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Abstract: Current capacity planning practices based on

heavy over-provisioning of power infrastructure hurt (i) the

operational costs of data centers as well as (ii) the compu-

tational work they can support. We explore a combination of

statistical multiplexing techniques to improve the utilization

of the power hierarchy within a data center. At the highest

level of the power hierarchy, we employ controlled under-

provisioning and over-booking of power needs of hosted

workloads. At the lower levels, we introduce the novel notion

of soft fuses to flexibly distribute provisioned power among

hosted workloads based on their needs. Our techniques are

built upon a measurement-driven profiling and prediction

framework to characterize key statistical properties of the

power needs of hosted workloads and their aggregates. We

characterize the gains in terms of the amount of computa-

tional work (CPU cycles) per provisioned unit of power –

Computation per Provisioned Watt (CPW). Our technique is

able to double the CPW offered by a Power Distribution Unit

(PDU) running the e-commerce benchmark TPC-W com-

pared to conventional provisioning practices. Over-booking

the PDU by 10% based on tails of power profiles yields

a further improvement of 20%. Reactive techniques imple-

mented on our Xen VMM-based servers dynamically modu-

late CPU DVFS states to ensure power draw below the limits

imposed by soft fuses. Finally, information captured in our

profiles also provide ways of controlling application perfor-

mance degradation despite overbooking. The 95th percentile

of TPC-W session response time only grew from 1.59 sec to

1.78 sec—a degradation of 12%.

Categories and Subject Descriptors: C.4 [Performance of

Systems]: Measurement techniques; Performance attributes
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1. Introduction and Motivation

To accommodate modern resource-intensive high-performance

applications, large-scale academic, research and, industrial

data centers have grown at a rapid pace. The fast-growing

power consumption of these platforms is a major concern

because it is resulting in a correspondingly rapid increase in

their operational costs and environmental impact. By 2005,

the energy required to power and cool data center equipment

accounted for about 1.2% of total U.S. electricity consump-

tion according to a report released by the Lawrence Berkeley

National Laboratory. Gartner, the IT research and advisory

company, estimates that by 2010, about half of the Forbes

Global 2000 companies will spend more on energy than on

hardware such as servers [Gartner 2007]. Furthermore, Gart-

ner estimates that the manufacture, use, and disposal of IT

equipment, a large share of which results from data centers,

accounts for 2% of global CO2 emissions, which is equiva-

lent to that of the aviation industry.

While the increase in power consumption per-unit of

hardware has also contributed to this growth in energy con-

sumption, the primary reason is the rapid rise in the number

of data centers and the growing size of their hardware-base

(especially the number of servers). As an example, [NY-

Times 2006] in June 2006 reported that Google had approxi-

mately 8,000 servers catering to about 70 Million Web pages

in 2001, with the number growing to 100,000 by 2003. Their

estimate put the total number of Google servers (spread over

25 data centers) to be around 450,000 at the time. As a more

general example, a report the by US Environmental Protec-

tion Agency (EPA) to the Congress reveals that the number

of data center servers in the country increased from 4.9 mil-

lion in 2000 to 10.5 million in 2006. Correspondingly, it

estimated that the electricity use of these servers increased



Figure 1: Illustration of the evolution of power capacity and de-

mand in a hypothetical data center. Also shown is the evolution of

provisioned capacity based on a prevalent practice such as using

the face-plate ratings of devices.

from 11.6 billion kwh/year to 24.5 billion kwh/year during

this period [EPA Report 2007].

Figure 1 illustrates the evolution of the power demand

and capacity in a hypothetical data center. Provisioned power

capacity is the maximum power available to a data center as

negotiated with its electricity provider. An upgrade to pro-

visioned power capacity is very expensive—it usually in-

volves complete re-wiring and re-structuring of electrical

poles and substations. Decisions related to the provisioning

of power infrastructure in a data center must be made not

only at installation time but on a recurring basis to cope with

upgrades. As shown, there are two “head-rooms” between

power demand and provisioned power capacity. The first

head-room H1 is between the provisioned power capacity

and the estimated peak power consumption of the data cen-

ter and is intended to ensure that the data center can accom-

modate foreseeable additions/upgrades to its hardware base.

The second head-room H2, our focus in this research, re-

sults due to current capacity planning techniques that signif-

icantly over-estimate the power needs of the data center. This

over-estimation results due to these techniques’ reliance on

faceplate ratings of devices that are conservative, worst-case

estimates of the maximum conceivable power consumption

of devices. As an example, faceplate ratings for servers are

typically specified assuming that the maximum number of

memory units and peripherals would be connected and the

most power-hungry workloads would be executed. A num-

ber of recent studies on power usage in data centers pro-

vide evidence of such over-provisioning at multiple levels of

the power hierarchy, ranging from the power supplies within

servers [Lefurgy 2007], Power Distribution Units (PDUs)

supplying power to servers, storage equipment, etc., to even

higher-level Uninterrupted Power Supply (UPS) units [Fan

2007]. Researchers at Google estimated the head-room H2

to be 40% for their data centers [Fan 2007].

Over-provisioning of Power is Unprofitable. Over provi-

sioning reduces the amount of work that could be extracted

from the provisioned power for a data center. This work

refers to any activity consuming power in a data center in-

cluding CPU, storage, and network bandwidth. Such pro-

visioning of power hurts both the setup-time and recurring

costs of data centers. In the case of entities maintaining a sin-

gle data center, it implies premature investment into expen-

sive, higher capacity sub-stations and power supplies. Addi-

tionally, for larger enterprises relying on multiple data cen-

ters, it leads to the deployment of more data centers than

needed. This increases the recurring investments the data

center owner incurs by requiring a larger team of adminis-

trators to maintain, upgrade, and repair these data centers

that often reside at disparate geographic locations.

While provisioning closer to demand holds the promise of

cutting both installation/upgrade as well as recurring costs,

it does so at the risk of severe economic penalties and/or in-

creased episodes of degraded performance/availability. Cost

penalty can occur from violating contractual agreements on

power/energy consumption with the data center facility com-

pany. Degradation to performance/availability can occur due

to one or more of the following:

• A subset of the hardware may simply not get powered

up due to insufficient power supply (as happened with an

ill-provisioned $2.3 Million Dell cluster at the University

at Buffalo, where two-thirds of machines could not be

powered on till a $20,000 electrical system upgrade was

undertaken [Clark 2005b]).

• One or more fuses may give way during an episode of

surge in power drawn, disrupting the operation of appli-

cations hosted on associated servers.

• The thermal system, faced with constrained power supply,

may trigger shut/slow down of some devices.

Any improvements in power provisioning must carefully

trade-off the resulting cost savings against such performance

degradation. Additionally, to realize such improvements, a

data center must employ mechanisms that prevent (make

statistically negligible) episodes of events described above.

In this paper, we introduce and evaluate power provision-

ing techniques that reduce over-provisioning while keeping

the risk of significant economic penalties resulting from re-

duced performance below acceptable levels. It is our con-

tention that understanding the power usage behavior of

hosted applications can allow a data center to make more

informed provisioning decisions compared to existing tech-

niques which are mostly ignorant of the applications’ power

characteristics. Our technique combines several complemen-

tary approaches to make informed power provisioning deci-

sions. Rather than using overly pessimistic, generic face-

plate estimates or power usage, we employ experimentally-

derived models of power usage behavior of specific applica-

tions running on specific hardware configurations. We claim

the following research contributions:



Research Contributions.

• Workload-aware statistical multiplexing of power needs.

We develop provisioning techniques that exploit knowl-

edge of the power usage patterns of hosted applications

(called power profiles). We exploit a number of statisti-

cal properties of power usage that our profiles reveal to

propose improved provisioning techniques: (a) controlled

under-provisioning based on the tails of power profiles

of hosted workloads exploits rarely occurring peak power

needs. (b) identification of statistical multiplexing effects

(not all peaks happen at the same time) among workloads

consolidated within a data center is used to carefully over-

book overall data center power capacity. Furthermore, evi-

dence of self-similarity in the power usage of an important

class of workloads suggests that these under-provisioning

related gains are likely to result not just for PDUs that

servers are connected to, but even at higher levels of ag-

gregation. Finally, we introduce the novel notion of soft

fuses to allow flexible distribution of overall incoming

power capacity down the power hierarchy than is allowed

by the conventional static fuses.

• Agile protective systems mechanisms. To enable safe

and performance-friendly operation despite the above

techniques for aggressive provisioning, we develop ag-

ile systems mechanisms to enforce given soft fuses by

dynamically throttling CPU DVFS states on our servers.

Our profiling and prediction techniques enable a system-

atic trade-off between the cost savings offered by our pro-

visioning technique and the accompanying performance

degradation.

• Evaluation on a simplistic prototype data center. We

define a new metric to capture the provisioning efficiency

of data centers, Computation per Provisioned Watt (CPW)

which denotes the amount of work (specifically CPU cy-

cles) that could be extracted from a provisioned power

capacity. We implement our techniques in a simplistic

prototype data center with a state-of-the-art PDU sup-

plying power to multiple servers, each running the Xen

VMM. Using a variety of well-regarded benchmarks rep-

resentative of data center applications, we conduct a de-

tailed empirical evaluation to demonstrate the feasibil-

ity and utility of our provisioning approach. As a repre-

sentative result of our evaluation, by accurately identify-

ing the worst-case power needs of hosted workloads, our

technique is able to double the CPW offered by a PDU

running the e-commerce benchmark TPC-W compared to

conventional provisioning practices. Furthermore, over-

booking the PDU by 10% based on tails of power profiles

yielded an additional improvement of 20%. Despite ag-

gressive provisioning, for the experiment above, the 95th

percentile response time of TPC-W grew from 1.59 sec to

1.78 sec, a degradation of only 12%.

Road-map. The rest of this paper is structured as follows.

We provide background on the power hierarchy within data

centers in Section 2. We conduct an empirical study of power

consumption in consolidated settings in Section 3. Based on

lessons learnt from this study, we develop techniques for

improved provisioning of power infrastructure and introduce

the notion of soft fuses in Section 4 and address associated

reliability, performance and feasibility concerns in Section 5.

We present our prototype implementation in Section 6 and

conduct an experimental evaluation of our techniques in

Section 7. We discuss related work in Section 8. Finally, we

conclude in Section 9.

2. Power Provisioning Overview

In this section, we provide necessary background on the

power supply infrastructure in current data centers and in-

troduce the notion of sustained power budgets to capture the

limits of fuses/circuit-breakers within the various power sup-

ply elements of a data center.

Power Supply Hierarchy. In a typical data center, a pri-

mary switch board distributes power among several Unin-

terrupted Power Supply Sub-stations (UPS; 1,000 KW) that,

in turn, supply power to collections of Power Distribution

Units (PDU; 200 KW.) A PDU is associated with a collec-

tion of server racks (up to 50.) Each rack has several chassis

that host the individual servers. Power supply could be ei-

ther at the server-level (as in rack-mounted systems) or at the

chassis-level (as in blade servers.) Within all these compo-

nents, fuses/circuit-breakers1 are used to protect equipment

from surges in the current drawn. We view this collection of

power supply infrastructure as forming a power supply hi-

erarchy within the data center. While the provisioning tech-

nique we develop applies to a general power hierarchy, our

implementation and evaluation is restricted to a two-level hi-

erarchy where a PDU is directly connected to a set of servers.

Power Budgets. Each fuse or circuit-breaker has a time-

current characteristic curve: a point (s, l) on this curve spec-

ifies the maximum power draw s that the fuse can safely

sustain over l contiguous time units. For simplicity, we use a

single such point (S, L) as the sustained power budget for

the corresponding level in the hierarchy. Sustained power

budgets are defined over fairly small time periods—of the

order of a few seconds or even milliseconds. A violation of

this sustained power budget would mean a draw of S Watts

or more was sustained over a contiguous period of L time

units. While sustained power is closely related to the no-

tion of peak power that is frequently used in literature [Fel-

ter 2005, Ranganathan 2006], the difference must be clearly

understood. Peak power, as is typically defined, does not in-

clude the time-scale over which this power usage sustains

and therefore does not capture the limits posed by fuses. For

example, a device may have a high peak power consump-

1 A circuit breaker is similar to a fuse in its function except that it could be

reused after an episode of excessive current draw. We will simply use the

term fuse for both henceforth.



tion and still operate safely if this peak does not sustain long

enough to exercise the limits associated with the correspond-

ing fuse.

3. Power Profiling and Prediction for

Aggregates

In this section, we characterize the resource usage and power

consumption of individual applications. We then briefly

present our prediction techniques that use this characteri-

zation to estimate the sustained power consumption of ap-

plications consolidated under different levels of the power

hierarchy. Taken together, these measurement and predic-

tion techniques set the background for improvements in pro-

visioning the power infrastructure that we explore in the

following sections.

3.1 Profiling Infrastructure

Our approach for characterizing the power and resource us-

age of an application employs a profiling technique which

involves running the application on an isolated server 2. The

application is then subjected to a realistic workload.

Dell PowerEdge SC1450 (450W - Face-plate Power) [Dell SC1425 2005]

Processors (2) Intel(R) Xeon 64bit 3.4 GHz (2MB L2 Cache)
Main Memory 2GB
Hard Disk (2) WD Caviar 40GB 7200rpm (7W Active power)

Network Interface Dual embedded Intel Gigabit2 NICs

Table 1: Specifications of the server used for profiling.

Our testbed consists of several Dell PowerEdge servers

(details in Table 1.) We run the Xen VMM [Barham 2003]

on our servers with each application encapsulated within

a Xen domain. We connect a Signametrics SM2040 multi-

meter (1µA accuracy) in series with the power supply of our

servers. This multi-meter is capable of recording power con-

sumption as frequently as once every millisecond. Unless

otherwise specified, throughout this section, we use 2 msec

as our measurement granularity. We find it useful to convert

the resulting time-series of (instantaneous) power consump-

tion samples into a probability density function (PDF) that

we call the application’s power profile.

3.2 Profiling Applications: Key Experimental Results

In this section, we profile a diverse set of applications (re-

fer Table 2) to illustrate the process of deriving an applica-

tion’s power consumption behavior. These experiments pro-

vide key insights into the extent of variability in the power

consumption of these applications.

We classify these applications based on their CPU us-

age. Applications in the SPEC CPU2000 suite are CPU-

2 In practice, a distributed application with multiple components may re-

quire multiple servers to meet its resource needs. We only consider appli-

cations whose resource needs can be met by a single server. Our technique

extends to applications requiring multiple servers by simply running the

application on the appropriate number of servers and conducting measure-

ments on each of them.
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(a) TPC-W, 60 sessions
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(b) Streaming, 100 clients
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(c) Bzip2 (SPECcpu suite)
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(d) Mcf (SPECcpu suite)

Figure 2: Power distributions (collected at 2ms granularity) of

TPC-W(60), Streaming(100), Bzip2, and Mcf compared (Idle

power of our server is 155W).

saturating, in that they are ready to use the CPU at all times.

The remaining applications (non-CPU-saturating) alternate

between using the CPU and being blocked (e.g., on I/O, syn-

chronization activities, etc.) and their CPU utilization de-

pends on the workload they are offered. We profile these

non-CPU-saturating applications at different workload in-

tensities. TPC-W is profiled with the number of simulta-

neous Web sessions varying from 10 to 100, in increments

of 10. For experiments involving TPC-W, we represent the

workload intensity as TPC-W(x) where x is the number of

simultaneous Web sessions. For experiments involving the

Streaming Media Server, 3Mbps is used as the streaming

rate; SM(x) represents a workload of x clients. Finally, the

workload intensity for SPECjbb2005 can be controlled using

a tunable parameter dictating the number of “warehouses” it

stores. We use a value of 6 for this parameter and keep its

workload intensity as 100% throughout this paper.

Applications

TPC-W [Smith 2005] 3-tiered NYU implementation of the TPC-W
Transactional Web-based E-commerce benchmark

Streaming Media Home-grown UDP streaming server, Streams
MPEG-1 to specified no. of clients & data rate

SPECjbb [SPECJBB 2005] SPEC’s 3-tiered client-server benchmark
Emulates server-side Java applications

SPECcpu [SPECCPU 2000] SPEC CPU2000 suite (Art, Bzip2, Mcf, Mesa)

Table 2: Salient properties of our applications. TPC-W, Streaming

Media Server, and Specjbb2005 are non-CPU-saturating, whereas

applications in the SPEC CPU2000 suite are CPU-saturating.



Application Power usage percentile (W)

100
th

99
th

95
th

90
th Avg.

TPC-W(60) 260.4 236.4 233.2 229.2 185.5
Streaming(100) 242.4 227.4 214.8 208.2 184.1

Bzip2 252.6 242.4 237.2 235.1 224.9

Table 3: Salient aspects of the power profiles of TPC-W, Stream-

ing, and Bzip2 sampled at 2 msec granularity.

Dealing with Varying Power Usage. Implicit in the col-

lection of power profiles described above is an assumption

of stationarity of power/resource usage behavior. Executions

of realistic applications are likely to exhibit “phases” across

which their power and resource usage behavior change sig-

nificantly. An example of this is the change in resource

needs (and hence power consumption) of a Web server

whose workload exhibits the well-known “time-of-day”

variation [Hellerstein 2000]. Similarly, many scientific ap-

plications alternate between doing significant amounts of I/O

(when reading in parameters from files or dumping results to

them) and computation. Clearly, the utility of our power pro-

files depends on effectively determining such phases. Power

and resource profiles could then be derived separately for

every such phase. Enhancing our techniques to deal with

these issues is part of our future work. In this paper, we limit

ourselves to a single profile per-application, except in Sec-

tion 7.5, where we explore a simple technique to detect a

significant change in a power profile.

Temporal Variations in Power Usage. We find that all our

applications exhibit temporal variations in their power usage

to different degrees. Power profiles for non-CPU-saturating

application (Figures 2 - TPC-W(60) and SM(100) ) are

found to exhibit higher variance than CPU-saturating ap-

plication (Figures 2 - Bzip2 and Mcf from SPECcpu2000

suite.) Specifically the variance of the TPC-W and Stream-

ing profiles were 92 and 84 W 2 compared with only 47 and

59 W 2 for Bzip2 and Mcf, respectively. The CPU usage of

a non-CPU-saturating application exhibits an ON-OFF be-

havior, corresponding to the application being in running

and blocked states, respectively. When such an application

blocks, its power consumption corresponds to the server’s

idle power. This ON-OFF CPU usage contributes to the

higher variance in its power consumption. Intuitively, we

expect that on being consolidated under common power

elements, applications with higher variance in their power

usage are likely to yield larger reductions (over worst-case

provisioning) in required power capacity via statistical mul-

tiplexing. The exact extent of these savings would depend

on the particular set of applications.

Tails of Power Profiles. The nature of the tail of a resource

requirement distribution crucially affects savings that under-

provisioning (that is, provisioning less than what the worst-

case needs) can yield. In Table 3, we present the 99th, 95th,

and 90th percentiles of the power profiles of TPC-W(60),

Streaming(100), and Bzip2 along with their peak and aver-

age values. We make two useful observations. First, for all

the applications, the worst-case power needs (in the range

240-260 W) are significantly less than the power supply pro-

visioned within our server (450 W, recall Table 1.) Second,

the 99th and 95th percentile needs are lower than the worst

case by up to 10%, while the 90th percentile is lower by

up to 15%. Together these results suggest that controlled

under-provisioning based on power profile tails can poten-

tially bring about capacity and cost savings.

Self-similarity in Power Usage. A final statistical feature

worth investigating in our profiles is the presence (and ex-

tent) of self-similarity [Park 2000]. Due to the hierarchical

nature of the power infrastructure (recall Section 2), the pres-

ence of self-similarity has interesting implications on capac-

ity provisioning at higher layers of aggregation (PDU, UPS,

etc.) Specifically, applications with (i) long tails in their

power profiles and (ii) high self-similarity in their power

time series, are likely to retain these characteristics (i.e., long

tails/burstiness) even at higher levels of aggregation. The

well-known Hurst parameter (H) is one way to quantify the

self-similarity exhibited by a process. It lies in [0.5, 1.0] with

higher values representing larger degrees of self-similarity.

We calculate the Hurst parameter for the power-time series

of our applications. We find the Hurst parameter to be 0.86,

0.76, and 0.52 for TPC-W(60), Bzip2 and Streaming(100),

respectively. In case of TPC-W(60), it has a long tail (re-

fer Table 3) and a high Hurst parameter, therefore we expect

the aggregate power series of multiple TPC-W(60) server

instances to also exhibit burstiness. Streaming Server, that

exhibits a low Hurst parameter along with high burstiness,

presents a contrasting case: we expect power elements con-

solidating copies of this application to experience power us-

age patterns with low burstiness. We validate these intuitions

in Section 3.3 where we study power usage of such aggre-

gates.

3.3 Prediction Techniques for Aggregates

Power Measured Predicted Error
percentile Sustained power (W) sustained power (W) (%)

80 1143 1181 3.2
90 1171 1201 2.4
99 1236 1250 1.1

100 1269 1300 2.4

Table 4: Efficacy of our sustained power prediction on a PDU

consolidating 7 Servers each running TPC-W(60). We compare the

tail of the measured power with our predicted power.

Crucial to provisioning levels in the hierarchy higher than

the server (PDU, UPS, etc.) are ways to combine the power

profiles of applications running on the servers beneath this

level to predict their aggregate power usage. While predict-

ing the average and even the peak of such an aggregate is

fairly straightforward, doing the same for sustained power

(recall the definition in Section 2) is non-trivial.
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Figure 3: Comparison of measured and predicted sustained power

consumption (L=5 sec) of a PDU connected to 7 Servers (each

running TPC-W(60).)

We employ our recent research [Choi 2008], which com-

bines power and resource usage profiles of individual appli-

cations and predicts the behavior of sustained power con-

sumed at various levels (server, PDU, and higher) when

these are consolidated. Our prediction technique follows a

two-step process. First, we develop techniques to predict the

sustained power consumption of a server consolidating n ap-

plications. This involves estimating all possible ways the n

applications interleave on the CPU and then computing the

sustained power consumption of the server for each of these

interleavings. Second, using the resulting distribution of pre-

dicted sustained power consumption of individual servers,

we predict an upper-bound on the sustained power consump-

tion of a PDU supplying power to m servers. A representa-

tive result is presented in Figure 3 and Table 4. As shown, for

a PDU connected to 7 servers, each hosting TPC-W(60), our

technique predicts within reasonable error margins (1-5%).

As suggested in Section 3.2, we observe that the sustained

power consumption of this collection of servers, each run-

ning an instance of the relatively bursty TPC-W(60) applica-

tion, also exhibits a longer tail (e.g., compare the 100th and

90th percentiles reported in Table 4) than the aggregates of

the less self-similar Streaming Server (numbers not shown

here).

4. Improved Provisioning of Power

In this section, we propose techniques that utilize the pro-

filing and prediction framework described in Section 3 to

increase the utilization of the data center power capacity by

connecting more servers than allowed by conventional pro-

visioning practices. For ease of exposition, let us assume that

all sustained power budgets in the following discussion are

defined over a unit time period - the second element of the

sustained power budget pair will therefore be omitted. It is

easy to generalize this discussion to budgets defined over ar-

bitrary time periods. Let us denote by B the sustained power

budget associated with a power supply element E. Let n el-

ements drawing power from E be denoted e1, . . . , en, and

their sustained power profiles be denoted u1, . . . , un. 3

3 This notation is general enough to capture provisioning at any level. For

example, if E denotes a server (with its power supply being provisioned),

4.1 Under-provisioning Based on Power Profile Tails

Recent research suggests that provisioning based on the

face-plate ratings of servers severely under-utilizes the

power infrastructure [Lefurgy 2007, Fan 2007]. We use our

prediction technique to estimate the peak power needs of

the applications consolidated in a data center and provision

appropriately. Let u
p
i denote the pth percentile of the ith

application’s power profile ui. Then provisioning based on

peak needs (100th percentile) for a data center (B denotes

the sustained power budget at the highest level of a data

center) consolidating n applications is given by,

n∑

i=1

u100

i ≤ B. (1)

Our observations in Section 3.2 suggest that a data cen-

ter can even go a step further—given the extent of burstiness

present in the power usage of many commonly hosted appli-

cations, we can realize further improvements by provision-

ing less conservatively than for the peak. Under-provisioning

the capacity of element E implies ensuring the following

condition:
n∑

i=1

u
100−pi

i ≤ B; ∀i : pi > 0. (2)

where pi represents the degree of under-provisioning at the

level ei. The gain in the utilization of provisioned power

offered by the provisioning as represented by Eq. (2) over

peak-based provisioning (as in Eq.( 1)) is the difference be-

tween the applications’ collective (i) peak power needs and

(ii) power needs based on under-provisioning,
∑n

i=1
(u100

i −

u
100−pi

i ). Clearly, applications with more bursty power pro-

files would yield higher gains. It is worth mentioning here

that current servers [IBM Energy Manager 2007, HP Power

Manager 2008] are shipped with in-built mechanism to en-

force a specified power budget at very fine time scale. Our

predicted peak power consumption of the application (2) can

be used to set the power budget for these servers.

4.2 Over-booking Based on Statistical Multiplexing

If the applications consolidated in a data center exhibit

power usage patterns that complement each other tempo-

rally, then statistical multiplexing gains become worth ex-

ploiting. In simple terms, provisioning for the tail of aggre-

gates can be more gainful than provisioning for the sum of

individual tails (as was done in the under-provisioning tech-

nique above.) Adding to the terminology introduced above,

the symbol U for the sustained power profile of the highest-

level power supply of the data center, we can enhance our

provisioning technique as follows:

U100−P ≤ B · (1 + δ); P, δ ≥ 0. (3)

the elements ei are applications consolidated on it. The specific level for

which we evaluate our techniques considers a PDU as the element E

supplying power to servers denoted by ei.



Figure 4: Illustration of our provisioning techniques based on

statistical multiplexing and soft fuses as applied to a hypothetical

data center power hierarchy.

where P denotes the degree of under-provisioning and δ de-

notes the degree of over-booking both at the highest level of

a data center. Rather than under-provisioning each element

ei independently as in (2), this technique does so for the

aggregated needs of all these elements (at the data center

level). For simplicity, in this paper, we ignore the parame-

ter δ (δ=0) and discuss over-booking of power only in terms

of P . A key point to note here is that under-provisioning

and statistical multiplexing are not mutually exclusive but

complementary—the aggregation U representing multiplex-

ing of underlying power usages is being under-provisioned.

The degree of under-provisioning P and the degree of over-

booking δ should be chosen based on the following consid-

erations. First, it should be possible to distribute them into

individual degrees of under-provisioning (pi for element ei)

that provide desirable trade-offs between cost savings and

performance. Second, (as mentioned in the last technique)

mechanisms should be present at (and below) the level of

elements ei in the hierarchy to enforce the power limits cor-

responding to these degrees of under-provisioning. We will

address these issues in Section 5.

4.3 Provisioning within the Data Center: Soft Fuses

Techniques based on under-provisioning and over-booking

described in Sections 4.1 and 4.2 are intended to increase the

utilization of the provisioned power capacity (at the high-

est level) of a data center. A typical data center has multi-

ple levels in its power hierarchy and recent research [Fan

2007] suggests that the head-room between the provisioned

power capacity and power demand at each level increases

as we move up the power hierarchy. This is because the un-

used (fragmented) capacities at the lower levels add up as

we move higher in the hierarchy. We introduce the notion

of soft fuses to reduce this head-room at each level of a

data center power hierarchy. Soft fuses are similar to tra-

ditional static fuses for they represent a limit on the power

consumption at that level. But unlike static fuses, soft fuses

can be changed dynamically. This allows more flexibility in

distributing power and also reduces/eliminates the unused

fragmented capacity at the lower levels as demonstrated in

Section 7.4. A soft fuse is represented as a sustained power

tuple (X Watts, Y Seconds) which has to be (lexicograph-

ically) less than or equal to the sustained power budget of

that level in the hierarchy (Soft fuse ≤ Sustained power bud-

get). Soft fuses are set for each of the power supply el-

ements at the lower levels ensuring that their sum at that

level does not violate the soft fuse of their higher-level (par-

ent) power supply. Note that soft fuses themselves could be

under-provisioned or over-booked similar to techniques de-

scribed in Sections 4.1 and 4.2. Figure 4 summarizes all of

these techniques for a hypothetical data center power hierar-

chy.

5. Reliability, Performance, and Feasibility

Concerns

We consider, in turn, concerns of reliability, performance,

and feasibility that must be addressed to gainfully utilize the

provisioning techniques developed so far.

5.1 Enforcement of Soft Fuses

Our techniques result in (or increase) the likelihood of

episodes where the power needs at one or more levels within

the hierarchy exceed its capacity. Unless remedial actions

are taken during such an occurrence, extremely undesir-

able outcomes (e.g., a subset of the hardware becoming un-

available) could result. Realizing any meaningful usage/cost

gains for the power infrastructure may require setting the

provisioning parameters (e.g., p and δ introduced in the pre-

vious section) high enough to make the likelihood of bud-

get violations non-negligible. Furthermore, hard-to-predict

workload changes (such as an overload experienced by an

e-commerce site [Iyer 2000]) may also render budget viola-

tions more likely than predicted using application profiles.

These concerns necessitate mechanisms within a data center

that can completely avert such episodes.

We employ reactive techniques based on power thresh-

olds that utilize dynamic transitions to lower power states

(CPU DVFS states) to avert soft fuse (power budget) vio-

lations. Conceptually, when the power threshold for an el-

ement in the hierarchy is exceeded, the data center triggers

throttling of the appropriate subset of its hardware. A power

threshold for an element with a soft fuse (s, l) is a 2-tuple

(spt, lpt) ≤ (s, l) and has the following operational mean-

ing: Upon observing a sustained power draw at a rate of

spt units or more for contiguous lpt time units, an element

should initiate the throttling of the devices under it in the

hierarchy. The choice of a power threshold has the follow-

ing implications. Lower values of lst could render the throt-

tling excessively aggressive and increase the number of invo-

cations of throttling. Higher values could induce violations

of soft fuses at higher levels in the power hierarchy. Both

scenarios could result in unnecessary performance degrada-



tion via throttling. Additionally, higher values of lst could

also result in the data center equipment operating in unsafe

regimes. We can borrow from the findings of existing re-

search, particularly [Zeng 2002], on this front. In our imple-

mentation and evaluation, we use a simple, statically-chosen

power threshold (see Sections 6 and 7.2.)

5.2 Performance Concerns

It is easy to see that our aggressive provisioning techniques

will result in higher overall system capacity (since the PDU

is now connected to more servers.) However, aggressive pro-

visioning also increases the chances of degraded application

performance due to the accompanying increase in violation

of power thresholds. In Section 7.1, we capture the above

trade-off using the CPW metric and in Section 7.3, we use

our profiling techniques to estimate the performance degra-

dation for different degrees of over-booking.

5.3 Arguments for Feasibility of Our Technique

Power Profiling. Application profiling is performed in many

state-of-the-art systems with the help of Workload Siz-

ing/Estimator tools [IBM Workload Estimator 2009] that

determine the resources required for meeting desired perfor-

mance guarantees. In addition to collecting these resource

usage statistics, our approach requires collecting informa-

tion about power usage associated with different applica-

tion load levels. In contemporary data center environments,

such online power measurement capability is readily avail-

able within servers (e.g., IBM [IBM Energy Manager 2007]

and HP [HP Power Manager 2008]) and PDUs [Raritan Inc.

2008] that are equipped with high-resolution power meters

with simple interfaces for extracting run-time power mea-

surement. Furthermore, SPEC’s power benchmark suite,

SPECPOWER [SPEC POWER 2008] provides standard in-

terface for collection power data in conjunction with tradi-

tionally collected performance data.

Limitations of Our Current Prototype. In addition to the

simplistic nature of our data center—a small set of servers,

a two-level power hierarchy, lack of other components com-

monly resident in data centers (particularly storage arrays),

etc.—a key limitation in our prototype (to be described in

Section 6) arises due to our access to a PDU [Raritan Inc.

2008] that can only conduct power measurements once ev-

ery second. As a result, whereas the profiles described thus

far were obtained in an offline manner using a high-fidelity

multi-meter (that could conduct such measurements at the

msec granularity), the profiles we obtain in our evaluation

are based on sampling power once every second. This po-

tentially limits the extent of variation we observe in power

usage in our evaluation compared to the profiles presented

earlier, implying that the multiplexing gains we observe

could be further improved if we were able to sample power

faster. Power measurement can be done at finer time scales

(msecs [Lefurgy 2007]) in current servers and we would

like to enhance our prototype to use such servers to evaluate

further improvements in provisioning.

Safety. Fortunately, current servers [IBM Energy Man-

ager 2007, HP Power Manager 2008] have in-built mecha-

nisms that can limit power consumption at very fine time-

scales. Also, intelligent PDUs like ours [Raritan Inc. 2008]

have the capability to send alert messages to servers upon

violating a specified PDU-level power budgets within a few

hundreds of milliseconds. These device capabilities suggest

the feasibility of designing a data center that employs our

reactive technique to operate safely.

6. Implementation Considerations

Infrastructure. Our experimental testbed consists of a

20A PDU from Raritan Inc. [Raritan Inc. 2008] supplying

power to 10 Dell PowerEdge SC1450 processors whose key

features are shown in Table 1. For our experiments, we vary

the number of servers connected to the PDU. The PDU pro-

vides a software interface to read the power consumption

of each server connected to it as well as the power con-

sumption of the entire PDU. The granularity of the power

measurement is one second and the accuracy is 0.1A. Note

that the measurement capability offered by the PDU is of a

lower fidelity than the multimeter used in Section 3 (every

msec with accuracy within 1µA.) We repeat the profiling

experiments described in Section 3 using the PDU and re-

port important power consumption characteristics in Table 5.

Each server hosting an application runs the Xen VMM 3.1.0

with each application encapsulated within a separate do-

main. While our techniques apply to scenarios where mul-

tiple applications are consolidated on a single server, we

restrict ourselves to hosting one application per server. To

enable live migration [Clark 2005a] of these VMs across

servers, we place all the VM disk images in a NFS partition

that is exported to all the servers connected to the PDU. Our

servers have a rich set of power states including 4 DVFS and

8 Clock Modulation states (see Table 1.) We write custom

drivers for changing the power state of our servers. We use

the IA32 PERF CTL and IA32 CLOCK MODULATION

MSR registers to change the DVFS and clock modulation

states, respectively. Since the vanilla Xen VMM traps and

nullifies all writes to MSR registers (wrmsr operations), we

modify it to enable writes to these registers.

Threshold-based Budget Enforcement. The time constant

for the power threshold (lst) at any level within the hierar-

chy has to be at least as large as the granularity at which

measurements can be done. Due to the limitations posed by

the measurement frequency of the PDU used available to us,

in our prototype, we can (in theory) enforce soft fuses only

as frequently as once every second. However, it takes an ad-

ditional 100-300 msecs for our PDU to convey DVFS throt-

tling messages to the servers connected to it and for them

to move to these states. Therefore, we choose a conservative

value of 3 seconds for the parameter lst. In our experiments,



Application Power usage percentile (W)

100
th

90
th Avg.

TPC-W(60) 209 199 164.3
TPC-W(20) 183 152 150

Streaming(100) 183 159 152.1
Specjbb2005 219 219 217.0

Table 5: Salient aspects of the power profiles of TPC-W, Streaming

Server, and Specjbb2005 collected by running these applications

on servers connected to our PDU. Power is sampled at 1 second

granularity.

we choose the time constant element of the PDU’s sustained

power budget to be L = 5 seconds. Our choice is based

on the time-current curves of commercial [Circuit Break-

ers 2009] medium-delay circuit breakers. For these circuit-

breakers, an over-current of 1.5I (I being the rated current

for the breaker) would approximately be sustained between

5 to 10 seconds before tripping the circuit. Long-delay cir-

cuit breakers have time-constants ranging in several tens of

seconds for the same amount of over-current and therefore

could be used at higher levels of a data center power hierar-

chy.

We briefly discuss the implementation of our technique

based on a power threshold (spt, lpt) for enforcing a soft fuse

(s, l). We dedicate a server to initiate reactive throttling and

call it the threshold-based enforcer. Once every second, the

enforcer monitors the power consumption of the PDU and

inspects all the power samples collected during the last lpt

time units. If all these values exceed spt, it sends throttling

commands to all the servers connected to the PDU using

RPCs that specify their new power states. In Section 7,

we will discuss how the threshold-based enforcer selects

appropriate throttling states for the servers.

7. Experimental Evaluation

7.1 Improvements in Computation per Provisioned

Power Unit

We compare provisioning techniques commonly used in data

centers with the techniques developed in Section 4. For all

our experiments we assume the sustained power budget for

the PDU to be (1200W, 5 sec). We choose (1200W, 3 sec)

as its power threshold. In general, to express the efficacy of

a provisioning technique, one would like to define a metric

that could capture application-specific performance that a

given power capacity could provide. Given our focus on

servers, we use the following simpler and restricted metric

called Computation per Provisioned Watt:

CPW = (No. servers connected * Average clock frequency)

/ Provisioned power capacity.

Average clock frequency =
∑

i(Fi · fi).

where Fi is the frequency (CPU power state) of the server

and fi is the percentage of time the server operates at Fi Hz.

Technique Servers running instances of TPC-W(60)
No. Servers CPW Improvement

UP(0) 5 66%
UP(10) 6 71.76%
SP(0) 6 100%
SP(10) 7 119.6%

Table 6: The number of servers (each running an instance of TPC-

W(60)) connected to a 1200W PDU by different provisioning tech-

niques. CPW percentage improvements reported are over VP.

Technique No. servers hosting each type of app. CPW Improvement

UP(0) 2 x TPC-W, 2 x SPECjbb 33%
UP(10) 2 x TPC-W, 2 x SPECjbb, 2 x SM 71.76%
SP(0) 2 x TPC-W + 2 x SPECjbb, 2 x SM 100%

SP(20) 2 x TPC-W, 2 x SPECjbb, 3 x SM 105.8%

Table 7: The number of servers connected to a 1200W PDU by dif-

ferent provisioning techniques. CPW percentage improvements are

reported over VP. Each server runs an instance of one of the follow-

ing: TPC-W(60), SPECjbb2005, and Streaming(100), shortened to

TPC-W, SPECjbb, and SM, respectively.

Face-plate Provisioning (FP). Face-plate value is the ca-

pacity rating of a server specified for its power supply. For

our servers the face-plate value is 450W. Using FP, we can

connect 2 servers to our PDU.

Vendor Calculator-based Provisioning (VP). In an at-

tempt to help data center administrators, IBM, HP, Dell, and

other server vendors provide calculators for estimating the

peak power needs of their servers. Such a calculator takes

as input the configuration of a server (number and type of

processors, memory cards, etc.) and expected workload in-

tensity (rough descriptions of CPU, I/O intensity, etc.) and

outputs its power needs. The calculator provided by the ven-

dor of our server [Dell Power Calculator 2008] (for average

load specification) estimates its power need to be 385W.

Therefore using this provisioning technique, we would con-

nect 3 servers to our PDU.

Profiling-guided Provisioning (UP and SP). The previous

two prevalent provisioning techniques are based solely on

worst-case estimates of server power needs. In contrast, the

techniques developed in Section 4 incorporate application-

specific power needs. Let us denote by UP(p) and SP(p)

our under-provisioning and overbooking-based techniques

(recall Equations 2 and 3), respectively. In theory, UP(0)

and SP(0) should coincide. However, due to extremely small

probabilities (smaller than 0.1µA) being rounded off to 0

(floating-point roundoff after the 6th decimal point) in our

implementation of sustained power prediction, we observe

a difference between these quantities. In fact, the difference

adds up to slightly more than 150W for a PDU connected to

7 servers, each running an instance of TPC-W(60).

Tables 6 and 7 present improvements in CPW yielded by

UP and SP for our PDU hosting a diverse mix of applica-



tions. For computing CPW, we assume 3.4Ghz for normal

operation ((100-fi)% of the time) and 1.4 Ghz (2.8Ghz, 50%

Clk) for durations over which the server is throttled (fi% of

the time).

Whereas the worst-case sustained power consumption of

SPECjbb2005 and TPC-W are close to each other (220W

and 210W respectively as shown in Table 5), due to the

longer tail in its profile, higher gains result in an environment

with servers hosting TPC-W like workloads. In fact, for

a PDU connected to servers running SPECjbb2005, while

provisioning based on UP(0) (i.e., peak needs) provides 66%

improvement over VP and 150% improvement over FP, no

further improvements result from over-booking (numbers

not provided in the table). Gains offered by our over-booking

techniques are thus closely dependent on the power usage

characteristics of the hosted workloads.

7.2 Sustained Budget Enforcement

Power state Predicted Peak (100th percentile) of Sustained Power
(DVFS, Clk. Mod.) 6 servers 7 servers 8 servers 9 servers

(3.2Ghz, 100%) 1191.0 W 1300.0 W 1481.0 W 1672.0 W
(2.8Ghz, 100%) 967.6 W 1138.6 W 1308.2 W 1478.2 W
(2.8Ghz, 50%) 861.7 W 1011.7 W 1162.7 W 1313.6 W

Table 8: Predicted power consumption of a PDU (L = 5sec) con-

nected to servers each running TPC-W(60) when operating at three

different power states. Bold power values indicate that the corre-

sponding power state is chosen for throttling by the threshold-based

enforcer. Legend: Clk. Mod.= Clock Modulation state.

We evaluate the efficacy of budget enforcement for an in-

creasing number of servers—starting at 6 and going up to

9—connected to a PDU. Each server runs an instance of

TPC-W(60). The threshold-based enforcer described in Sec-

tion 6 sends throttling commands to the servers upon ob-

serving three consecutive power readings above 1200W at

the PDU (recall that the sampling interval is 1 sec.) Upon

observing such an episode, the enforcer must choose suit-

able power states for throttling the servers so that the sus-

tained budget remains un-violated. This is achieved using

a combination of our sustained power prediction technique

and information gathered during profiling. In Table 8, we

record the predicted peak sustained power consumption at

the PDU for varying number of servers connected to it oper-

ating at different power states. For each of these server ag-

gregates, we choose the highest power state for which the

peak of sustained power consumption is less than the PDU’s

budget. This chosen power state (highlighted in Table 8 for

server aggregates of different sizes) is therefore guaranteed

to bring the system within the capacity limits. As we can

see from the table, there is no such power state if 9 servers,

each running TPC-W(60), were connected to our PDU. That

is, even if we operate at the lowest possible power state 4,

our technique can not prevent violations of the PDU budget.

4 (2.8GHz, 50% Clk.) is not the lowest power state in our server. There are 3

more lower power states, but a server hosting the TPC-W workload crashes
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Figure 5: Sustained power profile (L=5 sec) for a 1200W PDU

connected to 7 servers (using SP(10)), each running TPC-W(60),

with and without our threshold-based enforcement.

Throttling is done for a period of 2 seconds (which is the

difference between the time constants of the power thresh-

old and the sustained power budget), after which the servers

revert back to their original power states. Figure 5 compares

the sustained power profile of a 1200W PDU consolidating

7 servers (using SP(10)) each running TPC-W(60), with and

without threshold-based budget enforcement. Also shown

is the predicted sustained power profile for this PDU. As

shown, our threshold-based enforcer is successfully able to

enforce the PDU’s sustained power budget.

7.3 Performance Degradation

Using our prediction algorithm, we estimate the probability

of the aggregate power consumption at the PDU exceeding

its power threshold. This probability, reported in Table 10,

provides an estimate of the amount of time an application

would find its server running at a throttled power state. We

use our profiling technique (see Table 9) to estimate the

performance degradation caused by different power states 5.

We compare the predicted performance degradation with the

measured values in Table 10. Since our threshold is (1200W,

3 sec), even if the application needs to consume 1200W

or more all the time, it will be throttled only 40% of the

time (3 seconds at the highest power state, 2 seconds at a

throttled state). Therefore, the predicted threshold violation

in Table 10 is computed by using the probability of violating

the threshold and then multiplying that probability by 0.4.

In Table 10, our technique indicates that 7 is the maxi-

mum number of servers that could be safely connected to

our PDU and still be operated while only causing a small

degradation in the performance of the TPC-W applications

they host. The predicted degradation was 1.08 while the

if transitioned to any of these lower power states. These states are, therefore,

considered infeasible for the TPC-W workload.
5 The higher performance degradation for TPC-W(60) at (2.8Ghz, 50%Clk.)

is due it’s very high CPU utilization (92% - almost close to saturation). This

results in the TPC-W threads spending lot of time waiting in the run queue,

further delaying the time for receiving the next I/O request.



Power States Average Response Time
(DVFS GHz, Clk. Mod. (%)) (3.2, 100) (2.8, 100) (2.8, 50)

Normalized performance 1 1.18 15.69

Table 9: Performance degradation of TPC-W(60) at three different

power states expressed as the ratio of average session response time

with that offered by the servers operating at the highest power state

(obtained from profiling.)

No. of Threshold Violation Perf. Degradation Feasible?
Servers Meas. (%) Pred.(%) Meas. Pred.

6 0 0 1 1 YES
7 2 4.8 1.04 1.08 YES
8 61.2 39.9 5.2 9.3 YES
9 N/A N/A N/A N/A NO

Table 10: Predicted and measured power threshold violations at the

PDU and normalized performance degradation for the instances of

TPC-W(60), running on each of the servers connected to the PDU.

Performance degradation is expressed as the ratio of average ses-

sion response time to that offered by the server operating at its high-

est power state. The column labeled Feasible? indicates whether

we would be able to prevent the sustained budget for the PDU

from being violated. Legend: Meas.=Measured, Pred.=Predicted,

Perf.=Performance, N/A=Not Applicable.

measured degradation upon actually connecting 7 servers

running TPC-W(60) was only 1.04. We also estimate that

while 8 servers can be safely connected and operated, such

a configuration would result in significantly degraded per-

formance (the measured normalized degradation, although

much smaller than predicted, is still a significant 5.2.)

7.4 Efficacy of Soft Fuses

In Figure 5, we showed that we were able to connect up to 7

servers (using SP(10)) each running TPC-W to our 1200W

PDU. The above scenario depicts a flat hierarchy where all

servers are directly connected to the 1200W PDU. How-

ever, in a realistic setting, the 1200W PDU could in turn be

connected multiple lower level PDUs. Consider a scenario

where our 1200W PDU is connected to two 600W PDUs.

Now, we will be able to pack only 3 TPC-W(60) servers on

each of the 600W PDUs (A 600W PDU connected to more

than 3 servers will always exceed power budget since the idle

power of our servers itself is 155W). Therefore, the 1200W

PDU remains under-utilized (connected to only 6 servers)

because of the unused (fragmented) capacities at the 600W

PDUs. If we had instead connected two 800W PDUs to the

1200W PDU 6 and set the soft fuse to be 690W and 510W

for the first PDU (connected to 4 TPC-W servers) and sec-

ond PDU (connected to 3 TPC-W server) respectively, then

we could have packed 7 TPC-W(60) servers (using SP(20)

for both PDUs). It is important to note that the sum of soft

fuse at the lower level PDUs (690W + 510W) is less than or

6 In fact, it is common in data centers to have lower level PDUs whose

sum capacity adds up to more than that of the parent PDU. This is done to

accommodate future addition of compute equipments to its hardware-base

which is more frequent than infrastructure upgrade (Refer Figure 1).

Figure 6: Illustration of the application configurations before and

after our example of re-provisioning.

equal to that of the higher level PDU (which is 1200W). This

is an improvement of 16.66% in the degree of provisioning

for the 1200W PDU. Upon provisioning using SP(20), the

95th percentile of TPC-W session response time grew from

1.59 to 1.86 seconds, a degradation of only 17%.

7.5 Dynamic Changes in Workloads

In Section 5.1 and 7.2, we looked at techniques based on

CPU DVFS states to handle transient power spikes above

the soft fuse. While these techniques suffice for short-term

power budget violations, the same when applied to long-term

power budget violations (like time-of-day phase variations),

will result in undue degradation in performance. In this sec-

tion, we develop techniques to deal with long-term dynamic

phase change in applications.

Specifically, we are interested in two aspects of dynamic

variations exhibited by a hosted workload. First, it may con-

sume higher power than indicated by its power profile, which

will result in more frequent violations of the power thresh-

olds associated with power supply elements, raising the ex-

tent of degradation in performance (due to throttling.) Sec-

ond, a workload may consume substantially lower power

than its profile, resulting in overly-conservative provision-

ing. We evaluate a simple mechanism to detect such changes

and adjust the provisioning parameters accordingly.

We keep track of the recent power profile of the PDU and

periodically compare it with its predicted profile. If there

is a statistically significant difference between these distri-

butions, (as reported by a well-regarded test such as the

Kolmogorov-Smirnov Test), we assume the workload has

changed enough to necessitate re-provisioning. Note that,

upon detecting a phase change at the PDU level, we may

want to trigger instances of similar detection down the hier-

archy to single out the application whose phase has changed.

This can be achieved since we have the predicted profile of

every server consolidated in the power hierarchy.



We evaluate a simple scenario to demonstrate the work-

ing of this mechanism. We consider a set of six servers.

Three of these servers run an instance of SPECjbb2005

each, two servers run TPC-W(20), and the sixth server

runs TPC-W(60). We assume that we are provided with 2

PDUs (PDU1 and PDU2), each with a budget (600W, 5

sec). Based on our SP (0) provisioning, we connect two

SPECjbb2005 servers and a TPC-W(20) server to PDU1

and the remaining servers (hosting one out of SPECjbb2005,

TPC-W(20), and TPC-W(60)) are connected to PDU2. Sup-

pose the workload of the TPC-W(20) connected to PDU1

increases in intensity to TPC-W(60), simulating an over-

load where 40 new clients open sessions. The measured sus-

tained power consumption of PDU1, before and after this

workload change, is presented in Figure 7. This triggers re-

provisioning to accommodate the increased workload (the

exact mechanisms of such re-provisioning are orthogonal

to this work), as shown in Figure 6, where this instance of

TPC-W(60) under PDU1 is swapped with the TPC-W(20)

under PDU2 to prevent degraded performance for these new

sessions via throttling. We determine the overheads and ef-

fects of migration involved in the re-configuration described

above. We use Xen’s live migration facility [Clark 2005a]

to migrate the TPC-W servers between the PDUs and find

that it approximately takes 32 seconds to migrate the virtual

machines. This causes a factor of 1.37 and 2.02 average re-

sponse time degradation for the workloads TPC-W(60) and

TPC-W(20), respectively.

In Section 4.3, we mentioned that soft fuse enables flex-

ible distribution of power down the power supply hierarchy.

We present a small example to illustrate how soft fuses can

be changed dynamically to adapt to varying workload be-

havior. In the above scenario, assume we replace both the

600W PDUs connected to our 1200W PDU with two 800W

PDUs. The soft fuse for the 1200W PDU is set to be equal

to its sustained power budget. Before the phase change, we

set the soft fuse as 600W for both the 800W PDUs. After de-

tecting the phase change, instead of performing a potentially

costly migration, we merely change the soft fuses of PDU1

and PDU2 to be 620W and 580W, respectively (using SP(0)

for both PDUs). Since we provisioned for the peak ((SP(0)),

there is no degradation in performance for the TPC-W work-

load. Note that both before and after phase change, the sum

of the soft fuses of PDU1 and PDU2 does not exceed that

of the 1200W PDU.

8. Related Work

Research on Provisioning of Power Infrastructure. Server-

level: Server vendors (like [Dell Power Calculator 2008]), in

an attempt to help data centers administrators do better pro-

visioning, provide calculators for estimating the peak power

needs of their servers, given its component configuration

and workload characteristics. [Lefurgy 2007] observe that

the power supplies of servers are typically over-provisioned
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Figure 7: Illustration of the measured sustained power distributions

of PDU1 before and after the phase change. Workload change is

detected by comparing the two distributions. The arrow indicates

violation of sustained power budget after the phase change.

and report that replacing these with cheaper power supplies

with 15% lower capacities results in negligible degradation

in performance. To prevent rare power spikes from exceed-

ing the capacity, they implement a reactive technique that

keeps the server power within safe limits. [Felter 2005] ob-

serve that different components of a server (CPU, memory,

etc.) do not require their peak power simultaneously. This

suggests that statistical multiplexing techniques explored in

our paper could be extended to the granularity of individ-

ual resources within a server. They devise a technique that

dynamically apportions the total system power among the

system components thereby reducing the power and cooling

requirements of a server.

Cluster-level: Ensemble-level power management [Ran-

ganathan 2006] looks at provisioning the cooling capacity

as opposed to our work that looks at provisioning power

capacity expended towards operating servers. The authors

observe that for real workloads, the possibility of their peak

power consumptions occurring simultaneously is small and

use it to better provision the cooling capacity at a blade

enclosure level. Their results showed that they are able to re-

alize a reduction of 20% system power budget with minimal

performance impact. Very closely related to our research is

recent work by [Fan 2007] which also looks at provisioning

the power infrastructure for large data centers at different

levels of the power hierarchy. They analyze data from a real

large-scale Google data center and estimated that their power

supply infrastructure has enough headroom to accommodate

46% additional servers with minimal performance degrada-

tion. While our research shares several basic ideas with the

above body of work, to the best of our knowledge, we are the

first ones to: (i) precisely define the constraints imposed by

fuses/circuit-breakers deployed in the power hierarchy by in-

troducing the notion of sustained power budgets, (ii) develop

efficient power capacity provisioning techniques that exploit

the burstiness of applications to strike the desired balance

between cost gains and performance loss while guarantee-

ing safe operation, and (iii) demonstrate the feasibility of

our approach in a prototype data center.



Control Techniques for Power/Performance Trade-offs.

CPU throttling has widely been adopted for enforcing peak

power budgets related to: (a) thermal/cooling capacity of a

server [Raghavendra 2008, Ramos 2008] and (b) provision-

ing power capacity of a server [Lefurgy 2007, Fan 2007].

[Wang 2008] developed a control-theoretic model that en-

forces a specified power budget at a cluster level and dy-

namically distributes the power budget among the connected

servers based on their needs. [Nathuji 2007] and [Stoess

2007] extend power management solutions for the virtual

machines running on virtualized hardware. [Raghavendra

2008] look at coordinating the different power budgets (peak

and average) enforced at different granularities. A lot of

research has gone into evaluating the energy/performance

trade-offs of applications which involves keeping either en-

ergy or performance as a constant and optimizing for the

other metric [Weisel 2002, Chaitanya 2008, Annavaram

2005]. The above techniques for implementing some form

of power budgets are complementary to our work.

Yield Management Inspired Provisioning Techniques. Pro-

visioning practices inspired by yield management have

been explored in areas such as the airline industry [Smith

1992], networking [Boorstyn 2000], memory [Waldspurger

2002], and CPU/network management [Urgaonkar 2002] for

servers.

9. Concluding Remarks

The central thesis of this research was that by carefully

understanding the power needs of hosted workloads and

their aggregates, a data center could significantly improve

the cost-revenue trade-off associated with its power sup-

ply hierarchy. We designed a novel technique guided by the

application power profiles that employed controlled under-

provisioning, statistical multiplexing, and over-booking when

provisioning the power infrastructure. Our evaluation on

a prototype data center using well-regarded benchmarks

demonstrated the feasibility and benefits of our technique.

By accurately identifying the peak power needs of hosted

workloads, our technique was able to double the throughput

per provisioned power capacity (expressed as CPW) offered

by a PDU running the e-commerce benchmark TPC-W com-

pared to conventional provisioning practices. Over-booking

the PDU by 10% based on tails of power profiles yielded a

further improvement of 20% in PDU throughput with mini-

mal degradation in performance.

We view this paper as a first step towards demonstrating

that our provisioning technique could be effective in real,

large-scale data centers. As part of our future work, we hope

to use the insights gained from this exercise to explore the

efficacy of such provisioning techniques in reasonably-sized

data centers with a complex hierarchy of PDUs, heteroge-

neous servers, network switches, disk arrays, etc. We are in

the process of collecting CPU utilization and power con-

sumption data from real production servers. We intend to

use this data to evaluate the efficacy of our prediction and

provisioning techniques.

10. Availability

A Xen patch for enabling DVFS MSR writes, code for our

threshold-based budget enforcement mechanism and scripts

for our prediction techniques are available at:

http://csl.cse.psu.edu/hotmap.
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