Chapter 32

CONTEXT-FREE RECOMBINATIONS

Jarkko Kari

Department of Computer Science
15 MLH

University of lowa

lowa City, 1A 52242, USA
jikari@cs.uiowa.edu

Lila Kari

Department of Computer Science
University of Western Ontario
London, ON N6A 5B7, Canada

lila@csd.uwo.ca

Even if the rope breaks nine times, we must splice it back together a tenth time.
— Tibetan proverb

Abstract We address the issue of the computational power of a formal model ([3], [G]) for
the guided homologous recombinations that take place during gene rearrangement
in ciliates. Results in [7], [5] have shown thal a generalization of this model that
assumes context-controlled recombinations has universal computational power.
Complementing results in (4], [11], [12], [15]; we study propertics of context-

*Research partially supported by Grant R2824A01 of the Natural Sciences and Engineering Research
Council of Canada to L.K. and NSF Grant CCR 97-33101 to J.K.
361

C. Martin-Vide and V. Mitrana feds.). Where Mathematics, Computer Science, Linguistics and Biology Meet, 361-373,
© 2001 Kluwer Academic Publishers. Printed in the Netherlands,

362 WHERE MATHEMATICS, COMPUTER SCIENCE, LINGUISTICS ...

frec recombinations and characterize the languages generated by context-free
rccombination systems. As a corollary, we obtain context-free recombinations
which are computationally weak, being able to generate only regular languages.
‘This is one more indicator that, most probably, the presence of direct repeats
does not provide all the information needed for accurate splicing during gene

rearrangement.

1. INTRODUCTION AND NOTATION

Ciliates arc a diverse group of a few thousand types of unicellular eukaryotes
(nucleated cells) that emerged more that 10° years ago [13]. Despite their
diversity, ciliates still share two common features: the possession of a hair-like
cover ol cilia used for moving and food capture, and the presence of two nuclei
[13]. The micronucleus is functionally inert and becomes active only during
sexual exchange of DNA, while the active macronucleus contains the gencs
needed for the development of the ciliate. When two cells mate, they exchange
micronuclear information and afterwards develop new macronuclei from their
respective micronuclei.

In some of the few ciliates studied, the protein-coding segments of the genes
{or MDSs for macronuclear destined sequences) are present also in the mi-
cronucleus interspersed with large segments of non-coding sequences (/ESs
for internally excised sequences). Moreover, these segments are present in a
permuted order in the micronucleus. The function of the various eliminated
sequences is unknown and moreover they represent a large portion of the mi-
cronuclear sequences: the Oxytricha macronucleus (average length of 2,200
basepairs per molecule) has ~ 4 % of the DNA sequences present in the mi-
cronucleus whereas the Stvlonychia Lemnae has ~ 2 % ([13]).

As an example, the micronuclear actin [gene in Qxytricha Nova is composed
0f 9 MDSs separated by 8 [ESs. The 9 MDSs are present in the permuted order 3-
4-6-5-7-9-2-1-8, the proper order being defined by the | through 9 arrangement
in the functional macronuclear gene [13]. Instructions for unscrambling the
micronuclear actin [gene are apparently carried in the gene itself [13]. At the
end of each ¢th MDS (1 < ¢ < 8) is ascquence of 9 to 13 bp that is identical to
a scquence preceding the (¢ + 1)th MDS (which occurs somewhere else in the
gene). In the model proposed in [13] the homologous recombination between
repeats joins the MDSs in the correct order.

In the following we describe a formal system intended to model the guided
homologous recombinations that take place during gene rearrangement. Before
introducing the formal model, we summarize our notation. An alphabet ¥ is a
finite, nonempty set. A sequence of letters from X is called a string (word) over
¥ and in our interpretation corresponds (o a lincar strand, The length of a word
w is denoted by |w| and represents the total number of occurrences of letters in

Context-Free Recombinations 363

the word. A word with 0 letters in it is called an empty word and is denoted by
A. The sct of all possible words consisting of letters from is denoted by ¥,
and the sct of all nonempty words by £~. We also define circular words over
¥ by declaring two words to be equivalent if and only if (iff) one is a cyclic
permutation of the other. In other words. w is equivalent to w’ iff they can be
decomposed as w = wwv and w' = vu. respectively. Such a circular word ew
refers to any of the circular permutations of the letters in w. Denote by £* the
set of all circular words over 3.

For a lincar word w € B*, Pref(w) = {z € £*| w = zv}, Suff{w) = {y €
2| w = uy} and Sub{w) = {z € B*| w = uzv}.

For a circular word sw € £°, we define Pref(ew) = Suff(ew) = @ and

Sub(ew) = {z € *| o w = euzv,u,v € ¥}

as the sct of prefixes, suffixes, respectively subwords of sw.

For more notions of formal language theory the reader is referred to [14]
With this notation we introduce several operations studied in [6], [7] in the
context of gene unscrambling in ciliates.

Definition 32.1 If ¢ € T7T is a junction sequence then the recombinations
guided by x are defined as follows:

(i) uzv + v'zv'=uzv’ + W'zv (linear/linear), Figure 32.1,

(1) uzvzw=ruzw + evx (circular/linear), Figure 32.2,

(iii) suzv + eu'zv'=> & uzv'v'zv (circular/circular), Figure 32.3.

Note that all recombinations in Definition 32.1 are reversible, i.e., the oper-
ations can also be performed in the opposite directions.

For example, operation (ii) models the process of intramolecular recombi-
nation. After z finds its second occurrence in uzvzw, the molecule undergoes
a strand exchange in z that leads to the formation of two new molecules: uzw
and a circular DNA molecule evz. Intramolecular recombination accomplishes
the deletion of either sequence vz or zv from the original molecule uzwzv and
the positioning of w immediately next to uz. This implies that (ii) can be used
to rcarrange sequences in a DNA molecule thus accomplishing gene unscram-
bling.

The above operations are similar to the “splicing operation” introduced by
Head in [2] and “circular splicing” and “mixed splicing” ([3], [15], [10], [11],
[12]). [9], [1] and subsequently [16] showed that some of these models have
the computational power of a universal Turing machine. (Sce [4] for a review.)’

In [7] the above strand operations were gencralized by assuming that ho-
mologous recombination is influenced by the presence of certain contexts, i.c.,
cither the presence of an IES or an MDS flanking a junction sequence. The ob-
served dependence on the old macronuclear sequence for correct IES removal

364

WHERE MATHEMATICS, COMPUTER SCIENCE, LINGUISTICS ...

T T u v
e -
+ — o
_ N X = =
= u’ \'a
u’ X v’
u X v
v’ I u’ X
Figure 32.1 Linear/linear recombination.
S
/ N
[\
- |
== X i w
u X v X w u x ./
P

Figure 32.2 Linear/circular recombination.

Context-Free Recombinations 365
X
v ;
u i ‘
u v’ A%
u 7 _
X
s 3
u v u v
I l‘\
| +
X X

Figure 32.3 Circular/circular recombination.

'

in Paramecium suggests that this is the case ([8]). This restriction captures the
fact that the guide sequences do not contain all the information for accurate
splicing during gene unscrambling. In particular, in [7] we defined the notion
of a guided recombination system based on operation (i) and proved that such
systems have the computational power of a Turing machine, the most widely
used theoretical model of electronic computers.

We now consider the case where all types of recombinations (lincar/linear,
lincar/circular, circular/circular) are allowed and moreover no context restric-
tions apply. We study properties of such recombinations. This study comple-
ments resulls obtained in [L0], [11]. [12], [15], [4] on lincar splicing, circular
splicing, self-splicing and mixed splicing. However, while Theorem 32.2 may
follow from aresult in [4] on the closure ol an AFL under all splicings, Theorem
32.1 characterizes the language L(R) of an arbitrary context-free recombina-
tion system with a possibily infinite set of junction sequences and arbitrary
axiom scts.

Theorem 32.2 shows that the resulling rewriting systems are computationally
weak having only the power to generate regular languages. This is one morc
indicator that, most probably, the presence of direct repeats does not provide
all the information needed for accurate splicing during gene rearrangement.

366 WHERE MATHEMATICS, COMPUTER SCIENCE, LINGUISTICS ...

2. CONTEXT-FREE RECOMBINATIONS

In our intuitive image of context-free recombinations we can vicw strings
as cables or “extension cords™ with different types of “plugs”. Given a sct of
junction sequences J, cach ¢ € J defines one type of “plug”. Strings, both
lincar and circular can then be viewed as consisting of “clementary” cables that
only have plugs at their extremities. (A circular strand consists of clementary
cables connected to form a loop.) A recombination step amounts to the fol-
lowing operations: take two connections using identical plugs (the conncctions
can be in two different cables or in the same cable); unplug them; cross-plug to
form new cables.

In view of Lemma 32.4 to be proved later, we will assume, without loss of
gencerality, that all sets of plugs J are subword-free.

Definition 32.2 Let J C T be a set of plugs. We define the set of elementary
cables (respectively left elementary cables and right elementary cables) with
plugs in J as

By = [(JET nETJg) A ErIE,

Ly =X J\Z"JzTt,

R;=JE*\BtJz".

Note that an elementary cable in Ey is of the form zyu = vzg where #1, 20 €
J arc plugs. In other words, an elementary cable starts with a plug, ends with
a plug, and contains no other plugs as subwords. The start and end plugs can
overlap.

A left elementary cable is of the form wz, where z € J is a plug and wz
does not contain any other plug as a subword. In other words, il we scan wz
from lcft to right, z is the first plug we encounter.

Analogously, a right elementary cable is of the form zw where z € Jis a
plug and wz does not contain any other plug as a subword.

Definition 32.3 For a set of plugs J C 7 and a linear word w € 71, the set
of elementary cables with plugs in J occurring in w is defined as

Ep(w) = Ey N Sub(w),

while the set of left, respectively right, elementary cables occurring in w is
Ly(w) = Ly N Preflw)
Ry (w) = Ry N Suff{w)

Note that Ly(w) and Ry(w) are the empty set or singleton sets.
Examples: If ¥ = {a,b} and J = {b} then L;(aba) = ab, R;(aba) = ba,
Ej(abe) = 0. Also Lj(ab)} = ab, Rs(ab) = b, Ej(ab) = 0 and L;(ba) = b,
Rj(ba) = ba, Ez(ba) = 0.

Context-Free Recombinations 367

Definition 32.4 For a set of plugs J C % and a circular word ew € %° we
define the elementary cables occurring in ew as follows:

(i) If Az € J N Sub(ew) the elementary cables with plugs in J occurring in
sw are defined as Ej(sw) = Ej(www), Ly(ew) = Ry(ow) = 0,

(i) If J O Sub(ew) = @ then Ey(ew) = Ly{ow) = Ry(sw) = {.

Examples. If ¥ = {a,b}and J = {aba, baa} then E; (saba) = {abaa, baaba}.
If% = {a,b,¢,d} and J = {abc, bedab} then Ej (sabed) = {abcdab, bedabe}.
From the above examples we see that in circular words start and end plugs
are allowed to overlap.
In the definitions for elementary cables, left and right elementary cables can
be easily generalized to languages. For a language I € £*U &°,

Ej(L) = | Es(w), Ls(L) = | J Ly(w), Ry(L) = | Ry(w)

wel weL welL

The following two lemmas introduce some properties of clementary cables.

Lemma 32.1 Given a set of plugs J C £,
(D) Ifu,v € B* and w € Sub(v) then Ej(u) C Ej(v).
(i) If u € Pref(v) then Lj(u) C Ls(v).
(tii) If w € Suff{v) then By(u) C R(v).

Proof. (i) Ej(u) = EyN Sub(u) C E;N Sub(v) = Ey(v) as Sub(u) C
Sub(w).
(ii) and (iii) are proved analogously. O

Lemma 32.2 [fx € .J is a plug then
(i) Ej(uzv) = Ej({uz,zv}),
(it) Ep{ouz) = Ej(zuz),

(iii) Ly(uzv) C Ly (uz),
(iv) Rj(uzv) C Ry(zv).

Proof. (i) Let e = zju; = ugzy be an clementary cable in Ej(uzv),
z1,22 € J. If e is a subword of ux or of zv then e € Ej(uz) or E(zv),
respectively.

If e is not a subword of either uz or zv but e is a subword of uzv then
necessarily « is a subword of e. Because z is a plug and e is an clementary
cable, e must be a sulfix of wx or a prefix of zv. In cither case, e is a subword
ol uz or zv.

(i) By definition, Ly (suz) = Ej(uzuzuz). By (i); Ey(uzuzuz) =

Ej({uz, zuzuz}) = Ej({uz, zuz, zuz}), which by Lemma 32.1 cquals
Er(zuz).

368 WHERE MATHEMATICS, COMPUTER SCIENCE, LINGUISTICS ...

(i) uz is a prefix of uzv therefore Ly(uz) C L (uzv) by Lemma 32.1.
Because z is a plug, both Lj(uz) and Lj(uzv) are nonempty and therefore
they are cqual singleton sets.

(iv) zv is a suffix of uzwv therefore Ry(zv) C Rj(uzv) by Lemma 32.1.
Because z is a plug, both Rj(zv) and Rs(uzv) are nonempty and thercfore
they are equal singleton sets. O

The proposition below shows that recombination of cables does not produce
additional elementary cables, i.c. the set of the elementary cables of the result
strings cquals the set of elementary cables of the strings entering recombination.

Proposition 32.1 [f.J C 5% is a set of plugs and z € J then
(1) Ej(uzvzw) = Ej(uzw) U Ej(svz),
(i) Ey({uzv,vWzv'}} = Ej({uzd, v'zv}),
(iit) Ey({ouzv, su'zv'}) = Ej(euzv'v'zv),
(iv) Ly(uzvzw) = Lj({uzw, svz}),
(v) Ly({uzv,v'zv'}) = Ly{{uzv', vw'zv}),
(vi) Ry(uzvzw) = Rj({vzw, svz}),
(vii) By ({uzv, v'zv'}) = Ry({uzv' vw'zv}).

Proof. (i) By Lemma 32.2, E;(uzvzw) = Ej({uz, zvzw}) = Ey({uz,
vz, zw}) = Ej({uzw, zve}) = By({uzw, svz}).

(ii) Similarly, £;({uzv,v'zv'}) = Ej({uz, zv, vz, zv'}) = Ej({uav’,
wzv}).

(iii) Ej(ouzv,su'zv'}) = Ej({ezvu, ezv'u'}) = Ej({zvuz, zv'v'z})
while

Ej(esuzv'v'zv) = Br(szv'v'zvu) = Ej(zv'v'zvuz) = Ej({zv'v'z,
zvuz}).

(iv) By Lemma 32.2, Lj(uzvzw) = Lj(uz) while Lj{{uzw, svz}) =
Lj(uzw) = Lj{uz).

(v) By Lemma 32.2, Ly ({uzv,v'zv'}) = Ly({uz,u'z}) while L;({uz?’,
wev}) = Ly({uz, v'z}).

(vi) By Lemma 32.2, Ry (uzvzw) = Rjy(zw) while By({uzw, evz}) =
Ry(zw).

(vii) By Lemma32.2, Ry ({uzv,v'zv'}) = By({zv, zv'}) while Ry ({uzv’,
w'zv}) = Ry({zv', zv}). O

We are now ready to define the notion of a context-free recombination system.
This is a construct whereby we are given a starting sct of sequences and a list
of junction sequences (plugs). New strings may be formed by recombinations
among the existing strands: if one of the given junctions sequences is present,
recombinations are performed as defined in Section 1. Recombinations arc
context-free, i.e., they are not dependent on the context in which the junctions
sequences appear. The language of the system is defined as the set of all strands

Context-Free Recombinations 369

that can thus be obtained by repeated recombinations starting from the initial
set.

Definition 32.5 A context-free recombination system is a triple
R=(2,J,A)

where 3 is an alphabet and J C %7 is a set of plugs, while A C T UB* is
the set of axioms of the system.

Given a recombination system R, for sets 5,8 € % U X* we say that S
derives S’ and we write S= S’ iff there cxists = € J such that one of the
following situations holds:

(i) Fuzv,v'zv’ € S such that uzv + v'zv'=uzv’ + wzvand §' = SU
{uzv', v'zv},

(i) Juzvzw € S such that uzvzw=uzw + vz and S’ = SU{uzw, evz},

(i) Juzw, vz € S such that uzw + svz=uzvzwand S’ = SU{uzvzw},

(iv) 3 » uzv, sv'zv’ € S such that euzv + ev'zv'= o uzv/v/zv and §' =
SU {suzv'u'zv},

(v) 3o uzv'v'zv € § such that suzv'v/zv=> » uzy + eu'zy’ and §' =
SU {euzv, su'zv'}.

Definition 32.6 The language generated by a context-free recombination sys-
tem IR is defined as

L(R)={weZ*UZ'| A=}S5,w e S}

Lemma 32.3 Forany context-free recombination systems R = (5, J, A) there
exists a context-free recombination system R = (5,0, A) such that J' is
subword-free and L(R) = L(R').

Proof LetJ' ={we J| Aue€ Ju+# wsuchthatw = z'uz" 2/, 2" €
¥} As J' C J, obviously L(R') € L{R) as any recombination scquence
using a plug in J' is a recombination according to I2 as well.

Conversely, let z € J\ J'. There existy € J', ', 2" € £*, y # x such that
o= z'yz’.

Then,

(Yuzv+u'zv = ur'yz"v+u'z yo"v' = pour'yz™ +u' sy = uzv' +
Wz,

(i) vzvzw = ur'yz"ve'yz"w= p ur'yz"w+ 0z vz'y = uzw+ evz'yz"
= uzw + evx,

(iil) vzw + evz = ur'yz"w + evz'yr"= puz'yz’va'yz"w = uzvaw,

(iv) suzv + eu'zv' = suz'yz"v + eu's'yrv'= g e ur'ya"v W 2 yz"v =
uzv'u'zv,

370 WHERE MATHEMATICS, COMPUTER SCIENCE, LINGUISTICS ...

(v) suzv'tv'Tv = euz ya:"v’u'm'yz ’U=> r o uz'yz"v + eyz'vu's =

suzy + su's'yz"v' = euzv + o'z,

Consequently, any derivation step in R can be simulated by a derivation step
in R, i.e, L(R) C L(R). O

As a consequence of the preceding lemma we may assume, without loss of
generality, that a context-free recombination system has a subword-free sct J
of plugs. The following Lemma will aid in the proof of our main result.

Lemma 32.4 Let R = (£, J, A) be a context-free recombination system. Let
uz = o'’ start and end with plugs =',x € J where u,u' # X If uz satisfies
Ej(uz) C Ej(A), then there exist o, f € ¥" such that auzf or eauzf is in
L(R).

Proof. Induction on k, the number of occurrences of plugs in uz = z'u'.

Base case: & = 2. Then ugz is elementary, uz € Ej(uz), therefore there
exists an axiom a € A such that uz € Ej(a). If a € £* is a linear word, then
a = auzf € L(R). If ea € £* is circular, as ea contains at least one plug,
e + #a + ea = saaa € L(R). By definition uz € Ej(aaa) which implics
aaa = ouzf and saaa = sauzf € L(IY).

Inductive step: Let uz = /v’ = vyz where y is any plug in the middle, e.g.
the second last plug.

Words vy and yz satisfy the conditions of the claim as they contain fewer
than k plugs, so we may apply the inductive hypothesis to both of them. Con-
sequently, awyf3 or eauyf is in L(R) and yyzd or eyyzd is in L(R).

One more recombination yields:

avyB + yyzd=ravyzd + yypb or

oy + eyyzd=avyzdyyf or

scvyf + yyzé=ryyLavyzd or

eauyf + eyyzd= » avyzdyyB, respectively.

Note that in each of the four possible cases the result contains a linear or
circular word in L(R) that has vyz = uz = z'u' as a subword, as required. O

The theorem below shows that a context-free recombination system charac-
terized by a set of plugs J and a sct of axioms A has the following property.
Any cable that consists of elementary cables plugged together one after the
other and that is either linear or circular can be obtained from the axioms using
cross-plugging. Conversely, no other types of cables can be obtained from the
axioms.

Theorem 32.1 Let R = (%, J, A) be a context-free recombination system.
'Hzeu L(R) = X where
= {w € B*UX*| either Ej(w) = Ly(w) = Ry(w) = 0 and w € A,
or EJ[w) Ly(w), Ry(w) are not all empty and E;(w) C Ej(A), Ls(w) C
Ls(A), Ly(w) € Ly(A)}.

Context-Free Recombinations 371

Proof. “X C L(R)"

Letw € X. f Efw) = Lj(w) = Ry(w) =Pandw € 4, thenw € L(R).

Assume now that w € %% is a linear word such that Ej(w), L, (w), Ry (w)
are not all empty and Ej(w) C E;(A), Ly(w) C Ly(A), Ry(w) C R;(A).

If w contains only one plug z € J then w = uzv and Li(w) = uz,
Bj(w) = zv. As Ly(w) C Lj(A), there exists an axiom a; € AN X* such
that a) = uzt. As Ry(w) C R;(A), there exists an axiom ap € A N 5* such
that as = szv.

We have a) + ag = uzt + szv=>uzv + sxt, which implies that uzv = w €
L(R).

If w contains more than one plug, then w = uyv where v = zl = rg’,
z,2' € J,uz = Lj(w) C Ly(A) and z'v = Ry(w) C 1y (A). Consequently,
there exist axioms ay,a; € AN I* such that a; = uzt, ay = sz'v.

By Lemma 32.4, there exist o, 8 € ©* such that ey or earyf3 is in L(R).

We can then recombine

uzt + ayB + sz'v = uzt + azlf + sz'v= uzlB + azt + sz'v =

urg'f + azt + sz'v=r urz'v + azt + sz'f = uyv + ast + sz'f

or, in the circular case,

uzt + sayf + sz'v = uzt + eazif + sz'v=> uzlfazt + sz'v =

urz'Bazt + sz'v=r urz'v + sz'Bazt = wyv + sz'Baxt.

In both cases, uyv = w € L(R). -

[f ew € E* is a circular word that contains at least one plug (E;(sw) # 0)
then ew = eux for some z € J. The word zuz satisfies the conditions of
Lemma 32.4 therefore azuzB or sazuz is in L(R).

Then we have cither azuzfS=> e uz +azf or sazuzf=> euz + ecvzf3 which
both imply that suz = ew € L(R).

- For the converse inclusion “L(R) € X" note thatif w € L(R), Ey(w) = 0,
Lj(w) =0, Ry(w) = @, and w € A then by definition w € X. Otherwisc,
il some words in L(R) belong to X, the result of their recombinations have
the necessary properties that ensure their belonging to X by Proposition 32.1.
Therefore, L(R) C X. 0

The theorem above leads to the conclusion of our paper after we show that
the language X is regular, being accepted by a finite automaton.

Definition 32.7 Given a finite automaton A, the circular language accepted
by A, denoted by L(A)*, is defined as the set of all words sw such that A has
a cycle labelled by w.

The circular/linear language accepted by a finite automaton A is defined as
L{A) U L(A)*, where L(A) is the lincar language accepted by the automaton
A defined in the usual way.

372 WHERE MATHEMATICS, COMPUTER SCIENCE, LINGUISTICS ...

Definition 32.8 A circular/linear language L C £* U B* is called regular if
there exists a finite automaton A such that it accepts the circular and linear
parts of L, i.e. that accepts LN E* and LN E*.

Theorem 32.2 Let J C ¥* be a set of plugs and let A C ¥ U E* be a
finite axiom set. Then X defined as in Theorem 32.1 equals the circular/linear
language accepted by a finite automaton A and is therefore regular.

Proof. 1f the sct J is not finite, then we should start by climinating plugs
that do not appear in any elementary cables of A. As the axiom sct A is finite,
the number of elementary cables is finite, and the set of (useful) plugs is finite
as well. Conscquently, we can assume, without loss of generality, that the set
J is finite.

Let A = (S, 5,4, so, s¢) be a finite automaton constructed as follows.

The set of states is

S ={sz]z € J}U{sq, 7}

and the transition relation 4 is defined as follows:

(i) 8(sz,u) = {sy| forcach e =zu=uvy € E;(A)},

(i) For each uz € Lj(A) we have the transition §(sg, uz) = sy,

(iii) For each zu € R j(A) we have 8(s;,u) = sy.

From the above construction and Theorem 32.1 one can prove that L(A} =
X a

Note that Definition 32.7 of the acceptance of a circular language by an finite
automaton and Definition 32.8 of regularity of a circular/linear language overlap
but do not coincide with existing definitions. We will therefore conclude with
a compariscn between various definitions and an argument in favour of our
choice. We can define circular languages accepted by automata in two more
ways.

Definition 32.9 Given a finite automaton A, the circular language accepied
by A. denoted by L(A)}, is defined as the set of all words ew such that A has
a cycle labelled by w that contains at least one final state.

Definition 32.10 Given a finite autommaton A, the circular language accepted
by A, denoted by L(A)3 is defined as the set of all words sw such that w = uv
and v € L(A).

The circular languages accepted by finite automata using Definition 32.10
coincide with the regular circular languages as introduced by Head in [3], whilc
acceptance of circular languages as in Definition 32.9 will be proven to coincide
with the definition in [11]. The following result holds.

Context-Free Recombinations 373

Proposition 32.2 (i) The family of circular languages accepted by finite auto-
mata under Definition 32.7 is strictly included in the family of circular languages
accepted by finite automata under Definition 32.9. (ii) The family of circular
languages accepted by finite automata under Definition 32.9 is stricily included
in the family of circular languages accepted by finite automata under Definition
32.10.

. Proof. (D) If L C 2* is a language accepted by an automaton A under
Definition 32.7, then there exists an automaton B such that L is accepted by B
under Definition 32.9. Indeed. one can construct an automaton B from A by
making every state a final state. Then every cycle contains a final state,

The inclusion is strict as shown by the two state automaton with transitions
§(q,a) = p,d(p,a) = q,8(p, b) = p where ¢ is the only final state. All words
ab™a are accepted, which implies a loop labeled by bs only. This implies that in
the sense of Definition 32.7 words b™ for some n are accepted although they
are not accepted by the automaton in the sense of Definition 32.9.

(i) If L € ¥* is a language accepted by an automaton B under Definition
32.9 then there exists an automaton C such that L is accepted by € under
Definition 32.10. Indeed, we can construct an automaton C' from B as follows.
For every final state ¢ of B we can construct a copy B(q) of B where only the
initial and final states have been changed: In B(g) state g is the only initial and
the only final state. Then we take the union of B(q) for all final states g of B.
The resulting automaton C accepts the same language in the sense of Definition
32.10 as the original B accepted in the sense of Definition 32.9,

Indeed, let g be an arbitrary final state of B. As q is the only final and initial
state of B(g) then the new machine B(g) accepts in the sense of Definition
32.10 all circular words that label a loop that goes through state ¢. (If w is
a label of such a loop, that starts and ends in state p, then w = uv where u
labels a path from p Lo ¢ and v labels a path from ¢ to p. Then vu ldbClS a path
that starts and ends in ¢, i.e., w is accepted by B(qg) i.e. of C' in the sense of
Definition 32.10. Conversely. if w is accepted by C' in the sense of Definition
32.10 this mcans it is accepled by some B(g) in the scnsce of Definition 32.10
then w = ww where vu labels a path from ¢ to ¢. That means vu labels a loop
that goes through g, and then also w = uw labels such a loop.)

The inclusion is strict as an automaton accepting languages using Definition
32.9 does not accept any finite nonempty languages because any loop can be re-
peated arbitrarily many times. Automata accepling languages using Definition
32.10 accept finite languages. 0O

As mentioned above, Definition 32.9 is equivalent to the definition in [11]
(the circular language accepted by an automaton is the set of all words that
label a loop containing at Ieast one initial and one final state). Indeed, let A be
an NFA that accepts a circular language L in the sense of [11], i.c., a word is

374 WHERE MATHEMATICS, COMPUTER SCIENCE, LINGUISTICS ...

accepted if it labels a cycle that contains both initial and final states. To accept
the same language in the sense of Definition 32.9 we make two identical copies
of A, say A and A, and we make \-transitions (which we can eliminate later)
belween the copies as follows: For every initial state i we have a A-transition
from i to 1/, and for every final state f we make X -transitions from f' to a new
state ", and from f” to f. All states f" are final states, and no other states
are final. A cycle that contains a final state must go through some f”, which
means it goes from A’ to A. Consequently it must go from A to A" as well, i.e.
the cycle contains some initial state 4 also, i.e. the word labels some cycle of
the original machine that contains both iand f.

To summarize, Definition 32,7 of circular languages accepted by automata
is strictly more restrictive than Definition 32.9, which is in turn strictly more
restrictive that Definition 32.10. Definition 32.9 is equivalent to the definition
in [11], and Definition 32.10 is equivalent to the definition of regular circular
languages proposed in [3]. Note that, as shown in [11], the family of languages
accepted by Definition 32.10, which are in addition closed under repetition (if
w™ is in the language whenever w is in the language), equals the family of
circular languages accepted by automata in the sense of Definition 32.9.

Our preference for Definition 32.7 was motivated by the fact that, under this '
definition, in Theorem 32.2 we can use the same automaton to accept both
the linear and circular components of the language. This makes our definition
more natural and Theorem 32.2 stronger that its counterpart following from
[4]. (Theorem 5.2, Chapter 5, [4], implies that the result of combined splicing
starting from a finite set is regular by showing that the linear and circular
components are each regular — using Definition 32.10 — but possibly accepted
by different automata.) .

However, Theorem 32.2 and Proposition 32.2 show that the language of a
context-free recombination system with a finite axiom set is regular under any
of the existing definitions.

References

[1] Csuhaj-Varji, E.; R. Freund; L. Kari & Gh. Piun (1996), DNA computing
based on splicing: universality results, in L. Hunter & T. Klein, cds., Pro-
ceedings of the Ist Pacific Symposium on Biocomputing: 179-190. World
Scientific, Singapore.

[2] Head, T.(1987), Formal language theory and DNA: an analysis of the gener-
ative capacity of specific recombinant behaviors, Bulletin of Mathematical
Biology, 49: 737-759.

[3] Head, T.(1991), Splicing schemes and DNA, in G. Rozenberg & A. Salo-
maa, eds., Lindenmayer Systems: 37 1-383. Springer, Berlin.

Context-Free Recombinations 375

[4] Head, T.; Gh. Pdun & D. Pixton (1997), Language theory and molecu-
lar genetics, in G. Rozenberg & A. Salomaa, eds., Handbook of Formal
Languages, 11: 295-358. Springer, Berlin,

[5] Kari, L.;J. Kari & L. Landweber (1999), Reversible molecular computation
in ciliates, in J. Karhumaiki; H, Maurer; Gh. Pdun & G. Rozenberg, eds.,
Jewels are Forever: 353-363. Springer, Berlin.

[6] Landweber, L.E. & L. Kari (1998), The evolution of cellular computing:
nature’s solution to a computational problem, in Proceedings of the 4th
DIMACS Meeting on DNA Based Computers: 3—15, Philadephia. Also in
Biosystems.

[7] Landweber, L.E. & L. Kari (1999), Universal molecular computation in
ciliates, in L. Landweber & E. Winfree, eds., Evolution as Computation,
Springer, Berlin.

[8] Meyer, E. & S. Duharcourt (1996), Epigenetic Programming of Develop-
mental Genome Rearrangements in Ciliates, Cell, 87: 9-12.

[9] Piun, Gh. (1995), On the power of the splicing operation, fnternational
Journal of Computer Mathematics, 59: 27-35. _

[10] Pixton, D. (1995), Linear and circular splicing systems, in Proceedings of
the First International Symposiwm on intelligence in Neural and Biological
Systems: 181-188. IEEE Computer Society Press, Los Alamos, Ca.

[L1] Pixton, D. (1996), Regularity of splicing languages, Discrete Applied
Mathematics, 69.1-2: 99-122.

[12] Pixton, D., Splicing in abstract familics of languages, ms. in preparation.

[13] Prescott, D.M. (1994), The DNA of ciliated protozoa, Microbiclogical

© Reviews, 58.2: 233-267.

[14] Salomaa, A. (1973), Formal Languages. Academic Press, New York.

[15] Siromoney, R.; K.G. Subramanian & V. Rajkumar Dare (1992), Circular
DNA and splicing systems, in Parallel Image Analysis: 260-273. Springer,
Berlin,

[16] Yokomori, T.; S. Kobayashi & C. Ferretti (1997), Circular Splicing Sys-
tems and DNA Computability, in Proceedings of the [EEE International
Conference on Evolutionary Computation'97: 219-224,

