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Abstract. We propose and investigate a formal language operation inspired by the naturally occur-
ring phenomenon of DNA primer extension by a DNA-template-directed DNA Polymerase enzyme.
Given two DNA strings u and v, where the shorter string v (called primer) is Watson-Crick com-
plementary and can thus bind to a substring of the longer string u (called template) the result of the
primer extension is a DNA string that is complementary to a suffix of the template which starts at the
binding position of the primer. The operation of DNA primer extension can be abstracted as a binary
operation on two formal languages: a template language L1 and a primer language L2. We call this
language operation L1-directed extension of L2 and study the closure properties of various language
classes, including the classes in the Chomsky hierarchy, under directed extension. Furthermore,
we answer the question under what conditions can a given language of target strings be generated
from a given template language when the primer language is unknown. We use the canonic inverse
of directed extension in order to obtain the optimal solution (the minimal primer language) to this
question.

1. Introduction

Computational models inspired by nature abound in theoretical computer science. Several formal lan-
guage operations that have their basis on naturally occurring biochemical reactions have been proposed
and studied. The actions of various enzymes on DNA strands, most of which are widely used in the field
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of biotechnology, are of particular interest. In this paper we propose and investigate a formal language
operation that models the action of DNA Polymerase enzyme, an enzyme that plays a major role in the
replication of DNA strands.

Other bio-inspired operations in the literature include splicing, insertion and deletion, substitution,
and hairpin extension. Splicing is a formal language operation originally proposed by Tom Head [10] to
model the recombination of DNA strands under the action of restriction enzymes and ligase enzymes.
Various types of splicing systems have been developed based on this phenomenon and their properties
were studied in, e.g., [29] [9] [19] [11] [15]. Insertion-deletion operations are basic to DNA processing
and RNA editing in molecular biology. Insertion-Deletion systems were defined as formal models of
computation based on these operations and have been widely studied in the literature, see, e.g., [17]
[31] [33] [34] [30] [18] [5]. Insertion-deletion systems that are context-free [27], that have one sided-
context [28] [23], and that are graph controlled [6] were also proposed. P -systems with insertion-deletion
rules have been extensively studied in [22] [24] [2] [1] [7] [8]. A type of substitution operation inspired
by errors occurring in biologically encoded information was proposed in [16]. Hairpin formation is a
naturally occurring phenomenon whereby a DNA strand that is partially self-complementary attaches to
itself. Based on this phenomenon, the formal language operation called hairpin completion as well as its
inverse operation called hairpin reduction have been defined and extensively studied in the literature [4]
[26] [25] [21].

In this paper we define and investigate a formal language operation that models the action of the
DNA Polymerase enzyme on DNA strands. Recall that a DNA single-strand consists of four different
types of units called nucleotides or bases strung together by an oriented backbone like beads on a wire.
The distinct ends of a DNA single strand are called the 5’ end and the 3’ end respectively. The bases are
Adenine (A), Guanine (G), Cytosine (C) and Thymine (T ), and A can chemically bind to an opposing
T on another single strand, while C can similarly bind to G. Bases that can thus bind are called Wat-
son/Crick (W/C) complementary, and two DNA single strands with opposite orientation and with W/C
complementary bases at each position can bind to each other to form a DNA double strand in a process
called base-pairing.

The activity of DNA Polymerase presupposes the existence of a DNA single strand called template
(Figure 1 (a)), and of a second short DNA strand called primer, that is Watson-Crick complementary to
the template (Figure 1 (b)). Given a supply of individual nucleotides, the DNA polymerase enzyme ex-
tends the primer, at one of its ends only, by adding invididual nucleotides complementary to the template
nucleotides, one by one, until the end of the template is reached (Figure 1 (c)). The newly formed DNA
strand is a strand that starts with the primer and is partially Watson-Crick complementary to the template
(Figure 1 (d)). In molecular biology laboratories, an iterated version of this process is used to obtain an
exponential replication of DNA strands, in a protocol called Polymerase Chain Reaction, or PCR.

In this paper we introduce a simplified formal language model of DNA Polymerase enzymatic activ-
ity, called template-directed extension, or simply directed extension. The paper is organized as follows.
Section 2 contains definitions and notations, including the definition of directed extension. In Section
3, we give proofs for the closure properties of the various language classes under directed extension. In
particular, we show that the directed extension between two languages in LOGSPACE can result in an
undecidable language. In Section 4, we define an inverse of directed extension and study language equa-
tions involving this operation. In Section 5, we compare our operation with related string operations, and
we discuss iterated versions of directed extension.
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Figure 1. Template directed extension of a primer, effected by DNA Polymerase enzyme. By θ(x) we denote the
Watson-Crick complement of a DNA strand x.

2. Basic definitions and notations

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of all words over Σ, including
the empty word λ. Σ+ is the set of all non-empty words over Σ. For words w, x, y, z such that w = xyz
we call the subwords x, y, and z prefix, infix, and suffix of z, respectively. The sets Pref (w), Inf (w),
and Suff (w) contain, respectively, all prefixes, infixes, and suffixes of w. This notation is extended
to languages as follows: Suff (L) =

⋃
w∈L Suff (w). The complement of a language L ⊆ Σ∗ is Lc =

Σ∗\L. By FIN, REG, LIN, CF, CS, and RE we denote the families of finite, regular, linear (context-free),
context-free, context-sensitive, and recursively enumerable languages, respectively.

An involution is a function θ : Σ∗ → Σ∗ with the property that θ2 is identity. θ is called an anti-
morphism if θ(uv) = θ(v)θ(u). Traditionally, the Watson-Crick complementarity of languages has been
modelled as an antimorphic involution over the DNA alphabet ∆ = {A,C,G, T}, [12, 14]. Assuming
the convention that a word x over this alphabet represents the DNA single strand x in the 5’ to 3’ direc-
tion, the activitity of DNA polymerase in Figure 1, given a template αyβ and a primer y that occurs only
once in αyβ, can be modelled as:

αyβ • θ(y) = θ(y)θ(α) = θ(αy).

Assuming that all involved DNA strands are initially double-stranded, that is, whenever the strand x
is available also its Watson-Crick complement θ(x) is available, we can further simplify this model and,
given two words x, y over an alphabet Σ, we can define the left x-directed extension of y as

x⊕′ y = {w ∈ Σ∗ | ∃α, β ∈ Σ∗ : x = αyβ,w = αy},

and the right x-directed extension of y as

x⊕ y = {w ∈ Σ∗ | ∃α, β ∈ Σ∗ : x = αyβ,w = yβ},

From a mathematical point of view the left- and right-directed extensions are similar. For the remain-
der of this paper we will consider only the right-directed extension, which we will call simply directed
extension.
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Note also that, from a biological point of view, it does not make sense to consider an “empty primer”
(a primer with length 0), but from a mathematical point of view this is well-defined and y = λ is valid.
We extend the definition of directed extension to languages in a natural way:

Lx ⊕ Ly =
⋃

x∈Lx,y∈Ly

x⊕ y = {w ∈ Σ+ | ∃α, β ∈ Σ∗, y ∈ Ly : αyβ ∈ Lx, w = yβ}.

3. Closure Properties

In this section we study closure properties of various language classes under directed extension.
Throughout this section all languages are considered to be defined over a fixed alphabet Σ. The next
lemma expresses the directed extension operation in terms of concatenation, intersection and suffix.

Lemma 3.1. If Lx and Ly are two languages over Σ, then Lx ⊕ Ly = Suff (Lx) ∩ LyΣ∗.

Proof:

For the direct inclusion, consider w ∈ Lx ⊕ Ly. This implies that w = yβ where y ∈ Ly and
αyβ ∈ Lx. Therefore, w ∈ LyΣ∗ and w ∈ Suff (Lx).

Conversely, let w ∈ Suff (Lx) ∩ LyΣ∗. Because w ∈ Suff (Lx), there exists α ∈ Σ∗ such that
αw ∈ Lx. Because w ∈ LyΣ∗, there exists y ∈ Ly and β ∈ Σ∗ such that w = yβ. Thus, w ∈ Lx ⊕ Ly.

ut

Corollary 3.2. Let X and Y be two language classes where X is closed under the suffix operator and Y
is closed under concatenation with Σ∗.

i.) If X is closed under intersection with languages from Y , then for all Lx ∈ X and Ly ∈ Y we have
Lx ⊕ Ly ∈ X .

ii.) If Y is closed under intersection with languages from X , then for all Lx ∈ X and Ly ∈ Y we have
Lx ⊕ Ly ∈ Y .

In particular, REG and RE are closed under directed extension and, if X is LIN (CF) and Y is REG,
then the result Lx ⊕ Ly is in LIN (CF).

Next, we show that directed extension can “simulate” intersection by utilizing markers at the begin-
ning and end of words.

Lemma 3.3. Let L1 and L2 be languages over the alphabet Σ and let $ /∈ Σ be a new symbol. Then,

$L1$⊕ $L2$ = $(L1 ∩ L2)$.

Proof:
For the direct inclusion, let x ∈ L1 and y ∈ L2. If the word $x$ has a factorization $x$ = α$y$β, it is
clear that x = y and α = β = λ because $ does not occur as letter in x. Therefore, if w ∈ $x$⊕ $y$ for
some x ∈ L1 and y ∈ Ly, then w ∈ $(L1 ∩ L2)$.

For the converse inclusion, let w be any string in (L1 ∩ L2). This implies that $w$ ∈ $L1$ and
$w$ ∈ $L2$. Thus $w$ ∈ $L1$⊕ $L2$. ut
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Lemma 3.3 allows us to classify the result of directed extension between two (linear) context-free
languages.

Theorem 3.4. Let Lx be a context-free language and Ly be a context-free (or context-sensitive) lan-
guage. The language Lx ⊕ Ly is context-sensitive, but not necessarily context-free.

Proof:
Consider the two (linear) context-free languages

Lx = {$ambncn$ | m ≥ 1, n ≥ 1}, Ly = {$anbncm$ | m ≥ 1, n ≥ 1}.

By Lemma 3.3, theLx-directed extension ofLy yields the context-sensitive but not context-free language

Lx ⊕ Ly = {$anbncn$ | n ≥ 1}.

In order to show that Lx⊕Ly is context-sensitive for Lx ∈ CF and Ly ∈ CS, we use Lemma 3.1 and
note that the suffix operator applied to a context-free language gives a context-free language and that the
class of context-sensitive languages is closed under intersection. ut

Let LOG = DSPACE(log) be the language class which contains all languages that can be accepted
by a deterministic Turing Machine using at most O(log n) space on an input of length n. For a lan-
guage Lx ∈ LOG we will show that the Lx-directed extension of a singleton language can produce
an undecidable language. In order to do so, we utilize the undecidable Post Correspondence Problem
(PCP) in the following formulation: Determine, for an arbitrary set (x1, y1), (x2, y2), · · · , (xk, yk) of
pairs of corresponding non-null strings over the alphabet {a, b}, whether or not there exists a solution n,
i1, i2, i3, · · · , in such that xi1xi2xi3 · · ·xin = yi1yi2yi3 · · · yin , n ≥ 1, ij ∈ {1, 2, · · · , k}.

Theorem 3.5. There exists a language L1 in LOG and a singleton language L2 such that L1 ⊕L2 is not
decidable.

Proof:
Let L1 be a language over Σ ∪ {$} consisting of all strings of the form α$β where $ does not appear
within α or β. Here β is the encoding of an instance of the PCP and α is the encoding of a solution
of this instance. We let L2 be the singleton language {$}. The resulting language L1 ⊕ L2 contains all
strings of the form $β such that α$β ∈ L1; therefore, $β ∈ L1 ⊕ L2 if and only if β is the encoding of
an instance of PCP which has a solution. Formally,

L1 = {α$β | β is a PCP instance and α is a solution to β},
L2 = {$},

L1 ⊕ L2 = {$β | β is a PCP instance that has a solution}.

Because PCP is undecidable, it will follow that the language L1 ⊕ L2 is undecidable as well. Let us
show next how to encode α and β in a word α$β ∈ Lx and how to decide Lx using logarithmic space.
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Let x1, x2, ..., xk and y1, y2, ..., yk be an instance of PCP and let i1, i2, ...in be a solution to this in-
stance. We encode each integer ij using a binary encoding, symbolized as |ij |, which is of length dlog2 ke
or less. Let α$β be encoded as

|i1|M |i2|M |i3|M...|in|M$Mx1Mx2Mx3...MxkMCMy1My2My3...MykM

where M and C are separating symbols.
In order to decide if an arbitrary string w is in L1, the first step is to verify that it is of the format

described above and the second step is to verify that the integer sequence α is a solution of β. In order
to decide L1 we have to verify whether or not xi1xi2xi3 · · ·xin and yi1yi2yi3 · · · yin are equal. We can
easily see that the first step can be done in logarithmic space and that the second step can (at least) be
decided. Thus, the language L1 is decidable.

Now, we give a high-level construction of a Turing Machine which uses logarithmic working space
with respect to the length of the input and decides whether α is a solution to β or not. Instead of
generating both strings completely and then comparing them, we generate and compare both strings
letter by letter. In order to do so, we only need to store pointers to the input tape on the work tape which
can be implemented using only logarithmic space. A more detailed description of this Turing Machine
follows.

We may assume the symbol S is written to the left of input and refer to it as the start symbol. The
strings xi1xi2 · · ·xin and yi1yi2 · · · yin are referred to as x and y respectively.

When we say address, we refer to the address on the input tape with respect to S, i.e. the number of
symbols we have to move to the right starting from S on the input tape. The input tape looks as follows:

S|i1|M |i2|M |i3|M...|in|M$Mx1Mx2Mx3...MxkMCMy1My2My3...MykM

The computation of the Turing Machine is described by Algorithm 1. We use the following variables
in the pseudo-code:

xaddr − The address of current symbol of x that is being looked into
yaddr − The address of current symbol of y that is being looked into
xsoln − The value of the current index (i.e. ij) of x
ysoln − The value of the current index (i.e. ij) of y
xsolnAddr − Contains the address of xsoln
ysolnAddr − Contains the address of ysoln
AddrV alue − A buffer storing the address to be calculated/used

Moreover, we use following simple functions:

• Addr(s), where s is one of the symbols S, $, C, returns the unique address of the symbol s on the
input tape,

• V alueAt(addr), where addr is an address, returns the symbol on the input tape at address addr,

• ReadIndex(index, addr), where index is a variable on the work tape and addr is an address,
copies the binary representation of an index ij which begins at address addr into index; it also
increments the address addr such that it points to the first bit of |ij+1| if j < n and to Addr($) if
j = n.
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Algorithm 1
xaddr := Addr($);
yaddr := Addr(C);
xsolnAddr = ysolnAddr := Addr(S);
repeat

xaddr := xaddr + 1;
yaddr := yaddr + 1;
if V alueAt(xaddr) = M then

if V alueAt(xsolnAddr) = $ then
xaddr := Addr($);

else
ReadIndex(xsoln, xsolnAddr);
AddrV alue := Addr($);
while xsoln > 0 do

if V alueAt(AddrV alue) = M then
xsoln := xsoln − 1;

end if
AddrV alue := AddrV alue+ 1;

end while
xaddr := AddrV alue;

end if
end if
a := V alueAt(xaddr);
if V alueAt(yaddr) = M then

if V alueAt(ysolnAddr) = $ then
yaddr := Addr($);

else
ReadIndex(ysoln, ysolnAddr);
AddrV alue := Addr(C);
while ysoln > 0 do

if V alueAt(AddrV alue) = M then
ysoln := ysoln − 1;

end if
AddrV alue := AddrV alue+ 1;

end while
yaddr := AddrV alue;

end if
end if
b := V alueAt(yaddr);

until (a 6= b)OR(a = b = $)
if a 6= b then

return no;
else

return yes;
end if
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Then Algorithm 1 will always halt with either a yes or a no because there is only a finite number of
indexes encoded in α and hence in the case of not-finding a mismatch(including the mismatch due to
one string finishing earlier than the other), the condition a = b = $ will be satisfied giving a yes answer.
The variables used in this algorithm, xaddr, yaddr, xsoln, ysoln, xsolnAddr, ysolnAddr and AddrV alue.
All of them except for xsoln and ysoln are pointers to locations on read-tape and, hence, require only
logarithmic space with respect to the input. We already know that xsoln and ysoln are within dlog2 ke
space and hence within logarithmic space with respect to the input. Since all the variables can be stored
in space logarithmic with respect to the input, we conclude that L1 can be decided in logarithmic space.
We conclude that if L1 is in LOG and L2 is a singleton language, then L1 ⊕ L2 can be an undecidable
language. ut

Theorem 3.5 can be extended to any time or space complexity class which contains LOG as well as
to decidable languages. In particular, CS is not closed under directed extension of singleton languages.

Corollary 3.6. The family of context-sensitive languages is not closed under directed extension. More
precisely, for Lx ∈ CS the Lx-directed extension of a singleton language may not be decidable.

Corollary 3.7. The language classes NTIME, DTIME, NSPACE and DSPACE (all of which include
LOG) are not closed under directed extension. More precisely, if Lx ∈ NTIME, DTIME, NSPACE,
DSPACE then the Lx-directed extension of a singleton language may not be decidable.

Table 1. Summary of closure properties: each entry shows which language class Lx ⊕ Ly belongs to if Lx is
from the corresponding language class in the left column and Ly is from the corresponding language class in the
top row.

Lx\Ly FIN or REG CF CS RE

REG
REG CF CS RE

(Cor. 3.2) (Cor. 3.2) (Cor. 3.2) (Cor. 3.2)

CF
CF CS RE

(Cor. 3.2) (Thm. 3.4) (Cor. 3.2)

CS
RE

(Cor. 3.2 and Cor. 3.6)

RE
RE

(Cor. 3.2)

In Table 1 we summarize the results from this section. For two language classes X and Y , it shows
the language class Z from the Chomsky hierarchy such that for all Lx ∈ X and Ly ∈ Y we have
Lx ⊕ Ly ∈ Z . Note that if we consider two language classes X , Y which both contain the free monoid
Σ∗ for any alphabet Σ, we will require that $L$ = $L$ ∩ $Σ∗$ ∈ Z for all languages L ∈ X or
L ∈ Y which are defined over Σ, due to Lemma 3.3. If we restrict ourselves to classes in the Chomsky
hierarchy (or standard space/time complexity classes), this statement can be strengthend as X ∪ Y ⊆ Z .
This shows that all entries in Table 2 can also be considered “lower bounds” for the language class Z .
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Finally, let us also note that if Lx is a finite language, then Lx ⊕ Ly is finite for any Ly, even though
it is not necessarily effectively finite if Ly is undecidable.

4. Equations and inverse operation

In this section we investigate the following problem: Given two languages Lx, L0 over Σ∗, does there
exist a language Y over Σ∗ such that Lx ⊕ Y = L0? Furthermore, we show how to effectively construct
maximal and minimal solutions, with respect to the inclusion relation. Throughout this section, we
consider the languages Lx and L0 to be constants. For the equation Lx⊕ Y = L0 we call a language Ly

a solution if it satisfies Lx ⊕ Ly = L0.
We can use the canonical right-inverse of the directed extension in order to decide the existence of

a solution as well as to find the maximal solution. The canonical right-inverse of an arbitrary binary
language operation ′′+′′ is the binary language operation ′′−′′ defined as

x− w = {y ∈ Σ∗ | w ∈ x+ y}.

It was proved that, if there exists a solution Ly of the equation Lx + Y = L0, then Lmax = (Lx − Lc
0)

c

is also a solution, and every other solution L′y of this equation is contained in Lmax [13]. In other words,
for languages Lx, Ly, and L0

Lx + Ly = L0 ⇐⇒ Ly ⊆ (Lx − Lc
0)

c.

It is easy to see that the right-inverse of directed extension is

x	 w = {y ∈ Σ∗ | w ∈ x⊕ y}

=

{
Pref (w) if x = αw

∅ otherwise.

Therefore, we obtain that Lmax = (Lx 	 Lc
0)

c is the maximal solution (with respect to inclusion) of
(Lx ⊕ Y = L0) if and only if Lx ⊕ Y = L0 has at least one solution.

This already implies that we can decide whether or not the equation Lx⊕Y = L0 has a solution Ly.
Yet, we want to present a “more direct” approach to test solvability of this equation: we will show that
the equation has a solution if and only if Lx ⊕ L0 = L0.

Theorem 4.1. The equation Lx ⊕ Y = L0 has a solution Ly if and only if L0 is a solution as well.

Proof:
Trivially, if Lx ⊕ L0 = L0, then there exists an Ly such that Lx ⊕ Ly = L0.

Conversely, we need to prove that if Lx⊕Ly = L0, then Lx⊕L0 = Lx⊕Ly. Let us consider a string
w ∈ Lx ⊕ Ly. This implies that w is a suffix of a word x ∈ Lx and, therefore, w ∈ x⊕ w ⊆ Lx ⊕ L0.
This proves that Lx ⊕ L0 ⊇ Lx ⊕ Ly.

Now, take any w′ ∈ Lx⊕w for some w ∈ L0 = Lx⊕Ly. Hence, w′ is a suffix of some word x ∈ Lx

and, furthermore, there exists a word y ∈ Ly which is a prefix of w which in turn is a prefix of w′ by
Lemma 3.1. Clearly, this implies that w′ ∈ x⊕ y ⊆ Lx ⊕ Ly. We conclude Lx ⊕ L0 = Lx ⊕ Ly. ut
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Next, we investigate solutions which are minimal with respect to inclusion; that is, a solution Ly of
the equation Lx ⊕ Y = L0 is minimal if for all words y ∈ Ly the language Ly \ {y} is not a solution:
Lx ⊕ (Ly \ {y}) 6= L0. We present a general method to find a minimal solution if we already know one
solution.

Theorem 4.2. If Lx ⊕ Y = L0 has the solution Ly, then Lmin = (Ly\LyΣ+) ∩ Inf (Lx) is a minimal
solution.

Proof:
First, let us show that Lmin is indeed a solution. Because Lmin ⊆ Ly, we have Lx⊕Lmin ⊆ Lx⊕Ly =
L0. Vice versa, for every w ∈ L0 there exists x ∈ Lx and y ∈ Ly such that w ∈ x ⊕ y. Let y′

be the shortest prefix of y such that y′ ∈ Ly. Because y′ does not have a shorter prefix in Ly and
because y′ is an infix of x, we obtain that y′ ∈ Lmin. Now, since y′ is also a prefix of w, we obtain that
w ∈ x⊕ y′ ⊆ Lx ⊕ Lmin.

For the sake of obtaining a contradiction, let us assume that Lmin is not a minimal solution. This
implies that either (a) there is y ∈ Lmin such that Lx ⊕ y = ∅ or (b) there are two distinct strings
y1, y2 ∈ Lmin such that a word w in Lx ⊕ y1 ∩ Lx ⊕ y2 exists. Case (a) does not hold because it would
imply that y is not an infix of any word in Lx. Case (b) implies that y1 and y2 are both prefixes of the
word w which means that we may assume that y1 is a prefix of y2 without loss of generality. Since both
words have to belong to Ly and y2 ∈ y1Σ∗, we conclude that y2 /∈ Lmin — a contradiction. ut

From the two results in this section, Theorems 4.1 and 4.2, we infer that if the equation Lx⊕Y = L0

has a solution, then L0,min = (L0\L0Σ
+) ∩ Inf (Lx) is a minimal solution.

5. Discussion and conclusions

We now compare the directed extension operation with two other formal language operations that are
biologically motivated and extend strings: the PA-matching operation and the superposition operation.
The PA-matching operation is a binary operation proposed by Kobayashi et al [20] and inspired by the
PA-Match operation that was part of Parallel Associate Memory(PAM) model proposed by Reif [32].

The PA-matching operation is meant to be implemented by some recombinant DNA processes and
is defined as follows. Given two words x ∈ V +

1 and y ∈ V +
2 , the result of the PA-matching between x

and y is defined as:

PAm(x, y) = {uv|x = uw, y = wv, for some w ∈ (V1 ∩ V2)+, and u ∈ V ∗1 , v ∈ V ∗2 }

Note that PA-matching results in the extension of a word x by a suffix of y, if x has a suffix which
is the same with a prefix of y. The main difference between this operation and directed extension is that
here the common suffix/prefix that guides the extension is deleted from the result, while in the case of
directed extension no deletion takes place.

The superposition operation is a binary operation proposed by Bottoni et al in [3] and can be imple-
mented by the use of the DNA Polymerase enzyme. The result of the superposition operation between
words x ∈ V +

1 and y ∈ V +
2 , denoted by x � y, consists of the set of all words z ∈ (V1 ∪ V̄2)+ defined as

follows (ȳ denotes the complement of y, that is, the image of y through a morphic involution):
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1. If there exist u ∈ V ∗1 , w ∈ V
+
1 , v ∈ V ∗2 such that x = uw, y = w̄v, then z = uwv̄.

2. If there exist u, v ∈ V ∗1 such that x = uȳv, then z = uȳv.

3. If there exist u ∈ V ∗2 , w ∈ V ∗1 such that x = wv, y = uw̄, then z = ūwv.

4. If there exist u, v ∈ V ∗2 such that y = ux̄v, then z = ūxv̄.

The superposition operation also extends words but, in the case of superposition the extension can
be bidirectional, while in the case of directed extension the extension is always uni-directional. This and
other differences lead to the two operations being different, as illustrated by the difference in the closure
properties of the two operations.

Table 2 summarizes the closure properties of the operations of directed extension, PA-matching and
superposition.

Table 2. Closure properties under the directed extension operation, ⊕, compared to the PA-matching and super-
position operations.

Class of Lx and Ly ⊕ PAm �
Regular Closed Closed Closed

Context Free Not Closed Not Closed Not Closed

Context Sensitive Not Closed Not Closed Closed

Recursively Enumerable Closed Closed Closed

We end this paper by several remarks on iterated directed extension. When investigating language
operations, it is common to investigate an iterated version of the operation as well. In particular, when
studying biologically motivated operations as is the case here, the iterated version is sometimes the
operation that better reflects the biological phenomenon in question (DNA replication) or experimental
lab protocols (Polymerase Chain Reaction). Let us present here three natural versions of the iterated
directed extension. We define

1. the iterated self-directed extension of L as µ∗(L) = limn→∞ µ
n(L) where µ(L) = L ∪ (L⊕ L),

2. the L-iteration-directed extension of Ly as ν∗Ly
(L) = limn→∞ ν

n
Ly

(L) where νLy(L) = L ∪ (L⊕
Ly), and

3. the iterated Lx-directed extension of L as ξ∗Lx
(L) = limn→∞ ξ

n
Lx

(L) where ξLx(L) = L ∪ (Lx ⊕
L).

Here, we use the notation that for any domain D and function h : D → D we have h0(L) = L and
hi(L) = h(hi−1(L)) for i ≥ 1.

Let us show that in all three cases we have h∗(L) = h(L) for h ∈ {µ, νLy , ξLx} which means that
the results that we obtained in this paper can easily be extended to the iterated versions. Indeed, the only
difference is that we add the term h0(L) = L to the directed extension.

For case 1.) consider a word w ∈ µ2(L), that is (a) w ∈ µ(L) or (b) w = x ⊕ y for x, y = µ(L) =
L∪ (L⊕L). If (b) holds, we obtain from Lemma 3.1 that there exists x′ ∈ L such that x is a suffix of x′
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and y′ ∈ L such that y′ is a prefix of y (note that we do allow x = x′ or y = y′). Clearly, we also have
w ∈ x′ ⊕ y′ and may conclude that w ∈ L⊕L ⊆ µ(L). This implies that µ2(L) ⊆ µ(L) and, due to the
inductive definition of µi we have µi(L) = µ(L) for any i ≥ 1. We conclude that µ∗(L) = µ(L). The
result follows by analogous arguments for the cases 2.) and 3.).
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