DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 48, 1999

At the Crossroads of DNA Computing and
Formal Languages:
Characterizing Recursively Enumerable
Languages
Using Insertion-Deletion Systems*

Lila Kari®, Gheorghe P4un®, Gabriel Thierrin®, Sheng Yu®
“Department of Computer Science, University of Western Ontario
N6A 5B7 London, Ontario, Canada
E-mails: lila@csd.uwo.ca/ gab@csd.uwo.ca/ syu@csd.uwo.ca
®Institute of Mathematics of the Romanian Academy
PO Box 1-764, 70700 Bucuresti, Romania
E-mail: gpaun@imar.ro

Abstract

Several characterizations of recursively enumerable (RE) languages are
presented, using insertion-deletion systems. Such a system generates the
elements of a language by inserting and deleting words, according to their
contexts (the insertion-deletion rules are triples (u, z, v), with the meaning
that z can be inserted or deleted in/from the context (u,v)). Grammars
based on insertion rules have already been considered in [10] with linguistic
motivation. Insertion/deletion operations are also basic in DNA and RNA
processing, [5]. Our results show that these operations, even with strong
restrictions on the length of the contexts and/or on the length or on the
form of the inserted/deleted words are computationally complete, that is,
they can simulate the work of any Turing machine. A problem formulated
in [30] is solved in this context.

1 Introduction

The insertion-deletion operation is fundamental in many areas dealing with
symbol processing (in spite of the fact that the formal language theory is mainly

*Research supported by Grants OGP0007877 and OGP0041630 of the Natural Sciences and
Engineering Research Council of Canada and by Project 11281 of the Academy of Finland

1991 Mathematics Subject Classification. Primary 68Q05, 68Q42, 68Q45, 03D10.

329 © 1999 American Mathematical Societ

330 L. KARI, Gh. PAUN, G. THIERRIN, AND 8. YU

devoted to the study of rewriting). Natural and fruitful from a mathematical
point of view (see, e.g., [14]), the insertion (adjoining) of a string or of a pair of
strings in (to) a given string, depending on certain local conditions, is a basic
operation in linguistics. The string-context interplay is probably one of the
most important ingredients of all descriptive linguistic theories ([17]). Several
generative mechanisms based on this operation have already been considered.
In contextual grammars introduced in [18] (up-to-date details can be found in
the forthcoming monograph [24]) pairs of strings are inserted, depending on the
bracketed string. A similar effect is accomplished by the tree adjoining operation
in tree adjunct grammars, [13]. A sort of dual model has been considered in
[10]: strings are inserted in given associated contexts. In all these cases only
context-sensitive languages are obtained.

A natural extension of these generative mechanisms is to consider also eras-
ing operations. For contextual grammars this has been done in [25]. Insertion-
deletion systems, corresponding to Galiukschov grammars with deletion, were
investigated in [15].

Because the families of languages generated by types of grammars with inser-
tion rules only seem to be “small” in comparison with families in the Chomsky
hierarchy (often, they do not cover the family of regular or of linear languages),
it is rather surprising to find characterizations of recursively enumerable lan-
guages starting from “insertion languages” and using certain operations with
languages. For instance, in [8] it is shown that each RE language can be written
as the quotient by a regular language of a language generated by a contextual
grammar with finitely many selection strings associated with each context (this
is the most restricted class of contextual grammars). A similar result is obtained
in [19] for Galiukschov grammars.

The “explanation” of such results is, roughly speaking, the following one:
in general, the ability of sensing contexts, supplemented by erasing possibilities
can do everything that a type-0 grammar (a Turing machine) can do. In the re-
sults mentioned above, the context sensing is ensured by the context-dependent
insertion, whereas the erasing is provided by the quotient operation.

However, as we have pointed out above, the erasing feature can be introduced
in the generative mechanism, aiming in this way at obtaining direct character-
izations of RE languages. This has been done in [15], where a way to simulate
Turing machines by insertion-deletion systems is provided. Another proof of
this characterization of RE is given in [19].

In the above mentioned papers no care has been paid to the length of the
contexts used by the insertion-deletion operation, or to the length or to the
shape of the inserted-deleted strings. We address here this problem, proving
that quite restricted insertion-deletion grammars (we call them systems) are
still able to characterize RE.

Besides being fundamental in formal language theory, the operations of inser-
tion and deletion have recently become of interest in connection with the topic of
molecular computing. The area of molecular computing was born in 1994 when
Adleman, [1], succeeded to solve an instance of the Directed Hamiltonian Path
Problem solely by manipulating DNA strands. This marked the first instance
where a mathematical problem could be solved by biological means and, besides
further research [16], gave rise to a couple of interesting problems: a) can any

DNA COMPUTING AND FORMAL LANGUAGES 331

algorithm be simulated by means of DNA manipulation, and b) is it possible,
at least in theory, to design a programmable molecular computer? To answer
these questions, various models of molecular computation have been proposed,
and for some of these models it has been shown that the bio-operations involved
can simulate the actions of a Turing machine (see, for example, [2], [4], [12], [3],
(9}, {27], [33], [23]). »

Besides their being theoretically interesting, one of the motivations for study-
ing insertions and deletions is that these operations can be used as the sole
primitives needed for modeling DNA computation, [15], and moreover, they are
already implementable in the laboratory. Indeed, by using available reagents
and a standard technique called PCR site-specific oligonucleotide mutagenesis
[7] one can perform insertions and deletions of nucleotide sequences. (A similar
operation, substitution, has been proposed in [3] as a bio-operation necessary
to simulate a universal Turing machine.)

The results obtained here address a related problem: how to obtain full
computational power by insertions and deletions of a single nucleotide in an
RNA sequence. Indeed, it is known that the U nucleotide can be relatively
easily inserted and deleted in/from RNA sequences, [5]. This has led to the open
problem whether or not each Turing machine can be simulated, in a convenient
encoding, just by inserting/deleting strings consisting of one symbol only, U (see
[30]). We prove here that the answer is affirmative. The proof that insertions
and deletions of a single nucleotide are enough to simulate the actions of a Turing
machine opens thus another possible way for designing a molecular computer.

2 Insertion-deletion systems

In this section we introduce the basic model investigated in this paper, the
insdel systems. We denote by V* the free monoid generated by an alphabet
V under the operation of concatenation; the empty string is denoted by A and
the length of z € V* is denoted by |z|. By FIN, REG, LIN, CF, CS, RE we
denote the families of finite, regular, linear, context-free, context-sensitive, and
of recursively enumerable languages, respectively. For basic elements of formal
language theory, we refer to [28], [29].

An insertion-deletion (shortly, insdel) system, [1‘5], is a construct
Y= (KT,A’I)D)

where V is an alphabet, T C V, A is a finite subset of V*, and I, D are finite
subsets of V* x V* x V*.

The alphabet T is the terminal alphabet of v, A is the set of axioms, I is the
set of insertion rules, and D is the set of deletion rules. An insertion/deletion
rule is given in the form (u, z,v); in order to increase the readability, we some-
times write (u, 2, v}ins in order to indicate that (u, 2,v) is an insertion rule and
(u, 2,v)ger for (u,z,v) € D. In an insertion/deletion rule (u, z,v), u,v repre-
sent the context of insertion/deletion (i.e. the insertion/deletion will take place
between u and v), whereas 2 represents the string to be inserted/deleted.

For z,y € V* we write x => y iff one of the following two cases holds:

332 L. KARI, Gh. PAUN, G. THIERRIN, AND S. YU

(). z = zyuvzy, y = T1u2VL2, for some z1,x2 € V* and (u,z,v) € I (an
insertion step);

(ii). z = zyuzvzy, y = T UVTy, for some z1,22 € V* and (u,2,v) € D (a
deletion step).

Denoting by =>* the reflexive and transitive closure of the relation =3, the
language generated by ~ is defined by

Ly)={weT* x="w, for some z € A}
An insdel system v = (V,T, A, I, D) is said to be of weight (n,m,p,q) if

max{|z} | (u,z,v) € I} =n,
max{|u| | (u,2,v) € I or (v,2,u) € I} =m,
max{|z| | (u,z,v) € D} =p,
max{|u| | (v,2,v) € D or (v,2,u) € D} =q.

Intuitively, n is an upper bound for the length of the inserted string, while
m is an upper bound for the length of the left and right context. The constants
p and q represent the analogous upper bounds for deletion.

We denote by INSJ*DEL], n,m,p,q > 0, the family of languages L(v)
_generated by insdel systems of weight (n’,m’,p’,¢') such that n’ < n, m’ <m,
P’ <p, ¢ <gq. Because insertion/deletion of empty strings changes nothing, we
ignore such rules; namely, when n = 0 we also assume that m = 0, and when
p = 0 we also assume that ¢ = 0. The meaning of INSJ is that no insertion
rule is used, and the meaning of DEL] is that no deletion rule is used. When
one of the parameters n,m, p, ¢ is not bounded, we replace it by co. Thus, the
family of all insdel languages is INSSDELSS.

3 Preliminary results

The families /N ST DELS are those generated by Galiukschov grammars. Proofs
of the following results can be found in [10], [20], [21], [31]:

(i). FIN c INS. . DEL) c INS. DELY c INS2 DELY C ...
" ~oa 0 oo~ oo 0
c INS®DELS c CS.

(ii). REG is incomparable with all families INSTDEL], m >0, and REG C
INSZDELY.
(iii). INSY, DELY c CF, but CF is incomparable with all families

INSTDEL3, m > 2, and with INSEDELS; INS% DELJ contains non-
semilinear languages.

(iv). LIN is incomparable with all families INSZDELJ,m > 0, and with
INSZDELY.

(v). All families INSTDELY},m > 0, are anti-AFL’s (that is, they are closed
under none of the following operations: union, concatenation, Kleene clo-
sure, direct and inverse morphisms, intersection with regular languages).

DNA COMPUTING AND FORMAL LANGUAGES 333

(vi). Each regular language is the morphic image of a language in the family
INSL DELS.

Moreover, in [19] it is proved that

(vii). Each language L € RE can be written in the form L = g(h=!(L’)), for
a morphism h, a weak coding g, and L € INS? DELJ. (In fact, from
the proof in [19], we can see that L’ € IND]DEL3.) As a corollary, we
get the fact that L can be also written as L = R\L/, for R € REG and
L' € INS?_DELY (in fact, from the proof we get L' € INSI DELSY).

From the definitions, we obviously have

Theorem 1. INSPDELS C INST DELY, for all0 <n < n',0 < m <m/,
0<p<p,0<qg<yq.

A proof of the following result can be found in [15].

Theorem 2. RE = INSEDELZ.

In fact, from the proof in [15] we have RE = INSSDEL}. Another proof
of the result in Theorem 2 is given in [19]. In order to see the power of in-
sertion/deletion operations, we recall here the construction in [19], making also
explicit the weight of the obtained insdel system.

Theorem 3. RE = INS?DEL].

Proof. Take a language L C T™* generated by a grammar G = (N, T, S, P)
in Kuroda normal form, hence with P containing context-free rules of the
form X — z,|z| < 2, and non-context-free rules of the form XY — UZ, for
X,Y,U,Z € N. We construct the insdel system

v = (NUTU{E, K, K.}, T,{SEE},I, D),
I = {(X,Kiz,oq00)| X >z € Pay,as € NUTU{E}}

U {(XY,KzUZ,alaz)|XY—+UZ€P,C!1,02€NUTU{E}}
D = {(\XK;,)\)|XeN}

U {(\XYK3\) | X,Y € N}

U {(\MEE, N}

The symbol F is a dummy symbol used when checking the context ajas at
the end of the string. The symbols K7, K are “killers”: K removes one symbol,
namely the one placed immediately to its left, and K> removes two symbols,
those placed immediately to its left. Making use of these symbols, the rules in I
simulate the rules in P. Symbols already marked by the “killers” K, K, cannot
be used as contexts of rules in I. Consequently we get L(G) = L(v).]

4 Restricting the weight

A natural problem in this framework is to look for characterization results RE =
INST'DEL] with as small as possible values for n,m,p,q. We give here three

334 L. KARI, Gh. PAUN, G. THIERRIN, AND S. YU

results proving the surprising power of “small” insdel systems: systems of weight
(1,2,1,1),0r (2,1, 2,0), or (1, 2, 2, 0) are able to simulate any type-0 grammar.

These results do not settle the above formulated problem. For instance, we
do not know the power of insdel systems of weight (n,m,p, q) strictly smaller
than (1, 2, 1, 1) and than (2, 1, 2, 0) and than (1, 2, 2, 0), or of weight
(n,m,p,q) incomparable to these quadruples. Particularly interesting are the
systems of weights (1, 1, 1, 1), (1, 1, 2, 0), (2, 1, 1, 1), and (1, 2, 1, 0). Are such
systems generating non-context-free languages 7 We conjecture that the answer
is negative.

Theorem 1. RE = INS?DEL!.

Proof. According to the Church-Turing thesis, we only have to prove the
inclusion C.

Consider a language L C T*,L € RE, generated by a grammar G =
(N,T, S, P) in the Penttonen normal form, [26], that is containing context-free
rules X — z with |z| < 2, and non-context-free rules of the form XY — XZ,
for X,Y,Z € N.

Without loss of generality we may assume that in each rule X — ajay € P
we have X # a1, X # as, a1 # aa. (If necessary, we replace X — ajas with
X - X', X' - a104, ay — ag, where X', a) are new symbols.) Similarly, we
may assume that for each rule XY - XZ € Pwehave X #Y, X £ Z,Y # Z.
Moreover, by replacing eachrule X b a€ P,ae NUT,by X — aZ,Z — A,
we obtain an equivalent grammar. Hence, we may assume that the rules in P
are of the following three forms:

X - mag, aj,a3 € NUT, X # a1, X # o, 1 # 2
2 X =),
3. XY XZ, X,Y,ZeNX#Y,X#2Y #Z.

Moreover, we assume the rules of P labelled in an one-to-one manner.
We construct the insdel system

7= (KT1A)IaD)a

where
V. = NUTU({[r},(r r is the label of a rule in P}
U {B,F},
A = {BSE},

and the sets I, D are constructed as follows.

(i). For each rule r : X — oyag € P,aj,az € NUT, of type 1, we consider
the following insertion/deletion rules:

(r.1.) (By,[r], XB2)ins, /1 € NUTU{B},82 € NUTU{E}
(""2-) ([T]X, (T), ﬂ)insa BeNUTU {E},
(T3) ([T],X, (r))dela

DNA COMPUTING AND FORMAL LANGUAGES 335

(rd.) ([r),on,(r))ins.
(r5.) (1,02, (T))ins
(r6.) (Alr] e1)ders
(r7) (o2, (1), N)der-

(ii). For each ruler X — X € P of type 2, we introduce the deletion rule

(Tl) (ﬂl,XaﬂZ)dEl,ﬂl € NUTU {B}yﬂ2 e NUTU {E}

(iii). For each ruler: XY — XZ € P, X,Y,Z € N, of type 3, we consider the
following insertion/deletion rules:

(r.1.)
(r2)

(r3.):

(r4.)

(r5.)
(r.6.)

(81X, [r], Y B2)ins; B1 € NUT U{B}, 8, € NUTU{E}
([T]Y’ (r),ﬂ)inmﬂ € NUTU{E},

([T],Y, (T))del’

(Irl, Z, (r))ins>

(X, [r], Z)det

(Z,(r), Ndet-

(iv). We also consider the deletion rules

(A, B,))
(A E,A)

We claim that the equality L(G) = L(vy) holds.

(C) Each derivation step w = w’ in G is simulated in v by a derivation
BwE =>* Bw'E, using the rules (r.1.) — (r..) associated as above to the rule
in P used in w = w'. For instance, assume that w = w; Xws, w' = wioyaawy,
for r : X — ajag € P. Then we successively obtain: '

Buy XweE = Bwi[r]XwE by the rule (r.1.)
=> Bw [r) X (r)w2F by the rule (r.2.)
=> Bun[r]|(r)w2E by the rule (r.3.)
== Bw[r]ai(r)w. E by the rule (r.4.)
= Bw,[rlaiaz(r)wsE by the rule (r.5.)
= Bwjoyas(r)unE by the rule (r.6.)
=3 Buwyayasws E by the rule (r.7.)
= Buw'E.

We proceed in a similar way when w = w’ is obtained by using a rule r :
XY — XZ. The details are left to the reader.

A derivation starts from BSE; at any moment, the markers B, E can be
removed. Thus, any terminal string generated by G is in L(7).

(2) Consider a string BwE; initially we have w = S. We can apply to it
a rule (r.1.) from group 1, or a deletion rule (81, X, B2), or a rule (r.1.) from

336 L. KARI, Gh. PAUN, G. THIERRIN, AND S. YU

group 3. Assume that we apply (81, [r], XB2)ins for some r X — ayay € P
We have
Bw XwoE => Bwy[r|XwqE.

Because the rules in P are labelled in an one-to-one way, because X # a;, and
because rules of the form of (r.1.) in groups 1 and 3 have a left context checking
the symbol placed immediately to the left of X (the same for the deletion rules
in group 2), the only rule which can use the symbol X is (r.2.). Eventually this
rule must be applied, otherwise the derivation cannot lead to a terminal string.
Thus, the substring [r]X of Bw;[r]Xw; leads to [r]X(r). Again there is only
one possible continuation, by the rule (r.3.), which erases the symbol X. Only
after inserting o in-between [r] and (r) we can remove the symbol [r]. In the
presence of a; and of (r) we can introduce a3, too, by the rule (r.5.). Because
(r) is introduced after [r], and X # a;, the symbol a; used by this rule (r.5.)
as a left context should be introduced at a previous step, by the corresponding
rule (r.4.). After introducing a;, which is different from both a; and X, we
can delete (r), by the rule (r.7.). Due to the contexts, no other rule can use
the mentioned symbols as contexts or can delete any of them. Thus, after using
(r.1.), we have to use all rules (r.i.),2 < i < 7, associated with r : X — a;as,
simulating the use of X — ajos.

In the same way, after using a rule (61X, [r],Y ;) associated with r : XY —
XZ € P, we have to continue with (r.i.),2 < i < 6 (possibly not immediately or
at consecutive steps, but using the same symbols of the current string), hence
we have to simulate the rule XY — XZ.

The deletion rules {3;, X, B2) directly correspond to erasing rules in P. The
markers B, E can be deleted at any step. Consequently, v can generate only
strings in L(G). |

Theorem 2. RE = INSIDELS.

Proof. For every L C T*,L € RE, there is a grammar G = (N, T, S, P) such
that L = L(G) and P contains two types of rules: context-free rules and rules of
the form XY — X\, X,Y € N (see [11], [22], [32]). Without loss of generality, we
may assume that the context-free rules in P are of the form X — u with |u| < 2.
Moreover, from the proofs in [11], [22], [32] we see that the symbols X, Y in rules
XY — X do not appear in the left hand members of the context-free rules in P.

Consider such a grammar G, where the rules in P of the form X — aja2

have been labelled in an one-to-one manner, and construct the insdel system
v=(V,T, A, I, D) with

V = NUTU{F,F/|r:X -5 oi02 € Piaj,a2 € NUT}
U {B,K},
A = {BS}, ‘)
I = {(,B,alF,.,X), (ﬂva2K,Fr)’ (K’FrzFr).,I
r: X s aaz € Paj,o0p0€e NUT, € NUTU{B}}
U {(B,aK,X)|X »a€cP,ac NUT,J€ NUTU{B}},
D = {(\\FF.,)\)|r:X > ajo0,a1,00 € NUT}
{LVKX, N X »ue P}

DNA COMPUTING AND FORMAL LANGUAGES 337

U {(\XY,)\) | XY >)€ P}
u {(\B,N}

We obtain the equality L(G) = L(y).

(€) Consider a derivation step in G, w => w'. If the used rule is of the
form XY —), then clearly Bw = Bw/' in v, by using the rule (A, XY,) € D.
If the used rule is X — a,a € NUT, then

Bw = Bu1 Xwy; = BuhaKXw, by the rule (3,aK, X)ins
= Bw,qws by the rule (A, KX, A)de
= Buw'.

If the used rule is r : X — a;as, then we proceed as follows

Bw = Buy Xwy == Buyo1 F.Xws by the rule (8,01 Fr, X)ins
= Buwjoi1a2KF.Xw, by the rule (8, a2 K, F.)ins
= BujajooKF!F.Xw; by the rule (K, F}, F)ins

=> Buwiaias K Xw, by the rule (\, F.F,, A)ge
= Bwioioows by the rule (A, KX, A)ge
= Buw'.

Consequently, each derivation § =* x in G can be reproduced in y as BS ==>"
Bz; then B can be removed by the rule (A, B,)) € D. If z € T*, then x € L().

(2) Consider a string of the form Bw with w € (NUT)*. (Initially we have
w=8.) If arule (A, XY, \) € D can be applied to w, then it corresponds to the
use of the rule XY —) for rewriting w. No other deletion rule can be used.

If we use an insertion rule (3, aK, X), then w = w; Xw; (w; can be A, and
then 3 = B). We get the string Bw;aK Xw,. The symbol X in the right hand
of K cannot be used by any other rule of v excepting (A, KX,\) € D (the
symbol K marks the symbols which cannot be used in further insertion rules).
Eventually, this deletion rule should be used, hence we simulate in this way the
rule X — a € P.

Another possibility is to use the insertion rule (3, a;Fr, X), for some r :
X — ojop € P. We get a string of the form Bwjyay F.Xw,. No rule in v
can use the symbols F, and X, excepting (8,a2K, F,) € I. Eventually, this
rule is used, hence a1 F,. X is replaced by aja; KF,. X. The only way to remove
the nonterminals K, F,., X is by first introducing Fy, by the rule (K, F/,F.) € I
(hence obtaining a;a K FF,. X), then erasing F,F, and K X, by using the rules
(A FLF., X ger and (A, KX, A)gei, respectively. This corresponds to the use of
the rule X — ajas.

The symbol B ensures the fact that we can always check the left context 3
of insertion rules.

Therefore, L(v) = L{G). O

Combining the ideas of the previous proofs, we also get

Theorem 3. RE = INS}DEL]}.

338

L. KARI, Gh. PAUN, G. THIERRIN, AND S. YU

Proof. Start as in the proof of Theorem 2 from a grammar G = (N, T, S, P)
with P containing context-free rules of the form X — u, with [u| =2 or u = A,
and non-context-free rules of the form XY — A. Without loss of generality we
may assume that if X — ajas € P, then ay # X, az # X, and that X,Y in
rules of the form XY — A do not appear as left hand members of context-free

rules.

Then we construct the insdel system v = (V, T, A, I, D), with

- NUTU{[r],(r)|r X - a1as € P}
. {B,E,K}, |
{BSE},

C

A

and the sets I, D are constructed as follows.

).

(iii).

For each rule r : X — ajas € P we consider the following rules:

(B1,[r], X B2)ins, B1 € NUT U{B},3; € NUT U{E},
(Ir}X, (), B)ins, B € NUTU{E},

([T]X’ K? (T))insa

(’\’ XK’)\)dela

([r], a1, ())ins,

([rlas, a2, (T))inss

(Ir], K, a102)ins,

X [KS N et

(ala?, K’ (T))insa

(A K (1), A)det-

(They simulate the rule 7 in the same way as the rules (r.1.) — (.7.) in the
proof of Theorem 1, with the difference that the control symbols [r], ()
are deleted in the presence of the “killer” K, which is introduced only
after replacing X by ayas.)

. For each rule r : X — X\ € P, we introduce the rules

(X, K, ﬂ)in{s, ﬂ eNUTU {E},
(A XK, \)ger- ‘ I

(We cannot introduce two or more occurrences of K for the same X, due
to the presence of the symbol 3.)

For each rule r : XY — X € P we introduce the rule

()‘7 XY, /\)del

As in the previous proofs, one can see that L(G) = L(~) fu

