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ABSTRACT

Errors appear in a wide range of information processing and transmission applications,
such as data communications, biological computing, computer typesetting, speech
recognition, etc. It can be said indeed that errors are truly natural phenomena. In
this work we introduce error or edit systems (e-systems, for short), which are formal
languages over the alphabet of the basic edit operations. Our formalism allows one to
model essentially any kind of error situations. For certain natural regular e-systems,
we investigate their descriptional complexity in terms of the number of states of the
automata accepting such systems. This problem is of interest in its own right as well
as in the computation of maximal error-correcting capabilities of known languages.
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The capacity to blunder slightly is the real marvel of DNA. Without this
attribute we still would be anaerobic bacteria and there would be no music.

(Lewis Thomas, ‘The medusa and the snail’)

1. Introduction

Errors appear in a wide range of information processing and transmission applica-
tions, such as data communications [11], biological computing [14, 5, 6], computer
typesetting [10], speech recognition [1], etc. It can be said indeed that errors are
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truly natural phenomena. In the past, little has been done in representing explicitly
errors as formal objects of study — in the sense of formal languages for instance. In
(3], for example, there is a brief discussion on edit scripts (words over the alphabet
of the basic edit operations), but no constraint is imposed on the occurrences of the
various edit operations. Perhaps one of the first attempts to describe formally and
systematically languages of errors appears in [4] and [8].

The present work introduces the formalism of error or edit systems (e-systems,
for short), which supercedes the formalism in [8] in two ways: First, e-systems are
merely formal languages over the alphabet of the basic edit operations, a fact that
allows one to study e-systems using, for instance, tools from automata theory. Second,
the new formalism allows one to model any kind of error situations that can arise in
typical information processing applications. It should be noted that, in defining error
situations, we follow the combinatorial approach as opposed to the probabilistic (or
information theoretic) one. More specifically, we model only error situations with
high enough probability of occurrence, and omit all the rest that one might define
using the alphabet of the basic edit operations. This (combinatorial) kind of approach
is followed, for instance, in the classical theory of error correcting codes [13].

Apart from the new formalism, we investigate the descriptional complexity of cer-
tain natural regular® e-systems. These can be used to model various constraints on
the type and frequency (or density) of the permitted errors. In particular, we model
e-systems with scattered as well as burst errors of any error type and density. These
are regular e-systems and, therefore, the descriptional complexity of such a system
can be given in terms of the number of states of the minimal automaton accepting
the system. This problem is of interest in its own right as well as in the computation
of maximal error-correcting capabilities of known languages (7).

The paper is structured as follows. The next section contains some basic terminol-
ogy and notation from formal languages and automata. In Section 3, we introduce
e-systems and error types, and define the concept of (deterministic) descriptional
complexity for classes of regular e-systems. In Section 4, we define e-systems with
scattered errors and provide upper- and lower-bounds on the descriptional complexity
of such systems. In Section 5, we define e-systems with burst errors and provide exact
expressions for the complexity of those systems. Section 6 investigates the problem of
combining the errors of two e-systems in such a way that the new e-system includes
the errors of both e-systems and preserves the constraints on the errors according to
each of the two systems. It is shown that the complexity of the new system is no
higher than the product of the complexities of the two e-systems. Finally, Section 7
contains a few concluding remarks.

2. Basic Notation

An alphabet is a finite nonempty set of symbols. In the sequel we shall use a fixed
alphabet . A word or string (over L) is a finite sequence a; ...a, such that each
a; is in ¥. The length of a word w is denoted by |w|. The empty word, denoted A,

3In the sense of formal language theory.
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is the word of length zero. If X is a subset of the alphabet and w is a word then
|w|x is the number of symbols in X that occur in w. For example, if 5 = {a,b, ¢}
and X = {a,c} then |aabbcc|x = 4, whereas |aabbee] = 6. We write wyws for the
word obtained by concatenating the words w; and we. If wis a word and n is a
nonnegative integer, then w™ is the word that consists of n concatenated copies of w.
In particular, w® = A\. A word z is a factor of a word w, if w = wj zwsy for some words
wy and wy. A language is a set of words. The language of all words is denoted by
¥*. We shall use standard language operations, such as the concatenation and Kleene
star operations, as well as the notation of regular expressions — see (15], for instance.

A deterministic finite automaton, or DFA for short, is a quintuple A = (X, Q, s, F, t)
such that X is an alphabet, Q is a finite nonempty set, the set of state symbols (or
states for short), s is the start state in Q, F' is a subset of @, the set of final states,
and ¢ is a partial function of @ x X into Q, called the transition function. The
automaton is said to be complete if ¢ is a total function. The transition function ¢ is
extended to @ x X* as follows: for every state q, t(g,\) = g, and for every symbol
a in X and every word w in X*, t(q,aw) = t(¢(g,a),w). The language accepted by
the automaton A, denoted by L(A), is the set of words w such that ¢(s,w) is a state
in F'. A computation of A is a string of the form gpa1q; ... a,q, such that each a; is
in X, each q; is a state, and ¢(g;_1,a;) = ¢;. It should be clear that w is in L(A) if
and only if there is a computation as above such that w = a,...a,, go = s and g,
is a final state. Such a computation is called accepting. An extended computation of
A is a string of the form ggaiq; ... a,g, such that each a; is in X U {A}, each ¢; is
a state, and ¢(g;—1,a;) = ¢; — note that ¢;_; = ¢; when a; = A. It should be clear
that w is in L(A) if and only if there is an extended computation as above such that
W=aj...0,, o =8 and g, is a final state.

In this paper, the size of a DFA A, denoted by |A|, is the number of states of A. If A
and A’ are two DFAs then AN A’ is the DFA obtained by using the standard product
construction such that L(AN A’) = L(A) N L(A’). Moreover, |AN A’| = |A||A’|.

A language L is called regular if there is a DFA accepting L. For a regular lan-
guage L we write Cj, for the number of states of a minimal complete DFA accepting L.
Obviously, if A is an arbitrary complete DFA accepting L then Cj, < |Al.

3. Error/Edit Systems

The alphabet E of the basic edit operations is the set of all symbols z/y such that
x,y € LU {A} and at least one of z and y is in £. If z/y is in E and z is not equal
to y then we call z/y an error. We write A/A for the empty word over the alphabet
E. We note that X is used as a formal symbol in the elements of F. For example,
if z and y are in ¥ then (z/A)(z/y) # (z/z)(M/y). Of course, ) is the empty word
over ¥; that is wA = Aw = w for all words w in £*. The elements of E* are called
e-strings. The weight of an e-string h, say, is the number of errors occurring in h. The
input and output parts of an e-string h = (z1/y1) ... (2. /yn) are the words (over %)
Ty ...%p and yy ... yn, respectively. We write inp(h) for the input part and out(h) for
the output part of the e-string h. The size of h is the length of inp(h). An e-system
is a subset of E* (or a language over E).
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The term error type has been used informally in several works concerning errors.
Our formalism allows us to give a precise definition of that term. We write ¢ for the
subset {z/z |z € ¥} of E. An error type 7 is a nonempty subset of F that is disjoint
from €. If D is an e-system then 8p is the error type of D; that is the set of all errors
that appear in the e-strings of D. Equivalently, 0p is the smallest subset of £\ & such
that D C (0p Ue)*.

Now we provide examples of certain error types. The SID error types are
oc={zfy|z,ye L and z #y},t={Mz |z e X} and s = {z/)| z € I}
they are called substitution, insertion, and deletion types, respectively. These error
types are important in various domains [8]. In the context of biomolecular comput-
ing and bioinformatics, where a DNA strand can be interpreted as a word over the
four-letter alphabet {A,C,G,T} several types of errors can occur [12]. The most
common ones are insertions and deletions of one or more letters, as well as one-letter
substitutions. The latter can be either transitions or trensversions. Transitions occur
when one purine is replaced by another purine (A/G or G/A) or one pyrimidine with
another pyrimidine (T'/C or C/T). Transversions result when a purine is replaced by
a pyrimidine or vice versa. Because the structural changes leading to transitions are
relatively small, in real-life genomic DNA they occur more frequently than transver-
sions (which require more substantial modifications of the molecule). Thus, we define
the transition error type to be (it) = {C/T,T/C,A/G,G/A} and the transversion
error type to be (ve) = {C/A,A/C,C/G,G/C,T/A,A/T,T/G,G/T}. Obviously,
(it), (ve) C o.

We note that the above definition of error type concerns only the basic, or atomic,
error types. Other composite error types such as transpositions — a common kind of
error in computer typesetting — can be defined by means of e-systems.

Note that every (finite) transducer T', say, in standard form can be viewed as an
automaton (nondeterministic, in general) accepting an e-system D(T'). It should be
clear, however, that the relation R(T') realized by T is different from D(T'), as R(T')
consists of pairs of words. In [9], a set of pairs of words is viewed as a discrete channel.
The fact that (w, z) is in the channel means that the input word w can be received
as z via the channel. Thus a discrete channel in the sense of [9] models the effects
of errors on words, whereas an e-system models the errors themselves. Now every
e-system D defines a channel yp consisting of all pairs (w, z) such that w = inp(h)
and z = out(h) for some e-string h in D.

In [9] it is shown that the problem of whether a given regular language is error-
correcting (or -detecting) for a given rational channel is decidable in polynomial time.
The time complexity depends of course on the efficiency of the channel description
and, therefore, it is desirable to investigate the descriptional complexity of regular
e-systems. This issue is also important in [7], where the efficiency of algorithms for
computing maximal error-correcting capabilities of languages depends on the effi-
ciency of representing e-systems.

Definition 1 Let P be a recursive index (or parameter) set and let
D = {D(p) | p € P} be a set of regular e-systems. The (deterministic) descriptional
complezity of D is the function Cp : P — N such that Cp(p) is the number of states
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of a minimal complete DFA accepting D(p).

In the next two sections we define certain classes of e-systems by specifying the
type of errors permitted, the way of combining errors, and the frequency (or density)
of the errors. In the theory of error correcting codes there are two major approaches
of combining errors: scattered or burst. In the expressions for denoting e-systems we
shall use the symbol s for scattered errors and b for burst errors. We shall use x to
indicate either of s and b.

4. Complexity of E-Systems with Scattered Errors

Consider two positive integers m and n, with m < n — 1, and an error type 7. The
e-system [7s](m, n) consists of all e-strings that contain up to m (scattered) errors of
type 7 in any factor of length n, or less, of the input part of the e-string. More formally,
an e-string h is in [7s](m, n) if and only if for every factor g of h with |inp(g)| < n, one
has that |g|; < m. The ratio m/n is called the error density of the e-system [7s](m, n).
For example, let ¥ = {z,y} and let h = (z/z)(z/y)(y/A)(z/z)(y/y)(z/\)(y/z) be an
e-string. As the factor (z/y)(y/A)(z/z)(y/y)(z/A) of h is of size 5 and weight 3, it
follows that h is not in the e-system [(cUd)s](2,5). Similarly, k is not in [(cUd)s|(3, 6)
either, but it is in [(o U §)s](3,5). Now let

9 = M) (y/v)(=/v)(@/x)(u/y)(My) (/) (@ /<) (@ /z) (A u) (A y).
As the factor (A/z)(y/y)(z/y)(z/x)(y/y) (M y)(z/z) of g is of size 5 and weight 3, we
have that g is not in [(o U¢)s](2,5), but it is in [(o U ¢)s](3,5).
In this section, we are interested in the descriptional complexity of the e-systems
[rs] = {[rs](m,n) |l <m < n—1}.
E-systems of the form [7s](1,n) can be regarded as systems with burst errors. These

are considered in the next section.

Shorthand Notation: In describing the transition function t, say, of a DFA
accepting an e-system, we shall often use the notation t(p, @) = ¢ as a shorthand for
‘““(p,e) = q for all e in ', where 0 is a nonempty finite set of input symbols and p
and g are states of the DFA in question. Moreover, for any state g of the DFA in
question, we write L(g) to denote the language accepted by the DFA when g is used
as the start state.

We shall use the following facts from combinatorics [2].

o For all nonnegative integers r and s, with r > s,

T T r+1 r+1—s/r+1
= , = - and
s T — 8 s+ 1 s+ 1 s
(7'+1) _ 41 (r) S (1)
s r4+1—s\s/ ~ \s
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e For all positive integers r and s, with r > s,
& r—1 r—1 T ~fi—1
= + and = .
()= ()00 = ()-2(5)
e For all nonnegative integers r, s, and t, with s > ¢,

(0290 m 5 (1) -01)

2

In the above, we assume that (7) = 0 when ¢ > r. We also need the following
lemma.

Lemma 1 For all nonnegative integers r and t,

t .
A+r+1fr+204+2 SZ T4+ 2041 <1'+1 42642 '
dt+r+2 r+1 i T “r42 r+1

Proof. Let T be the sum Py ("}). Then T' = Sy + Sy, where Sp = 3'_, (T2
and S) = S (T"'QH'I). This implies that

i=0 T

e+ 2 % - r T+ 24
T:S"Jr;( % )+Z(2i+1)_280+;2i+ ( % )

1=0

and, therefore, T < 25y + rSp and T > 2S5y + #/(2¢t + 1)Sp. The claim follows
now from the facts that T = ("291%), §, = T — Sy < T — 1/(r + 2)T, and
S1>T — (2t +1)/(dt +7+ 2)T. O

Theorem 2 Let 7 be an error type involving no insertions, that is TN¢ = . For
every parameters m and n, with 1 <m <n— 1,

n—1 — (n-1
1+(m_1)SC’[,,.S|(m,n)<1+Z( ; )

i=0

Proof. First we define an automaton A = (e U, Q, [£],Q \ [—1],t) accepting exactly
the e-strings of the e-system [rs](m,n). We shall use £ and 7 as symbols representing
the sets € and 7, respectively. Symbols of the form # are words over the alphabet
{&,7}; that is 7 € {£,7}*. Then 7 represents the corresponding set 1, a subset of
(eUT)*, in a natural manner. For example, if 7 = £7¢ then 5 = e7e. The states [—1]
and [€] are the sink and start states, respectively. The rest of the states are of the
form [7], where 77 is a nonempty word of length up to n — 1 such that 7 starts with 7
and contains at most m 7's; hence, 1 < ||z < m. State [fj] means that the last |7|
input symbols read, say e; ...ep5, are in 7 and the next input symbols to read are
independent of any symbols read prior to e, ...e.

Before we define the transition function t, observe that for every state (7] there is
a word 7)o such that 7 = 7%, for some k > 0, such that 7 is either empty or in
7{€,7}*. Now we proceed with defining t:
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* t([¢],€) = [¢] and t([g], ) = [7].
e Lor every state [;] with length of 7 less than n — 1, ([7], &) = [7¢] and

oy i gl <om,
t([ﬂ],f) - {[_1]’ if ||z = m.

e For every state [7] with length of 7 equal to n — 1, ¢([7],£) = [7o€] and

o mer, it |als < m,
t([al,7) = {[1]’ T —an

It should be clear that for every state [fj] there is an e-string h in 7 such that
t([€], h) = [7]; hence, every state in @ is reachable from the start state. Next we
prove the following claims:

1. The cardinality of Q is 1+ 3 10, ("77).
2. For any rin {0,...,min{m — 2,n — m — 1}}, the set of states

T ={[Fed] | [#lz >m—r -2, |7eYP| =n -1}
is of cardinality 3.1 ("7?”'), such that no two (different) states of T
are equivalent.

The required statement follows from the above claims when we note that

= (n2) (1) = ()

For the first claim, note firstly that the cardinality of the set Q" = Q\ {[-1], [¢], [7]}
is equal to the number of words 1 of length I, with 1 <! <n -2, containing up to
m — 1 symbols 7; that is, 0 < ||z <m — 1. Also, as ||z <[, it follows that

n—2 min{l{,m—1} I n—2 min{l,m—1} I
=y % ()-e-a+X y (D)
I=1 i=0 =1 i=1

By expanding the sums and rearranging the resulting terms, it follows that

m—1n—2 m n—1
[ -1
1= -2+ () =e-n+23 il
i=1 l=i i=2 I=j J
Hence,

m

|Q’|=(n2)+§;(”j1) :_2+§(”;1).

The first claim follows now, as |Q] = 3 + |Q'|.

For the second claim, note firstly that the cardinality of the set T, is equal to
the number of words 9 of length n — r — 2, containing at least m — r — 2 and at
most m — 1 symbols 7. Now let [F&"y;] and [F€"4] be two different states in 7}
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such that [h2]z < [¥h1]7. We need to show that these states are not equivalent. For
this, define the word 7;...7,42 such that each 7; is either # when the last n — 1
symbols of 7877 ... 7;_1 contain fewer than m symbols 7, or & otherwise. Then, as
|1/‘—)2|1~r + (r+2) > m, it follows that the word YTy . . . Tr42 of length n contains exactly
m symbols 7. Hence, 1y ... 7.y is a subset of L([F&"1s]). If |sha|+ < |17 then the
word 17y ... 742 of length n contains more than m symbols 7, which implies that
T1...Tr42 and L([7€"9;]) are disjoint. Hence, the two states are not equivalent when
[a]7 < |¥1|7. Now suppose that ||z = |¢1]7, and let k be the first position in
which the words 7&"t); and 76"y, differ. Then & > r + 2 and there are symbols &;,
and words ¢, ¢1, 2 such that 8; # 0y and || = |$2| > 0 and 7™, = 7&"¢d,$; and
TE Py = TE Pla¢py. Without loss of generality, assume 0; = 7 and 0, = &. Each of
the words ¢7¢ 7y ... Trye and @edaTy ... Trya is of length n and contains exactly m
symbols 7. Hence, 71 ... 7,42 is a subset of both L([F&"1]) and L([7"42]). Consider
also the word ¢, 7y ... 7 +2¢T of length n. This word contains exactly m symbols 7,
whereas the word ¢o7 ... 7y2¢T contains m + 1 symbols 7. Hence, 7 . . Tr420T is a
subset of L([7€"1;]) and disjoint from L([7&",]), which implies that the two states
are not equivalent. |

As the behaviour of the binomial coefficient (') is nonmonotonic with respect to
m and n, it is not meaningful to give general asymptotic estimates for the bounds
obtained in the above theorem. If, however, we assume that m is a function of n,
that is m = m(n), then it is possible to provide such estimates and get some idea
about how close the bounds are (asymptotically). We consider two cases. First ta,ke
m(n) = k for some constant integer k > 2. In this case, the lowel bound is ©(nf~1)
and the upper bound is ©(n*). Now take the case where m(n) = |(n — 1)/2]. Using
the fact that (**) = ©(22"/y/n), it can be shown that (m(“) 1) ©(2"//n). On the

other hand, using the facts 2"~ = S77° 1 sl (o N=8(} m(n) " 1)), it follows that
the upper bound is @(2").

Theorem 3 Let T be an error type involving insertions, and deletions or substitutions
(possibly both); that is TNt # G and 7N (o UE) # . For every parameters m and n,
withl<m<n-—1,

|+ (:;Jrn;) < G ) & 4n+m+1(2n+m)

m+ 1 m—1

Proof. The error type 7 can be written as 7y U ¢, such that ; C cUd and ¢; C .
We shall use £,z; and 7; as symbols representing the sets g,¢; and 71, respectively.
Symbols of the form 7 are words over the alphabet {&,7;,71}; that is 7 € {&,5;,7,}*.
Then 7 represents the corresponding set 1, a subset of (¢ U:; U 7p)*, in a natural
manner. For example, if § = €7 € then n = emye. Moreover, we shall use the following
shorthand notation: If 77 is a word then |f|size = |f|z + [7|7, and |flerr = |7il7 + |7ls, -

First we define an automaton A = (e U, Q, [€],Q \ [—1],t) accepting exactly the
e-strings of the e-system [rs|(m,n). The states [—1] and [g] are the sink and start
states, respectively. The rest of the states are of the form [7], where 7 is a nonempty
word that starts with 7; or z; such that |j|size < n and |fj|e;y < m. State [f] means
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that the last [7] input symbols read, say e; ... €l5|» are in  and the next input symbols
to be read are independent of any symbols read prior to e; . .. e|s|-

Next we define the transition function ¢. Let [7] be a state with |7|size = n. Then
there is a unique word 7 that does not start with £ such that the following conditions
are satisfied: (i) If 7 starts with 7, then 7 is of the form 714, for some nonnegative
integer k. (ii) If 7 starts with 7, then there is a positive integer | such that either 7
is of the form z}£*7 for some positive integer k, or 7] is of the form z\ 71£%7) for some
nonnegative integer k. Now we proceed with defining #:

o t([e,€) = [¢], ¢([e], m) = [7] and £([g], 1) = [@a]-
e Lor every state [7], other than [£] and [—1],

= [ﬁF:‘], if |T_ilsizc <n,
t =
({n],g) {[ﬁg.‘f], if |77|size =T,

2 _ [7e1], i |7lere < m,
t([7],01) = {[_1], it [l =

7],  if |7lsize < n and |flerr < m,
t([7], 1) = [-1],  if |filsize < n and |T]err = 2,
[770?1]; if lﬁlsize =mn.

It should be clear that for every state [fj] there is an e-string h in 5 such that
t([€], k) = [7]; hence, every state in @ is reachable from the start state. Next we
prove the following claims, from which the theorem follows:

1. The cardinality of @ is less than, or equal to, the upper bound that appears in
the theorem.

2. Let Q' be the set of states [7j] starting with ; and satisfying the following
conditions: (i) |7lsize = n; (i) if 7)€ is a factor of 4, then this factor is a prefix of
77; that is, j = 71217 implies that the word #; is empty. Then, the cardinality
of Q" U {[—1]} is equal to the lower bound that appears in the theorem.

3. No two (different) states in Q' are equivalent.

For the first claim, we consider the set P, say, of states of the form [£;1]. For any
I =0,...,n, let P; be the set of states [;33] in P with |9|size = . Fach state in P,
obtains by considering the word ;&' and by, firstly, choosing j out of the [ positions
for replacing €'s with 7's and, then, choosing (with repetition) ¢ positions out of the
l + 1 for inserting Z;'s, where 7 = 0,...,min{l,m — 1} and i = 0,...,m — 1 — j.
Note that the same argument applies for states of the form [7y9)] with [1)]si;e = | and
[=0,...,n—1. Hence,

min{l,m—1}

"SR () E ()

=0 i=0 7=0
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n—1

QI =2+2)|P|+|Pul.

1=0

Now for any I > m — 1, one has that

m—1 K m—1
N(l+m—j ! [ +m
— <
1Rl= 2, (ij—l—J‘Z (j)(mﬁl—j)

=0

On the other hand, for any I =0,...,m — 2,

204+ m
m—1/"

I K m—1
INfl+m—7 l l+m 204+ m
Pl = < — .
=3 () G5 < X ()6 ) = GE)

Hence, the sum Z?:_Ol | Py| is upper-bounded by

"il(%—l—m) _nz_:l((m—l)+21+1) < m (2n+171~1)
S m—1 — m—1 “m+1 m
The first claim follows now when we note that
m Zn+m—1y m 2n2n+l 2n+m ” 2n 2n+4+m
m+1 m T mt+lmoan+m\m—1 m+1\m-1/"

For the second claim, we observe that each state in @’ is obtained by considering
the word 7;€™ and by performing the following procedure: For some j =0,...,m—1
and 1 = 0,...,m — 1 — 7, choose j out of the last n positions in the word ;" for
replacing £’s with 7’s and, then, insert ¢ symbols z; such that each i is inserted at

the end of the word, or to the left of one of the j 7;’s. Note that there are (j + 1)
positions from which one can choose (with repetition) to insert the ;’s. Hence,

=R OE () -E 06
= i i 3 o i/\m—1—3 m—1

For the third claim, we shall use the fact that if qubg’ is a word with |2, ¢Csize = n
and |7,¢C|err = m, then for every factor 7, say, of quﬁ('rlgb w1th |7|size = m we have
that |f|err < m. This can be seen if we write ¢ as Fll 91L1 . 9“1 , for some k£ > 0 and
some I; > 0 and 0; € {€,71}. Now let [t191] and [i19)2] be two different states in Q'
such that |L11,/12|e" < |21%1 |ere- We need to show that these states are not equivalent.
Let d = — |L1‘l,b2|en~ Then |63%2¢|err = m and Ll is a subset of L([Lli,/;g]) If
[e192err < |L11J11|err then d > 0 and |£3922¢|err > m, which implies that ¢§ is disjoint
from L([z141]). Hence, the two states are not equivalent when 7192 |err < |.!.11,b1|e”

Now suppose that |2392]er = |L11/)1le” Then |L1¢2L1|B,r = m and |L1¢1L1Ler£ = m.
Moreover, |L11/)2L1|S|ze = n and |L11|!')1L1‘Slze = n. We can write 519, as 5;¢d1¢; and
110, as Llcj)f?ggbg such that 0,8, are different symbols in {&,7,,%;} and ¢, ¢y, ¢o are
words with |91q51|5,ZE |02 )size and |01 )ere = |O2palers. Recall that every factor
7 of 0190, 1371p, with |Alsize = n, has |flerr < m. Moreover, if 8; is in {&,7,}, then
|:t¢71P|size = n. We consider three cases for the pair (6, 02) — the other three cases
are syminetric.
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Firstly, (01,602) = (£,71). In this case, |¢\ 237101 |size = |¢2L171¢L1 lsize = m and
|¢1L171¢L1|m =m+ 1 and |¢2td7) L1 |ere = m, which implies that 37y ey is a subset
of L([z132]) and disjoint from L([z191]).

Secondly, (01,02) = (¢, Ll) In this case, we cannot have |@alsize = 0 and, there-
fore, ¢ can be written as LIHCg with [ > 0 and § € {£7,}. Also, the last factor
7= <2¢1T1¢L1 of the word le,bgcl'rlqﬁol has |7j|size = n and |77]err < m, which implies
that L1T1¢L1 is a subset of L([lej)gj On the other hand, L17'145L1 is disjoint from
L{[z1d).

Thirdly, (6;,8,) = (T]_,Ll) Again ¢5 can be written as g{g with [ > 0 and
0 € {&,71}. In fact, as 71748 is a non-prefix factor of 7,4, one has that § = 7,. This
implies that the [ast factor 77 = CngqubLl of the word 719197122 has |flsize = 1
and |flerr < m, which implies that t$r¢:3 is a subset of L( [Llfgbg]) On the other
hand, the last factor ¢,{7¢i? of the word t,l'l,blbl‘rlqi)t. has |¢1L1T1¢61|snze = n and
|¢1L11'1¢L1 lerr = m + 1, which implies that :$7¢:? is disjoint from L([z191]).

In all cases the states [£13/1] and [£13)9] are not equivalent, as required. m|

Suppose that m is a function of n; that is, m = m(n). Let L, and U, be the
lower- and upper-bound, respectively, in the above theorem. If m(n) = k for some
constant integer k > 2, then it follows that L,, = ©(n*~1) and U,, = ©(n*). On the
other hand, if m(n) = |n/k|, for some constant integer k > 2, it can be shown that
U= O(L2):

5. Complexity of E-Systems with Burst Errors

Let 7 be an error type. A burst of type 7 is an e-string g in TUT(e UT)*r. Let m
an n be positive integers with m < n — 1. The e-system [rb](m,n) consists of all
the e-strings h for which there is & > 0 such that h = hogih1...gxhg and h; € &*
with ;] > n—1fori=1,...,k—1, and each g; is a burst of type 7, size up to m,
and weight up to m. As before, the ratio m/n is the error density of the e-system
[7b](m,n). Let B,,(7) be the set of all bursts of type 7, size up to m and weight up
to m. Then it follows that

['Tb](ﬂ'l, n) = (E_‘*Bm('?')sn—l)*(g* U E*Bm('r) Ui E*Bm(T)E'”_Z),
For example, let ¥ be the alphabet {z,y} and let

h = (@/\)(2/2)(@/\)(x/)* (V)M 2) (/) (z/z)(z/A)(z/2)* (A ).

Then h contains three bursts of type (¢ U 6). The first is of size 3 and weight 2, the
second is of size 3 and weight 3, and the last is of size 0 and weight 1. Hence, h is
in the e-system [(« U 8)b](3,6). On the other hand, k is not in [(: U §)b)(3,7), as the
factor (z/z)(z/A)(x/x)%(A/z) of size 7 contains two bursts that are too close to each
other, or one burst that is too long.

In this section, we are interested in the descriptional complexity of the e-systems

[rb] = {[rb](m,n) : 0 < m < n —1}.
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Theorem 4 If 7 is an error type involving no insertions, that is TN =P, then
Clrv)(myn) = n+ 1+ m(m —1)/2 = O(m® + n).

Proof. We define the complete DFA A = (e U T,Q,[n — 1],Q \ [~1],t) as follows.
The set of states @) consists of all [j], with 7 = —1,0,...,n — 1, and all [I,s] with
{=1,...,m—1and s = 1,...,I. The start state is [n — 1]. The state [-1] is a
sink state. State [/, s] means that [ symbols have been seen since the beginning of the
current burst (including the first symbol in 7 of the burst) and the size of the burst is
s. In general s < [, as the burst might grow in case one of the next symbols to read is
in 7. For j > 0, state [j] means that there have been j symbols in € after the end of
the last burst. Obviously, the number of states is n + 1 + Z;’;}l [, as required. The
transition function t is as follows — see also Figure 1.

Figure 1: The minimal automaton accepting [rb](4, ) (the sink state is not shown)

t([n—1],e) = [n—1] and t([n —1],7) = [1,1]. Note that t([n —1],7) = [0] when
m = 1. In this case, no states of the form [l, s] exist.

t([7],e) =[5 + 1] and ¢([5],7) = [-1], forall j =0,...,n — 2.

t([t,s},e) = [l +1,s) and ¢([l,s],7) = [+ 1,1 + 1], for any s and for { < m — 1.
t([l,s],e) = [l — s+ 1] and &([L, s], 7) = [0], for any s and for | =m — 1.

We need to show now that no two states are equivalent. Obviously, [—1] is not
equivalent to any other state. Firstly, note that for all states [i] and [j], other than
[—1], with i < j, we have that €”~1777 is a subset of L([j]) and disjoint from L([4]).
Hence, [¢] and [4] are not equivalent. Secondly, for all states [j] with j =0,...,n—2
and for all states of the form [l, s], we have that 7 is a subset of L([l, s]) and disjoint
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from L([5]). Also, 7™ is a subset of L([n — 1]) and disjoint from L([{,s]). Hence, no
state of the form [j] is equivalent to a state of the form [, s]. Thirdly, consider two
states [/, s] and [/, s'] with I < I". Then, 7™~ is a subset of L([l,s]) and disjoint
from L([l',s']). Finally, for any two states [l,s] and [l,s] with s < s’, we have that
en~1=1+57 is a subset of L([l, s]) and disjoint from L([l,s]). Hence, no two different
states of the form [/, s] are equivalent. O

Theorem 5 Let 7 be an ervor type involving insertions, that is T Nt # @. Then
Clrpj(m,n) = O(m? 4+ n). In particular,
if T also involves substitulions/deletions, that is T N (o U §) # 0, then

Cirp)(m,n) =n+ 1+ (2m+ 1) + (m + 1)(m + 2)(m — 2)/2;
if T involves only insertions, that is 7 C , then
Clrp)(m,n) =n+ 14 (m+1) + (m + 1)}(m + 2)(m — 2)/2.

Proof. Suppose T = ¢; U such that ¢; is a nonempty subset of ¢ and 77 is a subset
of o Ud. We define the complete DFA A = (eUT,Q,[n —1],Q \ [~1],t) as follows.
The set of states @ consists of all [j], with j = —1,0,...,n — 1, and all [s,, k] with
k=1,...,m—-1,1=0,...,mand s =0,...,msuch that 0 < s +1 < m, and s =0
if k=1 and 7; is empty, or s € {0,1} if k = 1 and 7; is not empty.

The start state is [n — 1]. The state [—1] is a sink state. State [s, 1, k] means that s
is the size of the current burst (as known so far) and k is the weight of the burst, and
I symbols in € have been seen after the last symbol (in 7) of the burst. Note that the
size of the burst might be smaller than its weight, as insertions are permitted. For
example, at state [2,1,3] with m = 4 and 7 = ¢ it is possible to have seen 6 symbols
in tetete U eeere. In this case, the current burst is of the form teier or weer. For
4 > 0, state [j] means that there have been j symbols in € after the end of the last
burst.

We define the transition function ¢ for the case where 7, is not empty. If 7, is
empty one can simply omit the transitions involving ;.

o i([n—1),e) = [n—1], t([n — 1],41) = [0,0,1], and ¢([n — 1],7;) = [1,0,1]. Note
that t([n — 1],7) = [0] when m = 1. In this case, no states of the form [s, 1, k]
exist.

o i([j],€) = [j + 1] and ¢([j],7) = [-1], forall  =0,...,n — 2.

o t[s,l,k],€) = [s,l + 1, k] if s+ <m, and ¢([s, 1, k],€) = [l + 1] if s +1 = m.

o t[s, k), 1) =[s+1,0,k+1]if k <m—1, and t([s,0,k],¢1) = [0] if k = m — 1.

o t([s,L,k],71) = [s+{+1,0,k+1] if s+1 < mand k < m—1, and ¢([s, I, k], 1) = (0]
ifs+l<mandk=m—1, and ¢([s,,k],71) = [-1] if s+ 1 =m.

For the number of states, first note that there are m + 1 states of the form [0,1, 1]
when 7 involves only insertions, or (m+1)+m states of the form [s,1, 1] with s € {0,1}
when 7 is not empty — recall, s + ! cannot exceed m. Now foreach k =2,...,m —1,
thereare .- (m—s+1) states of the form [s, 1, k], and the claim about the complexity
follows. We need to show now that no two states are equivalent. Obviously, [—1] is
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not equivalent to any other state. Firstly, note that for all states [] and [j], other than
(—1], with 7 < j, we have that e"~!77; is a subset of L([;]) and disjoint from L([z]).
Hence, [i] and [j] are not equivalent. Secondly, for all states [j] with j =0,...,n—2
and for all states of the form [s,[, k], we have that ¢, is a subset of L([s,,k]) and
disjoint from L([j]). Also, ¢i* is a subset of L([n — 1]) and disjoint from L([s, !, k]).
Hence, no state of the form [j] is equivalent to a state of the form [s,,k]. Thirdly,
consider two states ¢ = [s,1,k] and ¢’ = [¢/,I', k']. If & < K’ then s7* is a subset of
L(q) and disjoint from L(q). If k = k" and [ < I’ then "~ '~V/]* is a subset of L(q')
and disjoint from L(g). Finally, if K = k' and | = I’ and s < s’ then em— s+, s
a subset of L(g) and disjoint from L(q’). Hence, no two different states of the form
[s,1, k] are equivalent. m]

6. Combining E-Systems

One way of combining two error types 71 and 73 is to use the e-system [(1 U7y )x|(m, n).
It might be desirable, however, to assume that errors of the types 7, and 75 oc-
cur independently of each other, and possibly with different densities. Consider
the two e-systems [(it)s](m1,n1) and [(ve)s](msg,n2) describing scattered transition
and transversion errors, respectively, with m;/n; > mg/ny. We wish to have
one e-system that allows errors of both types such that the error density of the
type (it) is mi/n; and of the type (ve) is mg/ns. We shall use the notation
((it)s](mq, 1) @ [(ve)s](m2, n2) for such an e-system. For example, an e-string of the
form (ve)(it)ee(it)ee(it)ee(ve) would be in [(it)s)(3,7) @ [(ve)s](1, 10), but it would be
neither in [(it)s](3,7) nor in [(ve)s](1,10), as these systems are subsets of ((it) Ue)*
and ((ve) U €)*, respectively. Next we develop the formalism for the operation @
between two e-systems.
Let e be a basic edit operation and let @ be an error type. We define

e, if eeeUB,

pro(e) = ¢ A/A, if ed B, ecy,
zfz, fedbec (cUd), e=z/y.

The above operation is extended naturally to e-strings: if h is the e-string e; ...e,
then pry(h) = prg(er) ... prg(en). Thus, pry(h) results by replacing each basic edit
operation of h that is not in @ with an appropriate basic operation in &, or with A/A.
Now for any two e-systems D} and D’ we define the e-system

DoD'={he(eUldpUbp)*|prg,(h) € D and pr, (k) € D'}.

Thus, h is in D @ D’ if it involves errors of types #p and @p/ such that the errors of
type 0p satisfy the constraints of D, namely pr, (h) € D, and the errors of type 0p
satisfy the constraints of D’. In practice it appears that the error types 8p and 6p:
should be disjoint. Our results, however, remain true without this restriction and,
therefore, we allow the possibility that p N 8p is nonempty.

Theorem 6 Let D and D' be two regular e-systems. Then, Cpgpr <1+ CpCp.
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Suppose we wish to model, for instance, bursts of transitions and transver-
sions such that the error density of transitions is twice that of transversions. For
this we can consider the class Z = {Z(m,n) | 0 < 2m < n — 1} such that
Z(m,n) = [(it)b](2m,n) & [(ve)b](m,n). Then, by the above theorem, it would follow
that Cz(m,n) = O(m?* + m2n 4 n?).

Before we prove the above statement we need to establish an auxiliary lemma.
Let 7 and 8 be two disjoint error types and let A = (eU#,Q, s, F,t) be a DFA. We
can write T = ¢; U7, such that ¢1 is a subset of ¢ and 1, is a subset of o U §. Define
the DFA A™ = (eU 8 UT,Q,s, F,t™) such that t™ is constructed as follows:

¢ t7 includes ¢; that is, t7(p,e) = g for all states p,q and e € eU@ with t(p,e) = q.

e t7(q,Afz) = q, for all states ¢ and A\/z € ¢,.

e For all states p,q and z/z € ¢, if t(p,z/z) = gq, then ¢"(p, z/y) = g for every
z/y in 7.

Obviously, A and A™ have the same state sets.

Lemma 7 The automaton AT accepts the language {h € (eUOUT)* | pry(h) € L(A)}.

Proof. By the construction of t7 we observe that (i) if t"(g, A/z) = q and A/z is in t;
then prg(A/z) = A/A, and (ii) if t"(p, z/y) = ¢ and = /y is in 7y then t(p, z/x) = g and
pro{z/y) = x/z. First suppose that A is in (eU#UT)* such that pry(h) € L(A). Then
h =e;...e,, with each e; being in eU§UT, and pry(h) = pry(er) ... pry(en). As some
of the elements pry(e;) might be empty, there is an accepting extended computation
paprg(ei)pr . .. prg(en)pn of the automaton A. If e; is in 71 then e; is of the form z/y
with z € ¥ and y # z, which implies that prg(e;) must be z/z. As t(p;_1,z/z) = p;
one has that t"(p;_1,2z/y') = p; for all z/y in 7. Hence, t"(pi—1,e;) = p;. In
the cases e; € ¢; and ¢; € e U 0 it follows again that t"(p;_,,e;}) = p; and, there-
fore, poeip: .. .enpn is an accepting computation of the automaton A™. Hence, h is
in L{AT).

Now suppose that h isin L(A"). Then h = e, ...e,, with each e; being in eUGUT,
and there is an accepting computation pgeypy ...e,pn of A7, It is sufficient to show
that poprg(ei)p: ... prg{en)pn is an extended computation of the automaton A; that
is, t(pi—1, prg(e;)) = p; for all 4. This can be shown using the fact that ¢7(p;_y,e;) = p;
and by considering the three cases e; € eU 8, e; € ¢1, and e; € 71. O

Proof of Theorem 6. Let A and A’ be minimal complete DFAs accepting D and D',
respectively. Let 7/ = 0p/ \ 0p and 7 = 0p \ 0p.. Then

eUdpulp =€U99UT’ =eUOp UT.
By the above lemma it follows that D@ D’ is the language accepted by the automaton
A" N AT, which is of size |A||A!| = CpCp:. In general, it might be necessary to add

a sink state to the automaton A’" N A7, in order to make it complete. Hence,
Cpgp' <1+ CpCp. o

We note that, in many cases, Theorem 6 can be improved slightly by considering
A and A’ to be trim automata; that is, automata whose states can be reached from
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the start state and can reach a final state. It follows then that Cpgp < 1+ |A]|A'].
It can be shown for example that, for D = [gb](1,3) and D' = [§b](1,4), we have
that Cpgp = 11, and |A| = 3 and |A'| = 4, where A and A’ are trim automata
accepting D and D', respectively.

7. Concluding Remarks

We have presented a method for describing error situations as formal languages, which
allows one to reason about errors using tools from automata. In particular, we were
able to obtain results about the complexity of describing error situations, motivated
by the need for evaluating the efficiency of algorithms that compute error-correcting
capabilities of languages. In the case of scattered errors, the complexity turns out
to be very high. One can still define automata with reasonable size, however, for
e-systems with high error density, by choosing small values for the parameters m and
n. For example, the descriptional complexity of the e-systems [rs|(3,6), [rs](3, 10)
and [rs](4,10) is no more than 735, 2783, and 18215, respectively, where 7 is any
error type involving insertions and substitutions/deletions.

We believe that the approach of e-systems can be used to model errors in various
domains that involve processing or transmission of information in the presence of
erTors.
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