Fundamenta Informaticae 19 (1993) 355—-370 355
I0S Press

DELETION SETS

Lila KARI, Alexandru MATEESCU, Arto SALOMAA
Academy of Finland and University of Turku, Department of Mathematics, 20500 Turku, Finland

Gheorghe PAUN
Institute of Mathematics of the Romanian Academy of Sciences, Str. Academiei 14,
70109 Bucuresti, Romania

Abstract. We discuss questions related to the cardinality, the
effective construction, and decidability of the so-called deletion
sets : the sets of strings obtained by erasing from a word the
subwords which appear as elements of a given language.

1. Introduction

The operations of inserting or deleting symbols or strings in/from a given string (and
the natural extension of such operations to languages) are most fundamental in formal
language theory and combinatorics of words. The present paper lies somewhere in bet-
ween these two fields, as it deals with the deletion operation in the particular case when
one starts from a given string w and deletes from it substrings which belong to a given
language, L. The result — obviously finite — is denoted by w — L and called deletion
set. The notion is introduced in [2], where one investigates many related operations
(sequential, iterated, controlled and scattered insertion and deletion, dipolar deletion
etc.) and the following somewhat surprising result is proved: given a set I consisting of
two elements only and an arbitrary context-free language L, it is undecidable whether
a string w exists such that I can be obtained by deleting from w strings of L (in the
previous notation, F' = w — L).

Here we examine more systematically the deletion sets, mainly considering the fol-
lowing four problems: how w and L can be constructed such that w — L equals a given
deletion set, how large can w — L be depending on the structure of w, characterizations
of deletion sets, decidability questions of the type of the result in [2] quoted above.

The results show that, although simple at first sight, the deletion sets have intriguing
unexpected properties. Let us mention here only the fact that for any fixed deletion
set F' containing at least one non-empty string the following problem is undecidable.
Given a context-free language [, determine whether or not a string w exists such that
F =w — L. (Therefore the result in [2] holds for any nontrivial deletion set, including
those of the form {a}, a being a symbol.)

356 L. Kari et al. / Deletion Sets

2. Notations and Terminology

In general, we refer to [4] for basic elements of formal language theory. We specify here
only some notations.

For a vocabulary V, we denote by V" the free monoid generated by V under the
operation of concatenation; the empty string is denoted by A and the length of z € V*
by |z|. For 2 € V*,a € V, we denote by |z|, the number of occurrences in a of the
symbol a. For a finite set I of strings we also denote by |F'| the largest length of strings
in F, |F|=maez{|w| | we F}.

For a language L C V* we denote by Pref(L), Suf(L), Sub(L) the sets of prefixes,
suffixes, subwords, respectively, of strings in L (including A and the strings themsel-
ves). The families of regular and of context-free languages are denoted by REG,C'F,
respectively.

For u,v € V* we denote, following (2],

w—ov={z€ V' |u=zvzn,z= 125,22 €V}
and we extend this operation to languages in the natural way:
Li = Ly={z€(u—v)|u€ L,ve L}

We are interested here in the particular case when L, is a singleton. Namely, we call
deletion sets the languages I for which a string w and a language L exist such that
F=w-— L

3. Examples and Cardinality Results

Clearly,
[w— L] < |wl,

hence each deletion set is finite. In fact, we have
(10— L) C Pref(w)Suf(w).
On the other hand, not all finite languages are deletion sets. I'or instance,
F = {a,b,c},

cannot be a deletion set: if w — F' = {a, b,c}, then a,b,c must appear as the leftmost
and/or the rightmost letters of w and this is impossible. Similarly,

F = {ab, ba, e, bb}
is not a difference set. In general, we have
Lemma 1. For every string w and integer k,0 < k < |w| — 1,

card((w — L)NV¥) < k+1.

L. Kari et al. / Deletion Sets 357

Proof. Every string z € w — L, |z| = k, is of the form z = wyw,, for w = wvw;,
v € L, wy,wy € V*. Clearly, 0 < |w;]| < k, and for each choice of wy, the string wy
is precisely determined. As we can have k + 1 possibilities to choose w;, the relation
in lemma is proved (some strings wywg, wiw), for w = wivw; = wiv'w), v,v' € L,

[v| = |v'|, might be equal). &
For a given deletion set I, denote

N LISV (ES)
2
Theorem 1. For every deletion set F, we have card(F) < M(F)

can be reached for every value of |F|.

and this bound

1

Proof. Let k range over 0,1,...,|F|, in the previous lemma. We obtain card(F') <
M(F).

Moreover, consider the deletion set
F=a™" - {a'V |i+j>m,0<4,7 <m).

Clearly, |F'| = m, and for a given value for i,0 < 7 < m, we have i 4 1 possible values for
7 and all of them lead to different strings in F, hence card(F) = (m+1) (m +2)/2.&

The cardinality of a deletion set F' can be compared both to |F|, but also to |w|,
for various strings w such that w — L = I for some language L. For instance, we can
have |w| = |F| (when A € L,w € F). In such a case, card(f") is smaller than M(F).

Theorem 2. If ' =w — L,|F| = |w|, then card(F) < M(F) — |F|.
Proof. Every string of length 0,1,...,|#|— 1 in F corresponds to a substring of

length |w], |w|—1, ...,1, respectively, in w and there are 1,2,. .., |w| such substrings.
Adding the string of length |F| = |w| (it can be obtained by deleting A from w), we
obtain Ml%“’—ll + 1 possibilities, which is equal to M(F) — |F]. &

The upper bound in Theorem 2 can be reached if and only if the string w consists
of distinct symbols. The if part is obvious (all strings wi, w,, for w = wyvw,, v € V7,
are distinct). The converse implication follows from the next result.

Theorem 3. If F'=w — L,w = wjcwycws,c € V,wy,wy, w3z € V=, then

|l (Jw] +1)

d(F
card(F) < 5

1,

forall LC V™,

Proof. The value M(F) — |F| in the previous theorem is reached when for all
t,0 <t < |w| -1, we have

card((w — L)NVY) =t + L.
However, for a string w as above we have

wiews € (w — wee) N (w — cwy),

358 L. Kari et al. / Deletion Sets

i.e. for t = |wjwsy| + 1 we get at most ¢ strings of length ¢, hence the inequality in the
theorem is proper. &

Corollary. If w € V=, |w| > card(V), then card(w — L) < Mﬂ%'ﬁl + 1, for all
LCcv~

The next relations are obvious.
Lemma 2. (i) For allw € V*, L C V*, we have
w— L =w— (LN Sublw)).
(i1) For all w € V*, Ly C Ly C V™, we have

card(w — L) < card(w — L).

Therefore,
card(w — V*) = max{card(w — L) | L C V*}.

These remarks naturally raise the following problem. Denote, for given w € V*,
d(w) = card(w — V"),

and define
Ef(V) = {z € V" | d(z) > d(y) for all y € V", |y| = |21}
{the most efficient strings in V*, namely the strings which lead to deletion sets of
maximal cardinality, compared with other strings of the same length).
Problems: characterize this language; which is its place in the Chomsky hierarchy 7
Surprisingly enough, the language £ f(V') does not seem to be "too complex”. More
specifically, we have

Theorem 4. Consider V = {aj,aq,...,a;} with s > 2, and w € V*,|w| = n. Then

s

nf4+2n+4+2 1
dw) < TEIELZ LS ful,)
=1

This bound is mazimal when
=1 < |wla; — |wle; €1,

forall 1 <i,j < s, and this value can be reached.

Proof. 1f all symbols in w are distinct, then we have d(w) as given by Theorem 2,
d(w) = @ + 1.

For every 7,1 <7 < s, such that |w|,, 2 2 and for each pair of occurrences of a; in
w, W = wa;wya;ws, both w — a;we and w — wqa; contain the string wya;ws. Thus, it
is enough to count the pairs of occurrences of a; in w, for all 7,1 <7 < s,

Denote |w|,, = ki, 1 <7 < s.

L. Kari et al. / Deletion Sets 359

ki (i —1 . .
Clearly, there are -ﬂé—)- pairs of occurrences of the symbol a; in w. Therefore we
obtain

s

d(w) < n(n;— 1) 11— Z k‘-(k,-z— 1) _

=1
nftn+2 1o o
= =gy~
=1 =1

Replacing) _, ki by n in this expression we get a bound for d(w) as in the theorem.
Consider now strings w of the form
w= ai"‘ag’ ;s

and evaluate the cardinality of w — V*, Deleting any one of the k; occurrences of the
symbol a; we obtain exactly one string in w — V', hence k; possible choices can produce
only one string. Count a "loss” of k; — 1 strings. In general, deleting j occurrences of a;
we get one string although we have k; —j+1 possibile choices of the j occurrences, hence
we have a "loss” of k; — j strings. If we delete from w strings v containing occurrences
of two distinct symbols a;, a;, then all the obtained strings are distinct. In conclusion,
we lose exactly

S(him 1)+ = 2) bt 1y = 30 il =)

& ; 2
i=1 1=1

strings. Therefore, for such strings w we obtain

(l(iu) _ ?1(?1;— 1) + 1 — Z k,(k, =]) _
=1

n4+m4+2 1 2

Now, clearly, this value is maximal when }_;_, k? is minimal. Because } :_ k; is con-
stant, this happens when the values of k; are as close as possible to n/s (when n = ks,
then k; = & for all 1 <7 < s; when n = ks + &',s' < s, then s’ symbols appear k + 1
times in w and the other s — s’ symbols appear k times). &

For example, in the case s = 2 we get

(m+1)?, if |w| = 2m,
d(u) 2 { (m+1)(m+2), if |w|=2m+1,

and this value is maximal and reached for strings a™b™, b™a™, respectively for strings
1 1 1 1
ambm+ ‘am+ bm, bmam+ ,bm+ am.

Corollary 1. For any n > 0, if n = r mod s, where s = card(V), then

(s —1) 2 _ sp 4 r?
2s '

maz{d(w) | |[w|=n}=n+1+

360 L. Kari et al. / Deletion Sets

Proof. Tt follows from the proof of the theorem that, if n = ks + r, then the largest
value of d(w), where |w| = n, is reached when |w|,, =k+1,1 < <7, and |w|,, =k
for » < i < s. The resulting value of d(w) is the expression in the corollary, and this
value equals the bound, i.e. the maximal value of 5‘% — 2 i (wle)?. &

Corollary 2. For V containing at least three symbols, E f(V) is not context-free; if
V' contains two symbols, then E f(V') is not reqular.
Proof. Take an order of symbols in V, V = {ay,as,...,a,},n = 3; then, according
to the theorem,
EfV)Nnaias...at ={ala2...a | -1 <i; - <1
forall 1 <j,k<n,i; 20,1 <j<n},

and this language is not context-free.
In the same way one can see that £ f({a, b}) is not regular. []

We hope to return to a more detalied study of the languages £ f(V).
We discuss here some further (significant) examples. Take

F = {aba, abba} = abba — {A, b},

and z = 6°. Then F U {z} is not a deletion set. (If w — L = F U {z}, then from
aba,abba € w — L we infer that w = aw’e and then we cannot have §° € w — L).

In this example, |z| > |F|. A similar result (a set which is not a deletion set) can be
obtained by adding to the previous F' a string shorter than |F|: such a string is bab.

Call a language L C V* totally prefized (totally suffized) if for all u,v € L we have
w € Pref(v) or v € Pref(u) (respectively, u € Suf(v) or v € Suf(u)).

Theorem 5. Every totaily prefized or totally suffized finite language I is a deletion
set.

Proof. If F' is totally prefixed and finite, then there is z € I such that ¥ C Pref(z).
Take w = 28, where § is a new symbol, and define

L ={veV"|z=uvfor someu€ F}.
Then F = w — L§. The argument for a totally suffixed ¥ is analogous. &

Using this remark we can find many deletion sets starting from DOL languages. For
instance, if G' = (V, h,u) is a DOL system such that

h(u) = wv,

then L(G) is a totally prefixed language, hence any finite subset of L{G) is a deletion
set. This is the case with the DOL system

G = ({a,b}, h,a),

corresponding to the Thue morphism k(a) = ab, h(b) = ba.
Similarly, the system

G'= ({a,b}, 1, b),

L. Kari et al. / Deletion Sets 361

with k(a) = b, h(b) = ab, generates a totally suffixed language. Even taking the axiom
a instead of b, that is considering the Fibonacci sequence [3]

a, b, ab, bab, abbab, bababbab, . . .

still each finite subset of this DOL language is a deletion set. Indeed, denoting by
z;,1 > 1, the strings in this sequence, for ¢ > 2 we have

Tit2 = TiTig1,

hence every finite I C {3, 23,...} is a deletion set. If we have ¥ C {z,2,,...} and
z1 € I, then we take z,, € F with maximal n and construct

w = alz,,
L = {$z,} U {a$v | z, = vu, for some v € F}.

We obtain F' = w — L.

Say that a DOL system G has the deletion property iff every finite subset of L(G)
is a deletion set.

It is not surprising that there are DOL systems which do not have this property.
For example, consider

G = ({a, b}, h, bab),
with h(e) = a, h(b) = bb. We obtain the sequence

bab, bPab?, blab®, ... b¥ab?, ...

No set I C L((), containing at least three strings is a deletion set. (Indeed, if bab’ €
w — L, then either b’a € Pref(w), or ab’ € Suf(w); for two strings ¥ ab, b*ab®, one
will fix the prefix of w and the other will fix the suffix; a third string cannot then be
obtained from w by deletion).

Thus we are led to the following natural problems: Characterize the DOL systems
having the deletion property. Is it decidable whether or not an arbitrarily given DOL
system has the deletion property ?

We close this section by pointing out that every finite language over an one-letter
alphabet is a deletion set.

4. Deciding whether a Set is a Deletion Set
The main result of this section is the next one.

Theorem 6. It is decidable whether a given finite set is a deletion sef.

Proof. Take FF C V*,|F| = m.

If card(V) = 1, then F is a deletion set; therefore, assume card(V) > 2 and take
two symbols a,b € V,a #£ b.

Claim 1. Given a string w and a set F, it is decidable whether or not there exists

F' such that w — F' = F.

362 L. Kari et al. / Deletion Sets

Indeed, it is enough to consider all finite sets ' with |F'| < |w|. Their number is
finite and for each of them we can check whether w — F' = F or not.

Claim 2. Assume [with |[I'| = m is a deletion set. Then there is w with |w| <
3m +3 and F' such that w — F' = F.

Indeed, assume F' = w' — F" for some w' with |w/| > 3m + 3. We can write
w' = wywsw, with |wy| = |wz| = m. Every word of F' is obtained by concatenating a
prefix of w, with a suffix of w,, hence w3 is useful only for guiding, together with ',
which prefix and which suffix are taken. We are free to choose . Thus, defining

w = wyba™ b,

Fr

{v]bam+lbv2 | there is z € F, z = ujug,such that wvpba™ M boguy = w},

we obtain F' = w — F”.

The equality is obvious, because there is no substring of the form a™*+!

n w; or in
Wa.

Now, combining Claims 1 and 2 we obtain the theorem. &

The construction of the string w and of the set /' in the proof of Claim 2 raises
the question whether or not the length of w can be decreased. More specifically, on the
one hand it is natural to ask whether or not the substring ba™*'b separating wy, wy is
necessary and, on the other hand — in the affirmative case — whether or not a shorter
string can be used.

The separating string is necessary, as the next ezample shows: consider
F = {e, ca, cab, caba, cabab, cc, ace, bace, abace, cabee}.
We have |F| = 5, and the only possibility is to take
wy, = cabab, wy = abacc.

However, we cannot use w = wjws, because, in order to get cabce, we must have
ababa € F', and

cabababace — ababa = {cbace, cabee},
which implies chacc € F, a contradiction.

Thus, it is of interest to ask whether a string shorter than ba™*'b can separate
wy and w, in the previous proof. In general, this is the case (thus a speed-up of the
algorithm suggested by the proof is obtained). For instance, we can take as w; any

string in the set
vk Sub(wyw,),

for the smallest & for which this set is non-empty. We have
VE — Sub(wyw,) = VF — (Sub(wywy) N V),
and

card(V*) = (card(V))*,
Sublwiw) NV < 2m — k +1,

L. Kari et al. / Deletion Sets 363

(remember that |wyw;| = 2m). Therefore, [ws] < k, for the smallest & such that
(card(V))¥ > 2m — k + 1.

For example, for V = {a, b}, we have to compare 2¥ with 2m — k + 1. Here are some
values of k, for small m:

m 1 2 3 4 5 6 7 8 9 10
minimal & 2 2 3 3 4 4 4 4 4 5

The improvement is significant, in comparison with the case of |ws| =m + 3 in the
proof of Theorem 6.

5. A Characterization of Deletion Sets

We present a simple, combinatorial characterization, having a series of interesting con-
sequences,

Theorem 7. F C V* is a deletion set if and only if there is z € V* such that
F'C Pref(z)Sub(z).

Proof. If F'is a deletion set, F' = w — F’| then we have F C Pref(w)Suf(w) (if
z € I, then z = 212, for w = xyy24,y € F', hence z € Pref(w)Suf(w)).

Conversely, take I C Pref(z)Suf(z) and consider

w = z8z,
F' = {y1$y2 | thereis z € F,z = 212,12, € Pref(z),
3 € Suf(z), such that z = a1y, = yy2,},

where § is a new symbol. The equality # = w — F” is obvious. &

Remark 1. We sometimes use a new symbol (such as $ here) as marker. Such an
extension of the alphabet V' is not necessary, provided V contains at least two symbols
a and b. Then the marker can be replaced by a word ba'b, where i is sufficiently large.
The minimization of such a separator word is often a nontrivial task. Observe that we
could have replaced ba™*'b in Claim 2 in the preceding section by a marker, and that
we also considered there the minimization problem. Thus, markers are by no means
essential; we use them only to facilitate the reading.

Corollary 1. (i) If F is a deletion set, then every subsel of F' is a deletion set.
(i) If Iy, Fy ave deletion sets with F; C Pref(z)Suf(z),i = 1,2, and z; = z,, then
FLU F, is a deletion set.

Corollary 2. If I is a deletion set, then 2 F, F'y, z F'y are deletion sets for all strings

z,y.
Proof. Since I is a deletion set, there is z such that F C Pref(z)Suf(z). Then

eF C Pref(zz)Suf(zz), (1)

Fy C Pref(sy)Suf(zy), 2)
xFy C Pref(zzy)Suf(zzy), (3)

—_

364 L. Kari et al. / Deletion Sets

therefore a /¥, F'y, z F'y are deletion sets.

We prove only (3). Take w € F, hence zwy € 2/'y.
From F C Pref(z)Suf(z) we obtain w = wyw, for z = wju; = upwy. Then
Twy = Tuqwyy, and

e rwju; = zz, hence zw;, € Pref(zz),
e uywyy = zy, hence wyy € Suf(zy).
Therefore 2wy € Pref(zz)Suf(zy) C Pref(zzy)Suf(zzy). '

Application. F = {a® % aba} is not a deletion set.

Indeed, assume F' C Pref(z)Suf(z) for some z € {a,b}*. From @ € F it follows
that z either begins or ends by a. Assume z begins by a; the other case is similar. Then
b® € Suf(z), hence z ends by b This implies aba € Pref(z).

However, aba € Pref(z),e® € Pref(z) imply a = b, a contradiction.

6. An Algebraic Approach

We shall now give another characterization of deletion sets as well as a new algorithm
for deciding whether or not a set is a deletion set.

For this purpose, the following order relation over V* x V* is used: for (u;,12), (vi,
vg) € V* x V* we write

(1, u2) < (vy,v9) T (ug,us) = (@, 78) and (v, v2) = (af, §),

for some words e, 8,v,6 € V* (some of them may be A).

Hence, for any o, 8,7,6 € V* (a,v8) < (af,§), and conversely, if (u, uz) < (v1,v2),
then there exist e, 8,4, 6 such that (uy,us) = (o, 76) and (vq,v2) = (af, §).

Lemma 3. The relation "<” is a partial order relation over V* x V>,

Proof. If (uy,uz) < (vy,v2) and (vy,v2) < (uy,uz), then u, is a prefix of v; and v,
is a prefix of w;, hence u; = v;. Moreover, v; is a suffix of u, and u, is a suffix of v,.
Therefore, uy = v, and consequently ¥ <” is antisymmetric.

If (u1,u2) < (vi,v2) and (v3,v2) < (wy,w;), then w; is a prefix of w; and w; is a

suffix of uz. Therefore (u;,uz) < (w1, w2) and the relation ”<” is transitive. &
Let w be in V*,w = ajay...a,,a; € V,1 < ¢ < n. Denote by P, the following set of
pairs:
Py = {(maz...a;,a;aj41...a,) |1 < j}U
U {(Majajpr...an) |1 <7}U{{a1a2...a;,A) | i <n}.
Lemma 4. For any w € V*, P, is a lattice with the firsl and last element, namely
(A araz...a,) and (@1az . .. aq, A), respectively.

Proof. Let z = (a1az...ai,aj8541...0,),y = (@may...ax, a4 ...a,) be in P,
and define p; = min(i, k), p2 = maz(i, k), ¢ = min(r,7), g2 = maz(r,j). Now, let us
consider

m=(a1az...0p,,8q ...0y), and M = (a1¢z...ap,,aq, ... Q).

L. Kari et al, / Deletion Sets 365

It is not difficult to prove that
m=inf{z,y} and M = sup{z,y}.

Moreover, m and M are in P,,.
Obviously, (A, a1az...a,) is the first element and (@1az...an,A) is the last element
of the lattice. &

Remark 2. Assume that w — I’ = F. Then every word z € F has a decomposition
z = z1z such that the pair (2, z;) is in P,.

For illustration, consider the Hasse diagram of the lattice P, for w = ayazasa4as.
An arrow z « y means that z < y.

()\,(L]Gg(’t3ﬂ-4(l5) o ()1,(12&3(14&5) — ()\,(53514(15) — (/\,(l4££5) — (/\,(1.5) — (/\,/\

T ed {(’T){(’TA)/

(al,azasaws) = (G1,ﬂ3ﬂ4ﬂ5) = (Gl, aqa

(ﬂlﬂz,}laﬂﬁﬂlﬂ%ﬂmﬂlal 05{(:1&‘[, ,\)/'
(a1aqas, 64(1—;1]&2(13, ﬂ{((ﬁ(t}(l;},)(,
/

(alaga3a4, (15) — (al(tgagﬂ,q,)\)

(ﬂ.lﬂgag(t.;ﬂ,s, /\)

If = {ui,us,...,un} is a set of words over V*, then we call a decomposition sel
of F' a set of the following form

Pp = {{ul'lau;’ !"'s(“jnau:z)h

where wju! = u;, 1 <i<m,

If w — F' = F, then there exists a decomposition set of F, Pp, such that Pr C P,.
Note that for a given finite set F', there are only a finite number of sets Pr.

Let Pp be such a set. We may try to complete Pr to a lattice using the following
algorithm:

Algorithm for completion to a lattice:
o Input. Pp
o Step 1. If Pris a lattice, then accept Pr and STOP.

o Step 2. Let a = (2',2"),y = (v, y”) be in Pp such that inf{z, v} and/or sup{z,y}
is not in Pp.
If &' ¢ Pref(y') and y' ¢ Pref(z'), or 2" ¢ Suf(y") and y" ¢ Suf(z"), then
reject Pp and STOP, else compute z = inf{z,y},t = sup{z,y}, Pr = PrU {z,t},
goto Step 1.

366 L. Kari et al. / Deletion Sets

Note that the computation of z = inf{z,y} can be easily done: z = (zy, z;), where

, if y' € Pref(a'),
, if @' € Pref(y),

2= {3
{;.; il y" € Suf(z"),
«={

I]

y", if 2" € Suf(y"),

and similarly, t = (4;,1,), where

, if y' € Pref(a'),
, if 2 € Pref(y'),
£ = 2", if 2" € Suf(y”),

P71 " if ¢ € Suf(z").

The above algorithm does terminate because the new pairs z,¢ that are added to Pg
have the property that |z;| + |22|, |f1] + |{2] do not exceed the constant ¢ = ¢; + ¢,

where

a1 = maz{|al] | (e}, a!) € Pr,1 <i<m},
2 = maz{la] | (o a) € Pr,1 < i < m).

Here Pr and m refer to the originally given items. Thus, the algorithm will consider
only a finite number of new pairs.

Theorem 8. A set F is a deletion set if and only if F' has a decomposition set Qp
such that Qp can be completed to a lattice Pp (with the first and last element).

Moreover, if m = (mq,m3) is the first element of Pr and M = (M,, M) is the last
element of Pr, then we can define w = My#my, where # is a new symbol, and find F'
by appropriate definition, such that w — ' = F,

Proof. (=) Assume that I is a deletion set, i.e. there are w and F’ such that
w — F' = F. Define the decomposition set
Qr = {(d/,a") | da" € F, there is 8 € F’, such that w = o/B3a”'}.

Now, assume that 1« = (u,u2),v = (v1,v) are in Qp and define

~ Jw, if uy € Pref(vy),
fa.= vy, if v € Pref(w),

JR if va € Suf(ug),
27) vy, if ug € Suf(vy),

o= uy, 1f m € P:‘ef(m),
YT v, if ug € Pref(w),

Py Y if up € Suf(vy),
27 Yy, ifvg € Suf(uz),

z = (z1,2) and ¢t = (#1,13).
It is easy to prove that z = inf{u,v} and ¢ = sup{u,v}. Thus, @ can be completed
with z and {. This procedure can be repeated until Q@ is completed to a lattice, Pp.

L. Kari et al. / Deletion Sets 367

The first element of Pr is m = (my,m;), where m, is the shortest prefix of w which is
not deleted by any x,2 € I/, and mj is the longest suflix of w which is not deleted by
any y,y € F',

Similarly, the last element of Pgp is M = (M, M,), where M is the longest prefix
of w which is not deleted by any z,2 € F', and M, is the shortest suffix of w which is
not deleted by any y,y € F".

(=) Assume that Pp is the lattice computed by the above algorithm, starting from
a decomposition set Qr of F.

Define w as w = M;#m,, where # is a new symbol and M = (M, M,), m =
(mq,my) is the last, respectively the first element of Pp.

For any w = (v, u") € Pp, u'is a prefix of M and w” is a suffix of m,, i.e. there are
two strings e and 4 in V* such that M; = v'a and m,y = Su”. Then, the word a#3 is,
by definition, an element of F’. Therefore,

F' = {a#f | there is (v, u") € Pp, such that v'a = M;, fu" = ma}.
Now, it is easy to observe that
Mi#mg — ' = F.
Thus w — F' = IV and therefore F' is a deletion set. &

Note that Pp is the sublattice generated by Qp, i.e. Pp is the smallest lattice of
V* x V* which contains Qp (see (1] for terminology).

Remark 3. As regard the marker #, we refer to Remark 1. The new symbol # is
necessary, as we can see from the following example. Let Pr be as in the next diagram:

(ab,bd) «— (ai;,/\)

(abe, d)< - - =(abe, \)

The dotted part of the diagram is completed by the previous algorithm.
Now, m = (ab, bd) and M = (abc,A), but we cannot define w = abcbd because then
b€ Fand w — b= {acbd, abed}. But achd ¢ F.

On the other hand, if we define w = abc#tbd, then the definition of F” is possible,
too: F' = {c#tbd, c#,#b}. Note that

abeftbd — {cftbd, cif, #b} = {ab, ab’d, abed).

It is likely that the above method leads to a word w which is "almost” the shortest
possible. However, the algorithm needs a lot of computation, because for a fixed set /'
the number of decomposition sets Pr is large.

We close this section by considering one more example. Take I! = {a,b,c}, which
we have pointed out in Section 3 is not a deletion set. Each decomposition set of F' has
pairs of the form (z,y), where z = A and y # A or y = A and z # A.

No such decomposition set can be completed to a lattice. For example, if Qp =

{(a, A), (A, 0),(c, \)}, then we obtain

368 L. Kari et al. / Deletion Sets

The value of sup{(a, A),(c, A)} is undefined.

7. Undecidability Results

In contrast to Theorem 6, it is proved in [2] (Theorem 5.41) that given a set # = {a, b}
and an arbitrary context-free language, L, it is undecidable whether or not a string w
exists such that I = w — L. We shall prove here such a result for any deletion set F',
different from {A}.

In order to fix the terminology, we say that a deletion set /' is context-free decidable
(CF-decidable, for short) if the problem "given L € CF, does there exist w such that
F =w — L7 is decidable. (Similarly, we can say that a language [is REG-
decidable when given L € REG we can decide whether or not a string w exists such
that w —» L = F.)

The next theorem is somewhat unexpected — at least in the case of deletion sets of

cardinality one and in comparison to Theorem 5.36 in [2] which says that any finite set
is REG-decidable.

Theorem 9. No deletion set F' different from {A} is CF-decidable.
Proof. Case 1. Assume F = {z},z # \.

Take an arbitrary context-free language Lo and construct

L=#V#0U |J utLofhv.

uv=z

Then, there is w such that w — L = F if and only if Ly # V* (which is not decidable
for arbitrary context-free languages).
Indeed, if Lo C V*, then, for 2 € V™ — Ly we take w = z#faff and we have
w— L={z}.
If Ly = V=, then suppose that there is w such that w — L = {z}. We distinguish
two cases:
(1) z € w — #V*#. Then w = uffz#tv for some x € V*,uv = 2. But @ € Lq,
hence w — u#Loftv = {A} C w — L = F, a contradiction.
(2) z € w — uft Loftv, for some u,v € V*,uv = z. Then w = v'u#z#vv', for
some z € Lo, u'v' = z. But & € V*, hence w — #V"# = {v'uvv'} Cw — L = F and
|u'wwv’| = 2|z|, a contradiction.

Case 2. Assume card(F) =2 and F = {A,z},z # A
For arbitrary context-free languages Ly, Ly, construct

L =402 0 #L,3.

Then there is w such that w — L = {A, 2z}, if and only if L; N Ly # 0 (which is not
decidable for arbitrary context-free languages).

L. Kari et al. / Deletion Sets 369

If Ly N Ly # 0, then take 2 € Ly N L, and consider w = #aftz. Clearly, w — L =
{A2)

Assume now that w — L = {), 2} for some w. We must have w = uFtz#tv. No one
of #Li#tz and #L,# can delete u, hence u = A (in order to obtain).

Now, if A € w — #1Ls#, then v = X and then I = {A}, a contradiction. Therefore,
A€ w — £ Ly# 2, that is w = #a#z, for some x € L,.

However, then w — #L 4z = {)}, hence z € w — # L1t This implies © € L,
too, hence Ly N Ly # 0.

Case 3. Assume card(FNV*) > 2,

We know that F' is a deletion set. Let wy be a string such that wy — Fo = F, for
some language Fy.

Take an arbitrary context-free language Ly and construct

L = 3 Lo#t U{zv#V #uz | wo = 2 € Fyuav = wo,z € o}

Then, there is w such that w — L = F if and only if Lo # V* (which is not decidable).

If Lo C V*, then take o € V* — Ly and consider w = woFaftwy. Clearly, w —
Lo# = 0. On the other hand,

woftaftwe — zoEV H#uz

woFtaffwe — svFaftur =

{u'v'} such that wy = w'zv = uzv'.

Since uzv = wp we obtain v’ = u,v' = v and vV’ € F (from the definition of L).
Consequently, w — L C F.

The converse inclusion follows in the same way, hence w — [= F.

Assume now that Ly = V* and suppose that there is w such that w —s L — F'.

Clearly, w is of the form y,#a#ty,, hence w — # Lot = y1ys.

Because F' contains at least two non-empty strings, there is zv#aftuz € L such
that w — azvffaffur = {z} # {A}. This implies w = wavfafuzr', with u'v' = 2.
However,

W woffaftuay’ — #Lo# = w'avitaftuay’ — FV*H#
= davffaftuzy’ - fa#
= {u'zvuzv'} € F.

But uzv = wp (from the construction of L) and w'v’ = z # X, hence [w'zvuav’| > |wo| >
|F'], a contradiction which concludes the proof. &

In conclusion, no deletion set different from {A} is CF-decidable. On the other hand,
this particular deletion set, {)}, has the property of being CF-universal, in the sense
that for any given context-free language I there is w such that w — [, = {A} : take w
one of the shortest strings in L. Moreover, we have

Theorem 10. The set {\} is the only CF-universal deletion set.

Proof. The assertion follows from the next two claims.

Claim 1. Bvery CF-universal deletion set contains the string .

370 L. Kari et al. / Deletion Sets

Indeed, assume F' is CF-universal and take z € F,z # A. Consider the (regular)
language

L= (Pref(z)) z(Suf(z))".

If a string w there is such that w — L = F, then from @ € w — L we obtain
w=uyv,uv =2,y € L. As u € Pref(z), v € Suf(z), it follows that uyv € L, that is
w € L, which implies that A€ w —» L = F.

Claim 2. A set F containing both A and z,x # A, cannot be a CF-universal deletion
set.

Indeed, take L = {z} and assume that there is w such that w — L = F. Then z € F
implies « € w — L, hence |w| = 2|z|; on the other hand, A € F implies A € w — L,
hence |w| = |z|. Consequently, |z| = 0, a contradiction. &

Remark 4. The notion of universality can be formulated for any family X of
languages instead of C'F. Then, Claim 1 deals with REG-universal and Claim 2 deals
with SING-universal deletion sets, where SING is the family of singleton languages.
In conclusion, the theorem says that {A} is the only X-universal deletion set for all
families X including REG.

Note. Research supported by the Academy of Finland, grant 11281, and the Alexander
von Humboldt Foundation.

References

[1] G. Grétzer, General Lattice Theory, Birkhausser Verlag, Basel, Stuttgart, 1978,

[2] L. Kari, On Insertion and Deletion in Formal Language Theory, Ph. D. Thesis,
Univ. of Turku, Dept. of Math., 1991.

[3] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems, Academic
Press, London, 1980.

[4] A. Salomaa, Formal Languages, Academic Press, New York, London, 1973.

