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Biocomputation in Ciliates

Lila Kari and Laura F. Landweber

Ciliates are unicellular protists that may have arisen more than a billion years
ago. They have since diverged into thousands of species, many uncharacterized,
the genetic divergence among ciliates being at least as deep as that between
plants and animals [17]. Despite their diversity, ciliates are united by two com-
mon features; the presence of short threads called cilia on their surface, whose
rhythmic beating causes movement and is also useful for food capture, and the
presence of two types of nuclei. The macronucleus contains DNA encoding
functional copies of all the genes that regulate vegetative growth and cell pro-
liferation. The micronucleus contains encrypted versions of the macronuclear
DNA, is mostly functionally inert, and is only used for sexual exchange of
DNA. In this chapter we study the decryption of the macronuclear DNA from
a computational perspective.

INTRODUCTION

‘When two cells mate, they exchange micronuclear information. After they sep-
arate, the old micronuclei and macronuclei degenerate, while the newly formed
micronuclei develop into new macronuclei over hours or days, depending on
the species. Few ciliates have so far been studied at the level of molecular ge-
netics: Tetrahymena and Paramecium representing the Oligohymenophorans
and Oxytricha (recently renamed Sterkiella), and Stylonichia and Euplotes rep-
resenting Spirotrichs. The DNA molecule in each of the approximately 120
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chromosomes in the micronucleus contains on average approximately 107 base-
pairs (bp) in Oxytricha species and approximately 18 x 10° bp in Stylonichia
lemnae [17]. The size of the DNA molecules in the macronucleus is, in con-
trast, very small. In various Oxytricha species and S. lemnae, macronuclear
DNA molecules range in size from 400 to 15,000 bp with most molecules in
the 1000—8000 bp range [18].

Macronuclear DNA sequences are derived from the micronuclear sequences
through a series of DNA rearrangements as follows. The segments that to-
gether constitute a macronuclear sequence (macronuclear destined sequences
or MDSs) are present as sub-sequences in the micronuclear DNA. However,
in the micronuclear DNA, MDSs are interspersed with long DNA sequences
(internal eliminated sequences or IESs) that are excised in the micronucleus
to macronucleus differentiation. (Note that excision of IESs from micronuclear
DNA is distinct from excision of introns, which occurs at the RNA level after
transcription of macronuclear DNA.) IESs and intergenic DNA represent large
regions of the micronuclear DNA. In Oxytricha species, only 4% of the micro-
nuclear DNA represents macronuclear destined sequences, while in S. lemnae
that proportion is still smaller, 2% [18].

In addition, in some spirotrich micronuclear genes, the MDSs are presentin a
permuted order in the micronuclear DNA, relative to the “correct” macronuclear
order [18], as shown in Figure 10.1. For example, the micronuclear actin I gene
in Oxytricha nova consists of nine MDSs separated by eight IESs. The order of
MDSs in the micronucleus is 3-4-6-5-7-9-2-1-8 [19].
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Figure 10.1 Overview of gene unscrambling. Dispersed coding macronuclear
destined segments 1-7 reassemble during macronuclear development to form the
functional gene copy (top), complete with telomere addition to mark and protect both
ends of the gene. From Landweber and Kari [8].
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The gene encoding the o telomere binding protein in Oxytricha nova is
present in the micronucleus in the permuted order 1-3-5-7-9-11-2-4-6-8-10-12-
13-14 [12]. The gene encoding DNA polymerase o in S. lemnae is apparently
broken into more than 48 MDSs scrambled in an odd/even order [10], with
14 MDSs inverted on the opposite strand of another 24 MDSs, 9 additional
MDSs on a separate locus, and 1 MDS not present on either locus. MDSs have
to be reordered and intervening IESs eliminated to construct the functional
macronuclear gene.

The process of unscrambling the micronuclear DNA into the macronuclear
genes is ostensibly aided by the presence of short pointer sequences present at
the junctions between MDSs and IESs. More precisely, at the junction between
the nth MDS and the adjacent IES following, it there is a sequence (of 9—
13 bp in actin I and 6-19 bp in o telomere binding protein) that is repeated
somewhere else in the gene—namely, at the junction between the (n+1)** MDS
and the adjacent IES preceding it. After aligning two pointers, homologous
recombination between them would then join MDSs n and (n+ 1) in the correct
order and eliminate one copy of the pointer.

This process can be viewed as a computation solved during gene unscram-
bling by homologous DNA recombinations. If we assume that the cell’s bio-
chemistry can identify those DNA segments that represent pointers, and if the
pointer pairs were unique in the micronuclear DNA, then one could argue that
the ciliate is solving the computational problem of sorting a permuted sequence
in the correct order. However, the computational problem facing the cell is
much more complex given that some pointer sequences occur more than 13
times in a single gene (e.g., DNA polymerase o in S. lemnae). Taking into
account the multiplicities of each pointer (the raw number of occurrences of
the sequence representing the pointer in the micronuclear sequence), the num-
ber of combinations the cell would need to explore in order to arrive at the
correct solution could be greater than 14 trillion for DNA polymerase a in S.
lemnae [2]. Clearly, even assuming a priori knowledge of the pointer sequences,
blind searching of matching pointer pairs is not a realistic explanation of gene
unscrambling.

Other factors such as knowledge of which DNA sequences represent MDSs,
IESs, and pointers, together with geometric folding of thc micronuclear DNA
that brings corresponding pointers together, have been suggested as mechanisms
of gene unscrambling [17]. Alternative or complementary information guid-
ing unscrambling may be the presence of contexts that flank correct matching
pointer pairs and that might be responsible for solving this seemingly difficult
computational problem [17, 18]. The details of the gene rearrangement pro-
cess are still elusive. In the following sections we explore formal models for
the homologous recombinations that lead to gene unscrambling in ciliates and
investigate their computational power.
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CLASSIC COMPUTATIONAL MODELS

In order to study the computational power of the bio-operations underlying
gene rearrangement in ciliates, we compare them with the existing models of
computation. In this section, we introduce two classic models of computation,
the finite automaton and the Turing machine. The finite automaton has very
restricted computational power, but the Turing machine models the computing
capability of a general-purpose computer.

The finite automaton is a mathematical model of a system with a finite
number of internal states and with discrete inputs and outputs. The behavior
of the system is dictated by a finite number of rules that, given a state of the
system and an input, dictate what the next state of the system will be.

To formalize the notions of finite automaton and Turing machine, let us first
introduce some notations. An alphabet X is a finite, nonempty set of symbols
or letters. A sequence of letters from I is called a string (word) over Z. (If
T = {A, C, G, T}, a word over X can be interpreted as a linear DNA strand.)
The words are denoted by lowercase letters such as u, v, a;, x;;. A word with 0
letters in it is called an empty word and is denoted by \. The set of all possible
words consisting of letters from X is denoted by X*, and the set of all nonempty
words by 7.

A finite automaton is a construct A = (S, X, P, so, F), where X is the input
alphabet, S is a finite set of states, so € S is a designated start state, F € S is the
set of final states, and P € § x & —> Sis a set of transition rules. A transition
rule sa —> §', 5,8 € S,a € ¥ says that, if the automaton is in state s and reads
the input letter a, then it changes its state to the new state s’ and continues scan-
ning the input word. The language accepted by the automaton A is defined as:

L(A) = {w € T*| sow =" 57,57 € F};

in other words, the set of all input words that can take the automaton from the
initial state to a final state by successive applications (denoted by =") of the
~transition rules in P. In the hierarchy of computational models, finite automata

are the weakest. ' _

At the other end of the spectrum of computational power is the Turing ma-
chine (TM), the accepted formal model of what we call computation. In a
Turing machine, a read/write head scans an infinite tape composed of discrete
squares, one square at a time. The read/write head communicates with a control
mechanism under which it can read the symbol in the current square or replace
it by another. The read/write head is also able to move on the tape, one square at
a time, to the right and to the left. The set of words that make a Turing machine
finally halt is considered its language.

Formally [20], a rewriting system TM = (S, Z U {#}, P) is called a Turing
machine if and only if (iff):
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(1) Sand T U {#} (with # ¢ X and X # @) are two disjoint alphabets
referred to as the state and the tape alphabets.

(2) Elements sp and 57 of S and B of X are the initial and final state, and
the blank symbol, respectively. Also, a subset T of X is specified and
referred to as the terminal alphabet. It is assumed that T is not empty.

(3) The productions (rewriting rules) of P are of the forms

(i) sia —> s;b  (overprint)

(ii) s;ac — asjc (move right)

(iii) s;a# — as;B# (move right and extend workspace)
@iv) csia — sjca (move left)

(v) #sia — #s;Ba (move left and extend workspace)
(vi) sfa — s

(vi)) asy — sy

where s; and s; are in S, 5; # 8, 5; % Sf, and a, b, c are in X. For
each pair (s;, a), where s; and a are in the appropriate ranges, P either
contains no productions (ii) and (iii) (respectively, iv and v) or else
contains both (iii) and (ii) for every c (respectively contains both (v)
and (iv) for every c). There is no pair (s;, a) such that the word s;a
is a subword of the left side in two productions of the forms i, iii, v.

A configuration of the TM is of the form #ws; w,#, where w; w, represents
the contents of the tape, #s are the boundary markers, and the position of the
state symbol s; indicates the position of the read/write head on the tape: if s; is
positioned at the left of a letter a, this indicates that the read/write head is placed
over the cell containing a. The TM changes from one configuration to another
according to its rules. For example, if the current configuration is #ws;aw'# and
the TM has the rule s;a —> s;b, this means that the read/write head positioned
over the letter a will write b over it and change its state from s; to s;. The next
configuration in the derivation will be thus #ws;bw'#.

The TM halts with a word w iff there exists a derivation that, when started
with the read/write head positioned at the beginning of w eventually reaches the
final state (i.e. if #sow# derives #s,# by successive applications of the rewriting
rules i—vii). The language L(TM) accepted by TM consists of all words over
the terminal alphabet T for which the TM halts. Note that TM is deterministic:
at each step of the rewriting process, the application of at most one production
is possible.

A FORMAL MODEL OF GENE REARRANGEMENT

In this section we describe several bio-operations we have studied as models
of the homologous recombinations apparently underlying the process of gene
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unscrambling in ciliates [6-9]. We study these operations from a computational
point of view. We namely summarize results in Kari and Kari [6] showing that, if
the recognition of identical pointers is assumed to be sufficient to trigger recom-
bination, the computational potential achieved is only that of finite automata.

We define circular words over X by declaring two words to be equivalent
iff one is a cyclic permutation of the other. In other words, w is equivalent to
w’ iff they can be decomposed as w = uv and w’ = vu, respectively. Such a
circular word ew refers to any of the circular permutations of the letters in w.
Denote by X° the set of all circular words over X.

DEFINITION I If x € =7 is a pointer, then the recombinations guided by x are
defined as follows:

uxv + u'xv' = uxv’' + u'xv (linear/linear) )
uxvxw = uxw + evx (linear/circular) 2)
o uxv + eu'xv' = euxv'u’xv (circular/circular). 3)

(See figures in Kari and Kari [6].) Note that all recombinations in definition 1
are reversible; the operations can be performed also in the opposite directions.

For example, operation (2) models the process of intramolecular recombi-
nation (Figure 10.2). After the pointer x finds its second occurrence in uxvxw,
the molecule undergoes a strand exchange in x that leads to the formation of
two new molecules: uxw and a circular DNA molecule evx. Intramolecular
recombination accomplishes the deletion of either sequence vx or xv from the
original molecule uxwxv and the positioning of w immediately next to ux.
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Figure 10.2 Linear/linear recombination
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This implies that operation 2 can be used to rearrange sequences in a DNA
molecule, thus accomplishing gene unscrambling.

The above operations are similar to the the “splicing operation” introduced
by Head [3] and circular splicing and mixed splicing [4, 14-16, 21]. It was
subsequently shown that some of these models have the computational power
of a universal Turing machine [1, 13, 22]. (See Head et al. [5] for a review.)

The process of gene unscrambling entails a series of successive or possibly
simultaneous intra- and intermolecular homologous recombinations. This is
followed by excision of all sequences 1, yT., where the sequence y is marked
by the presence of telomere addition sequences T, for telomere “start” (at its
5' end), and T, for telomere “end” (at its 3' end). Thus, from a long sequence
utsyTev, this step retains only t,yt, in the macronucleus. Last, the enzyme
telomerase extends the length of the telomeric sequences (usually double-
stranded TTTTGGGG repeats in these organisms) from 1, and T, to protect
the ends of the DNA molecule.

We now make the assumption that, either by a structural alignment of the
DNA or by other biochemical factors, the cell decides which sequences are
non—protein-coding (IESs) and which are ultimately protein coding (MDSs),
as well as which are the pointers x. Such biological shortcuts are presumably
essential to bring into proximity the pointers x. Each of the n MDSs, denoted
primarily by a;, 1 < i < n, is flanked by the pointers x;_;; and x; ;4. Each
pointer points to the MDS that should precede or follow a; in the final sequence.
The only exceptions are o;, which is preceded by 1, and a,,, which is followed
by T in the input string or micronuclear molecule. Note that, although present
generally once in the final macronuclear copy, each x; ; +1 occurs at least twice
in the micronuclear copy: once after o; and once before o, ;.

We denote by ¢ an internal sequence that is eliminated; ¢; does not oc-
cur in the final sequence. Thus, since unscrambling leaves one copy of each
xi,i+1 between o; and o;41, an IES is nondeterministically either €;x; ;1 or
X;-1,i€, depending on which pointer x; ;) is eliminated. Similarly, an MDS is
technically either o;x; 1 or x;_; ;o;. For this model, either choice is equivalent.

The following example (from Landweber and Kari [8]) models unscrambling
of a micronuclear gene that contains MDSs in the scrambled order 2-4-1-3 using
only the operation of linear/circular recombination:

{uxipoarx €xyyoqtce 00 x €3x a3x3 V)=
{# xp€3x3 03320 o0z X 04 T €2 Ty O X

={U X12 €3 X203 U3 X34 U ®€] X34 U4 T, €2 Ts O X[3 U2 X3} =

{t x12 €3 X23 €1 X34 04 Te €2 T5 Qp X1p Oz X3 O3 X34 ==>
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{u x12 €3 x 804 T, €3 T, 0y X3 g X O3 x34}
{uxpezxzer xuv T, 01 X1p ap xp3 a3 X34 04 =

Ts O Xj2 02 X23 A3 X: 04 T €, UXp €3 Xy

The case in which all types of recombinations (linear/linear, linear/circular
(Fig. 10.3), circular/circular (Fig. 10.4)) can occur, without restrictions, has
been studied [6]. This study complements results obtained on linear splicing,
circular splicing, self-splicing, and mixed splicing [5, 14-16, 21]. However,
while theorem 2 may follow from a result in Head et al. [5] on the closure of
an Abstract Family of Languages (AFL) under all splicings, theorem 1 charac-
terizes the language, L(R), of an arbitrary, context-free recombination system
with a possibly infinite set of pointers and arbitrary axiom sets.

The intuitive image of context-free recombinations is that one can view
strings as cables or extension cords with different types of plugs. Given a set of
pointers J, each x € J defines one type of plug. Strings, both linear and circular,
can then be viewed as consisting of elementary cables that only have plugs at
their extremities. (A circular strand consists of elementary cables connected to
form a loop.) A recombination step amounts to the following operations: take
two connections using identical plugs (the connections can be in two different
cables or in the same cable); unplug them; cross-plug to form new cables. We
will assume, without loss of generality, that all sets of plugs J are subword-
free [6].

+

Figure 10.3 .inear/circular recombination.
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Figure 10.4 Circular/circular recombination.

DEFINITION 2 Let J C X% be a set of plugs. We define the set of elementary
cables (respectively, left elementary cables and right elementary cables) with
plugsin J as

E; =Tttt \ SHizt,
L;=S*J\Z*JTH,
R, =JE*\ZHJz*

Note that an elementary cable in E; is of the form z;u = vz,, where z 1,22 €
J are plugs. In other words, an elementary cable starts with a plug, ends with
a plug, and contains no other plugs as subwords. The start and end plug can
overlap.

A left elementary cable is of the form wz, where z € J is a plug and wz does
not contain any other plug as a subword. In other words, if we scan wz from
left to right, z is the first plug we encounter. Analogously, a right elementary
cable is of the form zw, where z € J is a plug and wz does not contain any
other plug as a subword.

DEFINITION 3 For a set of plugs J € " and a linear word w € =, the set
of elementary cables with plugs in J occurring in w is defined as
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E;(w) = E; N Sub(w)

while the set of left and right elementary cables occurring in w is

Ly(w) = L, N Pref(w)
Rj(w) = Ry N Suff (w),

respectively, where Pref (w), Suff (w), Sub(w) denote the set of all prefixes,
suffixes and respectively subwords of w.

One can prove that recombination of cables does not produce additional ele-
mentary cables [6]. In other words, the set of the elementary cables of the result
strings equals the set of elementary cables of the strings entering recombination.

A context-free recombination system is a construct whereby we are given
a starting set of sequences and a list of pointers (plugs). New strings may
be formed by recombinations among the existing strands: if given pointers are
present, recombinations are performed as defined. Recombinations are context-
free (i.e., they are not dependent on the context in which the pointers appear).
The language of the system is defined as the set of all strands that can be thus
obtained by repeated recombinations starting from the initial set.

DEFINITION 4 A context-free recombination system is a triple
R=(%,J,A)

where X is an alphabet and J € TV is a set of plugs, while A € £+ U X°*is
the set of axioms of the system.

The theorem below shows that a context-free recombination system charac-
terized by a set of plugs J and a set of axioms A has the following property:
any cable that consists of elementary cables plugged together after each other
and that is either linear or circular can be obtained from the axioms using
cross-plugging. Conversely, no other types of cables can be obtained from the
axioms.

THEOREM I Let R = (I, J, A) be a context-free recombination system. Then
L(R) = X where X = {w € *U X*| either E;(w) = L;j(w) = Ry(w) =0
and w € A or Ej(w), Lj(w), R;(w) are not all empty and E;(w) € E;(A),
L;(w) € L;(A), L;(w) € L;(A)}

The theorem above will lead to the conclusion of this section provided we
show that the language X is regular being accepted by a finite automaton. As
X contains both linear and circular words, we have to first define the notion of
acceptance of circular words by a finite automaton.

DEFINITION 5 Given a finite automaton A, the circular language accepted by
A, denoted by L(A)*, is defined as the set of all words ew such that A has a
cycle labeled by w.
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The linear/circular language accepted by a finite automaton A is defined as
L(A) U L(A)*, where L(A) is the linear language accepted by the automaton
A defined in the usual way.

DEFINITION 6 A linear/circular language L € X* U X° is called regular if
there exists a finite automaton 4 that accepts the linear and circular parts of L
(i.e., that accepts LN Z* and L N *).

We can now formulate the main result presented in this section.

THEOREM 2 Let J C X* be a set of plugs and let A € T* U X° be a finite
axiom set. Then the set X defined as in theorem 1 equals the linear/circular
language accepted by a finite automaton .4 and is therefore regular.

Theorem 2 shows that the rewriting systems based on context-free recom-
binations are computationally weak, having only the power of finite automata.
This is one more indicator that, most probably, the presence of pointers alone
does not provide all the information needed for accurate splicing during gene
rearrangement.

GUIDED RECOMBINATION SYSTEMS

As seen previously, the estimated running time of a pointer-search-and-match
algorithm simulating gene rearrangement is prohibitively high. The previous
section showed that the computational power of a formal computational model
based on such context-free recombinations is very low—namely, that of finite
automata. These and other biological arguments point to the fact that this model
should be further refined to accurately reflect the biological reality [17]. We
have introduced the additional assumption that homologous recombination is
influenced by the presence of certain guiding contexts flanking the pointers
present at the MDS-IES junctions [9]. The observed dependence on the old
macronuclear sequence for correct IES removal in the distantly related ciliate
Paramecium suggests that this is the case [11]. This restriction captures the
fact that the pointers do not contain all the information for accurate splicing
during gene unscrambling. In particular, we defined the notion of a guided
recombination system based on operation 2 and proved that such systems have
the computational power of a TM, the most widely used theoretical model of
electronic computers [9].

We defined the contexts that restrict the use of recombinations by a splicing
scheme [3, 4, 9] a pair (X, ~) where I is the alphabet and ~, the pairing
relation of the scheme, is a binary relation between triplets of nonempty words
satisfying the following condition: if (p, x, g) ~ (p/, ¥, q’), thenx = y.

In the splicing scheme (X, ~), pairs (p, x, gq) ~ (p’, x, ¢') now define the
contexts necessary for a recombination between pointers x. Then we define
contextual intramolecular recombination as
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{uxwxv} = {uxv, ewx},

where u = u'p, w = qw’ = w”p’, v = ¢’v’. This constrains intramolecular

recombination within uxwxv to occur only if the restrictions of the splicing
scheme concerning x are fulfilled (i.e., the first occurrence of x is preceded by
p and followed by ¢, and its second occurrence is preceéded by p’ and followed
by g°). :

Similarly, if (p, x, g) ~ (p’, x, ¢’), then we define contextual intermolecu-
lar recombination as

{uxv, ewx} = {uxwxv},

where u = u'p,v = qv',w = w'p’ = ¢'w”. Informally, intermolecular
recombination between the linear strand uxv and the circular strand ewx may
take place only if the occurrence of x in the linear strand is flanked by p and g and
its occurrence in the circular strand is flanked by p’ and ¢’. Note that sequences
P, x,q, P, q are nonempty and that both contextual intra- and intermolecular
recombinations are reversible by introducing pairs (p, x, ¢') ~ (p/, x, q) in ~.

The operations defined in the preceding section are particular cases of contex-
tual recombinations, where all the contexts are empty [i.e, (A, x, X) ~ (\, x, \)
for all x € £*]. This would correspond to the case where recombination may
occur between every two pointers, regardless of their contexts.

DEFINITION 7 A guided recombination system is a construct R = (%, ~, A)
where (, ~) is a splicing scheme, and A € 7 is a linear string called the
axiom. _

Those strands which, by repeated contextual recombinations with initial and
intermediate strands eventually produce the axiom, form the language of the
guided recombination system, L’; (R). L’,j (R) thus denotes the multiset of words
w € T* with the property that, if present initially in at least k& copies, are able
to produce the axiom A by a series of contextual recombinations. (A multiset
is a set where to each element is associated a multiplicity. Operations applied
to elements of a multiset change their multiplicities. After an operation, the
multiplicities of the operation inputs decrease by one, while the multiplicity of
the operation output increases by one. The need of multisets for modeling is
justified in Landweber and Kari [9].)

THEOREM 3 Let L be a language over T* accepted by TM = (S, Z U {#}, P).
Then there exist an alphabet X', a sequence © € ™, depending on L, and a
guided recombination system, R, such that a word w over T* is in L if and only
if #%sow#%m belongs to LX(R) for some k > 1.

The idea of the proof is as follows. Consider that the rules of P are ordered
in an arbitrary fashion and numbered. Thus, if TM has m rules, a rule is of the
formi : u; —> v; where 1 <i <m.
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We construct a guided recombination system R = (X', ~, A) and a sequence
7 € ™ with the required properties. The alphabetis £’ = SUZU{#}U{$;| 0 <
i < m + 1}. The axiom, i.e., the target string to be achieved at the end of the
computation, consists of the final state of the TM bounded by markers:

A =#"25 #72808, L 8,801,

where 7 is the maximum length of the left-side or right-side words of any of
the rules of the TM.

The sequence 7t consists of the catenation of the right-hand sides of the TM
rules bounded by markers, as follows:

n= $o $1exvxf1$1 $2€202f2$2 aes $m€mUmfm$m $m+19

wherei: u; —> v;,1 <i <m+1aretherulesof TMand e;, v; € T U {#].

If aword w € T™* is accepted by the TM, a computation starts then from a
strand of the form #"2sw#" 25, where we will refer to the subsequence start-
ing with $; as the “program” and to the subsequence at the left of $; as the “data.”

We construct the relation ~ defining the contexts guiding the computations
so that (1) the right-hand sides of rules of TM can be excised from the program
as circular strands which then interact with the data; and (2) When the left-hand
side of a TM rule appears in the data, the application of the rule can be simulated
by the insertion of the circular strand encoding the right-hand side, followed
by the deletion of the left-hand side.

With the help of these contexts, we can prove theorem 3—namely, that we
can simulate the computation of any given TM by a series of contextual inter-
and intramolecular recombinations.

Theorem 3 also implies that if a word w € T* is in L(TM), then #5s,w#5n
belongs to L’;(R) for some k, and therefore it belongs to Lf,(R) foranyi > k.
This means that, to simulate a computation of the TM on w, any sufficiently large
‘number of copies of the initial strand will do. The assumption that sufficiently
many copies of the input strand are present at the beginning of the computation
is in accordance with the fact that there are multiple copies of each strand
available during the (polytene chromosome) stage where unscrambling occurs.
Note that the preceding result is valid even if we allow interactions of operation
3 between circular strands or within a circular strand.

The proof that a guided recombination system can simulate a TM and thus
any computation suggests that a functional macronuclear gene can be viewed
as the output of a computation performed on the micronuclear sequence.

CONCLUSIONS

We have described a model for the process of gene rearrangement in spirotrich
ciliates. Although the model is consistent with our limited knowledge of this
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biological process, it awaits rigorous testing by the tools of molecular genetics.
The model in its present form is capable of universal computation. This hints at
future directions and the use of ciliates as model systems for exploring cellular
computation.
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