyhedral cone) and vertices V (forming the polytope), that is $\{x \in \mathbb{R}^n \mid \mu R + \rho V \text{ such that } \mu, \rho \geq 0 \text{ and } \mu + \rho = 1\}.$

We will denote it as $\mathcal{VR}(F)$, where F is the H-representation of P.

Having two inequality: $a_1x_1 + \cdots + a_nx_n \leq d_1$ and $b_1x_1 + \cdots + b_nx_n \leq d_2$ such that $a_1 > 0$ and $b_1 < 0$, we can eliminate x_1 by multiplying the first inequality by $|b_1|$ and the second one by a_1 and add them together. The result of combining these inequalities is:

 $(a_2|b_1|+b_2a_1)x_2+\cdots+(a_n|b_1|+b_na_1)x_n\leq |b_1|d_1+a_1d_2.$

Having two inequality: $a_1x_1 + \cdots + a_nx_n \leq d_1$ and $b_1x_1 + \cdots + b_nx_n \leq d_2$ such that $a_1 > 0$ and $b_1 < 0$, we can eliminate x_1 by multiplying the first inequality by $|b_1|$ and the second one by a_1 and add them together. The result of combining these inequalities is:

$$(a_2|b_1|+b_2a_1)x_2+\cdots+(a_n|b_1|+b_na_1)x_n\leq |b_1|d_1+a_1d_2.$$

Definition

Having a linear inequality system S with m inequalities and n variables of the form $a_{i1}x_1 + \cdots + a_{in}x_n \leq d_i$. We can partition the inequalities in three groups with respect to x_1 :

- A^+ set of inequalities with positive x_1 coefficient.
- A^- set of inequalities with negative x_1 coefficient.
- A^0 set of inequalities with zero x_1 coefficient.

Theorem

Let A' be the union of combination of all inequalities in A^+ with all inequalities in A^- and inequalities in A^0 such that A' does not have x_1 . Then,

$$(x_2, \cdots, x_n) \in \mathcal{Sol}(A') \Longleftrightarrow \exists x_1 \ (x_1, x_2, \cdots, x_n) \in \mathcal{Sol}(A)$$

where Sol(A) is a set of real points which satisfies all inequalities in A.

Theorem

Let A' be the union of combination of all inequalities in A^+ with all inequalities in A^- and inequalities in A^0 such that A' does not have x_1 . Then,

$$(x_2, \cdots, x_n) \in \mathcal{Sol}(A') \Longleftrightarrow \exists x_1 \ (x_1, x_2, \cdots, x_n) \in \mathcal{Sol}(A)$$

where Sol(A) is a set of real points which satisfies all inequalities in A.

FME Algorithm

Theorem

Let A' be the union of combination of all inequalities in A^+ with all inequalities in A^- and inequalities in A^0 such that A' does not have x_1 . Then,

$$(x_2, \cdots, x_n) \in \mathcal{Sol}(\mathcal{A}') \Longleftrightarrow \exists x_1 \ (x_1, x_2, \cdots, x_n) \in \mathcal{Sol}(\mathcal{A})$$

where Sol(A) is a set of real points which satisfies all inequalities in A.

FME Algorithm

• Select variables one after another.

Theorem

Let A' be the union of combination of all inequalities in A^+ with all inequalities in A^- and inequalities in A^0 such that A' does not have x_1 . Then,

$$(x_2, \cdots, x_n) \in \mathcal{Sol}(\mathcal{A}') \Longleftrightarrow \exists x_1 \ (x_1, x_2, \cdots, x_n) \in \mathcal{Sol}(\mathcal{A})$$

where Sol(A) is a set of real points which satisfies all inequalities in A.

FME Algorithm

- Select variables one after another.
- Partition A^+ , A^- and A^0 with respect to the variable.

Theorem

Let A' be the union of combination of all inequalities in A^+ with all inequalities in A^- and inequalities in A^0 such that A' does not have x_1 . Then,

$$(x_2, \cdots, x_n) \in \mathcal{Sol}(\mathcal{A}') \Longleftrightarrow \exists x_1 \ (x_1, x_2, \cdots, x_n) \in \mathcal{Sol}(\mathcal{A})$$

where Sol(A) is a set of real points which satisfies all inequalities in A.

FME Algorithm

- Select variables one after another.
- Partition A^+ , A^- and A^0 with respect to the variable.
- Combine inequalities in A^+ and A^- and form the resulting union.

Eliminating variable x_1 from a system with *m* inequalities with *d* variables:

• Partitioning inequalities with positive and negative x_1 coefficient is $\mathcal{O}(m)$.

- Partitioning inequalities with positive and negative x_1 coefficient is $\mathcal{O}(m)$.
- In the worst case, the system has $\frac{m}{2}$ positive coefficients and $\frac{m}{2}$ negative coefficients.

- Partitioning inequalities with positive and negative x_1 coefficient is $\mathcal{O}(m)$.
- In the worst case, the system has $\frac{m}{2}$ positive coefficients and $\frac{m}{2}$ negative coefficients.
- The final system would have $\mathcal{O}(\frac{m}{2})^2$ inequalities.

- Partitioning inequalities with positive and negative x_1 coefficient is $\mathcal{O}(m)$.
- In the worst case, the system has $\frac{m}{2}$ positive coefficients and $\frac{m}{2}$ negative coefficients.
- The final system would have $\mathcal{O}(\frac{m}{2})^2$ inequalities.
- Hence, the complexity of eliminating d variables is $\mathcal{O}(m^{2^d})$.

Eliminating variable x_1 from a system with *m* inequalities with *d* variables:

- Partitioning inequalities with positive and negative x_1 coefficient is $\mathcal{O}(m)$.
- In the worst case, the system has $\frac{m}{2}$ positive coefficients and $\frac{m}{2}$ negative coefficients.
- The final system would have $\mathcal{O}(\frac{m}{2})^2$ inequalities.
- Hence, the complexity of eliminating d variables is $\mathcal{O}(m^{2^d})$.

Improve Complexity

FME's complexity is double exponential. Most of the inequalities generated by FME algorithm are redundant. Detecting these redundant inequalities and removing them can significantly improve algorithm's complexity.

For $F : \{A\overrightarrow{x} \leq \overrightarrow{b}\}$ a consistent system of linear inequalities, P be the polyhedron represented by F, an inequality $\ell : \overrightarrow{a}^t \overrightarrow{x} \leq \overrightarrow{b}$ of F is called,

Chirantan Mukherjee (UWO)

For $F : \{A\overrightarrow{x} \le \overrightarrow{b}\}$ a consistent system of linear inequalities, P be the polyhedron represented by F, an inequality $\ell : \overrightarrow{a}^t \overrightarrow{x} \le \overrightarrow{b}$ of F is called,

• Redundant in F, if $F \setminus \{\overrightarrow{a}^t \overrightarrow{x} \leq \overrightarrow{b}\}$ represents the same polyhedron P.

For $F : \{A \overrightarrow{x} \leq \overrightarrow{b}\}$ a consistent system of linear inequalities, P be the polyhedron represented by F, an inequality $\ell : \overrightarrow{a}^t \overrightarrow{x} \leq \overrightarrow{b}$ of F is called,

- Redundant in F, if $F \setminus \{\overrightarrow{a}^t \overrightarrow{x} \leq \overrightarrow{b}\}$ represents the same polyhedron P.
- Otherwise, it is irredundant.

Definition

For $F : \{A\overrightarrow{x} \le \overrightarrow{b}\}$ a consistent system of linear inequalities, P be the polyhedron represented by F, an inequality $\ell : \overrightarrow{a}^t \overrightarrow{x} \le \overrightarrow{b}$ of F is called,

- Redundant in F, if $F \setminus \{\overrightarrow{a}^t \overrightarrow{x} \leq \overrightarrow{b}\}$ represents the same polyhedron P.
- Otherwise, it is irredundant.
- Strongly redundant if $\overrightarrow{a}^t \overrightarrow{x} < \overrightarrow{b}$ for all $\overrightarrow{x} \in P$.

Definition

For $F : \{A\overrightarrow{x} \leq \overrightarrow{b}\}$ a consistent system of linear inequalities, P be the polyhedron represented by F, an inequality $\ell : \overrightarrow{a}^t \overrightarrow{x} \leq \overrightarrow{b}$ of F is called,

- Redundant in *F*, if $F \setminus \{\overrightarrow{a}^t \overrightarrow{x} \leq \overrightarrow{b}\}$ represents the same polyhedron *P*.
- Otherwise, it is irredundant.
- Strongly redundant if $\overrightarrow{a}^t \overrightarrow{x} < \overrightarrow{b}$ for all $\overrightarrow{x} \in P$.
- Weakly redundant if it is redundant and $\overrightarrow{a}^t \overrightarrow{x} = \overrightarrow{b}$ holds for some $\overrightarrow{x} \in P$.

Removing all these redundancies is equivalent to giving a minimal representation of the projected polyhedron.

• Leonid Khachiyan explained in [Kh09] how linear programming (LP) could be used to remove all redundant inequalities, thus reducing the cost of Fourier-Motzkin elimination to a singly exponential time.

- Leonid Khachiyan explained in [Kh09] how linear programming (LP) could be used to remove all redundant inequalities, thus reducing the cost of Fourier-Motzkin elimination to a singly exponential time.
- The earliest FME algorithms uses LP to detect redundancy.

- Leonid Khachiyan explained in [Kh09] how linear programming (LP) could be used to remove all redundant inequalities, thus reducing the cost of Fourier-Motzkin elimination to a singly exponential time.
- The earliest FME algorithms uses LP to detect redundancy.
 - It needs to run the Simplex algorithm [Sc86] for all inequalities.

- Leonid Khachiyan explained in [Kh09] how linear programming (LP) could be used to remove all redundant inequalities, thus reducing the cost of Fourier-Motzkin elimination to a singly exponential time.
- The earliest FME algorithms uses LP to detect redundancy.
 - It needs to run the Simplex algorithm [Sc86] for all inequalities.
 - It is not practical for large cases.

- Leonid Khachiyan explained in [Kh09] how linear programming (LP) could be used to remove all redundant inequalities, thus reducing the cost of Fourier-Motzkin elimination to a singly exponential time.
- The earliest FME algorithms uses LP to detect redundancy.
 - It needs to run the Simplex algorithm [Sc86] for all inequalities.
 - It is not practical for large cases.
- It neither has a good theoretical complexity, nor is it effective in practice because of its dependence on LP solvers.

- Leonid Khachiyan explained in [Kh09] how linear programming (LP) could be used to remove all redundant inequalities, thus reducing the cost of Fourier-Motzkin elimination to a singly exponential time.
- The earliest FME algorithms uses LP to detect redundancy.
 - It needs to run the Simplex algorithm [Sc86] for all inequalities.
 - It is not practical for large cases.
- It neither has a good theoretical complexity, nor is it effective in practice because of its dependence on LP solvers.
- Since, FME are essentially an adaptation of GE, it is desirable to achieve the redundancy via linear algebra instead of using LP.

Definition

The projection $proj(\cdot, I)$ acts on the V -representation of a polyhedron, and returns a set of vertices and rays representing the projected polyhedron, which can be obtained by simply erasing the coordinates corresponding to the variables in I.

Definition

The projection $proj(\cdot, I)$ acts on the V -representation of a polyhedron, and returns a set of vertices and rays representing the projected polyhedron, which can be obtained by simply erasing the coordinates corresponding to the variables in *I*

Example

Consider the polyhedron defined by $\{x + 2y - z \le 2, 2x - 3y + 6z \le 2, -2x + 3y + 4z \le 20\}$. Its projection on [y, z] is the polyhedron represented by $\{z \leq \frac{11}{5}, y + \frac{2}{7}z \leq \frac{24}{7}\}$.

• In [Ba98], Balas observed that if the matrix B is invertible, then we can find a cone such that its extreme rays are in one-to-one correspondence with the facets of the projection of the polyhedron.

- In [Ba98], Balas observed that if the matrix B is invertible, then we can find a cone such that its extreme rays are in one-to-one correspondence with the facets of the projection of the polyhedron.
- Using this fact, Balas developed an algorithm to find all redundant inequalities.

- In [Ba98], Balas observed that if the matrix B is invertible, then we can find a cone such that its extreme rays are in one-to-one correspondence with the facets of the projection of the polyhedron.
- Using this fact, Balas developed an algorithm to find all redundant inequalities.
- Rui-Juan Jing, Marc Moreno-Maza, and Delaram Talaashrafi in [JMT20] combined an improved version of Bala's algorithm with Kohler's algorithm to detect all all redundant inequalities.

- In [Ba98], Balas observed that if the matrix B is invertible, then we can find a cone such that its extreme rays are in one-to-one correspondence with the facets of the projection of the polyhedron.
- Using this fact, Balas developed an algorithm to find all redundant inequalities.
- Rui-Juan Jing, Marc Moreno-Maza, and Delaram Talaashrafi in [JMT20] combined an improved version of Bala's algorithm with Kohler's algorithm to detect all all redundant inequalities.
 - First construct the initial test cone from the input polyhedron.

- In [Ba98], Balas observed that if the matrix B is invertible, then we can find a cone such that its extreme rays are in one-to-one correspondence with the facets of the projection of the polyhedron.
- Using this fact, Balas developed an algorithm to find all redundant inequalities.
- Rui-Juan Jing, Marc Moreno-Maza, and Delaram Talaashrafi in [JMT20] combined an improved version of Bala's algorithm with Kohler's algorithm to detect all all redundant inequalities.
 - First construct the initial test cone from the input polyhedron.
 - This cone can be used to find the "polar cone" of the polyhedron after projection.

- In [Ba98], Balas observed that if the matrix B is invertible, then we can find a cone such that its extreme rays are in one-to-one correspondence with the facets of the projection of the polyhedron.
- Using this fact, Balas developed an algorithm to find all redundant inequalities.
- Rui-Juan Jing, Marc Moreno-Maza, and Delaram Talaashrafi in [JMT20] combined an improved version of Bala's algorithm with Kohler's algorithm to detect all all redundant inequalities.
 - First construct the initial test cone from the input polyhedron.
 - This cone can be used to find the "polar cone" of the polyhedron after projection.
 - Redundant inequalities can be detected using extreme rays of the polar cone.

- In [Ba98], Balas observed that if the matrix B is invertible, then we can find a cone such that its extreme rays are in one-to-one correspondence with the facets of the projection of the polyhedron.
- Using this fact, Balas developed an algorithm to find all redundant inequalities.
- Rui-Juan Jing, Marc Moreno-Maza, and Delaram Talaashrafi in [JMT20] combined an improved version of Bala's algorithm with Kohler's algorithm to detect all all redundant inequalities.
 - First construct the initial test cone from the input polyhedron.
 - This cone can be used to find the "polar cone" of the polyhedron after projection.
 - Redundant inequalities can be detected using extreme rays of the polar cone.
- For a non-empty, full-dimensional, and pointed polyhedron $P \subset \mathbb{Q}^n$ as input, given by a system of *m* linear inequalities of height *h*, the complexity is $\mathcal{O}(m^{\frac{5n}{2}}n^{\omega+1+\epsilon}h^{1+\epsilon})$ bit operations, for any $\epsilon > 0$, where ω is the exponent of matrix multiplication.

New Algorithm in Maple

Chirantan Mukherjee (UWO)

Saturation Matrix

Definition

The saturation matrix of a system of linear inequalities F is the Boolean matrix satM(F) $\in \mathbb{Q}^{m \times k}$, whose (i, j)-th element is equal to 1, if the *j*-th element of $\mathcal{VR}(F)$ saturates the *i*-th inequality of F, 0 otherwise.

Saturation Matrix

Definition

The saturation matrix of a system of linear inequalities F is the Boolean matrix satM $(F) \in \mathbb{Q}^{m \times k}$, whose (i, j)-th element is equal to 1, if the *j*-th element of $\mathcal{VR}(F)$ saturates the *i*-th inequality of F, 0 otherwise.

Example

Consider the system F with the set $\mathcal{VR}(F)$ and the saturation matrix satM(F) given below.

F	$\mathcal{VR}(F)$			satM(F)			
$\ell_1: x + y \le 1$	\overrightarrow{v}_1 : (0,1)		\overrightarrow{v}_1	\overrightarrow{v}_2	\overrightarrow{v}_3	\overrightarrow{V}_4	
$l_2 \cdot -x - y < 1$	\overrightarrow{v}_{a} \cdot $(1,0)$	ℓ_1	1	1	0	0	
$z_2 \cdot x y \leq 1$	\overrightarrow{v}_2 (1,0)	ℓ_2	0	0	1	1	- 1
$\ell_3: x-y \leq 1$	\overline{V}_3 : (-1,0)	ℓ_3	0	1	0	1	
$\ell_4:-x+y\leq 1$	\overrightarrow{v}_4 : (0, -1)	ℓ_4	1	0	1	0	

Let ℓ in F be an inequality such that, we denote

Chirantan Mukherjee (UWO)

Let ℓ in F be an inequality such that, we denote

S^{VR}(ℓ), the collection of vertices and rays in VR(F) saturated by the hyperplane H_ℓ of ℓ.

Let ℓ in F be an inequality such that, we denote

- S^{VR}(ℓ), the collection of vertices and rays in VR(F) saturated by the hyperplane H_ℓ of ℓ.
- $S^{\mathcal{H}}(\overrightarrow{v})$, the collections of inequalities in *F* that \overrightarrow{v} saturates.

Let ℓ in F be an inequality such that, we denote

- S^{VR}(ℓ), the collection of vertices and rays in VR(F) saturated by the hyperplane H_ℓ of ℓ.
- $S^{\mathcal{H}}(\overrightarrow{v})$, the collections of inequalities in F that \overrightarrow{v} saturates.

Observation:

The composition of the above two can be denotes by $S^{\mathcal{H}}(S^{\mathcal{VR}}(\ell))$, which is the collection of inequalities saturated by all the vertices or rays saturating ℓ .

Let ℓ be an inequality in F. The following properties hold:

Chirantan Mukherjee (UWO)

Let ℓ be an inequality in F. The following properties hold:

The inequality l is strongly redundant in F if and only if S^{VR}(l) is empty.

Let ℓ be an inequality in F. The following properties hold:

- The inequality l is strongly redundant in F if and only if S^{VR}(l) is empty.
- If S^{VR}(ℓ) is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in F.

Let ℓ be an inequality in F. The following properties hold:

- The inequality l is strongly redundant in F if and only if S^{VR}(l) is empty.
- If S^{VR}(ℓ) is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in F.
- The inequality ℓ is weakly redundant in F if and only if the set S^H(S^{VR}(ℓ)) \ {ℓ} is not empty.

Let ℓ be an inequality in F. The following properties hold:

- The inequality l is strongly redundant in F if and only if S^{VR}(l) is empty.
- If S^{VR}(ℓ) is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in F.
- Solution The inequality ℓ is weakly redundant in F if and only if the set S^H(S^{VR}(ℓ)) \ {ℓ} is not empty.

Corollary (Criteria using the saturation matrix)

• If satM(F)[ℓ] contains zero elements, then ℓ is strongly redundant.

Let ℓ be an inequality in F. The following properties hold:

- The inequality l is strongly redundant in F if and only if S^{VR}(l) is empty.
- If S^{VR}(ℓ) is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in F.
- Solution The inequality ℓ is weakly redundant in F if and only if the set S^H(S^{VR}(ℓ)) \ {ℓ} is not empty.

Corollary (Criteria using the saturation matrix)

- If satM(F)[ℓ] contains zero elements, then ℓ is strongly redundant.
- **2** If the number of nonzero elements of $\operatorname{satM}(F)[\ell]$ is positive and less than the dimension n, then ℓ is weakly redundant.

Let ℓ be an inequality in F. The following properties hold:

- The inequality l is strongly redundant in F if and only if S^{VR}(l) is empty.
- If S^{VR}(ℓ) is non-empty and its cardinality is less than n, then the inequality ℓ is weakly redundant in F.
- Solution The inequality ℓ is weakly redundant in F if and only if the set S^H(S^{VR}(ℓ)) \ {ℓ} is not empty.

Corollary (Criteria using the saturation matrix)

- **1** If satM(F)[ℓ] contains zero elements, then ℓ is strongly redundant.
- If the number of nonzero elements of satM(F)[ℓ] is positive and less than the dimension n, then ℓ is weakly redundant.
- If satM(F)[ℓ] is contained in satM(F)[ℓ_1] for some $\ell_1 \in F \setminus \{\ell\}$, then ℓ is weakly redundant.

From the saturation matrix satM(F) =
$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
, it is easy to obtain

/1

1

 $0 \quad 0$

the following identities:

$$\begin{split} \mathcal{S}^{\mathcal{VR}}(\ell_1) &= \{\overrightarrow{\nu}_1, \overrightarrow{\nu}_2\} \quad \mathcal{S}^{\mathcal{H}}(\overrightarrow{\nu}_1) = \{\ell_1, \ell_4\} \\ \mathcal{S}^{\mathcal{VR}}(\ell_2) &= \{\overrightarrow{\nu}_3, \overrightarrow{\nu}_4\} \quad \mathcal{S}^{\mathcal{H}}(\overrightarrow{\nu}_2) = \{\ell_1, \ell_3\} \\ \mathcal{S}^{\mathcal{VR}}(\ell_3) &= \{\overrightarrow{\nu}_2, \overrightarrow{\nu}_4\} \quad \mathcal{S}^{\mathcal{H}}(\overrightarrow{\nu}_3) = \{\ell_2, \ell_4\} \\ \mathcal{S}^{\mathcal{VR}}(\ell_4) &= \{\overrightarrow{\nu}_1, \overrightarrow{\nu}_3\} \quad \mathcal{S}^{\mathcal{H}}(\overrightarrow{\nu}_4) = \{\ell_2, \ell_3\} \end{split}$$

Algorithm 1 Check Redundancy

Require: 1. the inequality system *F* with *m* inequalities;

2. the saturation matrix satM(F).

Ensure: the minimal irredundant system $F_{\rm irred}$.

1:
$$\textit{F}_{\mathrm{irred}} := \{ \ \} \text{ and } \mathsf{sat} \textsf{M}_{\mathrm{irred}} := [\].$$

- 2: **for** *i* from 1 to *m* **do**
- 3: Let Redundant := False.
- 4: **if** the number of nonzero elements in satM[i] is less than *n* **then**

```
5: next. /* Corollary 1 and 2*/
```

```
6: end if
```

```
7: for j from 1 to i - 1 do
```

```
8: if satM[i] = satM[i]&satM[j] then
```

9: Redundant := True.

```
10: break. /* Corollary 3 */
```

```
11: end if
```

- 12: end for
- 13: if not Redundant then

```
14: F_{\text{irred}} := F_{\text{irred}} \cup \{f_i\} \text{ and append sat} M[i] \text{ to sat} M_{\text{irred}}.
```

15: end if

16: end for

Updating the Saturation Matrix

The saturation matrix is traversed both row-wise (to compute bit-wise AND) and column-wise (to compute bit-wise OR).

Updating the Saturation Matrix

The saturation matrix is traversed both row-wise (to compute bit-wise AND) and column-wise (to compute bit-wise OR).

S^{VR}(ℓ) is obtained by the bit-wise AND of the Boolean vectors satM(F)[ℓ_{pos}] and satM(F)[ℓ_{neg}].

- \$\mathcal{S}^{\noingle \mathcal{R}}(\ell)\$ is obtained by the bit-wise AND of the Boolean vectors satM(\$\mathcal{F})[\ell_{pos}]\$ and satM(\$\mathcal{F})[\ell_{neg}]\$.
- Merging is to form the saturation matrix corresponding to the subspace of the remaining coordinates.

- \$\mathcal{S}^{\noingle \mathcal{R}}(\ell)\$ is obtained by the bit-wise AND of the Boolean vectors satM(\$\mathcal{F})[\ell_{pos}]\$ and satM(\$\mathcal{F})[\ell_{neg}]\$.
- Merging is to form the saturation matrix corresponding to the subspace of the remaining coordinates.
- For any vertices $\{v_1, \ldots, v_e\}$ so that $\operatorname{proj}(v_1, \{x\}) = \cdots = \operatorname{proj}(v_e, \{x\})$ holds, we merge in satM(*F*) the saturation information contained by these columns indexed by v_1, \ldots, v_e as follows:

- $S^{VR}(\ell)$ is obtained by the bit-wise AND of the Boolean vectors $satM(F)[\ell_{pos}]$ and $satM(F)[\ell_{neg}]$.
- Merging is to form the saturation matrix corresponding to the subspace of the remaining coordinates.
- For any vertices $\{v_1, \ldots, v_e\}$ so that $\operatorname{proj}(v_1, \{x\}) = \cdots = \operatorname{proj}(v_e, \{x\})$ holds, we merge in satM(F) the saturation information contained by these columns indexed by v_1, \ldots, v_e as follows:
 - we compute the bit-wise OR of the columns (regarded as bit-vectors) of satM(F) indexed by v₁,..., v_e

- \$\mathcal{S}^{\noingle \mathcal{R}}(\ell)\$ is obtained by the bit-wise AND of the Boolean vectors satM(\$\mathcal{F})[\ell_{pos}]\$ and satM(\$\mathcal{F})[\ell_{neg}]\$.
- Merging is to form the saturation matrix corresponding to the subspace of the remaining coordinates.
- For any vertices $\{v_1, \ldots, v_e\}$ so that $\operatorname{proj}(v_1, \{x\}) = \cdots = \operatorname{proj}(v_e, \{x\})$ holds, we merge in satM(F) the saturation information contained by these columns indexed by v_1, \ldots, v_e as follows:
 - we compute the bit-wise OR of the columns (regarded as bit-vectors) of satM(F) indexed by v₁,..., v_e
 - we replace the columns indexed by v_1, \ldots, v_e by this bit-wise OR.

•
$$\mathcal{S}^{\mathcal{VR}}(\ell_1) = \{ \overrightarrow{\nu}_1, \overrightarrow{\nu}_2 \}$$
 and $\mathcal{S}^{\mathcal{VR}}(\ell_4) = \{ \overrightarrow{\nu}_1, \overrightarrow{\nu}_3 \}.$

Chirantan Mukherjee (UWO)

- $\mathcal{S}^{\mathcal{VR}}(\ell_1) = \{\overrightarrow{v}_1, \overrightarrow{v}_2\} \text{ and } \mathcal{S}^{\mathcal{VR}}(\ell_4) = \{\overrightarrow{v}_1, \overrightarrow{v}_3\}.$
- Then, $S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4) = \{\overrightarrow{v}_1\}$ and $\operatorname{proj}(S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4), \{x\}) = \operatorname{proj}(\{\overrightarrow{v}_1\}, \{x\}) = \{(1)\}.$

- $S^{\mathcal{VR}}(\ell_1) = \{\overrightarrow{v}_1, \overrightarrow{v}_2\} \text{ and } S^{\mathcal{VR}}(\ell_4) = \{\overrightarrow{v}_1, \overrightarrow{v}_3\}.$
- Then, $S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4) = \{\overrightarrow{v}_1\}$ and $\operatorname{proj}(S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4), \{x\}) = \operatorname{proj}(\{\overrightarrow{v}_1\}, \{x\}) = \{(1)\}.$
- $\operatorname{satM}(F)[\ell_1] = (1, 1, 0, 0), \operatorname{satM}(F)[\ell_4] = (1, 0, 1, 0).$

- $S^{\mathcal{VR}}(\ell_1) = \{\overrightarrow{v}_1, \overrightarrow{v}_2\} \text{ and } S^{\mathcal{VR}}(\ell_4) = \{\overrightarrow{v}_1, \overrightarrow{v}_3\}.$
- Then, $S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4) = \{\overrightarrow{v}_1\}$ and $\operatorname{proj}(S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4), \{x\}) = \operatorname{proj}(\{\overrightarrow{v}_1\}, \{x\}) = \{(1)\}.$
- $\operatorname{satM}(F)[\ell_1] = (1, 1, 0, 0), \operatorname{satM}(F)[\ell_4] = (1, 0, 1, 0).$
- So, we have satM(F)[ℓ_1]&satM(F)[ℓ_4] = (1,0,0,0).

- $\mathcal{S}^{\mathcal{VR}}(\ell_1) = \{\overrightarrow{v}_1, \overrightarrow{v}_2\} \text{ and } \mathcal{S}^{\mathcal{VR}}(\ell_4) = \{\overrightarrow{v}_1, \overrightarrow{v}_3\}.$
- Then, $S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4) = \{ \overrightarrow{v}_1 \}$ and $\operatorname{proj}(S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4), \{x\}) = \operatorname{proj}(\{ \overrightarrow{v}_1 \}, \{x\}) = \{(1)\}.$
- $\operatorname{satM}(F)[\ell_1] = (1, 1, 0, 0), \operatorname{satM}(F)[\ell_4] = (1, 0, 1, 0).$
- So, we have satM(F)[ℓ_1]&satM(F)[ℓ_4] = (1,0,0,0).
- Note that proj({v₂}, {x}) = proj({v₃}, {x}) = (0), we should merge the information on the second and third position in satM(F)[l₁]&satM(F)[l₄].

- $\mathcal{S}^{\mathcal{VR}}(\ell_1) = \{ \overrightarrow{v}_1, \overrightarrow{v}_2 \}$ and $\mathcal{S}^{\mathcal{VR}}(\ell_4) = \{ \overrightarrow{v}_1, \overrightarrow{v}_3 \}.$
- Then, $S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4) = \{ \overrightarrow{v}_1 \}$ and $\operatorname{proj}(S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4), \{x\}) = \operatorname{proj}(\{ \overrightarrow{v}_1 \}, \{x\}) = \{(1)\}.$
- $\operatorname{satM}(F)[\ell_1] = (1, 1, 0, 0), \operatorname{satM}(F)[\ell_4] = (1, 0, 1, 0).$
- So, we have satM(F)[ℓ_1]&satM(F)[ℓ_4] = (1,0,0,0).
- Note that $\text{proj}(\{v_2\}, \{x\}) = \text{proj}(\{v_3\}, \{x\}) = (0)$, we should merge the information on the second and third position in $\text{satM}(F)[\ell_1]\&\text{satM}(F)[\ell_4]$.
- Merge(satM(F)[ℓ_1]&satM(F)[ℓ_4]) = (1,0,0).
- $\operatorname{proj}(\{\ell_1, \ell_4\}, \{x\}) = \{x \leq 1\}.$

- $\mathcal{S}^{\mathcal{VR}}(\ell_1) = \{ \overrightarrow{v}_1, \overrightarrow{v}_2 \}$ and $\mathcal{S}^{\mathcal{VR}}(\ell_4) = \{ \overrightarrow{v}_1, \overrightarrow{v}_3 \}.$
- Then, $S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4) = \{ \overrightarrow{v}_1 \}$ and $\operatorname{proj}(S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4), \{x\}) = \operatorname{proj}(\{ \overrightarrow{v}_1 \}, \{x\}) = \{(1)\}.$
- $\operatorname{satM}(F)[\ell_1] = (1, 1, 0, 0), \operatorname{satM}(F)[\ell_4] = (1, 0, 1, 0).$
- So, we have satM(F)[ℓ_1]&satM(F)[ℓ_4] = (1,0,0,0).
- Note that $\text{proj}(\{v_2\}, \{x\}) = \text{proj}(\{v_3\}, \{x\}) = (0)$, we should merge the information on the second and third position in $\text{satM}(F)[\ell_1]\&\text{satM}(F)[\ell_4]$.
- $Merge(satM(F)[\ell_1]\&satM(F)[\ell_4]) = (1, 0, 0).$
- $\operatorname{proj}(\{\ell_1, \ell_4\}, \{x\}) = \{x \leq 1\}.$
- Among the four vertices, only $\text{proj}(\overrightarrow{v}_1, \{x\})$ saturates $\text{proj}(\{\ell_1, \ell_4\}, \{x\})$.

- $\mathcal{S}^{\mathcal{VR}}(\ell_1) = \{ \overrightarrow{v}_1, \overrightarrow{v}_2 \}$ and $\mathcal{S}^{\mathcal{VR}}(\ell_4) = \{ \overrightarrow{v}_1, \overrightarrow{v}_3 \}.$
- Then, $S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4) = \{ \overrightarrow{v}_1 \}$ and $\operatorname{proj}(S^{\mathcal{VR}}(\ell_1) \cap S^{\mathcal{VR}}(\ell_4), \{x\}) = \operatorname{proj}(\{ \overrightarrow{v}_1 \}, \{x\}) = \{(1)\}.$
- $\operatorname{satM}(F)[\ell_1] = (1, 1, 0, 0), \operatorname{satM}(F)[\ell_4] = (1, 0, 1, 0).$
- So, we have satM(F)[ℓ_1]&satM(F)[ℓ_4] = (1,0,0,0).
- Note that proj({v₂}, {x}) = proj({v₃}, {x}) = (0), we should merge the information on the second and third position in satM(F)[l₁]&satM(F)[l₄].
- $Merge(satM(F)[\ell_1]\&satM(F)[\ell_4]) = (1, 0, 0).$
- $\operatorname{proj}(\{\ell_1, \ell_4\}, \{x\}) = \{x \leq 1\}.$
- Among the four vertices, only $\text{proj}(\overrightarrow{v}_1, \{x\})$ saturates $\text{proj}(\{\ell_1, \ell_4\}, \{x\})$.

With the techniques of updating the saturation matrix, we provide Algorities to compute the minimal projected representation of a polyhedron.

Chirantan Mukherjee (UWO)

Algorithm 2 Minimal projected representation

```
Require: 1. an inequality system F;
    2. a variable order x_1 > x_2 > \ldots > x_d.
Ensure: the minimal projected representation res of F.
1: Compute the V-representation V of F;
2: Set res := table().
3: Sort the elements in V w.r.t. the reverse lexico order.
4:
5: F := \text{CheckRedundancy}(F).
6: res[x_1] := F^{x_1}.
7: for i from 1 to n-1 do
8:
     (F^{p}, F^{n}, F^{0}) := \text{partition}(F).
9:
      Let V_{new} := \operatorname{proj}(V, \{x_i\}).
10:
     Let F_{new} := F^0.
11:
12:
     for each f_p \in F^p and f_n \in F^n do
13:
           Append proj((f_p, f_n), \{x_i\}) to F_{new}
14:
     end for
15:
     F := \text{CheckRedundancy}(F_{new}).
16:
        V := V_{new}, res[x_{i+1}] := F^{x_{i+1}}.
17: end for
18: return res.
```


Algorithm 3 Minimal projected representation

Require: 1. an inequality system F;

2. a variable order $x_1 > x_2 > \ldots > x_d$.

Ensure: the minimal projected representation res of F.

1: Compute the V-representation V of F;

```
2: Set res := table().
```

- 3: Sort the elements in V w.r.t. the reverse lexico order.
- 4: Compute the saturation matrix satM.
- 5: F, satM := CheckRedundancy(F, satM(F)).

```
6: res[x_1] := F^{x_1}.
```

- 7: for *i* from 1 to n-1 do
- 8: $(F^p, F^n, F^0) := \text{partition}(F).$
- 9: Let $V_{new} := \text{proj}(V, \{x_i\})$.
- **10:** Merging: satM := Merge(satM).
- 11: Let $F_{new} := F^0$ and satM_{new} := satM[F^0].
- 12: for each $f_p \in F^p$ and $f_n \in F^n$ do
- 13: Append $proj((f_p, f_n), \{x_i\})$ to F_{new}
- **14:** Append satM $[f_p]$ &satM $[f_n]$ to satM_{new}.
- 15: end for

```
16: F, satM := CheckRedundancy(F_{new}, satM<sub>new</sub>).
```

```
17: V := V_{new}, res[x_{i+1}] := F^{x_{i+1}}.
```

18: end for

```
19: return res.
```


Input H-representation (A, \overrightarrow{b}) with $A \in \mathbb{Q}^{m \times n}$, $\overrightarrow{b} \in \mathbb{Q}^m$ and height $([A, \overrightarrow{b}]) = h$.

• Computing the V-representation [Lemma 9 [JMT20]] $\rightarrow O(m^{n+2}n^{\omega+\varepsilon}h^{1+\varepsilon})$.

- Computing the V-representation [Lemma 9 [JMT20]] $\rightarrow O(m^{n+2}n^{\omega+\varepsilon}h^{1+\varepsilon})$.
- Height of the V-representation [Lemma 8 of [JMT20]] $\rightarrow O(m^{n+1}n^{2+\varepsilon}h)$.

- Computing the V-representation [Lemma 9 [JMT20]] $\rightarrow O(m^{n+2}n^{\omega+\varepsilon}h^{1+\varepsilon})$.
- Height of the V-representation [Lemma 8 of [JMT20]] $\rightarrow O(m^{n+1}n^{2+\varepsilon}h)$.
- Computing the initial satM $\rightarrow \mathcal{O}(m^{n+1}n^{2+\varepsilon}h)$.
 - It is obtained by multiplying $A \in \mathbb{Q}^{m \times n}$ and $(V, R) \in \mathbb{Q}^{n \times k}$.

- Computing the V-representation [Lemma 9 [JMT20]] $\rightarrow O(m^{n+2}n^{\omega+\varepsilon}h^{1+\varepsilon})$.
- Height of the V-representation [Lemma 8 of [JMT20]] $\rightarrow O(m^{n+1}n^{2+\varepsilon}h)$.
- Computing the initial satM $\rightarrow \mathcal{O}(m^{n+1}n^{2+\varepsilon}h)$.
 - It is obtained by multiplying $A \in \mathbb{Q}^{m \times n}$ and $(V, R) \in \mathbb{Q}^{n \times k}$.
 - Note that height((V, R)) is at most $O(n \log n + nh)$.

- Computing the V-representation [Lemma 9 [JMT20]] $\rightarrow O(m^{n+2}n^{\omega+\varepsilon}h^{1+\varepsilon})$.
- Height of the V-representation [Lemma 8 of [JMT20]] $\rightarrow O(m^{n+1}n^{2+\varepsilon}h)$.
- Computing the initial satM $\rightarrow \mathcal{O}(m^{n+1}n^{2+\varepsilon}h)$.
 - It is obtained by multiplying $A \in \mathbb{Q}^{m \times n}$ and $(V, R) \in \mathbb{Q}^{n \times k}$.
 - Note that height((V, R)) is at most $O(n \log n + nh)$.
 - This multiplication requires at most $\mathcal{O}(mn^{2+\varepsilon}kh) = \mathcal{O}(m^{n+1}n^{2+\varepsilon}h)$.

- Computing the V-representation [Lemma 9 [JMT20]] $\rightarrow O(m^{n+2}n^{\omega+\varepsilon}h^{1+\varepsilon})$.
- Height of the V-representation [Lemma 8 of [JMT20]] $\rightarrow O(m^{n+1}n^{2+\varepsilon}h)$.
- Computing the initial satM $\rightarrow \mathcal{O}(m^{n+1}n^{2+\varepsilon}h)$.
 - It is obtained by multiplying $A \in \mathbb{Q}^{m \times n}$ and $(V, R) \in \mathbb{Q}^{n \times k}$.
 - Note that height((V, R)) is at most $O(n \log n + nh)$.
 - This multiplication requires at most $\mathcal{O}(mn^{2+\varepsilon}kh) = \mathcal{O}(m^{n+1}n^{2+\varepsilon}h)$.
- Redundancy detection in the initial input system: $\rightarrow \mathcal{O}(m^{n+2})$ bit operations.

- Computing the V-representation [Lemma 9 [JMT20]] $\rightarrow O(m^{n+2}n^{\omega+\varepsilon}h^{1+\varepsilon})$.
- Height of the V-representation [Lemma 8 of [JMT20]] $\rightarrow O(m^{n+1}n^{2+\varepsilon}h)$.
- Computing the initial satM $\rightarrow \mathcal{O}(m^{n+1}n^{2+\varepsilon}h)$.
 - It is obtained by multiplying $A \in \mathbb{Q}^{m \times n}$ and $(V, R) \in \mathbb{Q}^{n \times k}$.
 - Note that height((V, R)) is at most $O(n \log n + nh)$.
 - This multiplication requires at most $\mathcal{O}(mn^{2+\varepsilon}kh) = \mathcal{O}(m^{n+1}n^{2+\varepsilon}h)$.
- Redundancy detection in the initial input system: $\rightarrow O(m^{n+2})$ bit operations.
 - For a fixed inequality ℓ in F, find the index set I of all the 1's in satM[ℓ].

- Computing the V-representation [Lemma 9 [JMT20]] $\rightarrow O(m^{n+2}n^{\omega+\varepsilon}h^{1+\varepsilon})$.
- Height of the V-representation [Lemma 8 of [JMT20]] $\rightarrow O(m^{n+1}n^{2+\varepsilon}h)$.
- Computing the initial satM $\rightarrow \mathcal{O}(m^{n+1}n^{2+\varepsilon}h)$.
 - It is obtained by multiplying $A \in \mathbb{Q}^{m \times n}$ and $(V, R) \in \mathbb{Q}^{n \times k}$.
 - Note that height((V, R)) is at most $O(n \log n + nh)$.
 - This multiplication requires at most $\mathcal{O}(mn^{2+\varepsilon}kh) = \mathcal{O}(m^{n+1}n^{2+\varepsilon}h)$.
- Redundancy detection in the initial input system: $\rightarrow \mathcal{O}(m^{n+2})$ bit operations.
 - For a fixed inequality ℓ in F, find the index set I of all the 1's in satM[ℓ].
 - Then, apply bit-wise AND to column vectors of satM[1.. 1, I]. This requires $m \cdot |I|$ bit operations, where |I| < k is the cardinality of I.

- Computing the V-representation [Lemma 9 [JMT20]] $\rightarrow \mathcal{O}(m^{n+2}n^{\omega+\varepsilon}h^{1+\varepsilon})$.
- Height of the V-representation [Lemma 8 of [JMT20]] $\rightarrow O(m^{n+1}n^{2+\varepsilon}h)$.
- Computing the initial satM $\rightarrow \mathcal{O}(m^{n+1}n^{2+\varepsilon}h)$.
 - It is obtained by multiplying $A \in \mathbb{Q}^{m \times n}$ and $(V, R) \in \mathbb{Q}^{n \times k}$.
 - Note that height((V, R)) is at most $\mathcal{O}(n \log n + nh)$.
 - This multiplication requires at most $\mathcal{O}(mn^{2+\varepsilon}kh) = \mathcal{O}(m^{n+1}n^{2+\varepsilon}h)$.
- Redundancy detection in the initial input system: $\rightarrow O(m^{n+2})$ bit operations.
 - For a fixed inequality ℓ in F, find the index set I of all the 1's in satM[ℓ].
 - Then, apply bit-wise AND to column vectors of satM[1.. 1, I]. This requires $m \cdot |I|$ bit operations, where |I| < k is the cardinality of I.
 - Redundancy detection for one inequality requires at most m^{n+1} bit m^{n+1} operations. Therefore, the the redundancy detection for the input system F requires at most m^{n+2} bit operations.

Comparision of Algorithms

For a non-empty, full-dimensional, and pointed polyhedron $P \subset \mathbb{Q}^n$ as input, given by a system of *m* linear inequalities of height *h*, the complexity of eliminating $d (\leq n)$ variables, where $\epsilon > 0$, ω denotes the exponent of matrix multiplication and LP(d, H) is an upper bound for the number of bit operations required for solving a linear program in *n* variables and with total bit size *H*.

FME Algorithms	Complexity
Original	$\mathcal{O}(m^{2^d})$
Linear Programming	$\mathcal{O}(d^2m^{2d}LP(d,2^dhd^2m^d))$
Balas and Kohler Check	$\mathcal{O}(m^{rac{5n}{2}}n^{\omega+1+\epsilon}h^{1+\epsilon})$
Saturation Matrix	$\mathcal{O}(m^{2n}n^{\omega+\epsilon}h^{1+\epsilon})$

References I

Sergei N. Chernikov.

Contraction of systems of linear inequalities. Dokl. Akad. Nauk SSSR, 1960.

D. A. Kohler.

Projections of convex polyhedral sets.

Technical report, California, University at Berkeley, Operations Research Center, 1967.

Leonid Khachiyan.

Fourier-motzkin elimination method. Springer, 2009.

Alexander Schrijver.

Theory of linear and integer programming. John Wiley & Sons, 1986.

References II

Komei Fukuda.

Frequently asked questions in polyhedral computation, 2004. https:

//people.inf.ethz.ch/fukudak/Doc_pub/polyfaq040618.pdf

Rui-Juan Jing, Marc Moreno Maza, Yan-Feng Xie and Chun-Ming Yuan. Efficient detection of redundancies in systems of linear inequalities. ISSAC (to appear), 2024.

Egon Balas.

Projection with a Minimal System of Inequalities. Computational Optimization and Applications, 1998.

Rui-Juan Jing, Marc Moreno-Maza, and Delaram Talaashrafi. Complexity estimates for Fourier-Motzkin elimination. Proceedings of CASC. Springer, 2020.

