ON A THEOREM OF GÜNTER ASSER

by Cristian Calude and Lila Sântean in Bucharest (Romania)

1. Introduction

Recently, G. Asser [2] has obtained two interesting characterizations of the class of unary primitive recursive string-functions over a fixed alphabet as Robinson algebras. Both characterizations use a somewhat artificial string-function, namely the string-function lexicographically associated with the number-theoretical excess-over-a-square function. Our aim is to offer two new and natural Robinson algebras which are equivalent to ASSER's algebras.

Let N denote the set of naturals, i.e. $N = \{0, 1, 2, ...\}$, and $N_+ = N \setminus \{0\}$. We consider a fixed alphabet $A = \{a_1, a_2, ..., a_r\}$, $r \ge 2$, and denote by A^* the free monoid generated by A under concatenation (with e as the null-string). By length (w) we denote the length of the string w (length (e) = 0). For every $w \in A^*$ and $m \in N$ let $w^m = ww...w$ (m times), in case m > 0, and $w^0 = e$. By Fnc (respectively, Fnc_A) we denote the set of all unary number-theoretical (respectively, string) functions. By I, Succ, E, C_m , Pd we denote the following number-theoretical functions: I(x) = x; Succ(x) = x + 1; $E(x) = x - \left[\sqrt{x}\right]^2$; $C_m(x) = m$; Pd(x) = x - 1, where $x - y = \max(x - y, 0)$. By I^A , $Succ_i^A$, C_u^A , σ , δ , π we denote the following string-functions: $I^A(w) = w$; $Succ_i^A(w) = wa_i$ ($1 \le i \le r$); $C_u^A(w) = u$; $\sigma(e) = a_1$, $\sigma(wa_i) = wa_{i+1}$, if $1 \le i < r$, and $\sigma(wa_r) = \sigma(w)a_1$; $\delta(e) = e$, $\delta(wa_i) = w$ ($1 \le i \le r$); $\pi(e) = e$, $\pi(\sigma(w)) = w$. Furthermore we use the bijections $c: A^* \to N$, $\bar{c}: N \to A^*$ given by c(e) = 0, $c(wa_i) = r \cdot c(w) + i$, $1 \le i \le r$, and $\bar{c}(0) = e$, $\bar{c}(m+1) = \sigma(\bar{c}(m))$; obviously $c(\bar{c}(m)) = m$ and $\bar{c}(c(w)) = w$.

To each $f \in Fnc$ we associate the string-function $s(f) \in Fnc_A$ defined by $s(f)(w) = \bar{c}(f(c(w)))$; conversely, to each string-function g we associate the number-theoretical function $n(g) \in Fnc$ defined by $n(g)(x) = c(g(\bar{c}(x)))$. It is easily seen that for every $f \in Fnc$ and $g \in Fnc_A$ one has n(s(f)) = f and s(n(g)) = g. For example, $s(C_m) = C_{c(m)}^A$, $s(Succ) = \sigma$, $s(I) = I^A$, $s(Pd) = \pi$.

For every $F \subseteq Fnc$ and $G \subseteq Fnc_A$ we put $s(F) = \{s(f) | f \in F\}$ and $n(G) = \{n(g) | g \in G\}$. A mapping from Fnc^n in Fnc $(n \in \mathbb{N}_+)$ is called an *n-ary operator in Fnc*, and analogous for Fnc_A . We consider the following operators in Fnc and Fnc_A :

```
\begin{aligned} &sub(f,g)=h & \text{ iff } &f,g,h\in Fnc & \text{ and } &h(x)=f(g(x))\,;\\ &it_x(f)=h & \text{ iff } &f,h\in Fnc & \text{ and } &h(0)=x, &h(y+1)=f(h(y))\,;\\ &add(f,g)=h & \text{ iff } &f,g,h\in Fnc & \text{ and } &h(x)=f(x)+g(x)\,;\\ &diff(f,g)=h & \text{ iff } &f,g,h\in Fnc & \text{ and } &h(x)=f(x)\circ g(x)\,;\\ &sub_A(f,g)=h & \text{ iff } &f,g,h\in Fnc_A & \text{ and } &h(w)=f(g(w))\,;\\ &\sigma\cdot it_{A,u}(f)=h & \text{ iff } &f,h\in Fnc_A & \text{ and } &h(e)=u, &h(\sigma(w))=f(h(w))\,;\\ &it_{A,u}(f_1,\ldots,f_r)=h & \text{ iff } &f_1,\ldots,f_r, &h\in Fnc_A & \text{ and } &h(e)=u, &h(wa_i)=f_i(h(w)), &1\leq i\leq r\,;\\ &con_A(f,g)=h & \text{ iff } &f,g,h\in Fnc_A & \text{ and } &h(w)=f(w)g(w)\,. \end{aligned}
```

For every operator φ in Fnc,

$$s(\varphi)(f) = s(\varphi(n(f)))$$
, for every $f \in Fnc$;

analogously, for every operator θ in Fnc,

$$n(\theta)(g) = n(\theta(s(g)))$$
, for every $g \in Fnc$.

For example, $s(it_x) = \sigma - it_{A, c(x)}$, $n(\sigma - it_{A, w}) = it_{\bar{c}(w)}$.

Finally, for every subset $F \subseteq Fnc$ and every set X of operators in Fnc, [F; X] denotes the smallest subset of Fnc which contains F and is closed under the operators belonging to X, and analogously for Fnc_A .

A simple, but useful, result in Asser [2] establishes the following relations:

- (1) For every $F \subseteq F$ nc and for every set X of operators in Fnc, s([F;X]) = [s(F); s(X)].
- (2) For every $G \subseteq Fnc_A$ and for every set Y of operators in Fnc_A , n([G; Y]) = [n(G); n(Y)].

2. Main results

The primitive recursive string-functions were introduced by Asser [1] and studied by various authors (see Eilenberg and Elgot [6], Brainerd and Landweber [4], Calude [5]). A famous result of R. M. Robinson [9] gives the following characterisation of the class $Prim^1$ of unary primitive recursive number-theoretical functions:

$$Prim^{1} = [\{Succ, E\}; \{sub, it_0, add\}].$$

In Asser [2] the following characterizations of the class $Prim_A^1$ of unary primitive recursive string-functions are obtained:

(3)
$$Prim_{A}^{1} = \left[\{\sigma, s(E)\}; \{sub_{A}, \sigma\text{-}it_{A,e}, s(add)\} \right],$$

$$(4) \qquad Prim_A^1 = \left[\left\{ Succ_1^A, \dots, Succ_r^A, s(E) \right\}; \left\{ sub_A, it_{A,e}, con_A \right\} \right].$$

These characterizations use the somewhat artificial string-function s(E) and the operator s(add) in Fnc_A is also rather artificial.

In Georgieva [7] (see also Calude [5]) one finds the following result:

$$Prim^1 = [\{Succ\}; \{sub, diff\} \cup \{it_x \mid x \in \mathbb{N}\}].$$

This formula can be simplified as follows:

(5)
$$Prim^1 = [\{Succ\}; \{sub, diff, it_0\}].$$

All that remains to prove (5) is the inclusion

$$Prim^1 \subseteq P = [\{Succ\}; \{sub, diff, it_0\}],$$

i.e. the closure of P under the operators it_x for $x \in \mathbb{N}_+$. First we note that P contains the functions $sg = it_0(C_1)$, $\overline{sg} = diff(C_1, sg)$ and that P is closed under sum and product. Now let f in P and $h = it_x(f)$, $x \in \mathbb{N}_+$. If, for every natural k > 0, $f^k(x) = f(f(...(f(x))...)) \neq 0$ (k times), then $h = sub(h^*, Succ)$, where $h^* = it_0(g)$ and $g(y) = x \cdot \overline{sg}(y) + f(y) \cdot sg(y)$ (· denotes the product). In case there exists a natural k > 0 such that $f^k(x) = 0$, say the minimal one, then

$$h(y) = h^*(Succ(y)) \cdot \overline{sg}(t(x)) + h_*(t(x)) \cdot sg(t(x)),$$

where $t = diff(I, C_k)$, $h_* = it_0(f)$.

In view of (5) and (1), as a slight improved form of (3) we obtain:

(6)
$$Prim_{A}^{1} = [\{\sigma\}; \{sub_{A}, \sigma - it_{A,e}, s(diff)\}].$$

The string-function s(E) is dropped, but the unpleasant operator s(diff) in Fnc_A is still present. To overcome this difficulty we shall present our first result:

(7)
$$Prim_{\mathsf{A}}^{1} = \left[\left\{ Succ_{1}^{\mathsf{A}}, \dots, Succ_{r}^{\mathsf{A}}, \pi \right\}; \left\{ sub_{\mathsf{A}}, it_{\mathsf{A}, e}, con_{\mathsf{A}} \right\} \right].$$

For this, we denote by F the right-hand side of (7). In order to prove (7) we will show that (i) $\sigma \in F$, (ii) F is closed under σ - $it_{A,e}$, (iii) F is closed under s(diff).

As in the proof of Proposition 2 in Asser [2] we begin with displaying a list of string-functions belonging to F:

a)
$$C_e^{A}(w) = e$$
: $C_e^{A} = it_{A,e}(\pi, ..., \pi)$.

b)
$$\kappa_i(w) = a_i \quad (1 \le i \le r)$$
: $\kappa_i = \sup_{A} (Succ_i^A, C_i^A)$.

c)
$$I^{A}(w) = w$$
: $I^{A} = it_{A,e}(Succ_{1}^{A}, ..., Succ_{r}^{A})$.

d)
$$sg_{i}^{A}(e) = e$$
, $sg_{i}^{A}(w) = a_{i}$, for $w \neq e$ $(1 \leq i \leq r)$: $sg_{i}^{A} = it_{A,e}(x_{i}, ..., x_{i})$.

e)
$$succ_i^A(w) = a_i w$$
 $(1 \le i \le r)$: $succ_i^A = con_A(x_i, I^A)$.

f)
$$mir(e) = e$$
, $mir(wu) = mir(u) mir(w)$: $mir = it_{A,e}(succ_1^A, ..., succ_r^A)$.

g)
$$\lambda_i(w) = a_i^{\text{length}(w)}$$
 $(1 \le i \le r): \lambda_i = it_{A,e}(Succ_i^A, ..., Succ_i^A)$.

h)
$$\gamma_i(w) = a_i^{c(w)} \quad (1 \le i \le r)$$
:

$$\gamma_i = it_{A,e}(con_A(I^A...I^A,\varkappa_i), con_A(I^A...I^A,\varkappa_i\varkappa_i), ..., con_A(I^A...I^A,\varkappa_i...\varkappa_i))$$

(the k-th place of the operator $it_{A,e}$ is $con_A(I^A...I^A, \varkappa_i...\varkappa_i)$ with r concatenations of I^A and k concatenations of \varkappa_i ; $1 \le k \le r$).

i) $\alpha_i(w) = u$ iff $w = ua_i a_i \dots a_i$ and u does not terminate with a_i $(1 \le i \le r)$:

$$\alpha_i = sub_A(mir, sub_A(it_{A,e}(Succ_1^A, ..., Succ_{i-1}^A),$$

$$con_A(I^A, sg_i^A), Succ_{i+1}^A, \dots, Succ_r^A), mir))$$
.

j)
$$\beta_i(w) = a_i a_i \dots a_i$$
 iff $w = \alpha(w) a_i a_i \dots a_i$ $(1 \le i \le r)$: $\beta_i = it_{A,e}(C_e^A, \dots, Succ_i^A, \dots, C_e^A)$.

k)
$$\overline{sg}_{i}^{A}(e) = a_{i}$$
, $\overline{sg}_{i}^{A}(w) = e$, for $w \neq e$ $(1 \leq i \leq r)$:
 $\overline{sg}_{i}^{A} = sub_{A}(sg_{i}^{A}, sub_{A}(\beta_{r}, con_{A}(succ_{r}^{A}, sg_{1}^{A})))$.

1)
$$\psi_i(e) = a_{i+1}, \ \psi_i(w) = a_i, \ \text{for} \ \ w \neq e \ \ \ (1 \le i < r): \ \psi_i = con_A(\overline{sg}_{i+1}^A, sg_i^A);$$

$$\psi_r(e) = a_1, \quad \psi_r(w) = a_r, \text{ for } w \neq e : \psi_r = con_A(\overline{sg}_1^A, sg_r^A).$$

m)
$$\chi(e) = e$$
, $\chi(ua_i) = ua_{i+1}$, for $1 \le i < r$, $\chi(ua_r) = ua_1$:

$$\chi = sub_{A}(mir, sub_{A}(it_{A,e}(con_{A}(I^{A}, \psi_{1}), ..., con_{A}(I^{A}, \psi_{r})), mir)).$$

We are now in a position to prove (i): $\sigma \in F$. Indeed,

$$\sigma = con_{A}(sub_{A}(\overline{sg}_{1}^{A}, \alpha_{r}), con_{A}(sub_{A}(\chi, \alpha_{r}), sub_{A}(\chi_{1}, \beta_{r}))).$$

Passing to (ii) we note that

(8)
$$\sigma - it_{A,e}(f) = sub_{A}(it_{A,e}(f,...,f), \gamma_{1}),$$

i.e. F is closed under the operator σ -it_{A,e}.

To finish the proof we recall that, for every $f \in Fnc_A$ and $n \in N_+$, $f^0 = I^A$ and $f^n = sub_A(f, sub_A(f, ..., sub_A(f, f)...))$, n times. Using a double lexicographical induction one proves the equality

$$\pi^{c(w)}(u) = \bar{c}(diff(c(u), c(w)))$$
 for $u, w \in A^*$,

which enables us to write the formula

$$(9) s(diff)(f,g) = sub_{A}(it_{A,e}(\sigma,\pi,I^{A},...,I^{A}),con_{A}(sub_{A}(\gamma_{1},f),sub_{A}(\gamma_{2},g))),$$

for all $f, g \in Fnc_A$, thus proving (iii). This ends the proof of (7).

Our second Robinson algebra is the following:

(10)
$$Prim_{A}^{1} = \left[\{ \sigma, \pi \}; \{ sub_{A}, it_{A,e}, con_{A} \} \right].$$

In view of (6) we must prove that the right-hand side of (10) is closed under σ - $it_{A,e}$ and s(diff).

Again we proceed with displaying a sequence of primitive recursive string-functions belonging to the right-hand side of (10):

- a) $I^A = sub_A(\pi, \sigma)$.
- b) $C_e^A = it_{A,e}(\pi, ..., \pi)$.
- c) $\kappa_i = \sup_{A} (\sigma, \sup_{A} (\sigma, ..., \sup_{A} (\sigma, C_e^A)))$,

where the operator sub_A appears i times $(1 \le i \le r)$.

d)
$$\gamma_i = it_{A_r}(con_A(M_r(I^A), M_1(\varkappa_i)) con_A(M_r(I^A), M_2(\varkappa_i)), ..., con_A(M_r(I^A), M_r(\varkappa_i)))$$

with $M_j(f) = con_A(f, con_A(f, ..., con_A(f, f))...)$, where f is any string-function and the operator con_A appears $j \ge 1$ times.

The proof of (10) is complete in view of (8) and (9).

Finally, we conjecture the validity of the following formula:

(11)
$$Prim_{A}^{1} = \left[\{ \sigma, \pi \}; \{ sub_{A}, \sigma \cdot it_{A,e}, con_{A} \} \right].$$

In view of (2) and $n(Succ_i^A)(x) = Succ^i(x)$, $1 \le i \le r$, (11) holds iff its right-hand side is closed under the operator $it_{A,e}$.

3. Final remarks

After finishing this paper we have learnt the following new characterizations of $Prim_A^1$ due to G. Asser [3]:

$$Prim_{A}^{1} = \left[\left\{ Succ_{1}^{A}, \dots, Succ_{r}^{A}, \lambda \right\}; \left\{ sub_{A}, it_{A,e}, con_{A} \right\} \right]$$
$$= \left[\left\{ Succ_{1}^{A}, \dots, Succ_{r}^{A}, \varrho \right\}; \left\{ sub_{A}, it_{A,e}, con_{A} \right\} \right],$$

where λ, ϱ are the component functions of the pairing function

$$\gamma(u,v) = a_1^{\operatorname{length}(u)} a_2 u v a_2 a_1^{\operatorname{length}(v)},$$

i.e., if $w = \gamma(u, v)$ for some strings u, v, then $\lambda(w) = u$ and $\varrho(w) = v$, else $\lambda(w) = \varrho(w) = e$.

Furthermore G. Asser (communication of July 13, 1989) has perceived that in (7) the function π can be replaced by the function δ , i.e.

(12)
$$Prim_{A}^{1} = \left[\left\{ Succ_{1}^{A}, \dots, Succ_{r}^{A}, \delta \right\}, \left\{ sub_{A}, it_{A, e}, con_{A} \right\} \right].$$

The proof is essentially the same as for (7). Only a) must be replaced by

$$C_e^A = it_{A,e}(\delta, ..., \delta)$$
,

and (9) must be replaced by

$$= sub_{A}(it_{A,e}(\sigma,\ldots,\sigma), sub_{A}(it_{A,e}(Succ_{1}^{A},\delta,\ldots,\delta), (con_{A}(sub_{A}(\gamma_{1},f), sub_{A}(\gamma_{2},g)))).$$

References

- [1] Asser, G., Rekursive Wortfunktionen. This Zeitschrift 6 (1960), 258-278.
- [2] ASSER, G., Primitive recursive word-functions of one variable. In: Computation Theory and Logic (E. Börger, ed.), Springer Lecture Notes in Comput. Sci. 270 (1987), pp. 14-19.
- [3] ASSER, G., Zur Robinson-Charakterisierung der einstelligen primitiv rekursiven Wortfunktionen. This Zeitschrift 34 (1988), 317-322.
- [4] Brainerd, W. S., and L. H. Landweber, Theory of Computation. John Wiley and Sons, New York 1974.
- [5] CALUDE, C., Theories of Computational Complexity. Annals of Discrete Mathematics 35, North-Holland Publ. Comp., Amsterdam-New York-Oxford-Tokyo 1988.
- [6] EILENBERG, S., and C. C. ELGOT, Recursiveness. Academic Press, New York-London 1970.
- [7] Georgieva, N., Another simplification of the recursion schema. Arch. Math. Logik Grundlagenforsch. 18 (1976), 1-3.
- [8] PÉTER, R., Rekursive Funktionen. Akadémiai Kiadó, Budapest 1951.
- [9] ROBINSON, R. M., Primitive recursive functions. Bull. Amer. Math. Soc. 53 (1947), 925-943.
- [10] Rose, H. E., Subrecursion. Functions and Hierarchies. Clarendon Press, Oxford 1984.

C. Calude

(Eingegangen am 14. November 1988)

Department of Mathematics
University of Bucharest
14 Academiei Str.
Bucharest R-70109
Romania
L. Sântean
Department of Knowledge Pro-

Department of Knowledge Processing Systems
Institute for Computers and Informatics
8-10 Miciurin Blvd.
Bucharest R-71316
Romania