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1. Introduction

Recently, G. AsseR [2] has obtained two interesting characterizations of the class of unary
primitive recursive string-functions over a fixed alphabet as Robinson algebras. Both charac-
terizations use a somewhat artificial string-function, namely the string-function lexicographi-
cally associated with the number-theoretical excess-over-a-square function. Our aim is to of-
fer two new and natural Robinson algebras which are equivalent to ASSER’s algebras.

Let N denote the set of naturals, i.e. N={0,1,2,...}, and N, =N\ {0}. We consider a fixed
alphabet A = {a,,qa,,...,4,}, r=2, and denote by A* the free monoid generated by A under
concatenation (with e as the null-string). By length (w) we denote the length of the string w
(length (e) = 0). For every we A* and me N let w™ = ww...w (m times), in case m >0, and
w? = ¢. By Fnc (respectively, Fnc,) we denote the set of all unary number-theoretical (respec-
tively, string) functions. By I, Succ, E, C,, Pd we denote the following number-theoretical
functions: I(x) = x; Succ(x)=x+1; E(x)=x~ [\/;]2; Cn(x)=m; Pd(x)=x=1, where
x =~y =max(x — y,0). By I*, Succ?, C3, o, 6, ® we denote the following string-functions:
IAw) =w; Succh(w)=wa;1si=sr1); Co(Ww)=u; o(e) = a;, d(wa)) = wa;,,,if 1< i<r,and
o(wa,)=a(w)a,; 8(e)=e, d(wa)=w (1sisr); ale)=e, n(o(w))=w. Furthermore we
use the bijections ¢: A*— N, é: N—=>A*given by c(e) =0, c(wa)) =r-c(w)+i,1=i=r, and
é0) = e, ¢(m+ 1) = a(é(m)); obviously c(é(m)) = m and c(c(w)) = w.

To each fe Fnc we associate the string-function s(f)e€ Fnc, defined by s(f)(w)
= &(f(c(w))); conversely, to each string-function g we associate the number-theoretical
function n(g) € Fnc defined by n(g) (x) = c(g(é(x))). It is easily seen that for every fe Fnc
and g e Fnc, one has n(s(f)) = f and s(n(g)) = g. For example, s(C,) = C?(,,,), s(Succ) = a,
s()=1I*, s(Pd) = m.

For every F&< Fnc and G S Fnc, we put s(F) = {s(f)|fe F} and n(G)={n(g)|ge G}. A
mapping from Fnc” in Fnc (n € N,) is called an n-ary operator in Fnc, and analogous for Fnc,.
We consider the following operators in Fnc and Fnc,:

sub(f,g)=h iff fgheFnc and h(x)=f(g(x));
it(f=h ff fheFnc and hO)=x, h(y+1D=f(h());
add(f,g)=h iff fighe Fnc and h(x)=f(x)+g(x);
diff (f,g)=h iff figheFac and h(x)=f(x)* g(x);
subn(f,g)=h iff f,ghe Fnc, and h(w)=f(g(w));
o-ity (f)=h iff fhe Fnc, and h(e)=u, h(c(w)) =f(h(W));
it (1., )=h iff fi,....f,, he Fnc, and
h(e)=u, h(way)) = fi(h(w)), 1 =i=sr,;
cony(f,g)=h iff f,gshe Fnc, and h(w)=f(w)g(w).
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For every operator ¢ in Fnc,
s(@)(f) = s(p(n(f))), forevery fe€ Fnc;

analogously, for every operator 8 in Fnc,

n(8)(g)=n(0(s(g))), forevery ge Fnc.

For example, s(it,) = 0-ita «x), N(T — it ) = ilx)-

Finally, for every subset F< Fnc and every set X of operators in Fnc, [F; X] denotes the
smallest subset of Fnc which contains F and is closed under the operators belonging to X,
and analogously for Fnc,.

A simple, but useful, result in Assgr [2] establishes the following relations:

1) For every F S Fnc and for every set X of operators in Fnc, s([F; X]) = [s(F); s(X)].
Q) For every G S Fnc,, and for every set Y of operators in Fnc,, n({G; Y]) = [n(G); n(Y}].

2. Main results

The primitive recursive string-functions were introduced by Asser [1] and studied by var-
ious authors (see EILENBERG and ELGoOT [6], BRAINERD and LANDWEBER [4], CALUDE [5]). A fa-
mous result of R. M. RoBINsoN [9] gives the following characterisation of the class Prim! of
unary primitive recursive number-theoretical functions:

Prim* = [{Succ, E}; {sub, ity, add}].

In Asser [2] the following characterizations of the class Prim} of unary primitive recursive
string-functions are obtained:

3 Primy = [{0,5(E)}; {suba, 0-itn ., s(add)}],
4 Prim} = [{Succ?, ..., Succ?,s(E)}; {subs, ita, ., cona}].
These characterizations use the somewhat artificial string-function s(E) and the operator
s(add) in Fnc, is also rather artificial.
In GEORGIEVA [7] (see also CALUDE [5]) one finds the following result:
Prim! = [{Succ}; {sub, diff} u {it,| x € N}].
This formula can be simplified as follows:
) Prim! = [{Succ}; {sub, diff, ity}] .
All that remains to prove (5) is the inclusion
Prim' & P = [{Succ}; {sub, diff, it} ],

i.e. the closure of P under the operators it, for x € N... First we note that P contains the func-
tions sg = ity(C,), 58 = diff (C,, sg) and that P is closed under sum and product. Now let f in P
and k=it (f), x e N,. If, for every natural k >0, f*(x) = f(f(...(f(x))...)) = 0 (k times),
then h = sub(h*, Succ), where h* = ity(g) and g(y) = x-5g(y) + f(») sg(y) (- denotes the
product). In case there exists a natural k > 0 such that f*(x) = 0, say the minimal one, then

h(y) = h*(Succ(y))- S8 (1(x)) + ha(t(x)) - sg((x)),
where ¢t = diff (I, C), b = ito(f).
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In view of (5) and (1), as a slight improved form of (3) we obtain:
©) Prim}, = [{a}; {subp, o-it, ,, s(diff )}] .

The string-function s(E) is dropped, but the unpleasant operator s(diff) in Fnc, is still pre-
sent. To overcome this difficulty we shall present our first result:

) Primj = [{Succ?, ..., Succ?, 7} ; {subp, ita ., conp}].

For this, we denote by F the right-hand side of (7). In order to prove (7) we will show that
(i) o€ F, (ii) F is closed under g-ita ., (iii) F is closed under s(diff).

As in the proof of Proposition 2 in Asser 2] we begin with displaying a list of string-func-
tions belonging to F:

a) Co(w)=e: Ch=ity (m,..., 7).

b) m(w)=a, (1=isr):x=subs(Succh,C?).
c) IA(w) =w: I* =ity (Succ?,..., Succh).

d) sgf(e)=e, sgfw)=a, for wte (1=isr):sgl=itno(%;,...,%).
e) succ}(w)=aw (1=i=sr):succt = cona(x;, 1.
) mir(e) = e, mir(wu) = mir(u) mir(w): mir = its ,(succ?, ..., succ?).
g) A4(w)=al™™ (1 <i=<r)d= ity (Succh,...,Succh).
h) yw)=ai®™ (=isr):
¥i = itn (cona(IA...IA, %), cona(IA...I%, %), ..., cona(IM.. . I*, %,...2,))

(the k-th place of the operator i, . is cona(I*...I*, x;...%;) with r concatenations of I*
and k concatenations of »;; 1<k = 7r).

D) og(w)=u iff w= ua;a;...a;and u does not terminate with q; (1 =i=r):

o; = suba(mir, suba(ita ,(Succt, ..., Sucet,,

cona(I*, 5g7), Succlyy, ..., Succt), mir))).

) BwW)=aa...q iff w=a(w)aa...a; (1sisr): =ity (Ch,...,Succh,...,CY).
k) 5gMe)=a, g (w)=e, for wte (Isisr):

58} = sub(sg?, subn(B,, conp(succ?, sgD))-
D wie)=ap1, p(w)=ga;, for we (1=i<r):p=cona(El:,,587);

p(e)=a;, w(w)=a, for w=e:p = con,(587,s58%).

m)y(e)=e, x(ua;)=ua;,, for 1si<r, x(ua)=ua,:

X = subp(mir, subp(it (cona(I*, 9)), ..., con (I*, v,)), mir)).
We are now in a position to prove (i): o€ F. Indeed,

0 = conp(suba(58Y, &) , cona(suba(x, &), suba(%1, B,))) .
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Passing to (ii) we note that
® ity (f) = subp(ita, (f; ... /), 1),
i.e. F is closed under the operator o-ita ..

To finish the proof we recall that, for every fe Fncy and neN,., f°=I* and
" = subp(f, suba(f, ..., suba(f,f)...)), n times. Using a double lexicographical induction
one proves the equality

a(u) = ¢(diff (c(u),c(w))) for u,weA*,
which enables us to write the formula )
©) s(diff) (f, g) = suba(ita, (0, 7, I, ..., I*), cona(suba(y1,f), suba(y1,8)))
for all £, g € Fnc,, thus proving (iii). This ends the proof of (7).
Our second Robinson algebra is the following:

(10) Prim}, = [{o, @}; {suba, ita ., conp}] .
In view of (6) we must prove that the right-hand side of (10) is closed under o-it, . and

s(diff).
Again we proceed with displaying a sequence of primitive recursive string-functions be-
longing to the right-hand side of (10):

a) I* = subp(m, o).
b) Ch =ity (m,..., 7).
¢) %; = suba(0, suba(o, ..., subs(g, C2))),
where the operator sub, appears i times (1 <i<r).
d) ¥ = its, (cona(M,(I®), My(%))) cona(M,(I%), My(%)), ..., cona(M,(I*), M.(%))),

with M;(f) = cona(f, cona(f; ..., cona(£,f))...), where f is any string-function and the operator
con, appears j = 1 times.
The proof of (10) is complete in view of (8) and (9).

Finally, we conjecture the validity of the following formula:
(11 Prim}, = [{0, n}; {suba, c-ita ., cona}].

In view of (2) and n(Succ?) (x) = Succ(x), 1= i< r, (11) holds iff its right-hand side is
closed under the operator it, ..

3. Final remarks

After finishing this paper we have learnt the following new characterizations of Prim}, due
to G. Asskr [3]:
Prim}, = [{Succ?, ..., Succ}, A} ; {subs, itn,es conp}]

= [{Succt, ..., Succt, 0} ; {suba, ita ., cona}],

where 4, g are the component functions of the pairing function
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y (u, U) =a llength(u)a2 uva,a llength(u) ,

i.e., if w= p(u, v) for some strings u, v, then A(w) = u and g(w) = v, else A(w) =p(w) =e.

Furthermore G. Asser (communication of July 13, 1989) has perceived that in (7) the
function & can be replaced by the function 4, i.e.

(12) Prim}, = [{Succ?, ..., Succ?, 8}, {suby, ity ., cona}].

The proof is essentially the same as for (7). Only a) must be replaced by
' CA =ity (5, ..., ),

and (9) must be replaced by

s(diff) (£, 8)
= subp(ita, (0, ..., 0), subp(its, (Succt,§, ..., 8), (cona(suba(y1,f), suba(s, £)))) -
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