Fundamenta Informaticae 114 (2012) 1-18 1
DOI 10.3233/FI-2011-608
10S Press

Pseudopower Avoidance

Ehsan Chiniforooshart, Lila Kari ™, Zhi Xu*

Department of Computer Science

The University of Western Ontario, London, Ontario, Canalfsd 5B7
chiniforooshan@alumni.uwaterloo.ca

lila@csd.uwo.ca

dr.xu.zhi@gmail.com

Abstract. Repetition avoidance has been intensely studied sinceSWwoek in the early 1900's. In
this paper, we consider another type of repetition, callElidopower, inspired by the Watson-Crick
complementarity property of DNA sequences. A DNA singlaistl can be viewed as a string over
the four-letter alphabdt4, C, G, T'}, whereinA is the complement df’, while C'is the complement
of G. Such a DNA single strand will bind to a reverse complemenADdigle strand, called its
Watson-Crick complement, to form a helical double-strahB&A molecule. The Watson-Crick
complement of a DNA strand is deducible from, and thus infiomally equivalent to, the original
strand. We use this fact to generalize the notion of the paferword by relaxing the meaning
of “sameness” to include the image througheaartimorphic involutionthe model of DNA Watson-
Crick complementarity. Given a finite alphaligtan antimorphic involution is a functigh: ¥* —

¥* which is an involution, i.e.§? equals the identity, and an antimorphism, itéuyv) = 0(v)6(u),

for all w € ¥*. For a positive integek, we call a wordw a pseudokth-power with respect té if

it can be written asv = wu; ... ug, wWhere forl < 4,5 < k we have eithet;; = u; or u; = 0(u;).
The classicakth-power of a word is a special case of a pseétiopower, where all the repeating
units are identical. We first classify the alphabEBtand the antimorphic involution for which
there exist arbitrarily long pseuddah-power-free words. Then we present efficient algorithms t
test whether a finite word is pseudokth-power-free.

Keywords: pseudopower, pseudosquare, pseudocube, antimorphiatiovg pattern avoidance

*The authors wish to thank Shinnosuke Seki and Lucian llieclonments on the draft of this paper. This research was
supported by Natural Sciences and Engineering Researafic€CotiCanada Discovery Grant R2824A01, and Canada Rdsearc
Chair Award to Lila Kari.

fAddress for correspondence: Department of Computer SejdHe University of Western Ontario, London, Ontario, Gina
N6A 5B7

2 E. Chiniforooshan et al. / Pseudopower Avoidance

1. Introduction

Let > be a finite alphabet. The set of finite words and infinite wonds & are denoted by.* and X,
respectively. A word is called afactor of x if + = uvw for some words: andw. A nonempty word
w is called asquare(resp.,cubg if w can be written asv = uwu (resp.,w = wuu) for someu € ¥*.
For example, the English word “murmur” is a square. More galhg for an integer: > 2, a nonempty
word w is called akth-powerif w = «* for someu € £*. A word w is calledsquare-fregresp.,cube-
free, kth-power-fre@ if w does not contain any square (resp., cutib;power) as a factor. In the early
1900’s, Thue showed in a series of papers examples of sfpe&rénfinite words oves letters and4
letters, respectively, and cube-free infinite words oveinary alphabet [22, 23] (see [3] for the English
translation). In 1921, Morse [19] independently discodefdue’s construction. In 1957, Leech [16]
showed another construction of square-free infinite wonddch are generated by a morphism. There
are square-free infinite words that cannot be generatedybgnarphism [2, 25].

Let| w |, be the total number of occurrences of the lettér the wordw, and letjw | = > s |w]|,
be the length of wordv for w € ¥*. A nonempty wordw is called anabelian squardf w is in the
form w = wjuy such thaf u, |, = |u2 |, for each letter. For example, the English word “teammate”
is an abelian square. Analogously, a nonempty wold called arabelian cubdf w = ujuqus, where
|ui|, = |u2]|, = |us|, for eacha € 3, and called arabelian kth powerif w = ujus ... us, where
k is an integer and > 2, |u; |, = |u;|, fora € ¥ andl < 4,5 < k. A word w is calledabelian-
square-free(resp., abelian-cube-freeabelian4th-power-fre¢ if w contains no abelian square (resp.,
abelian cube, abeliakth power) as a factor. In 1957, Erdos [8] asked whether thrigs an abelian-
square-free infinite word. Constructions of such words vggven by Evdokimov [9] in 1968 over 25
letters, Pleasants [20] in 1970 ovetetters, and by Keranen [12] in 1992 ovkletters. Most recently,
Keranen [13] presented many new abelian-square-fredtefivords. In 1979, Dekking [7] discussed
abeliankth-power-free infinite words fok > 3.

The discussion oith-powers is related to molecular biology, and especiallgigic acids research
(DNA, RNA). Indeed, repeats of certain segments in human dAomic sequences are sometimes
indicative of disease [18]. In the same context, anotheurabiotion arises, that of “informational
equivalence” between a DNA sequence and its Watson-Crinkptament. A DNA single strand is a
polymer consisting of a linear arrangement of monomersdatiucleotides. There are four different
types of nucleotides, adenine, cytosine, guanine and tiggmMathematically, a DNA single strand
can thus be viewed as a string over the four-letter alph&deC, G,T'}. An essential property of
DNA strands is their Watson-Crick complementarity:is complementary t@", andC to G, and two
DNA single strands of opposite orientation and whose nticles are respectively complementary, bind
together by hydrogen bonds to form a double-stranded h&id& molecule. The reverse complement
of a DNA single-strand is called its Watson-Crick complem&siven a DNA single strand and a supply
of individual nucleotides, under certain conditions, theyane DNA polymerase proceeds to form a new
DNA single strand that is the perfect Watson-Crick completd the original template. A DNA strand
and its Watson-Crick complement can even be experimerdbligined from each other, and can thus be
viewed as being informationally equivalent.

We model this fact by relaxing the “measure of sameness” ofviords to include an antimorphic
involution besides the identity function. Given an alphaiean antimorphic involution is a function
6 : ¥* — ¥* which is an involution, i.e.§? equals the identity, and an antimorphism, i&yv) =
0(v)0(u), for all w € ¥*. Note that, if¥ = {A,C,G,T} andd is the antimorphic involution defined

E. Chiniforooshan et al. / Pseudopower Avoidance 3

aso(A) = T, 6(C) = G, then for any stringw representing a DNA strand,(u) will represent its
Watson-Crick complement.

Other concepts in combinatorics on words have been gereddtiy replacing the identity function
by more general functions, e.g., morphic or antimorphioiations. They include pseudoprimitive
words [5] and pseudopalindromes [6, 11, 1].

Given an antimorphic involutiod of ¥* and a positive integek, we call a wordw a pseudokth-
power with respect t@ if it can be written asw = u; ... ug, Where forl < i,5 < k we have either
u; = u; oru; = 6(uy). In this paper, given integeks> 2, we investigate words that do not contain any
pseudokth-power as a factor.

In Section 2, we introduce the concept of pseudopower-freisvand discuss the existence of such
words over different settings of alphabefsand antimorphic involutiong. For example, we show
that, for any> with |X| > 4 (resp.,| 2| > 3), and any antimorphic involutioi over 3, there exist
pseudosquare-free (resp., pseudocube-free) infinitesmwitth respect t@. In Section 3, we discuss
algorithms for deciding, given an alphalt an antimorphic involutior of >*, a positive integek,
and a wordw € X*, whether or not the word is pseudadksth-power-free. The pseudosquare-freeness
and pseudocube-freeness of a wardan be tested i) (| w |) andO(| w |*) time, respectively. For any
integerk, k > 2, the pseudd:th-power-freeness can be testedi| w |* log | w |) time, which does not
depend ork. Section 4 summarizes our results and presents open prablem

2. Pseudopower-Free Infinite Words

Without loss of generality, unless mentioned explicithe always assume the letters are, 2, The
empty word is denoted byand the lexicographical order of words is denotedkby

A function § : ¥* — ¥* is called aninvolution if 0(0(w)) = w for all w € ¥*, and called an
antimorphism(resp.,morphisn if (uv) = 6(v)0(u) (resp.,0(uv) = 0(u)0(v)). We calld anantimor-
phic involution if 8 is both an involution and an antimorphism. An antimorphimiation is also called
an involutory antimorphism in the literature. For examphe classic Watson-Crick complementarity
of DNA strands can be viewed as an antimorphic involutiasver the four-letter alphabet of DNA nu-
cleotides{A, T, C,G}. Reversalalso calledmirror image), defined by(a;a; . can)f = an ... asaq, is
an antimorphic involution over any given alphabet. We alsitenfaas . .. a,)™ asR(a1as . . . a,) for
the convenience of composition of functions.trAnsposition(a,b), a < b, is a morphism defined by
(a,b)(a) =b,(a,b)(b) = a,and(a,b)(c) = cfor ¢ # a,c # b,a,b,c € ¥. One can verify that reversal
and any transposition commute, i.B.p (a,b) = (a,b) o R, and two disjoint transpositions: , a2) and
(bl, bg) commute, i.e.(al, a2) o (bl, bg) = (bl, b2) o (al,ag) for a; 7& bj,i,j S {1, 2}. By definition,
every antimorphic involution on an alphabet is a permutatibthe letters. Furthermore, we have the
following proposition.

Proposition 2.1. Letd be an antimorphic involution over the alphabetThend can be uniquely written
as the composition of transpositions with reversal

0 = (ag,a1) o (ag,a3) ... (azm—2,a2m—-1) o R 1)

up to changing the composition order, whefe# a; for i # j andm > 0.

4 E. Chiniforooshan et al. / Pseudopower Avoidance

Proof:

First we show thafl(a) is a single letter for any letter. By definitions,f(w) = 0(ew) = 6(€)f(w), SO
0(e) = e. Foranya € ¥, sincef(0(a)) = a, we have|f(a)| > 0and|f(a)| < 2. Hence|0(a)| = 1
for anya € X.

Now we prove the existence of the decomposition in (1pfby induction on the size of the alphabet.
If || =1, thenf(0) = 0 andf(0™) = 0™ = R(0™). Sof = R and (1) holds. IfiX| = 2, then
eitherf(0) = 0 or #(0) = 1. One can verify tha? = R when§(0) = 0 andé = (0,1) o R when
6(0) = 1. Suppose (1) holds for any= | < n. For|X| = n > 3, eitherf(0) = 0 or #(0) = a for
somea # 0,a € X. If 6(0) = 0, then by induction hypothesis the restrictionfodn alphabet \ {0}
can be written a$ag, a1) . . . (a2m—2, a2m—1) o R. S00 = (ap,a1) ... (a2m—2,a2m—1) © R in this case.
If 6(0) = a, thené(a) = 0. By induction hypothesis, the restriction ®bn alphabet \ {0,a} can be
written as(ag, a1) . . . (agm—2, a2m—1) © R. S00 = (0,a) o (ag,a1) ... (agm—2,asm—1) o R. Therefore,
(1) holds.

To show the uniqueness of the form in (1), we first notice thatyetransposition is the inverse of
itself. Assume there is another decompositior (bg, b1)o (b2, b3) . .. (ban—2,ban—1)oR, whereb; # b;
fori # jandn > 0. Thend(by) = by and thus there is some,, ap+1) = (bo, b1). Sincea; # a; for
i # j, the order of composition in (1) can be arbitrarily changddnce we have

(b2,b3) ... (ban—2,b2n—1) o R
=(bg,b1) 0 0

:(ao, al) e (ap_g, a,p_l) o (ap+2, ap+3) e (agm_g, agm_l) oR .

Continuing this procedure, it follows th&t = (ag, a’) ... (a},,,,_,,a5,,,_;) o R. By the construction of
{a;}, however, we know; # a for i # j. Som’ = 0, since otherwis&®(ay) = aj # a;. Therefore,
m = nand{(bo,b1),...,(ban—2,b2n-1)} = {(ao,a1), ..., (a2m—2,a2m—1)}. O

For any antimorphic involutiod over, we defineldt(f) = {a € ¥ : a = 6(a)} to be the set of all
letters that remain identical undér and defin€lrn(f) = {a € ¥ : a < 6(a)} to be the set consisting
of the “smaller” letter, of each pair of letters that are fisposed” into each other i Then6 is
fully characterized byIdt(6) | and| Trn(@) | up to an isomorphism. The following proposition follows
directly from Proposition 2.1.

Proposition 2.2. Let § be an antimorphic involution ovet. Thené can be written as the composition
of | Trn(0) | distinct transpositions with reversal, and

| 1dt(6) | + 2| Trn(0) | = | 2 . @)

Proof:

By the proof of Proposition 2.H,can be written a8 = (ag, a1)o (a2, as) ... (a2m—2,a2m—1)oR, where
a; 75 a; for ¢ 75 j- ThenIdt(Q) =X \ {ao,al, . ,aszl} andTrn(H) = {ao,ag, . ,agm,Q}. So
m = | Trn(6) | and (2) holds. 0

For integersk, k > 2, and antimorphic involutiod, we call a wordw a pseudokth-power (with re-
spect tod) if w can be written as = wjus . . . u, Where eithew; = u; oru; = 6(u;) for1 <i,j < k.
In particular, we call a pseudmd-power gpseudosquareand a pseud8rd-power apseudocubeFor

E. Chiniforooshan et al. / Pseudopower Avoidance 5

example, over the alphabgt, T, C, G} (here we use the conventional symbols insteafbot, 2, 3}) with
respect to the Watson-Crick complementarity { — T,T — A,C — G,G — C), ACGCGT = ACGH(ACG)

is a pseudosquare amdGTAC = ACH(AC)AC is a pseudocube. By definition, a palindrome is a pseu-
dosquare with respect to reversal. A wards calledpseudokth-power-free(resp.,pseudosquare-free
pseudocube-frge if w cannot be written asw = uvx wherev is a pseuddsth-power (resp., pseu-
dosquare, pseudocube). The first proposition is ratheéghktfarward.

Proposition 2.3. If awordw is pseudadkth-power-free, thew is kth-power-free. If a wordv is abelian-
kth-power-free, themw is pseudakth-power-free with respect to reversal.

In the remaining part of this section, we will discuss thddwing problem: Is there a pseuddh-
power-free infinite word oveE with respect t&#? The discussion on pseudth-power-free words is
related to ordinaryth-power-free words and abelidrth-power-free words in some cases. By defini-
tion, everykth-power is a pseudbth-power (with respect to any antimorphic involution on game
alphabet). Every pseuddah-power is an abeliakth power with respect to reversal, but a pseudtio-
power may not be an abeligtth power in general. For exampl&CGT is a pseudosquare with respect
to Watson-Crick complementarityand is not an abelian square, while2021 is an abelian square and
is not a pseudosquare with respect to any antimorphic itieolwf 3 letters. We, however, have the
following lemmas that reveal part of the relation betweendtioidance of different types of repetitions.

Lemma 2.1. Let [be the minimal size of the alphabet over whidh-power-free infinite words exist,
let X be an alphabet, and Iétbe an antimorphic involution over.

(1) If | 2| < I, then no pseudéth-power-free infinite word oveX exists with respect t8; otherwise

(2) When|Trn(0)| > [, then there is a pseudah-power-free infinite word oveX with respect t@.

Proof:

(1) Sincel is the minimal size of the alphabet over which there istlapower-free infinite word and
| X | < I, there is an integeN such that any word of length greater thdnover X contains &th-power.
Notice that &th-power is a pseudbth-power (with respect to any antimorphic involution). $wy aord
of length greater tha®V overX. contains a pseudbth-power with respect té.

(2) We choose&’ C Trn(6) such that X' | = I. Then there is an infinite word overY’ such thatw is
kth-power-free. Now we claim thabt is also pseuddzth-power-free ovek: with respect td#. Suppose
w contains a pseudbth-power. Themnw = zujus ... ury, Where eithem; = u; or u; = 0(u;) for
1 <i,j < k. Foranya € ¥, by definition,a < 6(a) andf(f(a)) = a < 6(a). Sof(a) ¢ ¥’ and
thus 6(u;) is not a word over for everyl < ¢ < k. Henceu; = u; for 1 < ¢,j < k and thus
uius . .. ug IS @ normalkth-power, which contradicts the fact thatis kth-power-free. Thereforay is
pseudokth-power-free with respect O

Lemma 2.2. Let ¥ be a(2] — 1)-letter alphabet and létbe an antimorphic involution ovet. If there
is an abeliankth-power-free infinite word over letters, then there is a pseudti-power-free infinite
word overX with respect td.

6 E. Chiniforooshan et al. / Pseudopower Avoidance

Proof:
By Eq. (2) in Proposition 2.2, it follows thgtIrn() | < [and thus|Idt(6)| + | Trn(0)| > . We
chooseX’ C 1dt(#) U Trn(f) such that X’ | = I. Then there is an infinite word overY’ such thatw is
abeliankth-power-free. Now we claim that is also pseuddth-power-free ovek with respect td.
Supposev = zujus ... ury contains a pseudbth-power, where eithes; = uq or u; = 6(uy) for
1 < i < k. Then eitheru; is a word overldt(f) or u; contains at least one letter frofiin(6). If
up € Idt(9)*, thenf(u1) = R(u1). Soujus ... u is an abeliankth power, which contradicts the fact
that w is abeliankth-power-free. Otherwisey; contains at least one letter froffrn(6), saya. Then
sincea < f(a) andf(f(a)) = a < 0(a), we havef(a) ¢ ¥’ C Idt(0) U Trn(f). Sowu; = wuy for
1 < i < k, and thusw contains akth-power, which again contradicts the fact thais abeliankth-
power-free.
Thereforew is pseudadksth-power-free with respect O

Lemma 2.3. Let # be an antimorphic involution ovet and letd’ be an antimorphic involution ovet’
such that| Trn(¢’) | > | Trn(0) | and|Idt(0") | + | Trn(¢’) | > |1dt(0) | + | Trn(0) |. If pseudokth-
power-free infinite words exist ovet with respect ta@, then such words also exist ovef with respect
tod'.

Proof:

We chooseX; C Trn(¢') such that| 31 | = | Trn(6)|. Since|Idt(0')| + | Trn(¢’) | — | Trn(0) | >
|1dt(0) |, we can choos&s C Idt(f') U Trn(f’') \ X such that| Xy | = |Idt(f)|. DefineX” =

Y1 U{#'(a) : a € X1} U Xy, and define antimorphic involutiof” by 0" (a) = a,6”(b) = 6'(b)
fora € 9,0 € S U{0'(a) : a € T1}. Then|X"| = |2, |1dt(0”)| = |X2| = |1dt(#) | and

| Trn(6”) | = | 21| = | Trn() |. Sof andd” are identical up to renaming of the letters. There is a word

w over X" such thatw is pseudakth-power-free with respect t6’. We claimw is also pseuddih-
power-free oved’ with respect t@'.

Supposeav = zujus . .. ury contains a pseudbth-power, where eithex; = uy or u; = 6'(uy) for
1 < i < k. Then eitheru; is a word over$; U {60'(a) : a € 31} U (X2 N1Idt(6)) or uy contains at
least one letter fronty N (Trn(#') \ X1). In the former cased”’(u1) = 6'(u1) and thusw contains
a pseuddsth-power with respect t6”, which contradicts the fact that is pseudakth-power-free. In
the latter case, we assume containsa € %, N (Trn(0’) \ X1). One can verify that’(a) ¢ %", so
u; # 6'(uq) for everyl < i < k. Hencew contains akth-poweru,us . . . ux, which again contradicts
the fact thatw is pseudcdkth-power-free.

Thereforew is pseudadkth-power-free oveE with respect ta@’. O

2.1. Pseudosquare-Free Infinite Words

From the general case of pseuklb-power-free infinite words, we now focus our attention loa partic-
ular case of pseudosquare-free infinite words. Since eveayybword of length greater thahcontains
squares, there is no square-free infinite word @detters. By Keranen'’s construction of abelian-square-
free infinite words, there exist pseudosquare-free infinibeds over4 letters with respect to reversal.
Furthermore, we have the following result.

Proposition 2.4. For a three-letter alphabet, a pseudosquare-free infiritel wxists with respect to
reversal, and does not exist with respect to any other anpiniwinvolution.

E. Chiniforooshan et al. / Pseudopower Avoidance 7

Proof:
There are two kinds of antimorphic involutions ouetetters: ¢ is either reversal or a transposition
composed with reversal.

Supposéed is reversal. Then a word is pseudosquare-free if and onlyiff square-free. Every
pseudosquare-free word is square-free. To see the otleetidir, assume is square-free. lfv contains
a pseudosquare of the formus such that; = 0(us), thenujus = u§u2 contains a square of length
2 in the middle, which is impossible sinee is square-free. S is also pseudosquare-free. Since
there are square-free infinite words over a three-lettdradipt, for example the word = (“(0) where
[is a morphism given by Leech [16] &80) = 0121021201210, /(1) = 1202102012021, [(2) =
2010210120102, there are pseudosquare-free infinite words with respeetversal.

Now supposée) is a transposition composed with reversal. Without lossasfegality, we assume
6 = (0,1) o R. We prove that no pseudosquare-free word of length grelaéer7texists in this setting.
Supposeav is a pseudosquare-free word of length greater thaBince a pseudosquare-free word (with
respect t@) cannot contairwo, 11, 22, 01, 10, the letter2’s in this word either all appear at odd positions
or all appear at even positions. If we omit all symb2ls w, the new wordw’ is over{0, 1} and is of
length greater thaf. Thenw’ must contain a square and so daesSo there is no pseudosquare-free
infinite word over3 letters with respect to a transposition composed with saler O

We wrote a computer program to find the longest pseudosdresevord with respect té = (0,1)oR,
if any. Starting from the empty word if a word is pseudosquare-free, then we extend the word tiygd
a new lettero at the end; otherwise, we do back-tracking and try the nétdrleln other words, we do
a depth-first-search in a labeled tree (callade), where each node presents a finite word. Application
of similar technigues have been used in the literature tavghe non-existence of words of certain type
(for example, see [21]). In the casedfetters and) = (0, 1) o R, the tree had1 nodes, including1
leaves, and all pseudosquare-free words are enumeratedtrekhis of deptt® and one of the longest
pseudosquare-free wordsig12021 of length?7.

Now we discuss the existence of pseudosquare-free infimitdsan the “DNA setting”, that is over
4 letters with respect to an antimorphic involutiérsuch that Trn(6) | = 2.

Proposition 2.5. Let ¥ = {1,2,3,4} andf be an antimorphic involution over such that)(0) =
1,6(2) = 3. Then an infinite wordw € X is pseudosquare-free with respectétoif and only if
we ((0+1)(2+3)“+ ((2+ 3)(0+ 1))¥ andw is square-free.

Proof:

“=". Sincew is pseudosquare-free; is square-free. Furthermore, any word(in+ 1)? + (2 + 3)?
is a pseudosquare, so the lettersuirmust appear alternatively frofo,1} and {2,3}. Hencew €
(04+1)(2+3)“ + ((2+3)(0+ 1))~.

“«<". Supposew contains a pseudosquare. Sincds square-free, it must be the case that=
uxf(x)u. By the definition of antimorphic involution, the last letief = and the first letter of (z) are
either both from{0, 1} or both from{2, 3}, which contradicts the fact that € ((0 + 1)(2 + 3))¥ +
((2+3)(0+1))~. O

Lemma 2.4. Let 6 be an antimorphism over letters with| Trn(0) | = 2. A pseudosquare-free infinite
word exists with respect 6.

8 E. Chiniforooshan et al. / Pseudopower Avoidance

Table 1. The existence of pseudosquare-free infinite words

|2 1 2 3 4 5 6 7 8
|Trn(6)]=0 | No No Yes Yes Yes Yes Yes Yes
| Trn(f) | =1 — No No Yes Yes Yes Yes Yes
|Trn(0) | =2 | — — - Yes Yes Yes Yes Yes
| Trn(6) | =3 - - - - - Yes Yes Yes
| Trn(0) | = 4 - - - - - - - Yes

Proof:

Without loss of generality, suppoge= (0, 1) o (2, 3). Let the morphismy be f(0) = 02, f(1) = 12,
f(2) = 03, f(3) = 13. We prove thatv = f“(0) satisfies the conditions in Proposition 2.5 and
thus is pseudosquare-free. First, by noticifi@) € (0 + 1)(2 + 3) for every lettera, we havew €
((0+1)(2 + 3))“. Now we show thaif preserves square-freeness for some particular type ofsword
Let w be the shortest square-free word such thatoes not contai®1, 10,23, 32 and f(w) contains

a square. Then there are four casesu(iy wv/, f(u) = f(u'); (i) w = wav/, a € X, f(a) = be,
f(u)b = cf (u); (i) w=wd, f(u) = av, f(u') =vd; (V) w =uav',a € X, f(a) = be, f(u) = dev,
f(') = vbd'. Case (i) is impossible sincgis a length-uniform morphism and is square-free. Both
cases (ii) and (iii) are impossible due to the interlacinghefletterso, 1 with 1,2 in f(w). For case (iv),
we have eithefv = 120x2 or w = 0x1x3 or w = 2x3x1 or w = 3x2x0, hone of which is possible due
to the interlacing of the letters im. So, for a square-free word that does not contaiai, 10, 23, 32,
the wordf (w) is also square-free. Therefore= f“(0) is pseudosquare-free. O

Theorem 2.1. Let 6 be an antimorphic involution over the alphabét The existence of pseudosquare-
free infinite words is as specified in Table 1.

Proof:

(i) Since3 is the minimal size of alphabet over which there is a squage-ihfinite word, by Lemma 2.1,
there is no pseudosquare-free infinite word okdetters fork < 2 and there is a pseudosquare-free
infinite word with respect té with | Trn(6) | > 3.

(ii) Since there exists an abelian-square-free infinitedamrer4 letters, by Lemma 2.2, there is a
pseudosquare-free infinite word ovieor more letters.

(iii) By Proposition 2.4, oven letters, there is a pseudosquare-free infinite word witpeesto
reversal, whereIdt(R)| = 3,| Trn(R)| = 0, and there is no pseudosquare-free infinite word with
respect to other antimorphic involution. So by Lemma 2.8ydhis a pseudosquare-free infinite word
with respect t@ such that Idt(6) | + | Trn(6) | > 3.

(iv) The only case remaining is ovérletters with| Trn(#) | = 2, and by Lemma 2.4 pseudosquare-
free infinite words exist.

The results are as summarized in Table 1 and thus the theernerovied. O

E. Chiniforooshan et al. / Pseudopower Avoidance 9

2.2. Other Pseudopower-Free Infinite Words

We now focus our attention on other pseudopower-free iefiwibrds. First, we consider pseudocube-
free infinite words. By Dekking’s construction of abelianbe-free infinite words, there exist pseudocube-
free infinite words oves letters with respect to reversal. The case over the unahab#t is trivial. For
the binary alphabet, we have the following result.

Proposition 2.6. No pseudocube-free infinite word exists over a binary alphabith respect to any
antimorphic involution.

Proof:
There are two kinds of antimorphic involutions over a binalyhabet: we have eithér= R or § =
(0,1) o R.

Suppose¢) = R. We use the computer to find the longest pseudocube-free, Wandy, as we did
with pseudosquare-free words. Starting from the empty wpifla word is pseudocube-free, then we
extend the word by appendirgg otherwise, we do back-tracking and try the next letter. fdsulting
depth-first-search tree is finite. There are in tdtal nodes, includingd6 leaves. The tree is of depth
10 and one of the longest pseudocube-free word®is01100. So there is no pseudocube-free infinite
word on this setting.

Supposé = (0,1) o R. Then any word in this setting is a pseudopower and thus otieedbngest
pseudocube-free wordsas. O

Proposition 2.7. There is a pseudocube-free infinite word o¥égtters with respect to each antimorphic
involution.

Proof:
There are two kinds of antimorphic involutions owetetters: 6 is either reversal or a transposition
composed with reversal.

Supposd is reversal. The following morphisa; given by Dekking [7] presents an abelian-cube-
free infinite worddy (0) over3 letters, which is therefore also pseudocube-fieg0) = 0012, d3(1) =
112, d3(2) = 022. So there is a pseudocube-free infinite wak{0) over 3 letters with respect to
reversal.

Now supposé is a transposition composed with reversal. Without lossesfegality, we assume
6 = (0,1) o R. Consider the following morphisnt(0) = 021, ¢(1) = 120, ¢(2) = 2. One can verify
that the wordz = ¢“(0) = 02121202120202121202021... is the Thue-Morse sequence [23] with
the letter2 inserted between every two consecutive letters. Now weeptbatz is pseudocube-free.
Suppose: = zwjwewsy contains a pseudocuhe wows with |wy | = |we | = |ws|. Either the last
letter ofw, or the first letter ofws is 2, but not both. Sincé(2) = 2, we havew; # 6(ws). Sow; = ws.

By the same reasoning;; = ws. Then the length ofv; = wy = w3 must be even. Otherwise, either
the first letter ofw, or the first letter ofws is 2, but not both, and thus we hawg # w.. Now since
|wy | = |we | = |ws| is even, we can omit the letterfrom each word and get new words , w), w}
such thatw] = wy = wh andwjwhyws is a factor of the Thue-Morse sequence, which contradies th
fact that the Thue-Morse sequence is cube-free. Thereferei’(0) is pseudocube-free with respect to
(0,1) o R over3 letters. 0

10 E. Chiniforooshan et al. / Pseudopower Avoidance

Table 2. The existence of pseudocube-free infinite words

|2 1 2 3 4 5 6 7 8
|Trn(6)]=0 | No No Yes Yes Yes Yes Yes Yes
| Trn(f) | =1 — No Yes Yes Yes Yes Yes Yes
|Trn(0) | =2 | — — - Yes Yes Yes Yes Yes
| Trn(6) | =3 - - - - - Yes Yes Yes
| Trn(0) | = 4 - - - - - - - Yes

Theorem 2.2. Let § be an antimorphic involution over the alphaket Then pseudocube-free infinite
words overX do not exist forl £ | < 2 and exist for] £ | > 3, with respect td@.

Proof:

() Since2 is the minimal size of alphabet over which there is a cube-iinéinite word, by Lemma 2.1,
there is no pseudocube-free infinite word okdetters fork < 1 and there is a pseudocube-free infinite
word with respect to an§ such that Trn(0) | > 2.

(if) There is an abelian-cube-free infinite wod (0) over 3 letters. By Lemma 2.2, there is a
pseudocube-free infinite word oveior more letters.

(i) By Proposition 2.6, there is no pseudocube-free inéinord over a binary alphabet. By Propo-
sition 2.7, there is a pseudocube-free infinite word @véatters. In particular, there is a pseudocube-
free infinite word ove3 letters with respect to reversal, wherklt(R)| = 3,| Trn(R)| = 0. So by
Lemma 2.3, there is a pseudocube-free infinite word witheesjod such that 1dt(0) |+| Trn(6) | > 3.

The results are summarized in Table 2. O

We now discuss pseuddh-power-free infinite words fok > 4. Every word over a single letter is
a power. So the unary case is trivial and no X-free infinitedvexists for X either &th-power, or an
abeliankth power, or a pseudbth-power. One can verify that the woif (0) is pseudadkth-power-free
for £ > 4 with respect to reversal, where the morphigmis given by Dekking [7] asl4(0) = 011,
ds(1) = 0001. By Lemma 2.3, the following theorem holds.

Theorem 2.3. Let 6 be an antimorphic involution over the alphabgand letk > 4 be an integer. Then
pseudokth-power-free infinite words exist either whéek | > 2 or when| X | = 2 and| Trn(f) | = 0.

Proof:

(1) There are no pseudopower-free infinite words over theyualphabet. Since there iskdh-power-
free infinite word over the binary alphabet, by Lemma 2.1rdli® a pseuddth-power-free infinite word
with respect to any such that Trn(0) | > 2.

(2) There exists an pseudo-4th-power-free infinite wordr ekre binary alphabet, such as the fol-
lowing construction by Dekking [7{ = d4(0) whered4(0) = 011, d4(1) = 0001. So there exists an
abeliankth-power-free infinite wordv over the binary alphabet for any integer> 4. By Lemma 2.2,
there is a pseudbth-power-free infinite word oves or more letters.

(3) That infinite wordw = df(0) is also a pseudéth-power-free infinite word fok > 4 over
binary alphabet with respect to reversal, whgiét(R) | = 2, | Trn(R) | = 0. So by Lemma 2.3, there

E. Chiniforooshan et al. / Pseudopower Avoidance 11

Table 3. The existence of pseudth-power-free infinite words fot > 4

| 1 2 3 4 5 6 7 8
|Trn(f) | =0 | No Yes Yes Yes Yes Yes Yes Yes
| Trn(0) | = - No Yes Yes Yes Yes Yes Yes
| Trn(0) | = - - - Yes Yes Yes Yes Yes
| Trn(0) | = - — - - - Yes Yes Yes
| Trn(0) | = - — - - - - — Yes

is a pseuddeth-power-free infinite word fok > 4 with respect td@ such that Idt(0) | + | Trn(0) | > 2.
If 8 = (0, 1) o R over binary alphabet, then any word is a pseudopower.
The results are summarized in Table 3. O

3. Testing Pseudopower-Freeness of Words

Let X be an alphabet and létbe an antimorphic involution ovet. In this section, we will discuss the
following problem: Given a finite wordv over Y and an integek > 2, doesw contain a pseudéth-
power with respect t@ as a factor? Section 3.1 discusses the general algorithanfarbitraryk, and
Section 3.2 provides more efficient algorithms for the patéir cases of the existence of pseudosquares
and pseudocubes. We assujagl = N in the following discussion.

3.1. Testing Pseudd:th-Power-Freeness for Arbitrary %

The naive algorithm to decide whethercontains any pseudkth-power as a factor runs @(N?3) time.
The idea is that we check each possible candidate faabbrw to see whethet is a pseuddsth-power.
There areO(N?) factors, and checking whether a word is a psektiepower can be done with (V)
comparisons of letters.

Here we consider a more general problem and presei@®(@? log V)-time algorithm. Letd :
¥* x ¥* — R be a function. Since will serve as a tool to compare words and we only care about
comparing equal-length words, we assume ttiat v) = oo for all wordsu andv with unequal lengths.
The FEND-d-POWERSproblem is as follows:

Input: A finite word w and two integerg > 2 andg > 0.

Output: All pairs(s,t) such thato[s. .. t] = ugviugve ... ug_1VE_1Uk, | ;| = | wit1 |, d(ui, uip1) =
0,and|v; | =g, foralll <i < k.

In Fig. 1, an output paifs, t) is shown ¢ = 2). Our original problem of finding all pseuddah-power
factors is equivalent toIND-d-POWERSIf we setd(u, v) = min{H (u,v), H(u,0(v))}, whereH is the
Hamming distance betweenandv, andg = 0. We show that a simple dynamic programming approach
can be used to solvelfd-d-POWERSin O(N?t(N)lg N) time for a large class of functions, called
t-breakable.

12 E. Chiniforooshan et al. / Pseudopower Avoidance

Ui U1 U2 V2 us

HEEENNNEENNNNEENNNE
S t

Figure 1. A third-power with gaps of length twa ({1, u2) = d(us2, us) = 0).

We first explain our algorithm fad(u, v) = H (u, v); then, we show how it can be expanded to more
general distance functions.

Lemma 3.1. Let g > 0 be an integer, and € ¥* be a word. Then there is an algorithm that constructs
anN x N matrix D in time O(N?1g N) such that

) o%, ifi+2j+g—1>N;
Y ldwlie. i = 1] wli+j+g...i+2j+g—1]), otherwise

Note that an equivalent description bfis thatD; ; is the distance between two subwordsugfboth
of length 7, such that there is a gap of exactlyletters in between them and the first subword starts at
positioni.

Proof:
In order to computed, we first construct a number of auxiliaty x N matricesD®, D) .. DUgN)
such that

() _) oo, ifi+2P—1>Norj+2°P—1> N;

S Vd(wli.. i+ 20 —1],wlj...j+ 2P —1]), otherwise

SinceDES.) = d(wli], w[j]), D® can be computed in tim@(N?). Moreover,DEf}) can be computed in
constant time using values n(®—1:
() _ (r—1) (r—1)
D5 = Dij "+ Diigpm1 jiopr 3)
Therefore, constructing all the auxiliary matrices can bealin timeO(N21g N). Since each entry of

D can be computed as the sum of at mdst/V] entries from the auxilary matrice®) can be computed
intime O(N?1g N). O

We observe that a paf, ¢) is in the output of FND-d-PowEeRSif and only if the column number

t—s+1—(k—1)g
v k

in D containsk — 1 zero’s at rowss, s + = + g,s + 2z + 2g,...,s + (k — 2)z + (k — 2)g. So, having
D computed, it is possible to compute the output oi~d-PoOwERS with only one scan of all entries
of D. Note that this does not depend bywe do anO(N?1g N) time preprocessing, and, then, we can
solve AND-d-PowERsfor any given value of: in time O(N?).

Now, in an exactly similar manner, we can solvalb-d-POWERS whered is t-breakable for a non-
decreasing function: N — N: we calld t-breakableif there are two algorithms BeEAK and GOMBINE
such that for all wordsi;, us, v € ¥,

E. Chiniforooshan et al. / Pseudopower Avoidance 13

1. BREAK(uq,uzg,v) is an integer if0, | v |].

d(ul’vl)’ d(ul)UQ)a

2. d(ujuo,v1v9) = COMBINE | uq,u9, vy, v
(urug,v1v7) < 1, U2, V1, V2, d(ug,vs), d(uy, v2)

]) wherev = v1v9 and
| v1 | = BREAK (uq,u2,v).
3. BREAK and GMBINE run in imeO(t(| uy | + |ua | + v).

The only modification is that in (3), we useRBAK and COMBINE to computeDgf;) in time O(t(N))
from appropriate entries dp®—1.

Lemma 3.2. For everyt-breakable functionl : ¥* x ¥©* — R, there is anO(N?t(N)lg N)-time
algorithm for AND-d-POWERS a

Example 3.1. The following functions ard -breakable, wher is a function mapping every number to
1:

1. the Hamming distancH (u, v);
2. d(u,v) = H(u,0(v));
0 if u=nov,

3. d(u,v) = { 1 _
Tep(a.0 71 otherwise

wherelcp(u, v) is the longest common prefix afandv;

4. d(u,v) = S s(uld], ofi]) + s(uld], v[i — 1])/10 + s(uli], v]i + 1])/10, wheres : % — R is
any function assigning penalties to mismatches dependirth@letters that mismatch. Roughly
speaking, in this case, the distance functiois a “weighted-Hamming distance” function which
also takes into account neighbouring positions.

Hamming distancéd is al-breakable function, becaus&BAK (uy,ug,v) = |uy | and

H(ul,vl) H(ul,’l)g)

H(ug,vo) H(ug,v) D = H(u1,v1) + H(uz2,v2)

COMBINE <’LL1,’LL2,’U1,’U2, [

satisfy the above-mentioned three conditions. The dismuss other examples is similar and omitted
here.

We call a functiond, pseudot-breakableif there is a constant number ofbreakable functions
dy,ds,...,d,andan0(t(|u|+|v]))-time algorithmA that computed(u, v) if u, v, di (u,v), da(u,v),
..., dm(u,v) are given as the input. Clearly, if we compute the matvixof Lemma 3.1 for functions
di,ds, . ..,dn,, we can combine these matrices usifignd computeD for d in time O(N?t(N)). So,
we have the following lemma.

Lemma 3.3. For every pseude-breakable functiod : ¥* x X* — R, there is arO(N?t(N) Ig N)-time
algorithm for AND-d-POWERS a

'Here we are assuming tharRBAK and COMBINE have oracle access to the input words, i.e., they can reaiththetter of an
input word and the length of an input word in constant time.

14 E. Chiniforooshan et al. / Pseudopower Avoidance

Example 3.2. The following are pseuda-breakable:

1. anyc-breakable function;
2. d(u,v) = min{H (u,v), H(u,0(v))};
3. d(u,v) =0, if min{H (u,v), H(u,0(v))} <|u|/10, andl otherwise.

In the particular casé(u, v) = min{H (u,v), H (u,(v))}, which is a pseudd-breakable, we have
the following result.

Corollary 3.1. There is arO(N?1g N)-time algorithm to enumerate all pseugéith-power factors ino.

3.2. Testing Pseudosquare- and Pseudocube-Freeness

In this subsection, we show how to efficiently decide whethrenot a wordw is pseudosquare-free
(resp., pseudocube-free).

A word w is pseudosquare-free with respecttib and only if w is square-free (which can be tested
in O(N) time [4, 17]) andw does not have factors of the fora#(a) for a € X. Thus, we have the
following theorem.

Theorem 3.1. There is a linear-time algorithm to decide whether a worid pseudosquare-free.

Proof:
A word w contains a pseudosquare if and onlyitontains a square or a word of the form(w).

To check whethekw contains a square can be done in linear time. There are a fparpa the
literature on testing square-freeness in linear time [4, 17

To check whethetv contains a word of the form(u), it is enough to check whether contains a
word af(a) for a lettera. To see this, ifw containsuf(u), then leta be the right-most letter af andw
containsaf(a); for the other direction, the word)(a) itself is a pseudosquare.

Algorithm 1: Decide whethetw is pseudosquare-free in linear time
Input: a wordw = w[1.. N].
Output: “YES” if w is pseudosquare-free; “NO” otherwise.

1 if w contains a squar¢éhen return “NO” ;

2 for i from 1to N —1do

3 | if O(wli]) = w[i + 1] then return “NO” ;

4 return “YES”;

The algorithm is illustrated in Algorithm 1. It is obviousatthe algorithm is linear. a

Before we show a quadratic-time algorithm for testing wketh word is pseudocube-free, we first
introduce some concepts. Let = w[l.. N] be a finite word over: and letd be an antimorphic
involution over the same alphahgt For a fixed integek, aright minimal period arrayrmpf [1 .. N] of
w is a vector and is defined by

rmp” [i] = min {{n cwli..i 4 kn — 1] = 2* for somex # €} U {—i—oo}} ,

E. Chiniforooshan et al. / Pseudopower Avoidance 15

and similarly aeft minimal period arrayimp? [1 .. N| of w is defined by
Imp¥ [i] = min {{n cwli — kn +1..4) = 2* for somex # €} U {+oo}} .

A centralized maximal pseudopalindrome arkayp,,[0.. N] of w (with respect td) is defined by
cmp,,[i] = max{{m : O(w[i —m..i — 1]) = w[i..i + m — 1]} U{0}} .

For example, whemw = 01001010 and§ = R, we havermp?, = [3, +o0,1,2,2, +00, +00, +0oc],
Imp?, = [+00, +-00, +00, 1, +00, 3, 2, +-00], andecmp,, = [0,0,0,3,0,0,0,0, 0].

Lemma 3.4. [15] For any fixed integet, the right minimal period arraymp?, of word w can be com-
puted inO(N) time.

There is an algorithm to computenp?,, the shortest square starting at each position, in linear
time [15] by using suffix trees. Sindenp?, can be obtained by first computirig = rmp%{(w) and

then reversing/, Imp?2, can also be computed @(N) time.

Lemma 3.5. The arraycmp,, of word w can be computed i@ (V) time.

Lemma 3.5 in the cage= R has been proved in the book [10, pp. 197-198], and can beajzeer
to arbitrary antimorphic involutiong.

Now we are ready to give a quadratic-time algorithm to testtivér a wordw is pseudocube-free.
By definition, a pseudocube is in one of the formse, zz60(z), (x)zz, andzf(x)z. We check each of
the four cases. A woray has any factor of the formaxx if and only if any maximal repetition [14]
in w has exponent> 3, which can be tested in linear time by finding all maximal témas. To
check whetherv contains any word of the formax6(x), we check whether there is a pair of factors
wli —2n +1..4] = yy andw[i —m + 1..7 4+ m] = z60(z) that overlap in the sense that< m. By the
definitions oflmp? andcmp,,, we only need to check for each positibwhetherlmp? [i] < cmp,,[i].
This can be done i®(N) time when alllmp?, cmp,, are already computed. The case f¢x)zz is
similar. To check whethew contains any word of the formé(z)z, we check whether there is a pair of
factorsw[i —n+1..i +n] = y0(y) andw[j — m + 1..j + m| = z6(z) that overlap in the sense that
|i—j| < mnand|i—j| < m. By the definition ofcmp,,, we check for each pair of indices; with
i < j whetherj — i < cmp,[i] andj — i < cmp,,[j]. This can be done i®(N?) time whencmp,, is
already known. The completed algorithm is given in AlgaritR. Thus, the following theorem holds.

Theorem 3.2. There is a quadratic-time algorithm to decide whether a worsl pseudocube-free.

Proof:

Algorithm 2 checks the pseudocube-freeness @f quadratic time. By Lemma 3.4 and Lemma 3.5, the
computation ofrmp?, Imp?2 , cmp,, in line 1 can be done i®(N) times. Line 2 can be done @(N)
time. Line 3-8 can be done i0(N?) time. So the algorithm runs i@ (N?) time.

Now we prove the correctness of the algorithm. First, we @rtwat if the algorithm returns “NO”,
thenw contains a pseudocube. If the algorithm stops at line 2, thamntains a cube of the form
rzz, which is also a pseudocube. Suppose the algorithm stopseat.| Letn = rmp,[i]*> andm =
cmp,,[i — 1]. Thenn < m and the wordw([i — n..i + 2n — 1] is of the form#(z)xx, which is a

16 E. Chiniforooshan et al. / Pseudopower Avoidance

Algorithm 2: Decide whethetw is pseudocube-free i (N?) time

Input: a wordw = w[l.. NJ.
Output: “YES” if w is pseudocube-free; “NO” otherwise.

1 computermp?,, lmp?ﬂ, CIMmp,,;

2 if w contains a cub¢hen return “NO” ; // The case zxx

3 for i from 1to N do

4 if rmp2 [i] < cmp,,[i — 1] then return “NO” ; // The case 0(z)zx
5 if Imp? [i] < cmp,,[i] then return “NO” ; // The case zxf(x)

6 for d from 1 to cmp,,[i] do

7 L if d < cmp,[i + d] thenreturn “NO” ; // The case zf(z)z

8 return “YES”;

pseudocube. Suppose the algorithm stops at line 5nletlmp?,[i] andm = cmp,,[i]. Thenn < m
and the wordv[i — 2n + 1..7+n] is of the formzz6(z), which is a pseudocube. Suppose the algorithm
stops at line 7. Then the word)i — d + 1..¢ + 2d] is of the formz6(x)z, which is a pseudocube.

Now, we prove that ifw contains a pseudocube, then the algorithm returns “NOi: Hontains a
pseudocube of the formzz, then the algorithm stops at line 2. Suppese .. s + 3p — 1] = zz0(x).
Theng = Imp?2,[s +2p—1] < |z | andemp,,[s +2p—1] > |z | > ¢. So the algorithm stops at line 5 for
i = s+ 2p— 1, (although the detected pseudocutie + 2p — 2q .. s + 2p + ¢ — 1] may be different from
wls..s+3p—1].) The casev[s..s+3p— 1] = O(x)zz is similar. Suppose|s..s+3p—1] = z0(x)z.
Thencmp,[s +p — 1] > |z | andcmp,,[s + 2p — 1] > |z|. So the algorithm stops at line 7 for
i=s+p—1andd = p. O

4. Conclusion

In this paper, we discussed the existence of infinite wordsdb not contain pseudeath-powers, in all
possible settings for the alphal¥tind the antimorphic involutiof. No pseudosquare-free infinite word
exists for| X | < 2, and pseudosquare-free infinite words exist|/f8f > 4. For| X | = 3, the existence
of pseudosquare-free infinite words depend$ oNo pseudocube-free infinite word exists fat | < 2
and pseudocube-free infinite words exist fatr| > 3. For any intege > 4, pseudokth-power-free
infinite words exist except when eithgE | = 1, or | ¥ | = 2 and| Trn(f) | = 1. In the particular DNA
setting,| 6 | = 4 and| Trn(d) | = 2, pseudokth-power-free infinite words exist for any exponént

We also proposed algorithms for testing whether or not a woad length N is pseudodkth-power-
free. For an arbitrary integet > 2, we provide anO(N?1g N)-time algorithm to find all pseudo-
kth-powers inw, whereN = |w|. In addition, we provide a®(N)-time algorithm and am(N?)-
time algorithm for testing whether is pseudosquare-free and pseudocube-free, respectivedystill
unknown whether there is faster algorithm for testing whethis pseudaksth-power-free.

Lemma 3.4 can be generalized to arbitrary (fractional) pewdth exponentg > 1 [24] such that
the right (resp., left) minimal period arraynp® (resp.lmp”) can be computed in linear time. Thus, by
the same techniques in testing pseudocube-freeness,bedasted in linear time whether or not a word

E. Chiniforooshan et al. / Pseudopower Avoidance 17

w contains any pseudeth-power of the particular formax . .. z6(z) andf(z)zx . .. z. In addition, it can
be tested in quadratic time whether or motontains any pseudeth-power of the forme0(z)z0(zx)
It is also possible that some other particular cases of mgewders could be detected faster.

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

Anne, V., Zamboni, L., Zorca, |.: Palindromes and psepdtindromes in Episturmian and pseudo-
palindromic infinite words,Publications du LACIM, Proc. of Words 20@S. Brlek, C. Reutenauer, Eds.),
36, 2005.

Ardon, S. E.: Démonstration de I'existence des suitggmétriques infiniesMat. Sb, (N. S.) 23), 1937,
769-779.

Berstel, J.:Axel Thue’s papers on repetitions in words: a translatidlumber 20 in Publications du Labora-
toire de Combinatoire et d’Informatique Mathématiquejvgrsité du Québec a Montréal, 1995.

Crochemore, M.: Recherche linéaire d'un carré dansnoh, Comptes Rendus Acad. Sci. Par&s.$, 296,
1983, 781-784.

Czeizler, E., Kari, L., Seki, S.: On a special class ohptive words, Theoret. Comput. S¢c411(3), 2010,
617-630.

de Luca, A., De Luca, A.: Pseudopalindrome closure djpesan free monoidsTheoret. Comput. S¢i362,
2006, 282-300.

Dekking, F.: Strongly non-repetitive sequences andypgssion-free sets]. Combin. Theory Ser.,27(2),
1979, 181-185.

Erdos, P.: Some unsolved problenidichigan Math. J, 4(3), 1957, 291-300.

Evdokimov, A. A.: Strongly asymmetric sequences geteztdy a finite number of symboldokl. Akad.
Nauk. SSSR79 1968, 1268-1271.

Gusfield, D.: Algorithms on strings, trees, and sequences: computenseiand computational biology
Cambridge University Press, 1997.

Kari, L., Mahalingam, K.: Watson-Crick palindromesiNA computing, Nat. Comput.9(2), 2010, 297—
316.

Keranen, V.: Abelian squares are avoidable on 4 Igtt€&roc. 19th Int'l Conf. on Automata, Lang., and
Progr. (ICALP "92)(W. Kuich, Ed.), 1992.

Keranen, V.: A powerful abelian square-free subsitiu over 4 letters,Theoret. Comput. S¢i410, 2009,
38-40.

Kolpakov, R., Kucherov, G.: Finding maximal repetii®in a word in linear timeProc. 40th Ann. Symp.
Found. Comput. Sci. (FOCS '99)999.

Kosaraju, S. R.: Computation of squares in a stridgc. 5th Ann. Symp. Combinat. Pattern Matching (CPM
1994)(M. Crochemore, D. Gusfield, Eds.), 1994.

Leech, J.: A problem on strings of beadldath. Gaz, 41(338), 1957, 277-278.

Main, M., Lorentz, R.: Linear time recognition of sqedree strings, inCombinat. Algorithms on Words
(A. Apostolico, Z. Galil, Eds.), Springer, 1985, 272—-278.

Mirkin, S.: Expandable DNA repeats and human dised&aure 447(7147), 2007, 932-940.

18 E. Chiniforooshan et al. / Pseudopower Avoidance

[19] Morse, H.: Recurrent geodesics on a surface of negativeature, Trans. Amer. Math. Soc22(1), 1921,
84-100.

[20] Pleasants, P.: Non-repetitive sequendéath. Proc. Cambridge Philos. Se68(2), 1970, 267-274.

[21] Shallit, J.: Simultaneous avoidance of large squanesfeactional powers in infinite binary word#nt'l. J.
Found. Comput. Sgil5, 2004, 317-327.

[22] Thue, A.:Uber unendliche ZeichenreiheNprske Vid. Selsk. Skr. I. Mat.-Nat. K{7), 1906, 1-22.

[23] Thue, A.:Uber die gegenseitige Lage gleicher Teile gewisser Zeieileen,Norske Vid. Selsk. Skr. I. Mat.-
Nat. KI,, (1), 1912, 1-67.

[24] Xu, Z.: A minimal periods algorithm with application®roc. 21st Ann. Symp. Combinat. Pattern Matching
(CPM 2010)(A. Amir, L. Parida, Eds.), 2010.

[25] Yu, X.: A new solution for Thue’s problemnform. Process. Lett54, 1995, 187-191.

