
Theoretical Computer Science 306 (2003) 19–38
www.elsevier.com/locate/tcs

Closure and decidability properties of
some language classes with respect to

ciliate bio-operations�

Mark Daleya , Oscar H. Ibarrab;∗ , Lila Karia
aDepartment of Computer Science, University of Western Ontario, London, Canada ON N6A 5B7

bDepartment of Computer Science, University of California, Santa Barbara, CA 93106, USA

Received 12 October 2002; received in revised form 8 December 2002; accepted 20 January 2003
Communicated by G. Rozenberg

Abstract

The process of gene unscrambling in ciliates (a type of unicellular protozoa), which ac-
complishes the di4cult task of re-arranging gene segments in the correct order and deleting
non-coding sequences from an “encrypted” version of a DNA strand, has been modeled and
studied so far from the point of view of the computational power of the DNA bio-operations
involved. Here we concentrate on a di:erent aspect of the process, by considering only the lin-
ear version of the bio-operations, that do not involve thus any circular strands, and by studying
the resulting formal operations from a purely language-theoretic point of view. We investigate
closure properties of language families under the mentioned bio-operations and study language
equations involving them. We also study the decidability of the existence of solutions to equa-
tions of the form L�Y=R, X �L=R where L and R are given languages, X and Y are unknowns,
and � signi>es one of the de>ned bio-operations.
c© 2003 Elsevier B.V. All rights reserved.

1. Introduction

The stichotrichous ciliates are a group of primitive single-celled organisms which
have generated a great deal of interest due to their unique genetic mechanisms. Most

� Some of the results in this paper, in less general form, were reported in [2]. Research of Mark Daley
and Lila Kari has been supported by Natural Sciences and Engineering Council of Canada Grants. Research
of Oscar H. Ibarra has been supported by NSF Grants IIS-0101134 and CCR02-08595.

∗ Corresponding author. Tel.: +1-805-893-4171; fax: +1-805-893-8553.
E-mail address: ibarra@cs.ucsb.edu (O.H. Ibarra).

0304-3975/03/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0304-3975(03)00139-7

mailto:ibarra@cs.ucsb.edu


20 M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38

organisms store their genomic DNA in a linear sequence consisting of coding regions
interspersed with non-coding regions. Several ciliate genes, however, are stored in a
scrambled form. For example, if a functional copy of a gene consists of the coding
regions arranged in the order 1-2-3-4-5, it may appear in the order 3-5-4-1-2 in the
genome. This presents an interesting problem for the organism, who must somehow
descramble these genes in order to generate functional proteins required for its con-
tinued existence. The sizes of the descrambling problems in vivo are nontrivial. The
gene encoding DNA polymerase � in the ciliate Stylonichia Lemnae is broken into
more than 48 discreet pieces that must be reassembled in the correct order to produce
a functional gene [13].
The details of the biological mechanism underlying the unscrambling process are

still unknown. For further information on the biology of the descrambling process in
ciliates the reader is referred to [15,16,17]. The two existing formal models for gene
unscrambling, by Kari and Landweber [11,12], respectively Ehrenfeucht, Harju, Petre,
Prescott and Rozenberg [14,4,18] are consistent with the existing biological data. Each
proposes a set of two, respectively three, atomic operations the combination of which
can lead to the unscrambling of an arbitrarily scrambled gene. The bio-operations
proposed by the >rst model are circular insertions and deletions, i.e. insertions and
deletions of circular strands into/from linear strands, guided by the presence of certain
pointers [11,12]. The second model focuses more on the properties of pointers and pro-
poses three operations named based on the biological processes which they describe: hi
(hairpin loop with inverted pointers) which reverses a substring between two pointer
sequences, ld(loop with direct pointers)-excision which deletes a substring between
two pointers and dlad(double loop with alternating direct pointers)-excision/reinsertion
which swaps two substrings marked by pointer-pairs. In both cases, the operations pre-
sented are based on real biological events that can occur and change a DNA molecule
and are capable of descrambling an arbitrarily scrambled ciliate gene. The signi>cance
of the di:erences in the two models serves to underscore that the actual biological
process of gene descrambling is only now beginning to be understood. It is thus pos-
sible for two relatively disparate models to be consistent with currently available data.
This paper does not address the biological aspects and implications of the proposed
operations. Instead, we continue in the style of Dassow et al’s work on properties of
operations inspired by general DNA recombination events [3] and focus on some of
their properties as word/language operations. A related study considering generaliza-
tions of the operations proposed by Ehrenfeucht, Harju, Petre, Prescott and Rozenberg
(di:erent from the ones proposed here) has been undertaken in [5]. We will consider
here closure properties of various families of languages under the de>ned operations.
In particular, with the goal of identifying large families of recursive languages that
are closed under the bio-operations, we show that the family, NCM, of languages de-
>ned by nondeterministic >nite automata augmented with reversal-bounded counters
(i.e., the counters can be incremented/decremented by 1 and tested for zero but the
number of alternations between nondecreasing mode and nonincreasing mode and vice
versa is bounded by a >xed constant) [9] is closed under all ciliate bio-operations. It
is known [7] that NCM is the smallest class of languages containing the regular sets
that is closed under homomorphism, intersection, and the shuOe operation (Section 3



M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38 21

gives the precise de>nition). We also look at generalizations of NCM (e.g., adding
an unrestricted counter or a pushdown stack), and languages de>ned by space- and
time-bounded Turing machines. Our results give as corollaries the closure/non-closure
properties of the Chomsky families (regular, context-free, context-sensitive, recursively
enumerable) under the ciliate bio-operations. Next, we consider language equations of
the type L�Y =R, X �L=R, where L and R are given languages and X and Y are the
unknowns. We study the decidability of the existence of solutions to these equations
as well as the existence of singleton solutions.
The paper has >ve sections in addition to this section. Section 2 formally de>nes the

ciliate bio-operations: synchronized insertion, synchronized deletion, hairpin inversion,
and synchronized bi-deletion. Section 3 looks at the closure properties of NCM and
its generalizations. Section 4 considers the closure properties of languages de>ned by
space-bounded and time-bounded Turing machines. Section 5 investigates language
equations and decision questions involving the ciliate bio-operations. Section 6 is a
brief conclusion.
The notations used in the paper are summarized as follows. An alphabet � is a

>nite non-empty set. A word w over � is an element of the free semigroup (denoted
�+) generated by the letters of � and the catenation operation. The length of a word,
written |w|, is equal to the number of letters in the word. In the free monoid �∗ we
also allow the empty word 	 where |	|=0. A language L is a, possibly in>nite, set
of words over a given alphabet. The complement of a language L is written Lc and is
de>ned as Lc=�∗\L.
For further details on basic formal language theory, the reader is referred to [19].

2. Ciliate Bio-Operations

In this section, we de>ne the basic operations, [2], which will be studied in the
remainder of the paper. Two basic operations have been de>ned in [11,12] that model
the processes of intramolecular respectively intermolecular DNA recombinations that
are thought to accomplish gene unscrambling.
The operation modeling the intermolecular recombination accomplishes the inser-

tion of a circular sequence vx in a linear string uxw, resulting in a string uxvxw.
If we ignore the fact that the inserted string is circular, the operation, called syn-
chronized insertion (the word “synchronized” points out that insertion can only hap-
pen if the sequence x is present in both input strands), is formally de>ned as
follows.

De�nition 1. Let �; � be two nonempty words in �∗. The synchronized insertion of �
into � is de>ned as: �⊕ �= {uxvxw | �= uxw; �= vx; x∈�+; u; v; w∈�∗}.

The operation modeling intramolecular recombination accomplishes the deletion of a
sequence vx from the original strand uxvxw, in the form of a circular strand. Ignoring
the di:erences between the linear and circular strands, the resulting operation, that of
synchronized deletion, is de>ned as follows.



22 M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38

De�nition 2. Let �; � be two nonempty words in �∗. The synchronized deletion of �
from � is de>ned as: �� �= {uxw | �= uxvxw; �= vx; x∈�+; u; v; w∈�∗}.

The operations di:er from the original ones de>ned in [12,11] in that no circular
strands are present here. The above two de>nitions can be extended to languages in
the natural way.
We now show that we can consider, without loss of generality, only one-symbol

contexts instead of arbitrarily sized contexts for synchronized insertion and deletion.

Lemma 1. For any �; �∈�+, �⊕�= {u′av′aw′ | �= u′aw′; �= v′a; a∈�; u′; v′, w′∈�∗}.

Proof. “⊆ ” Consider some word �∈ �⊕�. By de>nition, �= uxvxw for some x∈�+,
u; v; w∈�∗. As x∈�+ we can write x as x= x′a; a∈�; x′ ∈�∗. We then have �= ux′

avx′aw which we can rewrite as u′av′aw′ where u′ = ux′, v′ = vx′, w′ =w. Thus,
�∈{u′av′aw′ | �= u′aw′; �= v′a}.
“⊇” Let � be a word in {u′av′aw′ | �= u′aw′; �= v′a}. Then �∈ � ⊕ �, as we can

take x= a, which gives �∈{uxvxw | �= uxw; �= vx; x∈�+}.

Similarly, we can show that:

Lemma 2. For any �; �∈�+�� �= {u′aw | �= u′av′aw; �= v′a; a∈�; u′; v′; w∈�∗}.

Although it does not directly model a bio-operation, the operation of synchronized
bi-deletion is introduced as it will be needed to investigate the decidability of solution
existence for language equations involving synchronized insertion and deletion.

De�nition 3. Let u; v∈�+. The synchronized bi-deletion of v from u is de>ned as

u� v = {w | u = xayaz; v = xaz; w = ya; a∈�; x; y; z ∈�∗}:

We will also consider a generalization of the hairpin inversion operation hi de>ned
in [14]. The name of the operation rePects the fact that it models the process of a
DNA strand forming a hairpin, having the end of the hairpin cleaved and then re-
attached with the sticky ends switched. This results in the sequence of the cleaved and
re-attached region now being the mirror image of what it was prior to the operation.
If w= a1a2 · · · an, ai ∈�, 16i6n is a word in �+ the reverse or mirror image of

w is denoted by mi(w) and de>ned as mi(w)= an · · · a2a1.

De�nition 4. Let � be a word in �+. The hairpin inverse of �, denoted by hi(�) is
de>ned as hi(�)= {xpmi(y)mi(p)z | �= xpymi(p)z and x; y; z ∈�∗, p∈�+}.

This de>nition can be extended to languages in �+ in the natural way. Similarly to
Lemma 1, we again show that it is enough to consider pointers of length one only.

Lemma 3. If �∈�+, hi(�)= {xami(y)az | �= xayaz; a∈�; x; y; z ∈�∗}.



M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38 23

The mirror image operation has the property that mi(mi(L))=L. The hairpin inver-
sion operation is a variation of the mirror image operation in that it inverts subwords
inside words of a language. The following lemma answers the question of whether or
not applying hairpin inversion twice to a language yields the original language. As it
turns out, while the hairpin invertible words of a language L are included in hi(hi(L)),
the reverse does not hold.

Lemma 4. If L⊆�+, then for all a∈�; L∩�∗a�∗a�∗ ⊆ hi(hi(L)) while hi(hi(L)) is
not necessarily included in L∩�∗a�∗a�∗.

Proof. We >rst prove the inclusion. Suppose �∈L∩�∗a�∗a�∗, then �= xayaz ∈L
where a∈�; x; y; z ∈�∗ and xami(y)az ∈ hi(L) yielding xa mi(mi(y))az= xayaz ∈ hi
(hi(L)). That the reverse inclusion does not hold can be seen by considering the lan-
guage L= {gdeacbafdh} over the alphabet {a; b; c; d; e; f; g; h}. hi(L)= {gdeabcafdh,
gdfabcaedh} and hi(hi(L))= {gdeacbafdh; gdfacbaedh}= hi(hi(L))∩�∗a�∗a�∗ and
gdfacbaedh 
∈L.

3. Closure properties of NCM, NFCM, and NPCM

In this section, we investigate the closure properties of various families (or classes)
of languages under the ciliate bio-operations. Our objective is to identify large classes
of languages, other than the regular sets and recursively enumerable sets, that are closed
under these bio-operations. We will use the terms “family” and “class” interchangeably
in the paper.
We recall the de>nition of reversal-bounded multicounter machines in Ibarra [9]. For

k¿0, let NCM(k) be the class of nondeterministic one-way >nite automata augmented
with k reversal-bounded counters, and NCM be the union of such classes over all k’s
(see [9] for details). Thus, at every step, a counter can be incremented by 1, decre-
mented by 1, or not changed, and it can be tested for zero. It is reversal-bounded in
that in any computation, the number of alternations between nondecreasing mode and
nonincreasing mode and vice-versa is bounded by a given constant. For notational con-
venience we also use NCM(k) and NCM to denote the respective families of accepted
languages, and use the same notation to refer to a machine in the classes. Clearly,
NCM de>nes a large class of languages (all regular sets, some non-context-free lan-
guages, etc.) Note than an NCM(0) has no counter and is an ordinary >nite automaton.
Hence, the class NCM(0)=REG= regular sets.
Let NPCM be an NCM augmented with an unrestricted pushdown stack. An NFCM

is an NCM augmented with a free (i.e., unrestricted) counter. An NPCM (NFCM)
with k reversal-bounded counters will be denoted by NPCM(k) (NFCM(k)). Thus, an
NPCM(0) (NFCM(0)) is just an ordinary pushdown (one-counter) automaton.
Hence, NPCM(0)=CFL=context-free languages, and NFCM(0)=one-counter
languages.
There is a nice characterization of NCM (respectively, NPCM, NFCM) in terms of

regular sets (respectively, context-free languages, one-counter languages). The shu7e



24 M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38

u� v of two words u; v∈�∗ is a >nite set consisting of the words u1v1 : : : ukvk , where
u= u1u2 : : : uk and v= v1v2 : : : vk for some ui; vi ∈�∗. If L1 and L2 are two languages,
their shu7e is the language

L1 � L2 =
⋃

u∈L1 ;v∈L2
u� v:

A simple shu7e language is a language of the form �∗ � {anbn | n¿0}, for some
alphabet � and distinct symbols a; b.
It is known [7] that NCM (respectively, NPCM, NFCM) is the smallest class of

languages containing the regular sets (respectively, context-free languages, one-counter
languages) that is closed under homomorphism and intersection with simple shuOe
languages. In particular, it follows that NCM is the smallest class containing the regular
sets that is closed under homomorphism, intersection, and the shuOe operation.
The classes NCM, NPCM, NFCM, NPCM(0) NCM(0), NFCM(1), ... share many

AFL closure properties (e.g. homomorphism, inverse homomorphism, intersection with
regular sets, concatenation, ∗, etc.). But they do not share the same closure properties
under the ciliate bio-operations. For example, as we will see, although NCM is closed
under all the bio-operations,
• NFCM(0) and NCM(0) are not closed under synchronized insertion (although
NPCM(0) is).

• NFCM(0), NPCM(0), NFCM, NPCM are not closed under synchronized deletion
and synchronized bi-deletion.

Although NFCM and NCM are closed under hairpin inversion,
• NCM(1), NFCM(0), and NPCM(0) are not closed under hairpin inversion.
For languages de>ned by space-bounded and time-bounded TM classes, here, too some
of the classes are closed under some bio-operations, but yet others are not. Hence,
it does not seem possible to deal with all the families considered in this paper in a
uniform way, and we will be dealing with them separately.
We will need the following proposition which is easily veri>ed using standard con-

structions:

Proposition 1. NCM (k), NPCM (k), and NFCM (k) are closed under intersection with
regular sets, homomorphism, and inverse homomorphism.

We will also need the following result.

Theorem 1. NCM, NPCM, and NFCM are closed under reversal.

Proof. The proof uses ideas in [9]. Let M be an NPCM with one pushdown stack and
k reversal-bounded counters. We may assume that the machine starts with all counters
zero and accepts with all counters zero. We may also assume that each counter makes
exactly one reversal in any accepting computation, since a counter making s reversals
can be simulated by (s+ 1)=2 counters, each making exactly 1 reversal.
First consider the case when there is only one 1-reversal counter. Let � be the

input alphabet of M and a; b be two new symbols. We construct an NPCM(0), i.e., an



M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38 25

ordinary pushdown automaton M1 with input alphabet �∪{a; b} such that any string
w accepted by M1 has the following properties:
1. All occurrences of a’s in w precede all occurrences of b’s.
2. If the number of a’s in w is equal to the the number of b’s, then w with the a’s

and b’s deleted, which we denote by h(w), is in L(M).
3. If x is in L(M), then there is a string w accepted by M1 such that w has the same

number of a’s and b’s, and h(w)= x.
The construction of M1 is straightforward. M1 on input w, simulates the computation

of M treating each symbol a as an increment of 1 to the counter, and each b as a
decrement of 1 to the counter. M1 also makes sure that all occurrences of a’s precede
all occurrences of b’s. M1 guesses at some point during the simulation that the number
of b’s seen equals the number of a’s (this corresponds to the counter becoming zero),
and will no longer see b’s in the remainder of the input. M1 accepts if M accepts.
Since the family CFL (= context-free languages) is closed under reversal, mi(L(M1))

is also accepted by a pushdown automaton M2. Finally, we construct an NPCM(1) M3

accepting mi(L(M)) from M2. Note that an input x to M3 no longer contains a’s and
b’s. M3 has one 1-reversal counter (in addition to the stack). On input x, M3 simulates
the computation of M2, guessing the occurrences (i.e., reading) of a’s as increments
to the counter and the occurrences of b’s as decrements to the counter. At some time
during the computation, M3 guesses that the counter reverses (and hence will no longer
simulate reading a’s). M3 continues simulating M2, where a decrement of the counter
by 1 corresponds to the reading of symbol b by M2. When the counter becomes zero,
M3 no longer simulates the reading b’s. Clearly, M3 accepts mi(L(M)).
The construction above can easily be generalized when M has k 1-reversal counters.

In this case, we need 2k new symbols a1; b1; : : : ; ak ; bk for the k counters. We leave
the details to the reader.
The cases NCM and NFCM are handled as above, using the fact that regular sets

and NFCM(0) (i.e., one-counter languages) are closed under reversal.

Theorem 2. NCM is closed under synchronized insertion, synchronized deletion, and
synchronized bi-deletion.

Proof. Let M1 and M2 be two NCMs with k1 and k2 counters, respectively. We de-
scribe the operation of an NCM M accepting the synchronized insertion of L(M1) with
L(M2). M will have k1+k2 counters. M assumes that the input z is of the form u′av′aw′.
M >rst simulates M1 (using the >rst k1 counters). At some point, chosen nondetermin-
istically, after it has processed some pointer symbol a, it remembers this symbol and
the state, temporarily discontinues the simulation of M1, and simulates the computation
of M2 on the substring v′a (using the remaining k2 counters). When M2 accepts, M
resumes the simulation of M1 on the su4x string w′ of the input and accepts if M1

accepts.
For synchronized deletion, we construct an NCM M accepting the synchronized

deletion of L(M1) with L(M2) as follows. M , when given input z= u′aw, >rst simulates
M1 (with k1 counters) until at some time (chosen nondeterministically) when it has
processed some symbol a. M then, without moving its input head (i.e., without reading),



26 M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38

guesses symbol-by-symbol a string v′a and continues the simulation of M1 on this
string. In parallel, M also simulates the computation of M2 (using k2 counters) on v′a.
When M2 accepts, M reads the remaining input w and continues the simulation of M1

and accepts if M1 accepts.
For synchronized bi-deletion, we construct an NCM M accepting the synchronized

bi-deletion of L(M1) with L(M2). M when given input w=ya, without reading the
input, nondeterministically guesses the substring xa (symbol-by-symbol) of u= xayaz
and simulates the computation of M1 on this substring. Thus M also guesses the pointer
symbol a and where it occurs (which need not be the >rst occurrence in xa) after
which ya begins. In parallel, M also simulates the computation of M2 on xa. Then
M temporarily discontinues the simulation of M2 but continues the simulation of M1

on the input w=ya. When M sees pointer symbol a, (again, this need not be its >rst
occurrence), it guesses that it is the last symbol of the input. Without moving on the
input, M guesses the symbols comprising the word z and continues the simulation of
M1 on z. In parallel, M also resumes the simulation of M2 on z. M accepts if both
M1 and M2 accept.

Clearly, if in the above theorem M1 and M2 are >nite automata (i.e., have no coun-
ters), then M would also be a >nite automaton. Thus,

Corollary 1. NCM(0) (= class of regular sets) is closed under synchronized insertion,
synchronized deletion, and synchronized bi-deletion.

Corollary 2. NPCM and NFCM are closed under synchronized insertion.

Proof. Given NPCMs M1 and M2, we construct an NPCM M accepting the synchro-
nized insertion of L(M1) with L(M2) as in the proof of Part 1 of Theorem 2. We note
that when M temporarily discontinues the simulation of M1 and simulates the compu-
tation of M2, M marks the top of the stack before simulating M2, so that it can use
the same stack in the simulation of M2. After the simulation of M2, M goes back to
the top of the stack of M1 to resume its simulation.
Given NFCMs M1 and M2, the construction of an NFCM M accepting the synchro-

nized insertion is similar. Again, when M temporarily discontinues the simulation of
M1 and simulates the computation of M2, M stores the value of the free counter into an
auxiliary reversal-bounded counter, so that it can use the free counter in the simulation
of M2. After simulating an accepting computation of M2, M restores the value of the
free counter of M1 using the auxiliary reversal-bounded counter and then continues the
simulation of M1. Thus M will have one free counter and k1 + k2 +1 reversal-bounded
counters.

Again, in the above corollary, if M1 and M2 are NPCM(0), i.e., ordinary pushdown
automata, then M would also be a pushdown automaton. Hence,

Corollary 3. NPCM(0) (= class of context-free languages) is closed under synchro-
nized insertion.



M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38 27

We note that the “ + 1” in k1 + k2 + 1 in the second part of the proof of Corollary
2 is necessary since, as we show next, NFCM(0) is not closed under synchronized
insertion:

Proposition 2. NFCM(0) (= class of one-counter languages) and NCM(1) are not
closed under synchronized insertion.

Proof. Consider the languages L1 = {aipbi | i¿1} and L2 = {cjdjp | j¿1}, where a; b;
c; d; p are distinct symbols. L1 and L2 are in NFCM(0); in fact, they are in NCM(1).
However, the insertion, L′, of L2 into L1 is not in NFCM(0), since from the results
in [6], L′ ∩ a∗pc∗d∗pb∗ = {aipcjdjpbi | i; j¿1} is not in NFCM(0). It also follows
that NCM(1) is not closed under synchronized insertion, since it is a special case of
NFCM(0).

The remaining proofs in Theorem 2 hold for the following:

Corollary 4. NPCM and NFCM are closed under synchronized deletion and syn-
chronized bi-deletion with NCM.

Proposition 3. NFCM(0), NPCM(0), NFCM, and NPCM are not closed under
synchronized deletion and synchronized bi-deletion.

Proof. Let

L1 = #({aib2i | i ¿ 0}∗ � {#})
L2 = a{biai | i ¿ 0}∗#;

where � is the shuOe operation. Clearly, L1 and L2 are context-free languages, i.e.,
accepted by NPCM(0)’s (note that they are also accepted by NFCM(0)’s). (Similar
languages were used in [6] to show that CFL is not closed under left quotient.) How-
ever, the language

(L1 � L2)∩ #b∗ = {b2n | n ¿ 0}
is not context-free and, therefore, not in NPCM(0) or in NFCM(0). This language is
also not in NFCM or in NPCM, since the languages in these classes have semilinear
property [9].
Similarly, let L1 = {aib2i | i¿ 0}∗ and L2 = a{biai | i¿ 0}∗ be two context-free

(NFCM(0)) languages. De>ne the following languages:

L′1 = {aib2i | i ¿ 0}∗{aj#b2j | j ¿ 0};
L′2 = a{biai | i ¿ 0}∗{#be#ae | e ¿ 0}:

Clearly, L′1 and L′2 can also be accepted by NPCM(0)’s (NFCM(0)’s). Note now that

[L′2{a∗}−1� L′1{b∗}−1]∩ b∗#= {b2n# | n¿0}:



28 M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38

The proposition now follows since CFL (respectively, NFCM(0), NFCM, NPCM) is
closed under right quotient with regular languages and intersection with regular lan-
guages but {b2n# | n¿0} is not a context-free language, and not semilinear.

Proposition 4. NCM(1), NFCM(0), and NPCM(0) are not closed under hairpin in-
version.

Proof. Let �= {a; b; c; d; p}. De>ne the language L= {aipbicjpdj | i; j¿1}. Clearly,
L can be accepted by an NCM(0) (i.e., a >nite automaton with one counter that makes
3 reversals). Hence, L is in NCM(1), NFCM(0), and NPCM(0). However, the hairpin
inversion L′ of L is not in NPCM(0). Otherwise, L′ ∩ a∗pc∗b∗pd∗ = {aipcjbipdj |
i; j¿1} would be in NPCM(0) (i.e., context-free), which is not.

In contrast to the above proposition, for NFCM and NCM, we have:

Theorem 3. NFCM, NCM, and NCM(0) (=REG) are closed under hairpin inversion.

Proof. Let M be an NFCM with k reversal-bounded counters (and, of course, one free
counter). We will construct an NFCM M ′′ accepting the hairpin inversion of L(M).
We describe the construction of M ′′ when k =1. The generalization for any k will be
obvious.
Let 1; 2; 3; 4 be three new symbols. For states q; p of M and nonnegative integers

u1; u2; v1; v2, de>ne the language Lqp= {1u12v13u24v2y |M when started in state q with
the free and reversal-bounded counters having values u1 and v1, respectively, reaches
state p with the free and reversal-bounded counter having values u2 and v2, respectively
after processing y}. Clearly, we can construct an NFCM Mqp (with one free counter
and three reversal-bounded counters) accepting Lqp. From Theorem 1, mi(Lpq) (the
reverse of language Lqp) can be accepted by an NFCM mi(Mqp).
First we describe the operation of an NFCM M ′ accepting a padded version of

the hairpin inversion language. Given an input of the form xami(y)4v23u22v11u1az, M ′

simulates M on xa. The pointer symbol a and the position where it occurs (there may
be several places where it occurs) are nondeterministically guessed by M ′. Suppose
that after processing this substring, the state of M is q. M ′ stores the values of the free
counter and the reversal-bounded counter into two auxiliary reversal-bounded counters.
Then M ′ guesses a state p of M and simulates the computation of the NFCM mi(Mqp)
on the substring mi(y)4v23u22v11u1 , following the substring xa. (Note that the free
counter can be used in the simulation of mi(Mqp) since its old value has been stored
in an auxiliary counter.) By using other reversal-bounded counters, at the end of the
simulation of mi(Mqp), M ′ can check that u1 and v1 were the old values stored in
the auxiliary counters. M ′ then sets the free counter and reversal-bounded counter to
u2 and v2, respectively, and resumes the simulation of M starting in state p on the
remaining input string az (note that a is the same pointer symbol). M ′ accepts if M
accepts. Finally, we construct an NFCM M ′′ from M ′ by erasing the symbols 1; 2; 3; 4
from the language accepted by M ′. This can be done by Proposition 1. Clearly, M ′′

accepts the hairpin inversion.



M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38 29

Note that the proof above applies to the case when M is an NCM (i.e., it has no
free counter), or when M is an NCM(0) (i.e., it has no counters). M ′′ will then be an
NCM, or an NCM(0).

We do not think that Theorem 3 can be generalized to hold for NPCM. For con-
sider the language L= {xpcmi(x)dp | x∈{a; b}∗} over the alphabet �= {a; b; c; d; p}.
Clearly, L is a linear context-free language and can be accepted by an NPCM(0)
which makes only 1-reversal on the stack. Let L′ be the hairpin inversion of L. Then
L′′ =L′ ∩{a; b}∗pd{A; b}∗cp= {xpdxcp | x∈{a; b}∗} should be in NPCM. But we be-
lieve (although we do not have a formal proof at this time)that L′′ is not in NPCM.
In the next section we will move further up the computational hierarchy and consider

the closure properties of space- and time-bounded Turing machines under the three bio-
operations.

4. Space-bounded and time-bounded turing machines

In this section, we investigate the closure properties of space-bounded and time-
bounded Turing Machine (TM) complexity classes under ciliate bio-operations.
For a space bound S(n), let NSPACE(S(n)) be the class of languages accepted

by S(n) space-bounded nondeterministic Turing machines, and DSPACE(S(n)) be the
deterministic class. Thus, these machines have a two-way read-only input tape (with
endmarkers) and multiple read-write worktapes which are S(n) space-bounded. (It is
known that any number of worktapes can be merged into one worktape with the
same space bound.) Throughout, we assume that S(n)¿ log n. Note that NSPACE(n)
and DSPACE(n) are the classes of context-sensitive and deterministic context-sensitive
languages, respectively.

Theorem 4. NSPACE(S(n)) and DSPACE(S(n)) are closed under hairpin inversion.

Proof. First consider the case NSPACE(S(n)). Let M be an NTM with a two-way
read-only input (with endmarkers) and an S(n) space-bounded read-write worktape. We
construct an S(n) space-bounded NTM M ′ accepting the hairpin inversion of L(M).
Without loss of generality, we may assume that M ′ has several S(n) space-bounded
read-write worktapes (since any number of worktapes can be easily merged into one).
Given an input of the form xami(y)az, M ′ simulates the computation of M on input
xayaz of length n (not counting the endmarkers). To do this, M ′ guesses two positions
i and j (with 16i¡j6n) and stores the positions on two worktapes in binary. It
checks that the symbols in these positions are the same pointer symbol, say a. Then
M ′ simulates the computation of M using other worktapes. As long as the computation
of M is within the substring xa or az, the simulation is straightforward. Note that M ′

can tell if the computation of M is in these substrings. When M computes in y, M ′

>rst moves its head to the second pointer symbol a and then simulates M , where a
right (left) move of M in substring y will be simulated as a left (right) move of M ′

on substring mi(y). The details are straightforward. Clearly, M ′ is S(n) space-bounded.



30 M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38

(Note that i and j take only log n space, which is no more than S(n) by assumption
on S(n).)
For the case DSPACE(S(n)), M is a DTM, and M ′ has to be deterministic also.

The construction above still works, but now M ′ needs to systematically try (lexico-
graphically) all possible values of i and j. We need to assume that M always halts so
that a simulation on a current (i; j) that fails to accept can be abandoned by M ′ and
proceed to the next lexicographic (i; j). This assumption can be made without loss of
generality since any S(n) space-bounded DTM can be made halting [8].

Clearly, the >rst part of the proof above applies to unrestricted nondeterministic
TMs (which are equivalent to deterministic TMs), i.e., to recursively enumerable
sets:

Corollary 5. The class of recursively enumerable sets is closed under hairpin
inversion.

One can obtain similar results for time-bounded TMs. For example, let P (NP)
denote the class of languages accepted by polynomial time-bounded deterministic
(nondeterministic) TMs. Then the constructions in the proof of Theorem 4 also
proves:

Corollary 6. P and NP are closed under hairpin inversion.

Using the ideas in the proofs of Theorems 2 and 4 (noting that the input is two-way
and that positions in the input can be stored in binary on the worktapes), we have
now:

Corollary 7. NSPACE(S(n)), DSPACE(S(n)), P, and NP are closed under synchro-
nized insertion.

Turning now to the operations of synchronized deletion and synchronized bi-deletion,
we have:

Proposition 5. DSPACE(S(n)), NSPACE(S(n)), P, and NP are not closed under syn-
chronized deletion and synchronized bi-deletion with regular sets.

Proof. Let L⊆�∗ be a recursively enumerable language which is not in DSPACE
(S(n)) (respectively, NSPACE(S(n)), P, NP).
Let a; b be new symbols not in �. One can easily show that there exists a language

L1 in DSPACE(S(n)) (respectively, NSPACE(S(n)), P, NP) such that L1 consists of
words of the form aib� where i¿0 and �∈L. Furthermore, for all �∈L there exists
some i¿0 such that aib�∈L1 (see, e.g., [19]).

Suppose # is a symbol not in �∪{a; b}. Consider the language

#(L1 � {#})� a∗b#:



M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38 31

Clearly, a∗b# is regular and moreover, #(L1�{#})�a∗b#=#L which, by the de>nition
of L, is not in DSPACE(S(n)) (respectively, NSPACE(S(n)), P, NP).
For synchronized bi-deletion, consider again L and L1 as above. Let L2 = {aib#�# |

aib�∈L1}. Clearly, L2 is in DSPACE(S(n)) (respectively, NSPACE(S(n)), P, NP).
However,

L2� a∗b# = {�# | �∈L}

is a not in DSPACE(S(n)) (respectively, NSPACE(S(n)), P, NP).

However, for unrestricted TMs, we have

Proposition 6. The class of recursively enumerable sets is closed under synchronized
deletion and synchronized bi-deletion.

Proof. Let M1 and M2 be two TMs. We construct a TM accepting the synchronized
deletion of M1 with M2. Given input z= u′aw, M >rst scans and copies the input in
an auxiliary worktape, where nondeterministically, after reading u′a (for some pointer
symbol a), it inserts a substring v′a before copying the remaining string w. It also
marks the two a’s. Thus, at the end of this process, the auxiliary worktape contains a
string of the form u′av′aw, where the two a’s are marked. M then simulates M1 on
u′av′a while also simulating M2 on v′a. When M2 accepts, M continues the simulation
of M1 on w and accepts if M1 accepts.
We can use similar ideas to show closure under synchronized bi-deletion.

This concludes our study of closure properties. In the next section, we apply the
results obtained above to the study of the decidability of solution existence for language
equations involving the ciliate bio-operations.

5. Language equations and decision questions

We begin this section by investigating equations of the type hi(X )=R, where R is
a given language and X is the unknown. In addition to purely theoretical value, the
results in this section give us insights into restrictions on the form of a ciliate genome.
Clearly, for a ciliate to be able to descramble its (evolvable) genome using a given
operation, it should be decidable if the associated language equation has a solution.

Proposition 7. Let R⊆�∗ be regular language. If there exists a language L⊆�∗

such that hi(L)=R then there exists a regular language R′; L⊆R′ ⊆�∗, with the
same property.

Proof. Construct the language R′ = [hi(Rc)]c.
(i) We show that hi(R′)⊆R by way of contradiction. Assume there exists some

u∈ hi(R′) such that u =∈R. Since u =∈R, it must be the case that u∈Rc. As u∈ hi(R′) it



32 M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38

must be of the form u= xami(y)az where xayaz ∈R′. However, u= xami(y)az implies
xayaz ∈ hi(u)⊆ hi(Rc) a contradiction since R′ = [hi(Rc)]c.
(ii) We show now that every language L⊆�∗ such that hi(L)⊆R is included in R′.

Indeed, assume there exists L⊆�∗ with hi(L)⊆R but L*R′. Then there must exist
a word u∈L\R′. As u =∈ R′; u∈ hi(Rc) implies that u= xami(y)az with xayaz ∈Rc.
However, as u∈L, by the de>nition of hairpin inversion, xayaz ∈ hi(L)⊆R a contra-
diction.
Return now to the proof of the proposition. If there exists L with hi(L)=R then,

by (ii), L⊆R′. By (i) we have that R= hi(L)⊆ hi(R′)⊆R which means hi(R′)=R.
By Proposition 1, and the closure of REG (= regular sets) under complement, R′ is
regular.

Note that it follows from the proof that R′ can be e:ectively constructed. The pre-
ceding proposition aids us in deciding whether an equation hi(X )=R has a solution
X in case R is a regular language.

Proposition 8. If R⊆�∗ is a regular language, the problem of whether or not the
equation hi(X )=R has a solution X ⊆�∗ is decidable.

Proof. Construct R′ = [hi(Rc)]c. If hi(X )=R has a solution then R′ is also, by Propo-
sition 7, a solution. An algorithm for deciding our problem will consist in e:ectively
constructing R′ and then checking whether or not hi(R′)=R. The problem is thus
decidable as the equality of regular languages is decidable.

We now investigate equations of the form X � L=R, L � Y =R where L and R are
given languages, X and Y unknowns, and � signi>es the synchronized insertion or
deletion operation. To >nd their solutions, we proceed similarly to solving algebraic
equations x+a= b. Namely, we must employ an operation “inverse” to addition (in this
case subtraction) to determine the solution x= b−a. As, unlike addition, the operations
of synchronized insertion and deletion are not commutative, we will need to de>ne two
separate notions: the notion of a left inverse for solving equations X � L=R, and of
right inverse for solving equations of the form L � Y =R.

De�nition 5 (Kari [10]). Let �, ∗ be two binary word operations. The operation ∗ is
said to be the left-inverse of the operation � if, for all words u; v; w over the alphabet
�, the following relation holds:

w ∈ (u � v) i: u ∈ (w ∗ v):

In other words, the operation ∗ is the left-inverse of the operation � if, given a word
w in u� v, the left operand u belongs to the set obtained from w and the other operand
v, by using the operation ∗. The relation “is the left-inverse of” is symmetric.

Proposition 9. The left-inverse of the operation ⊕ of synchronized insertion is the
operation � of synchronized deletion.



M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38 33

Proof. Let u; v; w∈�∗, and w∈ (u⊕ v). Then w= xayaz where a∈�, u= xaz, v=ya,
x; y; z ∈�∗. By the de>nition of synchronized deletion, u= xaz ∈ (w� v). The converse
is analogous.

We can now use Proposition 9 and the following theorem, [10], to investigate solu-
tions of language equations of the type X ⊕ L=R where L and R are given languages
in �∗ and X is the unknown.

Theorem 5. Let L; R be languages over an alphabet � and �; ∗ be two binary word
(language) operations, left-inverses to each other. If the equation X � L=R has a
solution X ⊆�∗, then also the language R′ =(Rc ∗ L)c is a solution. Moreover, R′

includes all the other solutions of the equation (set inclusion).

Corollary 8. If the equation X ⊕ L=R (respectively X � L=R) has a solution, then
R′ =(Rc � L)c (respectively R′

=(Rc ⊕ L)c) is a maximal solution to the equation.

We shall use the above results to investigate the decidability of the following prob-
lems: Given languages L and R over �, R regular, Does there exist a solution X to
the equation X ⊕ L=R?, and Does there exist a singleton solution X = {w} to the
equation X ⊕ L=R?

Proposition 10. The problem “Does there exist a solution X to the equation X ⊕
L=R?”, is decidable for regular languages L and R.

Proof. For given regular languages L; R⊆�∗ de>ne R
′
=(Rc� L)c: By Corollary 8, if

there exists a solution X ⊆�∗ to the given equation, then also R′⊕L=R. Moreover, by
the proof of Proposition 1, the language R

′
is regular and can be e:ectively constructed.

The algorithm which decides our problem will start with the construction of R′.
Then, if R′ ⊕ L (which, by 1, can be e:ectively constructed) equals R then the answer
to our problem is YES, and NO otherwise.

Proposition 11. The problem “Does there exist a singleton solution X = {w} to the
equation X ⊕ L=R?” is decidable for regular languages L and R.

Proof. Let L and R be nonempty regular languages and let m be the length of the
shortest word in R. If there exists a word w such that {w}⊕L=R, then it must satisfy
|w|6m.
The algorithm for deciding our problem will consist in checking whether or not

{w} ⊕ L=R for each word w with |w|6m. The answer is YES if such a word w is
found and NO otherwise.

If L is a language over an alphabet �, the word x∈�+ is called left-useful with
respect to � and L (shortly, left-useful) if there exists a y∈L such that x � y 
= ∅.
A language X is called left-useful with respect to � and L (shortly, left-useful), if
it consists only of left-useful words. From the above de>nitions it follows that the



34 M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38

problem “Does there exist a solution X to the equation X � L=R?” and its singleton
version are equivalent to the corresponding problems where the existence of a left-
useful language or word are investigated. Therefore, in the sequel, we will mean a
left-useful language when referring to a language or word whose existence is sought.
An argument similar to Proposition 10, and based on the e:ectiveness of the proofs

of closure of REG under ⊕ and �, shows that the problem “Does there exist a solution
X to the equation X � L=R?” is decidable for regular languages L and R.

The following decidability result is basically a consequence of the fact that the result
of a synchronized deletion from a word is a >nite set.

Proposition 12. The problem “Does there exist a word w such that w � L=R?” is
decidable for regular languages L and R.

Proof. Let L; R be regular languages over �. Note that, if R is an in>nite language, the
answer to our problem is NO. If R is >nite, we can e:ectively construct the regular set

P = (Rc ⊕ L)c\ ⋃

S$R
(Sc ⊕ L)c:

Claim. For all w∈�∗ we have: w∈P i: w � L=R.

Indeed, (Rc ⊕ L)c= {v | v� L⊆R}: Therefore, if w� L=R then w∈{v | v� L⊆R},
but w 
∈ {v | v� L⊆ S ⊂ R} and consequently w∈P.
For the reverse implication, let w∈P. As w � L⊆R but w � L is not included in

any proper subset of R, we have w � L=R. The proof of the claim is thus complete.
The algorithm for deciding our problem will check >rst the >niteness of R. If R

is in>nite, the answer is NO. Otherwise, the set P is constructed and its emptiness
is decided. If P= ∅, the answer is NO. Otherwise, the answer is YES and any word
w∈P satis>es the equation w � L=R.

To investigate symmetric equations of the type L ⊕ Y =R and L � Y =R where
L and R are given languages and Y is an unknown language, we shall make use
of the following result from [10], keeping in mind that, in the case of synchronized
deletion, we are actually investigating the existence of right-useful solutions (the notion
is de>ned similarly to that of left-useful solutions).

Theorem 6. Let L; R be languages over � and �; ∗ be two binary word (language)
operations right-inverses to each other. If the equation L � Y =R has a solution Y ,
the language R′ =(L ∗ Rc)c is a maximal solution.

The notion of right-inverse in the preceding theorem, similar to the notion of left-
inverse, is formally de>ned in [10] as follows.

De�nition 6 (Kari [10]). Let �; ∗ be two binary word operations. The operation ∗ is
said to be right-inverse of the operation � if, for all words u; v; w in �∗ the following
relation holds: w∈ (u � v) i: v∈ (u ∗ w).



M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38 35

By using Theorem 6 we could >nd solutions to equations of the form L ⊕ Y =R,
L� Y =R if we found the right inverses of ⊕ and �.

Proposition 13. The right-inverse of synchronized deletion � is synchronized
bi-deletion. The right-inverse of synchronized insertion is reversed synchronized
bi-deletion.

Corollary 9. If the equation L⊕Y =R (respectively (L�Y =R)) has a solution, then
R′ =(Rc� L)c (respectively (L� Rc)c) is a maximal solution.

Proposition 14. The problem of whether or not there exists a solution Y to the equa-
tions L⊕ Y =R, L� Y =R is decidable for regular languages L and R.

Proof. Similar to that of Proposition 10, using Theorem 6 and Proposition 1.

We now show some undecidable properties. We will use the fact that 1-reversal
NCM(1) (i.e., nondeterministic >nite automata augmented with one counter whose
counter makes exactly 1 reversal) has undecidable universe (Is L=�∗?) and set dif-
ference (Is L1 − L2 = ∅?) problems [1,9]. In fact the undecidability holds even when
the counter makes exactly 1 reversal.

Proposition 15. The problem “Does there exist a solution X to the equation
X ⊕ L=R?” is undecidable for NCM(1) languages L and regular languages R.

Proof. Let � be an alphabet, card(�)¿2, and let # be a letter which does not occur
in �. There exists a regular language R=#�∗# such that our problem is undecidable
for this particular R and NCM(1) languages L. Indeed, note that the equation

X ⊕ L# = #�∗#

holds i: X = {#} and L=�∗. Hence, if we could decide our problem, we would be able
to decide the problem “ is L=�∗?” for NCM(1) languages L, which is impossible.

Note that in the preceding proof the language X = {#} is a singleton. Consequently,
the singleton version of the problem in Proposition 15 is also undecidable for NCM(1)
languages L and regular languages R.

Proposition 16. The problem “Does there exist a language X such that X � L=R”
is undecidable for NCM(1) languages L and regular languages R.

Proof. Let � be an alphabet, card(�)¿2 and #, $ be symbols not in �. Let R= {$}
and, f or arbitrary given languages L1; L2 ∈NCM(1), let

L =; #L1#$ ∪ L2#

Claim. The equation X � [#L1#$∪L2#]= {$} has a solution X i: L1\L2 
= ∅.



36 M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38

“⇐” If L1\L2 
= ∅, let X = {$#u#$}, where u∈L1\L2. It is easy to see that X is a
solution.
“⇒” Assume X is a solution and let w∈X . Then w can be of the form $#u#$, u∈L1,

as $#u#$ � #u#$= {$}. However, if u belongs also to L2 then $#u#$ � u#=$#$, a
contradiction with the form of words in R.
Consequently, X =$#(L1\L2)#$ and the claim is proved.
It follows then that, if we could solve the problem of the proposition we would also

be able to decide for arbitrary NCM(1) languages L1; L2 whether L1\L2 = ∅, which is
impossible.

The proof of Proposition 16 shows that also the singleton version of the problem is
undecidable.

Proposition 17. The existence of a solution Y to the equation L⊕Y =R is undecidable
for regular languages R and NCM(1) languages L.

Proof. Let � be an alphabet, card(�)¿2, and let # be a symbol not in �. Let L be
an arbitrary NCM(1) language, and let R=�∗## be a regular language.
Note that the equation L# ⊕ Y =�∗## has a solution Y i: Y = {#} and L=�∗.
Consequently, if we could decide the problem in the Proposition we could decide

for an arbitrary NCM(1) language whether it equals �∗, which is impossible.

Note that, in Proposition 17, the solution Y = {#} is a singleton, therefore also the
singleton version of the problem of Proposition 17 is undecidable.

Proposition 18. The problem of whether or not there exists a solution to the equation
L� Y =R is undecidable for NCM(1) languages L and regular languages R.

Proof. Similar to Proposition 17, by considering R=�∗# and the equation L## �
Y =�∗# for arbitrary NCM(1) languages L.

Note that Proposition 18 solves also the singleton version of the problem.
This concludes our study of language equations involving the three bio-operations.

6. Conclusion

We have considered the properties of three operations used in the modeling of the
ciliate gene descrambling process: synchronized insertion, synchronized deletion and
hairpin inversion. We found that all the families of languages studied are closed un-
der synchronized insertion with the exception of NFCM(0) and NCM(1), while only
the families of regular, NCM and recursively enumerable languages are closed under
synchronized deletion. Further, we found that all families considered except NCM(1),
CFL, NFCM(0), NPCM(0) and NPCM were closed under hairpin inversion. In order
to consider language equations involving each of the three operations we have also



M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38 37

de>ned the operation of synchronized bi-deletion (the right-inverse of synchronized
deletion) and showed only the families of regular, NCM and recursively enumerable
languages to be closed under this operation.
We demonstrated that the existence of a solution X to the equation hi(X )=R, where

R is a regular language is decidable. Additionally, the existence of a solution was
shown to be decidable for equations of the form L � Y =R and X � L=R where
� is one of synchronized insertion or synchronized deletion operations and L; R are
regular languages. The same problems are undecidable in the case that L is a NCM(1)
language.
By investigating the properties of these formal operations, we have provided some

insight into the nature of the bio-operations that must be present in the ciliate gene de-
scrambling mechanism. Continued theoretical study of the gene descrambling problem
combined with improved biological results will hopefully lead to a better understanding
of this fascinating process.

References

[1] B.S. Baker, R.V. Book, Reversal-bounded multipushdown machines, J. Comput. System Sci. 8 (1974)
315–332.

[2] M. Daley, L. Kari, Some properties of ciliate bio-operations, Preproc. 6th Internat. Conf. on
Developments in Language Theory, 2002, pp. 122–139.

[3] J. Dassow, V. Mitrana, A. Salomaa, Operations and language generating devices suggested by the
genome evolution, Theoret. Comput. Sci. 270 (2002) 701–738.

[4] A. Ehrenfeucht, D.M. Prescott, G. Rozenberg, Computational aspects of gene (un)scrambling in ciliates,
in: L.F. Landweber, E. Winfree (Eds.), Evolution as Computation, Springer, Berlin, Heidelberg, 2001,
pp. 45–86.

[5] R. Freund, C. Martin-Vide, V. Mitrana, On some operations on strings suggested by gene assembly in
ciliates, New Gen. Comput. 20 (2002) 279–293.

[6] S. Ginsburg, Algebraic and Automata-Theoretic Properties of Formal Languages, North-Holland,
Amsterdam, 1975.

[7] T. Harju, O.H. Ibarra, J. Karhumaki, A. Salomaa, Some decision problems concerning semilinearity
and commutation, in: J. Comput. System Sci. extended abstract has appeared in Proc. Twenty Eighth
Internat. Colloq. 2002, Automata, Languages and Programming, 2001, pp. 579–590, to appear.

[8] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation,
Second Edition, Addison-Wesley, Reading, MA, 2001.

[9] O.H. Ibarra, Reversal-bounded multicounter machines and their decision problems, J. Assoc. Comput.
Mach. 25 (1978) 116–133.

[10] L. Kari, L.F. Landweber, Computational power of gene rearrangement, in: E. Winfree, D. Gi:ord
(Eds.), DNA5, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American
Mathematical Society, Vol. 54, 2000, pp. 207–216.

[11] L. Kari, On language equations with invertible operations, Theoret. Comput. Sci. 132 (1994) 129–150.
[12] L.F. Landweber, L. Kari, The evolution of cellular computing: nature’s solutions to a computational

problem, in: L. Kari, H. Rubin, D.H. Wood (Eds.), DNA4, BioSystems, Elsevier, Amsterdam, 1999,
pp. 3–13.

[13] L.F. Landweber, T. Kuo, E. Curtis, Evolution and assembly of an extremely scrambled gene, Proc. Nat.
Acad. Sci. 97 (7) (2000) 3298–3303.

[14] I. Petre, A. Ehrenfeucht, T. Harju, G. Rozenberg, Patterns of micronuclear genes in cilliates, in:
N. Jonoska, N. Seeman (Eds.), DNA7, Lecture Notes in Computer Science, Vol. 2340, Springer, Berlin,
2002, pp. 279–289.



38 M. Daley et al. / Theoretical Computer Science 306 (2003) 19–38

[15] D.M. Prescott, Cutting, splicing, reordering, and elimination of DNA sequences in hypotrichous ciliates,
BioEssays 14 (5) (1992) 317–324.

[16] D.M. Prescott, The unusual organization and processing of genomic DNA in hypotrichous ciliates,
Trends in Genet. 8 (1992) 439–445.

[17] D.M. Prescott, Genome gymnastics: Unique modes of DNA evolution and processing in ciliates, Nature
Rev. Gen. 1 (2000) 191–198.

[18] D.M. Prescott, A. Ehrenfeucht, G. Rozenberg, Molecular operations for DNA processing in hypotrichous
ciliates, Eur. J. Protistol. 37 (2001) 241–260.

[19] A. Salomaa, Formal Languages, Academic Press, New York, 1973.


	Closure and decidability properties ofsome language classes with respect tociliate bio-operations
	Introduction
	Ciliate Bio-Operations
	Closure properties of NCM, NFCM, and NPCM
	Space-bounded and time-bounded turing machines
	Language equations and decision questions
	Conclusion
	References


