k-involution codes and related sets

Lila Kari *
Kalpana Mahalingam *

University of Western Ontario
Department of Computer Science
London, ON N6A5B7

Canada

Abstract

This study was motivated by the problem of optimally encoding information on
DNA for biocomputational purposes. Our formalization of intermolecular hybridization
(binding) with bulges led to the notion, interesting in its own right, of k-involution codes. An
involution code refers to any of the generalizations of the classical notion of codes in which
the identity function is replaced by an involution function. (An involution function @ is such
that 2 equals the identity. An antimorphic involution is the natural formalization of the
notion of DNA complementarity.) We namely define and study the notions of k-8-prefix,
k-8-suffix and k-8-bifix codes. We also extend the notion of k-insertion set and k-deletion
set of a language to incorporate the notion of an involution function. Thus, to an involution
map 6 and a language L, we associate a set k-8-ins(L) (k-8-del(L)) with the property that
its k-insertion (k-deletion) into any word of L yields words which belongs to 8(L). We study
the properties of these languages and their connection to involution codes.

Keywords and phrases : Codes, Waston-Crick involution, DNA computing, insertion, deletion

1. Introduction

An essential step of any DNA computation is encoding the input
data on single or double DNA strands. Due to the biochemical properties
of DNA, complementary single strands can bind to one another forming
double stranded DNA. In practical biocomputation experiments, data-
encoding DNA strands can potentially interact in undesirable ways result-

*E-mail: 111a@csd.uwo.ca

tE-mail: kalpana@csd.uwo

Journal of Discrete Mathematical Sciences & Cryptography
Vol. 10 (2007), No. 4, pp. 485-503
© Taru Publications

486 L. KARI AND K. MAHALINGAM

ing in certain non-specific hybridizations and posing potential problems
for the results of the biocomputation. Several attempts have been made to
address the problem of encoding information on DNA for biocomputing
and various solutions have been proposed. A common approach has been
to use the Hamming distance {4-6, 17]. Experimental separation of strands
with “good” sequences that avoid intermolecular cross hybridization was
reported in [2, 3]. In [7], Kari ¢t al. introduced a theoretical approach to the
problem of designing code words. Theoretical properties of languages that
avoid certain undesirable hybridizations were discussed in [8,12,14-16].

One such unwanted hybridization is that of the hairpin structure. The
notion of a hairpin structure was formalized and its coding properties and
relations between hairpin-free codes and other type of codes have been
discussed in [8].

ACC
GTCAGCGATAG T

¢ A G T C G C TAT C
A cc T
Figure 1
A simple hairpin loop with a bulge
Certain algebraic properties were discussed in [10]. Note that a

simple hairpin structure is formed when a portion of a DNA strand binds
with its complement within the same strand (see Figure 1) forming a
“bulge” within the strand. Hence a hairpin structure is a particular case of
a bulge: an intramolecular hybridization with a bulge. Similar situations
can happen with intermolecular hybridizations as seen in Figure 2.

LIS

X

Figure 2
An intermolecular hybridization with a bulge between the DNA
single strands # and pxq. Note that u is Watson-Crick comple-
mentary to pg while x represents the bulge

In this paper we extend the concept of hairpins (bulges in intramolec-
ular hybridizations) to intermolecular hybridizations with bulges similar
to the one in Figure 2. This extends the notion of 8-outfix-code defined
in [12], where 8 represents a morphic or antimorphic involution. (An

k-INVOLUTION CODES 487

involution function @ is such that 8% equals the identity. An antimorphic
involution is the natural formalization of the notion of DNA comple-
mentarity.) The formalization of the notion of languages free of certain
intermolecular hybridization with bulges leads to the concept, interesting
in its own right, of k-involution codes. It turns out that these k-involution
codes are generalizations of the k-prefix codes defined in [9] and moreover
they can be studied using the operations of k-insertion and k-deletion of
languages [11].

This paper defines and investigates k-involution codes and related
sets. The paper is organized as follows: In Section 2 we formalize the
notion of certain unwanted intermolecular hybridization with bulges.
In Section 3 we extend the concept of k-prefix and k-suffix codes to
involution k-prefix and invelution k-suffix codes and show that these
codes are just a special case of the codes defined in Section 2. We also study
several properties of such codes. In particular we show that for a morphic
involution 8, the class of k-8-prefix and k-8-suffix codes is closed under
concatenation.

In Section 4 we define for a language L and an involution 6, the
k-0-insertion set of a language L denoted by k-8-ins(L) as the language
consisting of the words with the property that their k-insertion into any
word of L yields a word in 8(L). We study the connection between this set
and the involution codes and study some of its properties. In Section 5, the
k-6-deletion set of a language L denoted by k-8-del(L) is defined as the
language consisting of the words with the property that their k-deletion
from any word of (L) yields a word in L. We construct this set using the
dual operation of dipolar k-deletion.

2. Involution codes with bulges

In this paper we use the following notations. By L we denote the
finite nonempty alphabet set and by L* the free monoid generated by L
under the catenation operation. Any word over L is a finite sequence of
letters from L and by 1 we denote the empty word. The length of a word
u € L" is the number of letters in it and is denoted by |u|. Throughout
the rest of the paper, we focus on sets L € L% that are codes meaning that
every word in L™ can be written uniquely as a product of words in L (i.e.,
L* is a free semigroup generated by L). For the background on codes we
refer the reader to [1, 18]. An involution 8 : £ — I is a function such that

488 L. KART AND K. MAHALINGAM

6% = I where [is the identity function and can be extended to a morphic
involution on L* if for all u,v € Z*, 8(uv) = 8(u)6(v) or an antimorphic
involution if 6(uv) = 8(v)6(u). For more on involution codes we refer the
reader to {7,12,8].

The antimorphic involution 6 defined on the DNA alphabet
{A,G,C, T} as 8(A) = T,6(C) = G has recently been of particular inter-
est, since it succinctly formalizes the notion of DNA single strand Watson-
Crick complementarity. This DNA involution has been extensively used
for theoretical studies of DNA languages (languages over the DNA
alphabet) and properties that make them suitable for biocomputations.
Notions such as 6-infix-code, 8-comma-free-code and 6-strict-code have
been thus defined and studied in {7, 8,12,14-16].

We follow this theoretical approach and introduce the concept of
intermolecular hybridization with a bulge. This concept is a formalization
of DNA secondary structures that are known to form in practical wet lab
experiments, We formalize the concept of a DNA language L that avoids
such mismatched pairings. We namely focus on generalizing the 8-infix
and g-comma-free codes. Similar generalizations of other type of codes
(for example, 8-sticky-free, 8-k-codes, 8-solid etc.) defined in [12,8, 14,15]
can also be defined.

With this purpose in mind, we recall the following definitions [9,11].
For u € £*, we define:

Ins(u) = {wjvuy:v € L uy,upy € I*, u = wquy},
Del(u) = {ujusz:uy, up, u3 € £*, u = uquaus},
Subs(u) = {uvuz:v € L*, uy,uy, uz € L*, u = uyuguz, luz| = |v|}.
We extend the above definitions to a language L C L% in the natural way:

Ins(L) = (J Ins(u),

uel
Del(L) = |J Del(u),
uel
Subs(L) = | Subs(u).
uel

The following definition generalizes the concepts of 6-infix,
8-comma-free and 8-strict codes to include hybridizations with bulges.

k-INVOLUTION CQODES 489

Definition 1. Let Y =Ins or Subs or Del and let L C Z*. Let 8 be either a
morphic or an antimorphic involution. Then

1. Lis 6-Y-infix if and only if LN(E*Y(8(L))Z* U Z*Y(8(L))Z+) =0

2. L is 6-Y-comma-free if and only if L2N Z+Y(6(L))Z+ = 0.

3. Lis @-Y-strictiff LN Y(8(L)) = 0.
Example 1. Let Z = {a,b} and 6 be a morphic involution on Z* such that
6(a) = b and 6(b) = a. Take L = {a"b" : n > 1}. Then (L) = {b"a" :
n > 1}, Itis easy to see that L is 8-ins-infix.

o T o Ty

(d) HHHH’

Figure 3
0-Y-infix codes avoid unwanted hybridizations of the type: (a) If
Y =1Ins, (b) If ¥ = Del and (¢) If Y = Subs. 8-Y-comma-free codes
avoid hybridizations of the type in, (d) If Y-Ins, (e) If Y = Del, and
(f) If ¥ = Subs

Figure 3 and 4 illustrate the type of unwanted hybridizations avoided
by DNA languages possessing one of the properties defined in Definition 1
(0 in this case is the DNA involution). Note that 8-ins-infix codes avoid
bindings of the type in Figure 3(a), 8-del-infix codes avoid hybridizations
of the type in Figure 3(b) and 8-subs-infix codes avoid hybridizations of
the type in Figure 3(c). Similarly, 8-ins-comma-free codes avoid bindings
of the type in Figure 3(d), 8-del-comma-free codes avoid hybridizations of
the type in Figure 3(e) and 8-subs-comma-free codes avoid hybridizations

490 L. KARI AND K. MAHALINGAM

of the type in Figure 3(f), while 8-ins-strict codes avoid bindings of the
type in Figure 4(a), 8-del-strict codes avoid hybridizations of the type in
Figure 4(b) and 8-subs-strict codes avoid hybridizations of the type in
Figure 4(c). Note that since 8(L) C Y(6(L)), we have that if L is 6-Y-
infix then L is @-infix. If L is 8- Y-comma free then L is 8-comma-free.
Also L is 8-Y-infix(comma-free) iff (L) is 8-Y -infix(comma-free).

(@) TWFWW’]Ilg[l]]i
(© J_|LL_|_|_|:

Figure 4
0-Y -strict codes avoid unwanted hybridizations of the type (a) If
Y =1Ins, (b) If Y = Del, and (¢} If Y = Subs

Most of the results obtained for 8-infix codes (f-comma-free codes)
(see [8,12,7]) hold also for 8-Y-infix(comma-free) codes hence we do
not include them here. We only list a few closure properties of 6-Y-
infix(comma-free) codes. For example Proposition 1 can be proved using
techniques that are very similar to those used for 8-comma-free and 8-infix
codes.

Proposition 1. The following are equivalent

1. L is 8-Y-comma-free.
2. L* is 6-Y-infix.

3. LY is 8-Y-comma-free.

Since the proof techniques and the results about 8-Y-infix (6-7-
comma-free) codes are very similar to the ones that already exist for 8-
infix and 6-comma-free codes, we focus herein on a special case. In the
next section we namely investigate a special case of -7 -strict codes that
puts some restrictions on the length of words involved. It turns out that
these codes can be defined using the k-insertion and k-deletion operation.

k-INVOLUTION CODES 491
3. k-involution codes

k-involution codes can be defined using the operation of k-insertion
as detailed in the following. Given two words u,v € L*, the insertion
of v in to u is defined as u «— v = {uyvuy : u = ujuz}. The notion
of k-insertion was introduced in [9] under the name of k-catenation. The
operation of k-insertion restricts the generality of insertion by allowing
words to be inserted in at most k + 1 positions. For a given k > 1, the left
and the right k-insertions of v into u (the right and the left k-catenation of
v in to u) are defined as follows:

u «—’,‘ v = {uouy u = uquy, lug| < k,uy, uz,v € ¥},

u <—fv = {ujouy : u = uguy, lug| < k,uj, uz,vex*}.

The left and the right insertion of a language L; in to L; can be
defined in a natural fashion.

The concept of k-prefix code was introduced and studied in [9] and
the concept of k-suffix code was introduced and studied in [13]. We recall
the following definitions:

Definition 2. Let S C Z* be a nonempty language

1. Sisak-prefixcodeif u € Sand u —KxNS# P thenx =1
2. Sisa k-suffixcodeif u € S and u «—fxﬂS #@thenx=1

In this section we generalize the class of k-prefix and k-suffix codes to
involution k-prefix(k-8-prefix) and involution k-suffix (k-8-suffix) codes.
An involution code refers to any of the generalizations of the classical
notion of codes that replace the identity function with the involution
function as explained in [7, 12, 8]. Note that when 6 is identity a k-8-prefix
(suffix) code is nothing but a k-prefix(suffix) code. Also it is rather easy to
see that k-8-prefix and k-68-suffix-codes (see Figure 5) are a special case of
6-7Y -strict codes (Figure 4) when Y = Ins.

Definition 3. Let u, v be words over the alphabet Z and let 6 be a morphic
or antimorphic involution.

1. A k-6-prefix code is a non empty language P C L* suchthat u € P
and 8(u) «* v NP # @ implies v = 1.

2. A k-8-suffix code is a non empty language S C Z* suchthatu € S
and 8(u) —¥ v N S # 0 implies v = 1.

492 L. KARI AND K. MAHALINGAM

3. A set L is called a k-6-bifix code iff L is both a k-8-prefix and a
k-6-suffix code.

Note that a k-8-prefix code (k-8-suffix code) avoids hybridizations of
the type illustrated in Figure 5 where [g| < k (|p| < k). Thus, a k-68-prefix
code (k-8-suffix code) is a special case of a 8-Y-strict code (Figure 4(a)).
Indeed in the latter, no restriction is placed on the lengths of the words
involved.

In the following we investigate certain closure properties of k-6-
prefix, k-8-suffix and k-8-bifix codes.

Lemmal.Let LC ¥,
1. For a morphic involution 8, L is k-8-prefix code (suffix) iff (L) is k-6-
prefix code (suffix).
2. For an antimorphic involution 8, L is k-6-prefix code (suffix) iff (L) is
k-8-suffix code (prefix).
3. L is k-8-bifix code iff O(L) is k-8-bifix code.

P§7’2’1

u

Figure 5
k-0-prefix codes avoid hybridization between words u and puvgq,
where 8(u) = pg with |g] < k, while k-8-suffix codes avoid such
hybridizations where 8(x) = pg with |p| < k

Proof. Let 8 be morphic involution and L be a k-8-prefix code. Suppose
there exists 8(u) € 6(L) such that 8(8(u)) = ujuy with |uz] < k and
uivuy € 9(L) for some v € L*. We need to show that v = 1. Note that
upouy € O(L) iff O(uyvus) € L iff 8(u1)0(v)8(uz) € L which implies
8(v) = 1 since L is k-8-prefix. Similarly we can prove the other direction
and also the other statements. d0

Remark that a k-8-prefix(suffix) code is also an m-8-prefix(suffix)
code for m < k. Note that if k = 0, then @-prefix(suffix) codes become
6-prefix (suffix) codes. Recall that, L C Z* is called a 8-prefix (6-suffix)
code if LNO(L)ET = G(LNE*6(L) = 0). In the next proposition we
show that the class of all k-8-prefix (suffix) codes is closed under arbitrary
concatenation when 6 is a morphic involution.

k-INVOLUTION CODES 493

Proposition 2. When @ is morphic involution the class of k-8-prefix(suffix) codes
is closed under concatenation.

Proof. We prove the proposition for k-8-prefix-codes. Let P, Q be two k-
O-prefix codes. Let a € P and b € Q such that 8(ab)[k],v € PQ. We need
to show that v = 1. We have the two following cases:

(i) 8(a1)v0(az)6(b) € PQ with |8(a3)0(b)| < k and 8(a) = 8(a1a;).
(ii) 8(a)8(b1)v8(by) € PQ with [6(by)| < k and 6(b) = 6(b1b,).

Consider Case (i). Let xy = 6(a;)v6(a3)8(b) € PQ such that x € P and
¥y € Q. Then

1. x=6(a}) and y = 6(a})v6(a,)6(b) with b,y € Q and |8(a3)6(b)]
< k. Since y € Q and Q is k-8-prefix, we have |8(b)| < k and
8(af)vb(ay) = 1.

2. x = 6(ar)vy and y = v26(a3)0(b) with b,y € Q and |6(b)| < k.
Since y € Q and Q is k-8-prefix, we have v,0(a;) = 1 which
implies v = vy and 8(a) = 6(a;). Since x,a € P and P is k-6-prefix
with |1| < k, wehavev; = v =1.

3. x = 6(a1)v8(a3) and y = 6(a}))0(b) with y,b € Q and |8(b)| < k.
Since Q is k-8-prefix, we have 8(ay) = 1 and since |0(a3)| < k
with x,a1a5 € P, we have v = 1.

4. x = 6(a1)v0(a2)0(b1) and y = 8(b,) with b,y € Q and |8(b,)| < k
(i.e.) we have 8(by), b1b, € Q which implies b;6(8(b,)) € Q and
hence by = 1 since x = 6(a;)v8(a;) and P is k-8-prefix with
|6(a2)] < k wehavev =1,

A similar proof works for Case (ii). Hence PQ is a k-8-prefix code.

The above proposition does not hold when 8 is an antimorphic invo-
lution and L is either a k-8-prefix code or a k-8-suffix code. For example
consider the DNA alphabet A = {A,G,C, T} and let X; = {AGC,G}
and X; = {GCT,T,C}. Then for an antimorphic involution 8 that maps
A — T and C — G and viceversa, both X; and X, are k-8-suffix codes
for k = 1. Note that X; X, = {AGCGCT, AGCT, AGCC, GGCT, GT,GC}
and AGCT € 6(X;X;) while AGCT —f GC € XX, for k = 1, ie,
AGCGCT € X;X; and hence X; X5 is not a k-8-suffix code.]

In the next proposition we show that for an antimorphic involution
and for a k-8-bifix code L, any power of L is also a k-8-bifix code.

494 L. KARI AND K. MAHALINGAM

Proposition 3. When 6 is antimorphic involution, if L is a k-6-bifix code, then
L" is a k-8-bifix code for all n > 1.

Proof. By induction on n.]

Base case. Let L be a k-8-bifix code. For n = 1, L" is a k-8-bifix code.
We show for n = 2. Suppose L? is not a k-8-bifix code, then there exists
x1,X2 € L such that 8(x1x2)[k}rv € L2. Then either 8(x;)8(x12)v6(x11) €
L? or 8(x22)v8(x21)8(x11) € L? or 8(x2)v8(x;) € L2. We only show for the
first case. Let af = 0(x2)60(x12)v0(x11) € L? with |68(x2)6(x12)| < k. Then
we have the following cases:

e a=0(x7) and B = 0(x3)8(x12)v8(x11) with [8(x})8(x12)| < k.
@ = 6(x3)8(x},) and B = 9(x’1’2)z{9(x11) with |8(x{,)| < k.

a = 8(x2)8(x12)v1 and B = v26(x13).

a = 8(x2)8(x12)v6(x7;) and B = 6(x},).

All cases contradict our assumption that L is a k-8-bifix code. Hence L? is
a k-6-bifix code. !

Induction step. Assume that L is a k-8-bifix code for some m > 1. Let
4 =ay...441 € L™V suchthata; € Lforalll < i < m+1 and
8(a)[k]rv € L™1. We need to show that v = 1. We have the following
m + 1 cases.

Case (1). We have 8(ay+1,1)v0(ay+1,2)8(am)...0(a1) € L™t such that
le(am+l,2)9(am) e .9(&1)] <k

Cases (i). (2 < i< m):6(ams1)...0(a;1)v0(a;2)8(ai_1)...0(ay) € L™+
with |6(a;>)0(a;_1)...0(a))| < k for2 < i < m.

Case (m +1) : 8(ap+1)8(am) ... (a1,1)v8(ay2) € L™+ with |8(ay2)] < k.

Consider Case (i).
Let xy = 0(am+1,1)00(am+12)0(am) ...6(a1) such that xy € Lm+!
x € Land y € L' with |8(a,y41,2)8(am) ...6(a1)| < k. Then we have,

L x = 8(a,,,,) and y = 6(ay .,)v6(41n412)0(am) ... (a1) with
8(am+1,1) = 8(ay,,, 1)6(ay, ;) which implies v = 1 since L™ is
k-8-bifix.

2. x = 8lams11)v1 and y = 020(am+1,2)0(am) ...08(a;) with v =
v1vz and |8(am)...0(a1)] < k. Since L" is k-8-bifix, we have

k-INVOLUTION CODES 495

v20(apn11,2) = 1 and hence 8(am41) = 8(am41,1) and v = vy. Since
L is k-68-bifix, we have v = 1.

3. x = 68(am+1,1)v8(a,,,1,) and y = 6(ay, 1 ,)0(am) ...6(a1). Since
L™ is k-6-bifix we have 8(a;; .| ,) = 1 and hence v = 1 since L is
k-0-bifix.

4. x = 0(ap4+1,1)v8(an11,2)8(ay) and y = 6(ay,)...0(a;). Since y=
6(ay,) ...6(a1) which belongs to L™, we have 6(a;...a},) € L™
and hence 6(6((ay...ay,))a, € L™ which implies a}, = 1 since L™
is k-6-bifix. Hence x = 8(ay41,1)00(am+1,2) With |8(am+12)] < k
and since L is k-6-bifix we have v = 1.

The other cases can be proved in a similar fashion and hence L™*! is a
k-8-prefix code. We can similarly show that if L is a k-8-suffix code then
L™*1 i a k-8-suffix code. O

Lemma 2. Let 6 be a morphic involution and let Ly and L, be non empty langu-
ages over L such that LiN6(L;) # 0 for i = 1,2. Then the following are
true.

1. If LyLy is k-8-prefix code, then Ly is a k-8-prefix code.
2. LyL; is k-6-suffix code, then Ly is a k-6-suffix code.

Proof. Let LiL; be k-6-prefix code. Let u € L; such that u = ujup
and 8(u;)v8(uz) € Ly with |8(uz)] < k. We need to show that v = 1.
Choose x € L such that x € L; N6(L;). Then x8(u;)v8(uz) € LiLy with
x0(u1)8(uz) € 6(Ly1L,). Since LyL; is k-8-prefix, we have v = 1. Hence
L; is k-8-prefix code. Similarly we can show that L; is k-8-suffix codes,
when L1L; is a k-0-suffix code. O

Corollary 1. Let 8 be a morphic involution and let L;, i = 1,2,...,m be non
empty languages over L such that L; N O(L;)) # 0 foralli =1,2,...,m. Then
the following are true. B

1. If LiLy...Lm is k-O-prefix code, then LyL3...Lp, L3...Lm,
Ly —1Lm and Ly, are k-9-prefix codes.

2. If LiLy...Ly is k-6-suﬁ‘ix code, then L1Ly...Lyy—q, L1...Liy_2,
LyL; and Ly are k-8-suffix codes.

496 L. KARI AND K. MAHALINGAM

Proposition 4. Let L € L™ be such that LN (L) # @. Then,

1. If L™ is k-0-prefix code for m > 1, then L is k-8-prefix code.
2. If L™ is k-8-suffix code for m > 1, then L is k-8-suffix code.
3. If L™ is k-8-bifix code for m > 1, then L is k-8-bifix code.

Proof. Assume that L™ is a k-6-prefix code for some m > 1. Suppose there
existsa u € L such that 8(u) —K vN L # 0 for some v € £*. Then we need
to show that v = 1. The case when 8 is a morphic involution is a special
case of Corollary 1 when L; = L for all i, When 8 is antimorphism, let
u = uqyuy then 8(u) = 8(uz)8(u;) and 6(uz)v8(uy) € L with |8(u1)| < k.
Let z1,22,...,2m—1 € LNO(L) then z1...2,-18(u2)v8(u1) € L™ which
implies v = 1 since L™ is k-8-prefix code. Similar proof works when L™
is k-8-suffix code. O

4, The k-0-insertion set of languages

Section 3 studied the notion of k-8-prefix and k-8-suffix codes us-
ing the operation of k-insertion. This section continues the theoretical
investigation of k-insertion by extending the notion of k-insertion set of
languages to k-6-insertion set of languages. We also explore the relation
between k-8-insertion set of languages and the notion of k-8-prefix and
k-8-suffix codes (see Lemma 4). ,

Let L € It. To the language L, a set k-ins(L) can be associated
consisting of all the words with the following property: their k-insertion
into any word of L yields a word belonging to L [11]. Formally k-ins(L)
was defined by:

k-ins(L) = {x € L* : Vu € L,u = uguy, |uz| < k = uyxup € L},

and various properties of k-ins(L) have been investigated in [11]. In a
similar fashion, for a morphic or antimorphic involution 8. we associate
two sets, left-k-8-ins(L) and right-k-6-ins (L) consisting of all words with
the following property: their left(respectively right)-k-insertion into any
word of L yields a word belonging to 68(L). Formally, the right-k-6-
insertion set of L (right-k-8-ins(L)) and the left-k-6-insertion set of L (left-
k-6-ins(L)) are defined by:

right-k-6-ins(L)
={xel*:Vue Lou=ujuy, uy,uz € £* lug| < k= uyxu; € (L)}

k-INVOLUTION CODES 497

left-k-6-ins(L) -
= {x€Z*:Yu€Lu=uuyu,u €L |u] <k=uxuy € 6(L)}.

Note that throughout the rest of this paper * is used to denote either
left or right.

Lemma3. Let L C L. If 6 is a morphic involution then 8(%-k-6-ins(L)) = *-
k-8-ins(8(L)). If 8 is an antimorphic involution then 6(right-k-8-ins(L)) =
left-k-8-ins(L) and O(left-k-6-ins(L)) = right-k-6-ins(L).

Lemma 4. For a language L C L™ we have:

L is k-8-prefix code iff right-k-8-ins(L) = {1}.

L is k-8-suffix code iff left-k-6-ins(L) = {1}.

Recall that a language L C I* is commutative if the following
condition holds: xuvy € L iff xvuy € L.

Lemma 5. L C I* is a commutative language iff (L) is a commutative
language.

Proof. Let L be a commutative language. Let xuvy € 6(L), then 8(xuvy) €
L. When 8 is morphic involution we have 8(x)8(u)8(v)6(y) € L and since
L is commutative we have 8(x)0(v)8(1)0(y) € L and hence xvuy € 6(L)
and similar proof works for an antimorphic involution 8. Thus 8(L) is a
commutative language. The converse can be proved similarly. a

Proposition 5. If L is a commutative language, then x-k-8-ins(L) is also a
commutative language.

Proof. 1tis sufficient to show that xuvy € %-k-6-ins(L) implies xvuy € *-
k-8-ins(L). If w € L, such that w = wywy, |w,| < k, then wixuvyw, €
8(L), hence wixvuyw, € 8(L). (Note that L is commutative iff 8(L) is
commutative.) Therefore xvuy € x-k-6-ins(L). a

In order to construct, for a given language L, the set x-k-8-ins(L), we
need to introduce the operation of dipolar k-deletion.

Definition 4 ([11]). For u,v words over the alphabet set I, the right and
the left dipolar k-deletion is defined respectively by:
k

u=;v={x €L u=0v1x03,0 =010z, |v2| Lk v1,v2 € L*}
and

u -——'f v={x€IL*: u=u0v1x0,v =010 |v1]| £k v1,v2 € Z*}

498 L. KARI AND K. MAHALINGAM

In [9], the operation u =K v has been introduced under the name of
k-deletion and was later called dipolar k-deletion in [11]. The right(left)
dipolar-k-deletion erases from u a prefix(suffix) vy of any length and a
suffix(prefix) v, of length < k whose catenation v1v(vov1) equals v. The
operation can be extended to languages in the natural fashion. If L; and
L, are languages over the alphabet Z, then the x-dipolar k-deletion of L,
into Ly is the language
Liy=kL,= | u=fo.
€Ly, vel;

Lemma 6. For a morphic involution 8,8(u =X v) = 6(u) =X 6(v). For
an antimorphic involution 0, we have 8(u =k v) = 68(u) ==f 0(v) and
8(u =f v) = 8(u) =¥ (v).

Now we are able to construct the set x-k-8-ins(L) using the x-dipolar
k-deletion.

Proposition 6. *-k-8-ins(L) = ((6(L))¢ =k L)¢

Proof. Take x € right-k-6-ins(L). Suppose, x € ((8(L))¢ =* L) then there
exists uyxuy € (8(L))¢, ujuy € L, |uz| < k such that x € uyxuy =F uju,
which is a contradiction as x € right-k-6-ins(L) and uju; € L, |uz| < k,
but the right-k-8-insertion of x into uju; belongs to (6(L))¢. Conversely,
let x € ((8(L))* =k L)*. If x ¢ right-k-6-ins(L), then there exists
uyuy € L, |uz| < k such that uyxu, ¢ 6(L) which implies ujxu; € (6(L))¢
and hence x € ((8(L))¢ = L) which is a contradiction. O

Corollary 2. If L is regular, then x-k-0-ins(L) is regular and can be effectively
constructed.

Proof. It has been proven in [9] that if a language L is regular, then L =kR
is regular. Since L is regular, 8(L) is regular and hence (8(L))¢ is regular
which implies ((8(L))° =X L) is regular and hence ((8(L))* = L) is
regular. Since the right-k-dipolar deletion of two regular languages can
be effectively constructed (see [11]), it follows that *-k-8-ins(L) can be
effectively constructed for a regular language L.

The last part of this section introduces the notion of a *-k-8-ins-
closed languages that naturally derives from the *-k-insertion set of a
language L. a

k-INVOLUTION CODES 499

Recall that for a language L C £¥, L is *-k-6-ins-closed iff L C *-k-
8-ins(L). '

Proposition 7. L is x-k-8-ins-closed iff L <% L C 8(L).

Proof. Let L be right-k-6-ins-closed. Take x € L and let u = uju; € L
such that |up| < k. Then as x € L C right-k-8-ins(L), uyxu; € 6(L)
which implies L «¥ L C 8(L). Conversely, let L «¥ L C 6(L) and let
x € L. To show that x € right-k-8-ins(L). Let uqup € L, |uz] < k. Then
L «¥ L C (L) implies that u;xu; € 6(L) which implies x € right-k-8-
ins(L).

Lemma 7. For a language L C L™ we have:

1. When 6 is morphic involution, L is *-k-8-ins-closed iff 6(L) is %-k-6
ins-closed.

2. When 0 is antimorphic involution, L is left(right)-k-0-ins-closed iff (L.
is right(left)-k-6-ins-closed.

3. For k =0, if L is x-k-8-ins-closed then L",n > 1 is x-k-8-ins-closed.

A x-k-8-ins-closed language L is said to be minimal if L' C L with L’
a *-k-B-ins-closed language, implies L = L’. The next result shows that a
*-k-B-ins-closed language in £¥ cannot be minimal.

Proposition 8. There is no minimal %-k-8-ins-closed language in Z*.

Proof. Suppose that L C L7 is a minimal *-k-8-ins-closed language.
Let w € L with minimal length m = |w| and let L’ = L\ {w}. The
language L' is not *-k-6-ins-closed. Therefore there exists u = uju; € L’,
v € L'(fjua} < k if » =right and |u1] < k if » =left) such that
ujvuy ¢ 8(L'). However since L’ C L and L is x-k-8-ins-closed we have
that ujvuy € 6(L). Therefore uyvu; = 8(w) which implies that |w| > |u]
a contradiction.

Recall that a language L C I* is called right-m-dense if for any
w € I*, there exists x € L*, |x|] < m such that wx € L. A right-m-
dense and *-k-6-ins-closed language L is said to be minimal if it does not
properly contain any right-m-dense and *-k-68-ins-closed language. It has
been shown in [11] that every right-m-dense and k-ins-closed language L
contains a minimal right-m-dense and k-ins-closed language. The result
also holds true for x-k-8-ins-closed languages. a

500 L. KARI AND K. MAHALINGAM

Proposition 9. Every right-m-dense and -k-8-closed language, L contains a
minimal right-m-dense and x-k-8-ins-closed language.

The proof of the above proposition is similar to the one proved in [11]
and hence we omit it here.

5. The k-6-deletion set of languages

Given two words u,v € I*, the deletion of v in to u is defined as
u — v = {ujuy : u = ujvuy}. The notion of k-deletion was introduced in
[9] under the name of k-quotient. The operation of k-deletion restricts the
generality of deletion by allowing words to be deleted only from at most
k + 1 positions. The right and left k-deletions of v from u are defined (See
[11]) respectively by:

u—5v = {uuy: u=uyouy, lug| <k uy,vup € £},

u ——»f v = {uguy: u=wuvuy, lug| <k ug,v,up € I*}.

If k = 0, the right-k-deletion and the left-k-deletion become the well
known right and left quotient respectively. The left and the right-k-
deletion of a language L, from L; can be defined in a natural fashion. The
right-k-deletion was initially called k-deletion and several of its properties
were studied in [9]. Similar results can be obtained for the left-k-deletion
operation and we omit them here.

We use instead both of these concepts and the notion of an involution
function to define the left-k-6-deletion set and right-k-8-deletion set of a
given language.

Let L C I* and let right-k-Sub(L) = {u € I* : xuy € L, |y| < k}
and left-k-Sub(L) = {u € Z* : xuy € L,|x| < k}. The elements of
left(right)-k-Sub(L) are called the left(right)-k-subwords. To the language
L, one can associate a language *-k-8-del(L) consisting of all the words
with the following property: x is a x-k-subword of at least one of the word
of (L), and the *-k-deletion of x from any word of (L) containing x as a
*-k-subword yields a word belonging to L. Formally the x-k-deletion set
of a language L is defined as,

*-k-6-del(L)
={x € %-k-Sub(6(L)) : Vu € (L), u = uyxuy, |u;| < k,uqu; € L}.
Note that when % = right, i = 2 and when * = left, i = 1.

k-INVOLUTION CODES 501

The next results show how the k-8-deletion set of a language can be
constructed by using the k-dipolar deletion.

Proposition 10. x-k-8-del(L) = (8(L) =k L) N x-k-Sub(6(L)).

Proof. Take x € x-k-6-del(L). Then x € »-k-Sub(L) which implies for
every u € O(L),u = uyxup, uju; € L. Suppose, x € (§(L) =K L¢), then
there exists u € 6(L) such that u = ujxu, with ujuy € L which is a
contradiction. Conversely let x € -k-Sub(8(L)) N (6(L) = L°)°. Suppose
x ¢ x-k-8-del(L) then there exists u € (L) such that u = uyxu; € 6(L)
and uju; ¢ L which implies uju; € LS and hence x € 6(L) =* L¢ which
is a contradiction. Therefore x € x-k-8-del(L). a

Corollary 3. If L is regular, then %-k-6-del(L) is reqular and can be effectively
constructed.

A language L is called *-k-8-del-closed if v € L, ujvuy € 8(L) then
uyuz € L. (Note that when * = left, then |u3| < k and when * = right,
1] < k).

Lemmas8. Let L C Z*,

1. When 8 is morphic involution, then L is x-k-0-del-closed iff (L) is %
k-8-del-closed.

2. When @ is antimorphic involution, then L is left(right)-k-0-del-closed iff
O(L) is right(left)-k-B-del-closed.

The following result provides a relation between k-8-insertion closed
and k-8-deletion closed languages.

Proposition 11. Let L be such that L is x-k-8-ins-closed. Then L is *-k-6-del-
closed iff L = (O(L) =X L).

Proof. Let L be -k-6-del-closed. Let x € (8(L) —* L). To show that
u € L. Since u € (8(L) —% L), u = ujuy such that uyxu; € 6(L)
with x € L. Since L is x-k-0-del-closed, uju; € L which implies
(8(L) —% L) C L. To prove the other inclusion, let # € L and since
L is x-k-f-ins-closed, u € L C -k-8-ins(L) and u = uqu, such that
uyxuy € (L) which implies u € 8(L) —X L). Hence L C (6(L) —* L).
Therefore L = (6(L) —% L). Conversely, let L = 8(1) =% L). Letv € L
with ujvu, € (L), then uju; € (8(L) —k L) = L which implies uju; € L
and hence L is x-k-6-del-closed. g

502 L.KARI AND K. MAHALINGAM

6. Conclusion

Formalizing the notion of DNA languages free of molecular hy-
bridization with bulges led to the notion of k-involution prefix and
k-involution suffix codes. We have investigated the theoretical properties
of these codes in Section 3. We have also extended the notion of k-insertion
set and k-deletion set of a language to incorporate the notion of an invo-
lution function. In Section 4 we have explored the connections between
k-involution codes and k-insertion sets and have constructed these sets
using the dual operation of dipolar k-deletion. As future work, we would
like to investigate the algebraic characterizations of these involution codes
through their syntactic monoid. The role of such codes in the design of
DNA strands with certain properties (see [7, 8, 12]) also needs to be further
investigated.

Acknowledgements. Research supported by NSERC and Canada Research
Chair grants for Lila Kari.

References
[1] J. Borstel and D. Perrin, Theory of Codes, Academic Press, Inc.,
Orlando Florida, 1985.

2] R. Deaton, J. Chen, H. Bi, M. Garzon, H. Rubin and D. F. Wood,
A PCR based protocol for in vitro selection of non-crosshybridizing
oligonucieotides, in Proceedings of the 8th International Meeting on
DNA Based Computers, M. Hagiya and A. Ohuchi (editors) Springer,
LNCS, Vol. 2568 (2003), pp. 196-204.

[3] R. Deaton, J. Chen, M. Garzon, J. Kim, D. Wood, H. Bi, D. Car-
penter and Y. Wang, Characterization of non-crosshybridizing DNA
oligonucleotides manufactured in vitro, in Proceedings of the 10th
International Meeting on DNA Computing, C. Ferretti, G. Mauri and
C. Zandron (editors), Springer, LNCS, Vol. 3384 (2004), pp. 50-61.

[4] R. Deaton et al., A DNA based implementation of an evolutionary
search for good encodings for DNA computation, in Proceedings
of the IEEE Conference on Evolutionary Computation ICEC-97, (1997),
pp- 267-271.

[5] D. Faulhammcr, A. R. Cukras, R. ,T. Lipton and L. F. Landweber,
Molecular computation: RNA solutions to chess problems, in Pro-
ceedings of the National Academy of Sciences, USA, Vol. 97-4 (2000),
pp- 1385-1389.

[6] M. Garzon, R. Deaton and D. Reanult, Virtual test tubes: a new
methodology for computing, in Proceedings 7th International Sympo-
sium on String Processing and Information Retrieval, A. Corufia (editor),
Spain, IEEE Computing Society Press (2000), pp. 116-121.

k-INVOLUTION CODES 503

[7]

(8l

(9]

(10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

(18]

S. Hussini, L. Kari and S. Konstantinidis, Coding properties of DNA
languages, in Proceedings of the 7th International Meeting on DNA Based
Computers, N. Jonoska and N.C. Seeman (editors), Springer, LNCS,
Vol. 2340 (2002), pp. 57-69.

N. Jonoska and K. Mahalingam, Involution codes: with application
to DNA coded languages, Natural Computing, Vol. 4 (2) (2005),
pp. 141-162.

L. Kari and G. Thierrin, K-catenation and applications: k-prefix
codes, Journal of Information and Optimization Sciences, Vol. 16 (2)
(1995), pp. 263-276.

L. Kari, S. Konstantinidis, E. Losseva, P. Sosik and G. Thierrin,
Hairpin structures in DNA words, in Proceedings of the 11th Interna-
tional Meeting on DNA Computing, A. Carbonc, M. Dalcy, L. Kari, L.
McQuilan and N. Pierce (editors), LNCS, Vol. 3892 (2005), pp. 158-
170.

L. Kari and G. Thierrin, K-insertion and K-deletion closure of
languages, Soochow Journal of Mathematics, Vol. 21 (4) (1995), pp. 479-
495.

L. Kari and K. Mahalingam, DNA codes and their properties, in
Pre-proceedings of the 12th International Meeting on DNA Computing,
(C. Mao, T.Yokomori and B.T. Zhang (editors), (June 2006), pp. 238—
249.

L. Kari and K. Mahalingam, Insertion and deletion for involution
codes, in Proceedings of the 1st International Conference on Algebraic
Informatics, Thessaloniki, Greece, October 20-23, (2005), pp. 207-218.
L. Kari, S. Konstantinidis, E. Losseva and G. Wozniak, Sticky-free
and overhang-free DNA languages, Acta Informatica, Vol. 40 (2003),
pp- 119-157.

L. Kari, S. Konstantinidis and P. Sosik, Bond-free languages: formal-
izations, maximality and construction methods, International Journal
of Foundations of Computer Science, Vol. 16 (5) (2005), pp. 1039-1070.
L. Kari, S. Konstantinidis and P. Sosik, Preventing Undesirable
Bonds between DNA codewords, in Proceedings of the 10th Interna-
tional Meeting on DNA Based Computers, C. Ferretti, G. Mauri and
C. Zandron (editors), LNCS, Vol. 3384 (2005), pp. 182-191.

A. Marathe, A. E. Condon, R. M. Corn, On combinatorial word
design Journal of Computational Biology, Vol. 8 (3) (2001), pp. 201-219.

H. J. Shyr, Free Monoids and Languages, Hon-Min Book Company,
Taichung, Taiwan, (1991).

Received September, 2006

