@€ 1990 Gordon and Breach. Science Publishers. Inc

Intern. J Computer Math., Vol. 34, pp. 187-200
Printed in the United Kingdom

Reprints available directly from the publisher
Phatacopying permitted by license only

FURTHER REMARKS ON PARALLEL
COMMUNICATING GRAMMAR SYSTEMS

GHEORGHE PAUN and LILA SANTEAN

Institute of Mathematics, Str. Academiei 14, Bucuresti, Romania

(Received 19 December 1989; in final form 20 January 1990)

We continue the study of parallel communicating grammar systems introduced in Paun and Santean
[7] as a grammatical model of parallel computing. The investigated topics are: closure properties, the
efficiency of generating a (linear) language by such a system compared with usual grammars,

hierarchies.
KEY WORDS: Context-free grammars, parallel computing, grammar systems

C.R. CATEGORIES: F4.3,G.2.1

[. INTRODUCTION

The parallel communicating grammar systems (PCGS, for short) have been
introduced in Pdun and Santean [7] and investigated, from various points of view,
in Paun [4, 5, 6]. They prove to be a grammatical model of parallel computing
with quite interesting properties and raising many appealing mathematical
problems. As architecture, they are similar to the cooperating/distributed grammar
systems in Csuhaj-Varju and Dassow [1] and Dassow and Paun [2], but there the
grammars work sequentially, not in parallel as in a PCGS.

The theory of PCGS (of grammar systems, in general) is very young, therefore
many questions are still unsettled in this area. We consider here three of them:

closure properties, hierarchies, efficiency.

2. DEFINITIONS

We assume the reader familiar with basic facts in formal language theory (from
Salomaa [8&], for instance), and we specify only some notations and the definitions

related to PCGS.
For a vocabulary V, we denote by V* the free monoid generated by V under the

operation of concatenation and the null element 4 For xe V* |x| is the length of
x. f USV, xe V*, then |x|, is the length of the string obtained by erasing from x
all symbols not in U.

We denote by REG, LIN, CF, CS the classes of regular, linear, context-free,
context sensitive grammars, respectively, without using A-rules. For a class X of
grammars as above, X, is the class of arbitrary grammars of type X (that is using
A-rules) and #(X) is the family of languages generated by grammars in X.

187

188 G. PAUN AND L. SANTEAN

A PCGS (of degree n, n21) is a system

where G;=(V, ;, ¥V} ,S;, P;). 1<i<n, are Chomsky grammars such that Vi i S Ve,
2<i<n, and there is a set K<{Q,Q,,....Q,}, of special symbols (query symbols),
K< Ji-) Vy.i, used in derivations as follows.

For (X o (e Yo XpyeVE, 1Sisn (Vg,=Vy V), we write
[T X)=>(y,...,),) if one of the next two cases holds:
]\ IR—O for all i, 1 Si<n, and x;=y, in the grammar G,, or x;e Vi i Xi=¥
|<ighn;

i) if [x{x>0 for some i, Ig:gf. then for each such [we write x,=
2Qi,22Qi, - 200500 121 J2lx=0, 12 jSt+1; if lxi [x=0, 1= j<t, then
Vi=ZiXi 2N 5N 5y and y =S, 1< j<1; when, for some j, 1< <0,

J.\",.[,\->O, then y;=x;. For all i, | £i<n, for which y; was not defined above,

we pul 3, =x;.

In words, an n-tuple (x,,...,x,) directly yields (y,,...,¥,) if either no query
symbol appears in xy,....x,, and then we have a componentwise derivation, x;=),
in G, for each i, 1 <i<n, or, in the case of query symbols appearing, we perform a
communication step, as these query symbols impose: each occurrence of Q;, in x; is
replaced by x;., providing x; does not contain query symbols. More exactly,
component x; is modified only when all its occurrences of query symbols refer to
strings without query symbols occurrences. After a communication operation, the
communicated string x; replaces the query symbol 0;,» whereas the grammar G,
resumes working from lts axiom. The communication has priority over rewrltmg
If some query symbols are not satisfied at a given communication step, then they
will be satisfied at the next one (providing they ask for strings without query
symbols in that moment) and so on. No rewriting is possible when at least a query
symbol is present. This implies that when a circular query appears, the work of the
system is blocked. Similarly, the derivation is blocked when no query symbol
appears, but some nonterminal component x; cannot be further rewritten in G,.

The language generated by y is

LpY={xe VE , [(S1s o= oS00, 0g5eees Balor VE , 2Li),

A derivation consists of repeated rewriting and communication steps, starting
from (S,,...,5,); we retain in L(y) the string generated in this way on the first
component, terminal with respect to G,, without care about the strings generated
by G,...., G, (G, is the master grammar of the system).

A PCGS as above is called non-centralized. When KnVy .=, 2<i<n, then Y
is called centralized (only G, may ask for the strings generated by other grammars
in the system).

A further classification can be considered, according to the following criterion:
the PCGS as above are called returning to the axiom; when in point (ii) of the

CONTEXT-FREE GRAMMARS 189

previous definition we erase the words “and yi,=S;, 1Si=1", then we obtain a
non-returning PCGS (after communicating a string x;, to some x;, the grammar G,
does not return to §; , but continues to process the current string X))

In this paper we deal with returning PCGS. We shall denote by PC their class
and by CPC the class of centralized ones. When only systems of degree at most n
are considered, we add the subscript n (PC,, CPC,). According to the type of
grammars G,,.... G,, a PCGS can be regular, linear, context-free, i-free etc. We
can write PC(REG), CPC(CF) and so on, for distinguishing such classes.

Here is a simple example: y =(G,, G,, G;), with

G, =({8,.51:52,51.82,.93}.{a,b,c}. S\,
{8, —abe, S, —»a*b?c, 5, —»a’b e,
S,—aS$, 8\ —=aS,, S\ —a’Q,,
S,-b*Q4,83-¢})
G, =('|{Sz}s {b},Sl. I'Sz_‘bsz})

G3=({S;3], {C'},Sa, {53"’(‘53'{)-

This is a regular centralized PCGS of degree 3 and it is easy to see that {bolh in
the returning and the non-returning mode of derivation) we have

Liy)= {a"b"(‘"lﬁg 1}
which is a non-context-free language.

3. ON HIERARCHIES

In Pdun [5] and Paun and Santean [7] only the power of centralized PCGS is
investigated. Clearly CPC,(X)< PC,(X), hence L(CPC, (X)) < L(PC, (X)), for all
n=1, X as above, and it is expected that these inclusions are proper. We shall
prove here that this is the case for regular PCGS. For other classes of grammars

the problem remains open.

THEOREM | #(PC4(REG))— L (CPC(REG)# & (hence all inclusions
L(CPCREG))c L(PC(REG)), L(CPC(REG)) < P{PC(REG)) are proper, n=3).

Proof Consider the language

L={xcmi(x)d|xe|a,b}*|

(mi{x) is the mirror image of x). In Pdun and Séantean [7] it is proved that
{xemi(x)|xe{ab}*} is not in L(CPC(REG)): the same proof shows that L, the
previous language, is not in £(CPC(REQG)).

190 G. PAUN AND L. SANTEAN

On the other hand, this language can be generated by the non-centralized PCGS
P=(G,.G,, G3) with

G, =({5,,5,.8:.B,,B3,C.2,0,,0:}.{a,b,c.d}, S,
18,-¢C.8,-0Q,,5,-0,,C—aB,,C—bB,;,
§,2Z,8,-2,C—d, B,»Z B;—~Z})
G,=0({8,,53,B,.8;.C.Z,0Q,},{a,b,c},S,,

{Sz_’Sz,S:!"(lQI,Bz-’(-‘,BJ—*z,S‘g—’Z.C—’Z})

GJ=(':S2‘S3,B2, I}‘;,C, Z,QI}? {ﬂ.b,('}, S},
':SJ—“’SJ,SJ—’le, B\-‘_’C‘, BZ_’Z!S2 _"Z.C*’Z}-‘j

As one can see, Z is a trap-symbol; after introducing it, at most communication
steps can be performed and then the derivation is blocked.

The first step of a derivation is of the form (S,,5,,53)= (0,005, 03), o, €
1¢C, 05,03}, ay€{S,,a0,},05€{S5,bQ,}. If «,=Q, or a,=Q,, then either the
derivation is blocked by circularity when «,=aQ,, or a;=5b0,, or we communi-
cate §,,8; to G, and, at the next step, we have to use one of the rules S,—Z,
S3—Z. Consequently, we must have a; =¢C. As both G, and G, contain the rule
C—Z, the derivation is blocked also when one of «,, %; contains Q,. Thus, the
beginning of a derivation must be of the form (5,,5,,.5;)=(cC.S,,5;)=
(¢B1.B2.83), Bre{d,aB,,bB;}, B,e{S,.a0,}, B3€{S5.bQ,}. If f,=d, then the
derivation ends by producing the string ed. If f,=aB, (or f,=5bB;) and 8,=S5,
(B3=S,, respectively), then at the next step G, introduces the symbol Z. If both
B,=aQ,, f3=bQ, (and, for example, ff, =aB,), then after communicating caB, to
Gy we have to introduce Z in G, Consequently, we must have (cC,S,,S;)=
(caB,,aQ,.S;)=>(S,,acaB,,S;}) or (¢C,S,,53)=>(cbBy,5,.bQ,)=(5,,S,.bcbB;).
We continue here the former path; the latter is similar. (S,,acaB,,S;)=
(0 acaC,d;), 6,€{cC,Q,,0,}, d5€{S;,bQ,}. At the next step we must have a
communication, otherwise G, introduces the symbol Z. Therefore 6, =0, and we
have (Q,,acaC,d;)=(acaC,S,,d,). If 3;=5bQ,, then C will be replaced in G, by Z.
We started from (¢C,S,,5;) and we obtained (acaC,S$,,S;). The process can be
iterated and, after each such four steps, we add to the terminal string in G, a
prefix o and a suffix ¢, o€ {a,b}. In this way we can obtain each string of the form
xcmi(x), x€ {a,b}*, therefore L(y)= L and the proof is over.

As we have said, it is highly probably that also Z(CPC(CF))c #(PC(CF)) is a
strict inclusion. For instance, we believe that the language LL, with L=
{a"b"c"|n= 1}, is not in L(CPC(CF)) (for generating a"h"c"a™b™c™ with unrelated
arbitrarily large n, m, we have to generate “independently” «"b"c¢" and a™b"c",
which implies we need derivations of the form A= 4 in at least two grammars,

CONTEXT-FREE GRAMMARS 191

and this can lead to parasitic derivations producing strings a"b"c?, with different
m,m, p). If this conjecture would be proved, then it would follow that LICPC(CH))
is not closed under concatenation. Note, in contrast, that the family Z(PC(CF)) is

closed under concatenation (Theorem 5).

On the other hand, the problem whether LICPC (X)), L(PC(X)), n=1, are
infinite hierarchies, for X e {REG,LIN,CF,CF,}, is open. (It is known that J-rules
can be climinated from regular and linear PCGS (Pdun [5]).) The answer of this
important open question is conjectured to be affirmative. Possible languages for
proving this would be those of the forms

{diay...ailnz1}e £(CPC(REG) — #(PC,_(REG))
{adlay.. a5 nz 1) e P(CPCLIN)) — L(PC,_(CF))

Anyway, languages of the next form are not useful:

f]
{apbtlnz 1},
1

=

Lk=

I

Although apparently a different component is necessary for generating each
substring b, the language L, can be generated by a regular PCGS of degree 2. We

shall obtain this as a consequence of a more general result.
Given a PCGS y=(G,,...,G,) as above and a derivation DA(S,,....5,)=
(W geerns Wy =Wy g, Wi == (W, ..., W,,) in y, denote

n
Com(wy, 1v...oWi)= |wilk
j=1

Com(D)=) Com(w; ,....w,).

i=1

For xe L(y) define
Com (x,p}=min {Com(D)|D:(S,,...,S,) (X, %5,...,%,)}
Then

Com(y)=sup {Com(x,y)|xe L(y)}

The parameter Com has been introduced in Pdun [6], as a sort of cost of
producing a string in ; (the total number of query symbols appearing in the

derivation).

THEOREM 2 [f 7 is a linear (regulary PCGS of degree n such that Com(y)=1, then
there is a linear (regular) PCGS ' of degree 2 such that L{y)=L{y').

192 G. PAUN AND L. SANTEAN

Proof Clearly, if Com(y)=1, then y is a centralized PCGS. Moreover, in
Paun [5, Theorem 4] it is proved that L(CPC(REG))=L(CPC,(REG),)),
L(CPC(LIN)) = L(CPC,(LIN,)). Therefore, we can assume y to be A-free.

We shall consider here only linear PCGS; the regular case is a particular one.

Assume y=(G,,...,G,), G;=(V, ;. Vr 1,8, P;) 1<i<n, and construct 3 =(G), G5)

as follows.

(;’1 =(V:v.le V‘r. lﬂS’I’ Plt)

where
Via=Va v {S'l}u{[A,i,()]lA e(Wy 1 n Wy V,._,.,Zgign}

uileni, j)|laeVy ju{*},2Zisn 08 j<n—1}
and P} contains the next groups of rules:
1) Si—(=*,1,1), 2<Zign,
(r. b f)—(w 004+ L 28180 | Sj8i-2,
(*,0,i—1)—(85,,i,0), 2=iZn,
(Each derivation in G starts by i steps when no rule in G, is involved, 2<i<n.)
2) (A0,)=(A i, j+1), AeVy,, 2<i<n, 0<j<n-2,
(Ai,n—1)—x(B,i,0)y, for A»xByeP,, 2<i<n.

(At each step i+rn, r=1, of a derivation in G', for given i, 2<i<n, a rule of P, is
simulated; the second component of the current nonterminal specifies the chosen 1.)

3) (A, iin—1)—=x0Q,y, for A-xQ;y in P,.
(Also the queries are simulated al the moments i+rn, r21, 2<i<n)
4) [A,i,0]=2A, AeVy nVy, 2<ign,
A—-x, for A-xeP,, f-",x:()-
(After communicating a nonterminal string, the derivation can continue in G} as in

Gy, without further communications. As the rules A—x of P, without queries are
introduced in P{, each no communication terminal derivation in G, can be

reproduced in G| too.)

5 [a,i,0]—>a, a€eV,, 2=ZiZn

CONTEXT-FREE GRAMMARS 193

(When a terminal string is communicated, the derivation ends by a rule as above.)

EZ(V’N.L.U VT.:’!S"Za P’Z)

1=4
where

,’V_Z={S'3}u{[a,i,j]|ae{*}uVN','uVT_,-.
2gisn, 05j<n-1}
and P} contains the following groups of rules:
1) Sy—[*,i, 1], 2<i<n,
[*.0]=[*,i,j+1], 2Zisn, 15j<i-2,
[#.4,i=11-[S,i,0], 2<i<n.

(The derivations in grammars G, 2<i<n, will be simulated in G,, involving
nonterminals having i on the second component.)

2} [A.I,j]"’[A,I,I"f’]], AEVN.{! 2§I§nﬁ Oéjgn_zg
[A,i,n—1}-x[B,i,0]y, for A»xByeP, 2<i<n.

(At each moment i+rn, r=1, 2<i<n, in the presence of the component i, a rule of
G, 1s simulated in G5.)

3) [A.i,n—1]-xTa,i,0], for A»x'acP;, x'eV%,
aeVy,;,, 2=ZiZh

(For each terminal rule A—x'a in P;—all of them are A-free—we consider rules as
above, in order to make possibly to finish only the derivations in which the
queries from G} at moments i+rn, r=1, 2<i<n, are satisfied by derivations in G,
simulating derivations in G,, that is introducing at moments i+ rn nonterminals of
the form [«,i,0].)

4) [a.i, j1-[ai, j+1], aeVr, 2Zisn, 0Zjsn-2,
[a,i,n—1]-[a,i,0], aelV;,;, 25iZn
(Symbols [a,i,0] are introduced only at moments i+ rn, rz1,2<i<n)

From the above explanations, it is easy to see that the symbols [a,i, j], j#0,
cannot be rewritten in G, hence the only successful derivations are those which

194 G. PAUN AND L. SANTEAN

simulate in G, a derivation in G, 2<i<n, and G asks exactly at moments i+rn,
rz1, for the string generated in G, thus receiving a nonterminal of the form
[2,1,0], ae(Vy , n Vy.:)u Ve ;. In conclusion, L(y)=L(y") and the proof is finished.

CoroLLary If y is a regular PCGS such that Com(y)=1, then L(y)e ¥ (CF).

Proof Theorem 3 in Paun and Sintean [7] proves that L(CPC,L(REG))
ZL(CF). Combining with the result of the previous thcorem, we obtain the
assertion in corollary.

Remark The example in Section 2 proves that the Com(y)=1 consideration in
Theorem 1 is essential: for y as in that example (it is centralized) we have

Com(y)=2 and L(y) is not context-free.

Open problem s the above theorem valid also for PCGS with context-free
components? (Conjecture: no.)

4. THE EFFICIENCY OF PCGS

As in Pdun [5] and Paun and Santean [7] it is proved, the generative capacity of
PCGS is much larger than that of corresponding grammars (PCGS with regular
components can generate non-context-free languages, PCGS with at least three
context-free components can generate non-semilinear languages etc.). Morcover,
the syntactic complexity, in the sense of Gruska [37], of context-free languages can
be considerably decreased (see Paun [6] for a precise meaning of this assertion).
But what about dynamical complexity, about time parameter, for instance?
Although in formal language theory the time parameter is not investigated for
grammars, we can define such a measure in the following way.

Given a grammar G=(Vy, ¥, S, P) and a derivation D:S=w, = =W, wWe putl

Time(D)=n

and define, for xe L(G),

Time;(x)=min { Time (D)[D: S2x}

A mapping Timeg: L(G)—N is obtained in this way. A similar definition holds for
any other generative device, including a PCGS (both the rewriting and the
communication steps are counted).

[n this frame, a natural question is: given a grammar G and a mapping /, can
we construct (algorithmically) a PCGS y such that L{(G)=L(y) and Time,(x) <
f(Timeg(x)), for (almost) all strings x € L{G)? Of course, such an improvement in
the parameter Time must not increase “too much” other measures of (syntactic)
complexity. Here are some such measures. For a PCGS 7 as above, define

"

Var(y)=card () Vy,

i=1

CONTEXT-FREE GRAMMARS 195

Prod(y)=card |} P,
i=1

n

Symb(y)=).Symb(r), for all re () P, where

i=1

Symb(A-x)=]r, +2,

Length(y) = max {{xHA—wce U Pi}.
i=1

i=

These parameters can be defined in the same way for grammars (particular
case).

THEOREM 3 Given an infinite linear language L and a linear grammar G such that
L=1(G), Var(G)=p, for each given natural number t there is a centralized PCGS y
such that

L=L(y)
Var(y)=Var(G) + pt
Prod(y)=Prod (G)+p(t+ 1)
Symb (y) =Symb (G) + 3p(t + 1)
Length (y) = Length(G)

and, for each x e L(G), we have
Time,(x) < ; Timeg(x) + 3t.

Proof For G=({A,,...,A,}.Vr,A,P), we construct the PCGS y=
(Giy.o.s Gpray), where

Gl :{VN.Jl VT,A:-PJ
VN.l={Ala----Ap}U{Q.‘j+1,1§f§.P,l§j§1}
P, =PU{A1"A1}‘U{AF’QUH|]§f§P,]§f§f}

and, for each 1Zi<p, | <j<t,

196 G. PAUN AND L. SANTEAN

Gijri=(A1.... A}V A PU{A, > A |1 Sr<p)).

The inclusion L(y)< L(G) is obvious (each grammar Gijvy has A; as axiom,
I<igp, | £j=t when G, introduces a query symbol QUH, this means it used a
rule A; _>Q,” I and the string which will replace Q,;,, is obtained by a derivation
of the form A;=w, in the grammar Gijy o> this implies the derivations on various
components of 7 which will be communicated to G, will complete a derivation in
G; note that lhe rules 4;— A, introduced in each G;;,, in order to synchronize the
derivations do not lead to derivations not in G.)

Conversely, take a string xe L(G) with Time,(x)=m and take a derivation D of
x with exactly m steps. If m<3t, then D can be considered a derivation in y as it
can be reproduced in G,. If m> 31, then we write D in the form

. * * *
D:Ay=u Aoy =ujuy ALv,v, =
*
Upmg e Dy =y cu by (WO, ... 0

*
=y Ag

- m
Timeg (A, =*>N1Ai]t1,)=l:!:'

m ;
Timeg (A; =’“;+1A|‘J..”j+1):[]~ 1<j<st—-2
)

such that

([¢] is the greatest integer smaller than x). If m is a multiple of 7, then

Timeg (A, _,Z>w)= [’:’J_

If m is not a multiple of ¢, then we further write A,}ﬂ:”éw as

A; ﬂu,/l RIS

-1

with

e m
Timeg (A, _, :*>u,A,‘zJ,) =[l:,

. , m
Timeg (A; Ew J=m— [:' l.
f

Clearly, (m—[m/t]t) <t. We construct the following derivation in ¥;

CONTEXT-FREE GRAMMARS 197

(Aii A;l, A "’Al'p l)z*b(u,A,-!Ul, uzA,'JUz,. ""“lAi;U!)

is e
=>(ulQ,-,v,,uzA,-2vz,...,u,A,-,v,)
;"(UluzAizUzUhAr'z,usA.';”ss-'w”rf‘li.ur)
=, Q4,050 , A us Ay vy, Ay)=
=gy A0, 050, Ay, Ay

2 (u,u, e WY 00, Ay A

When m is a multiple of «, then on the last component one generates u,w'v,=w
from A; _ in [m/t] steps.

Besides the [m/t] initial rewriting steps, in the previous derivation we have ¢ — |
steps of using rules of the form A;~Q;, on the first component and of the form
A;,—A; on the others, t—1 steps of the communication and, possibly, further at
most {—1 steps in the final stage (for A,-‘:*:-w’]. In conclusion, we have less than
[m/t]+ 3t steps, therefore Time (x) < (1/t) Timeg(x)+ 3t.

It is easy to see that the relations between Var(G), Prod(G), Symb(G), Length(G)
and Var(y), Prod(y), Symb(y), Length(y) are as specified in theorem.

5. CLOSURE PROPERTIES

In general, it seems to be hard to say something about closure properties of
families of languages generated by PCGS, because, on the one hand, it is not easy
to prove positive results and, on the other hand, there are no known languages
not in L(CPC(CF)), #(PC(CF)) and other such families. Here we shall investigate
only the families £ (PC(CF)), #£(PC(CF,)) (more closure properties can be proved

to hold for them).
First, let us note that by standard proofs, all families involving arbitrary rules

are closed under arbitrary homomorphisms and all families involving A-free rules
are closed under A-free homomorphisms.

Tueorem 4 The families L(PC(CF)), L(PC(CF,)) are closed under union.

Proof Consider two PCGS, 7y,=(G),...,G.), ¥: =[Gy, ...GL);, Gi=
(Vo VeoSL P LSisn, GY=(Vy o Vi LS PY), 1<i<m. Without loss of gener-
ality, we may assume that Vi n(UJr, Vi)=@ and V5 A, Vi) =.

If both of L(y,), L(y,) are finite, then the assertion is trivial. If one of L(y,), L(y,)
is finite—say L(y,)—then we construct the PCGS y=(G,,G),...,G’) with

Gy =(Vi.1 UiSi) Ve w ¥y 1.8, Py
Py=Piu{S,~x|for §,~xeP\}

U{S,—w|we L(y,)}.

198 G. PAUN AND L. SANTEAN

The equality L(y)=L(y,)uU L(y,) is obvious.
Assume now that both L(y,) and L(y,) are infinite. We construct the PCGS

}’=(G1sGZs---an+1|Gn+2----an+m+1)
where
G1=({51,02.Qp42}, V7.1 U V5,, 50,
{Sl"Sl,S1""QzaS1—’Qn+z})
Ga..., Gy are exactly G,..., G,, with each occurrence of
Qi 1=i=Zn, replaced by Q,.,,
Grozseens Guamey are exactly Gy,...,G", with each occurrence of
Qi 1ZiZm, replaced by Q. ,.,.

Each derivation in G, is of the form §, £, =0, or of the form 5,28, =0,,,.
The components G,,...,G,., work exactly as 71, the components
Gy 2s-osGuymey work as y,. The string in G, (G, ,, respectively) communicated
to G, must be in V¥, (in Vi*, respectively). When a string in L(y,) is to be
prepared on the components G,,...,G,,, of 7, the components G, ,4,...,Gyq ey
work on a long enough string, in order to not block the derivation, and similarly

Gy,...,G,4, during preparing a string in L(y,) (the languages L(y,), L(y,) are
infinite). In conclusion, L(y) = L(y,) U L(y,).

THEOREM 5 The families #(PC(CF)), ZL(PC(CF,)) are closed under concatenation.

Proof Consider two PCGS, y,=(G",...,G.), 72=(GY,...,G;,) as in the previous
proof. Again, if both L(y,), L(y,) are finite, then the question is trivial, and if
exactly one of them is finite, the question can be easily settled. If both L(y,), L(y;)

are infinite, then we construct the PCGS

?2(61‘62!"--Gn+1‘ Gn+2!"‘*Gn+m+l! Gn+m+2)

where
G, =({51,R,Q2,Qn+z}, AV VTS,

{Sl_’Sl’slﬁQZR’R—)R!R_’Q:MZ})u
Gy,..., G, are exactly GY,...,G,, with each occurrence of
Qi 1=isn, replaced by Q,. |,

Gus2s.-sGpemsy are exactly GY,..., G2, with each occurrence of

CONTEXT-FREE GRAMMARS 199
Qi 1=i=m, replaced by Q,+n+1,
Gn+mr2=({Sn+m+z}U{Qi|2§f§”+m+l}a{”}-swmfb
{Sn+m+2_"Sn+m+21Sn+m+2ﬁ’Q2'"Qn| 1Qu+2

"'Qn+m4 lSn+m+2})'

Each derivation in G, must use the rules §,—Q,R, R—Q,;,. As no symbol in
Vi, Vi, can be rewritten in G,. the strings communicated to G, after
introducing Q,, Q,., must be terminal, hence in L(y,), L{y,). This implies

*

L{y)= L(y) L(y,).
Conversely, each pair of derivations (S)....,S,) 5 (x,a,,...,a,). (Sh....S!)%
(3. f2....,B,) can be simulated in y as follows:

(St s Spams 2) S(QoR X ey, 2, 67,0000, Qs L .
(R 8 ns 0 BT, s N 5, e 0 87 o 028, i)
=S I, S Y B X0y 0,8 S e 2)
(XY 010 s 00 87, Bave vy Brs XUy o 05,07 .. i T

(Remember that L(y,), L(y,) are infinite, hence we can find long enough
derivations

(8 s B0 B0 s SR 8T s o 8B40, 89
in Gy,...,G,and in G,y pyo Gyt 1 respectively.) In conclusion, L(y,)L{y,) < L(y),
hence L(3)= L(y,)(y,).
THEOREM 6 The families L (PC(CF)), LPC(CF,)) are closed under Kleene +
and *.

Proof Consider a PCGS yo=(G,,....G.), with G =V s Wy o XL P 15050,
and construct the PCGS

}':(Gl'GZS'-'1Gn+116n+2’Gn+.})

where
Gl :({Slﬁs:-;beerHIll’ VT.1=S|\

5 ’ 1
{5|ﬁSl-Sl_’Qszzvsnu‘*ShSl‘“’QzrL
G 17) ’ v
G, =(Vy 1 u{S%.Q0s 1} V7155,

1S5-h(x)|S, -xe Pl UlA —h(x)|A—xe P}),

200 G. PAUN AND L. SANTEAN

Gi+l =(V;\'.FU{S;‘+I*Q:1+1}: VI]',isS}r+:,
{8ie1=8tu{d—-h(x)|A-xeP}), 2<i<n,

where

h:(U (Vy.ivu V'T,i)) _’(U (VaiwVr)u{Q,. l})

i=1 i=1
is the homomorphism defined by h(a) = for ¢ K, and h(Q))=Q;,,, 1 <j<n
Gn+2:({‘sn+2‘ :7*2‘T}1 {a}!Sn*'Z’

{.S‘,,”—»SjHZ,S;H—»T,T—»T}).
Gn+3=({Sn+3ls;+3!Q2\""Qn+2}!{”}’sn+3‘
{Sn+3_’st;s+3eS:n+3_’Q3°--Qn+2sn+3n
Sn+3—Sp43})
Let us examine a derivation in 7.
(85 85, 835 v Bhwrs Sne o Sins)
= (W iy 8y v 185495 n+20@28043)
=={ol}, S,S:h---~S;1+iwan+29725;+3)-

Ifay =8, then o, =5, a,,,=5,,,. Il =(Q,, then o, =2, and the derivation ends
(correctly when a,e V¥). If %, =0,0,.,, then Ay =038,4 5 %y42=S,+, and we
continue by

(28742, 87, 3o Spe 10804 2,080 3)
::’(’1231-["2:1631-»-;ﬁn+1-S;+2-azs:1+3)-

Therefore either the derivation ends, or we have a current n-tuple of the form
(xS, B2 830 Bus 15 Snt 29544 5). with (Bas....Bn-y) correctly generated in Yo
Now. G, , introduces the symbol T, which will be repeated; it cannot be rewritten
in G,. If the next query in G, will be Q,, then the string generated by G, (that is
by G} in y4) must be terminal and the derivation ends. If the next query in G, will

be 0,0, ., then the string in G, must be terminal and that in G,., must be S, .,
(the only nonterminal of G,,, which can be rewritten in G ;). This means, we have

the next steps of derivation:

(X'S1,05,03,....0,4 1, Ty'S)s 3)

CONTEXT-FREE GRAMMARS 201
=>(x'81,05,0% .., 6101, TV Q3. Qi 2804 3)
=(x'8,,03,85,..., n+108042,Y 05,6, TS, 4 3)
=(X'Q300+2.05. 8%, S0 s 1,804 2, ¥'85 ... 8011 TQ, 504 3)
=>(X'028,+2,52, 8% -, 844 158042, 05... 86,4 1 TE3S,43).

If S, is not replaced by Q, or by Q,0Q,., in the previous step of derivation, then
the string 03 is “lost” as being requested by G, . ;. Now we obtain

(X038 1 Masev Mys 1y Spa 2, 05 6,41 T3S, 4 3)

and the process can be iterated. When the rule S,—@Q, is used in G,, the
derivation ends by producing a string in L(y,)*.

In order to obtain the closure under , a rule S, -4 must be added to G,.
THEOREM 7 The families L(PC(CF)), #(PC(CF,)) are closed under substitution
by i-free languages.

Proof Consider a PCGS y,=(G,...,G,) with G;=(Vy TSP 1ZiZn,
Vi ={a,...,a,}, and take the context-free grammars G/ =(Vy.i V1St Pl
IL<si=r. If L(y) is finite, then each context-free substitution maps it to a
context-free language. Thus, we have to discuss only the case when L(y,) is infinite.
We construct the PCGS

}’=(GJ,Gz,-..,GH+1.G"+2 ----- Gn+r|—1,G"+r+2)

where
G =({S1. @} u{Quiin [1Sisriufall iz}, U Vi
i=1
St {Sl—-’SI.S]—‘QE}U{ﬂ;—la;,a;—-'Qn+l~+1|1 éigr});
G;+] =(VJ.\'IIU{G‘|(JE V'T.,-},{a}. S;,
{4 —»h(x)lA—>xeP}})s | <ign,

with

h3([V.,V.iUV'T.fJ) ”"(U V:\'.r'UIrQrHl}U{a'IaE U V"I'.i})
= [/ i=1 i

i i=1

the homomorphism defined by

202 G. PAUN AND L. SANTEAN

hA)=A4,4e) Vy,-K,
i=1

4

ha)=d,ae (J Vi, h(Q)=0,.), 1Sj<n,
i=1

Gn+1’+1 =(V;\:'.I'U{Sﬂ+i+l}s V’l',".i:Sn+1'+l!

P;‘U{Sn+i+l"’S;':Su+i+1“*Sn+f+1}): 1&8isn

Gn+r+2=({Sn+r+2=Qn+2v--':Qn+r+l}1{a}vsn+r+2,
{Sn+r+2——>Sn+r+2’Sn+r+2_"Qn+2'"Qn+r+lSn*r+2})'

It is easy to see that (1) each derivation in G, must use a rule Si—0,, (2) the
components G,,...,G,,, work exactly as y,, but the produced string has each
symbol ae V7 | replaced by a', (3) the components G,,,,,, | Si<r produce strings
in L(G,") and (4) the last component, Gu+,+2, only “cleans” the strings generated
by G441, 1 Si<r, returning to axioms these components. After introducing Q, in
Gy and communicating the string x generated in that moment by G,,...,G, 44
(hence by y,, modulo the homomorphism h), the only rewritings in G, are done by
rules a;—a; and a;—»Q, .., | <i<r. In this way, each a; is replaced by a string
generated by Gy. If this string is not terminal, the derivation is blocked. When
generating the string x in G,,...,G,.,, the components G,.,,...,G,,,+, can be
returned to axioms as many times as necessary (by queries using the rule
Suers220ns2- QuiyutSysr+2 in Guy,.y), thus not limiting the length of the
derivation in G,,...,G,,,. Similarly, when generating strings in § TERTI. ¢ ——
the components G,,...,G,,, work to a long enough string in L(y,) (this language
is infinite). Moreover, after using a rule a;i=Q, 1+, in G; and substituting Q, ..,
by the corresponding string in G,,,.,,, the components G, ,,...,G,.,,, can be
again returned to axioms, in order to obtain a new string in some G, ;,,, maybe
also in G, .., which will be communicated to G, for substituting a symbol a;.

In conclusion, L{y)=s(L(y,)), for s the substitution defined by s(a;)=L(G}),
1 £i<r; and the proof is ended.

Remark Note that the proof of Theorem 4 holds also for regular and for linear
PCGS; the proofs of Theorems 5, 6, 7 do not hold for these cases.

Open problem Are the families #(PC(CF)), ZL(PC(CF;)) closed under inter-
section by regular sets? If the answer would be affirmative, this will imply that
ZL(PC(CF;)) is a full AFL, and, as probably #(PC(CF)) is closed under restricted
homomorphisms, this family will be an AFL.

Acknowledgement

Useful discussions with Dr. Marian Gheorghe are gratefully acknowledged.

CONTEXT-FREE GRAMMARS 203

References

[1] E. Csuhaj-Varju and J. Dassow, On cooperating/distributed grammar systems, Journal of Inform.
Processing (E.1LK.), (1990).

[2] J. Dassow and Gh. Pdun, On some variants of cooperating/distributed grammar systems. Stud.
Cerc. Matem. 42, 2 (1990).

[3] J. Gruska, Descriptional complexity of context-free languages, Proc. of Symp. Math, Found. of
Computer Science, High Tatras (1973), 71-84.

[4] Gh. Pdun, On the power of synchronization in parallel communicating grammar systems, Stud.
Cerc. Matem. 41, 3 (1989), 191-197.

[5] Gh. Paun, Parallel communicating grammar systems: the context-free case, Found. Control
Engineering 14, | (1989), 39-50.

(6] Gh. Paun, On the syntactic complexity of parallel communicating grammar systems, RAIRO;Th.
Informatics (submitted).

(7] Gh. Pdun and L. Santean, Parallel communicating grammar systems: the regular case, Ann. Unir,
Buc., Ser. Mat.-Inform. 37, 2 (1989), 55-63.

[8] A. Salomaa, Formal Languages, Academic Press, New York, London, 1973,

