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Abstract. We introduce a type of substitution operation inspired by errors occurring in biologically
encoded information. We derive the closure properties of language families in the Chomsky hierar-
chy under these substitution operations. Moreover, we consider some language equations involving
these operations and investigate decidability of the existence of solutions to such equations.
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1. Introduction

The subject of language operations is a classical topic in formal language theory [15], [7]. Some of
the related questions involve closure properties of language families in the Chomsky hierarchy under
such operations, as well as related language equations. Language equations involving the catenation
operation have been introduced and investigated in [2]. Language equations involving operations other
than catenation have been studied in [8], [11]. More recently, another language operation has been
studied in the context of error detection and error correction of information transmitted via a noisy
channel. The substitution operation represents a single error by a substitution of one character in a word
by another character. In this paper, a different type of substitution is studied. The difference is twofold.
On one hand, the substitution occurs only in a single location, i.e., only one subword of a word can be
replaced by a word of equal length. On the other hand, the substituted letters need not be distinct from
the original ones. This modification was inspired by the phenomenon of errors occurring in DNA strands
(mutations, insertions, deletions), wherein not all substituted nucleotides need to be different from the
original ones.

�
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The paper is structured as follows. First, the new word operations are introduced, together with their
inverses. Then, the closure properties of language families in the Chomsky hierarchy under these opera-
tions are studied. The paper concludes with the study of language equations involving these operations.

2. Preliminary Definitions and Notation

A binary word operation is a mapping
����� ��� � ���
	�� �

, where
	
� �

is the set of all subsets of
� �

.
For any languages � and � , � � ��� �������� ������� � � .

Definition 1. ([8]) Let
�

be an operation. The left inverse
�"!

of
�

is defined as

#%$'&)( � �+* iff (,$'&)# � ! �+*.- for all
�/- ( - #0$ � � -

and the right inverse
�21

of
�

is defined as

#�$3& � � 45* iff
4 $'& � �

1 # *.- for all � -647- #0$ � �98
Definition 2. Let

�
be a binary word operation. The word operation

�":
defined by � ��: � � �+� � is

called reversed
�

.

If ( and
4

are symbols in ;9< -6=�- :�> , the notation
��?�@

represents the operation & �2?A*B@ . Using the
above observations, one can establish identities between operations of the form

�C?�@
. For example,��! ! � � 1D1 � � E E � � and

� E ! � � 1DE � ��! 1 .
Next we list a few binary word operations [7], [8].

Catenation:1 �GF � �%; � �5> .
Shuffle (or scattered insertion): �IH � �
; �KJ � JLF�F�F.�7M � M9�7M�N JPORQTS
U - � � �VJLF�F�F.�7MW�7M�N J -6� �� JVF�F�F � M > .
Language equations

The process of solving language equations has much in common with the process of solving algebraic
equations. For example, the equation � ��X �ZY is similar to the equation (\[^] �`_ , where ] - _ are
constants. In both cases, the unknown left operand can be obtained from the result of the operation
and the known operand by using an “inverse” operation. In the case of addition, this role is played by
subtraction. In the case of a binary word operation, which usually is not commutative, the notion of left
inverse has to be utilized. Similarly, the notion of right-inverse will aid in solving equations of the typeXa� �b�cY , where the unknown is the right-operand. We recall now a result from [8] that uses the left
and right inverse operations to solve language equations.

Theorem 1. Let
Xd- Yfe � �

be two languages and let
�

be a binary word operation. If the equation� ��X �gY (respectively
Xa� �c�hY ) has a solution, then the language �\i�j ? � & Y2k ��!lXa* k (respectively�/i�j ? � & Xa� 1 Y2k * k ) is also a solution, namely one that includes all the other solutions to the equation.

1We shall also write m�n for m�o6n .
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Next we consider two natural binary word operations related to scattered substitutions [9].

Definition 3. If � -6� $ � �
, then we define the substitution in � by

�
as

� � � � ; �VJ � J � � � � 8�8�8 �7M � MW�7M�N J O5Q S �
, � � �VJ ] J6� � ] � 8�8�8 �7M ] M9�7M�N J -
� � � J � � 8�8�8 � M - ]�� -6� �d$� - U ����� Q - ]��
	� � � -�� � - U ����� Q >

8
The case Q � � corresponds to

� ��
 when no substitution is performed.

Definition 4. If � -6� $ � �
, then we define the substitution in � of

�
as

� � � �0; �VJ ] J6� � ] � 8�8�8 �7M ] M9�7M�N J�O
QIS � , � � �VJ � J � � � � 8�8�8 �7M � MW�7M�N J -�� � � J � �
8�8�8 � M - ]�� -6� � $ � -U ����� Q - ]��
	� � � -�� � - U ����� Q > .

Lemma 1. The operation
�

is the left-inverse of
�

.

Next we look at the right inverses of
�

and
�

.

Definition 5. For any words � -6� $ � �
of the same length and with Hamming distance � & � -6�+* � Q , for

some nonnegative integer Q , � � � is the set of words

_ J _ � 8�8�8 _ M - _ �K$ � - U ����� Q -
such that � � � J ] JLF�F�F.�7M ] M9�7M�N J , � � �VJ _ JVF�F�F �7M _ M9�7M�N J and, for all

�
, U ����� Q , ]��
	�h_ � .

In other words, � � � consists of the word _ J _ � F�F�F _ M where _ J - _ � - 8�8�8 - _ M are the symbols of
�

that
are different from the corresponding symbols of � . It should be clear that the set � � � is empty when �and

�
have different lengths.

Example 2.1. If
X J �`; ]�� _ � O � S`U > and

X � �`;�_ i O � S`U > , then
X J � X � � _ �

. (We can only
perform ]�� _ � � _ � � which gives _ � .) On the other hand,

X � � X J � ] �
. Hence, the operation � is not

commutative.

Note that � is the right inverse of
�

, and the reversed � is the right inverse of
� 8

3. Block Substitution Operations and their Inverses

The substitution operation is a binary word operation, which is used to model an error in DNA-inspired
computation. In this section we define three new block substitution operations. We also examine their
left and right inverses.

Definition 6. If � -6� $ � �
, then we define the block substitution in � by

�
as

� ��� � �%; �VJ � � � O � � �VJ6� � � � - O � � O � O � O - � �K$ � � > 8
Unlike the

�
operation,

���
allows a letter to be replaced by any letter, not necessarily distinct. The

following example demonstrates that
���

is not a special case of the
�

operation.

Example 3.1. Let � � ]�] _ ] and
� �%_ _ . Observe that the word ] _ _ ] is in � ��� � but not in � � � . On

the other hand, the word _ ] _ _ is in � � � , but it is not in � ��� � .
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Definition 7. If � -6� $ � �
, then we define the block substitution of

�
in � as

� � � � �%; �VJ � � � O � � �VJ � � � - O � O � O � O - � � -6� $ �
� > 8

Again, we can demonstrate that
� �

is not a special case of the
�

operation.

Example 3.2. Let � � ]�] _ ]�] _ ] and
� � ] _ ] . Observe that the word ]�]�]�]�] _ ] is in � � � � but not in

� � � . On the other hand, the word _ ]�]�] _ _ ] is in � � � , but it is not in � � � � .
Proposition 1. The operation

���
is the left inverse of

� �
.

Proof:
Let #b$ � ��� � . Then � � �VJ6� � � � , O � � O � O � O - # � �VJ � � � for some � � $ � � -6� $ � �

. This means

� $ # � � � .Conversely, let � $ # � � � . Then # � # J � # � - O � O � O � O - � � # J � # � . This means #�$ � � � � . ��

Definition 8. For any two words � -6� $ � �
of the same length define

� � � � �%;�� O � � �VJ � � � -6� � �VJ � � � - O � O � O � O > 8
When O � O 	� O � O the set � � � � is empty.

Proposition 2. The operation � � is the right inverse of
���

.

Proof:
Let #b$ � ��� 4 . Then � � �VJ6� � � � , O � � O � O 4 O - # � �VJ 4 � � for some � � $ � � -64 $ � �

. This means4 $ � � � # .
Conversely, let

4 $ � � � # . Then � � �VJ � � � - O 4 O � O � O - # � �VJ 4 � � . This means #%$ � � � � . ��

The next example shows that � � is not a special case of the � operation.

Example 3.3. Let � � ]�]�]�]�] and
� � ] _ ] _ ] . Observe that the word _ ] _ is in � � � � but not in � � � .On the other hand, the word _ _ is in � � � , but not in � � � � .

We now show that left and right inverses of all related operations are as shown in Table 1.

Proposition 3. The operation � : � is the right inverse of
� �

.

Proof:
Let # $ � � � 4 . Then � � �VJ 4 � � - # � �VJ � � � - O � O � O 4 O . This means that

4 $b&)# � � � * , hence4 $ & � � : � # * . Conversely, suppose that
4 $ & � � : � # * . Then

4 $ &)# � � � *.- # � # J � # � - � �# J 4 # � - O � O � O 4 O . This means that #�$'& � � � 45* . ��

Proposition 4. The operation
� : � is the left inverse of � � .

Proof:
Suppose # $ & � � � �+* . Then # ��� - � � �VJ � � � -6� � �VJ � � � - O � O � O � O . Hence � $ & � � � # * and

� $ &)# � : � �+* . Conversely, suppose � $ &)# � : � �+* . Then � $ & � � � # *.-6� � � J # � � - � � � J � � � - O � O � O # O .This means that #�$'& � � � �+* . ��
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operation
�

left inverse of
�

right inverse of
�

��� � � � �
� � ��� � : �
� � � : � ���
� : � � : � � �
� : � � : � � : �
� : � � � � : �

Table 1. Substitution operations and their inverses

Proposition 5. The operation
� : � is the left inverse of � : � .

Proof:#%$'& � � : � �+* iff #�$3& � � � � * iff � $'& � � � # * iff � $'&)# � : � �+* 8 ��

Proposition 6. The right inverse of
� : � is

� : � .
Proof:#%$'& � � : � �+* iff #�$3& � ��� � * iff

� $3&)# � � � * iff
� $'& � � : � # * 8 ��

4. Closure Properties of Block Substitution Operations

The closure properties of language families in the Chomsky hierarchy under the operations of scattered
insertion and deletion were first studied in [7]. In [9] the operations of scattered substitution were in-
vestigated. In this section we investigate such closure properties for the block substitution operations,
namely

� � - � � - � � .
Proposition 7. If

X
and Y are languages over the alphabet

�
, Y a regular one, then

X � � Y is the image
of
X

through a 
 -free gsm.

Proof:
Let

� � &�� - � -�� J -���-��"* be an NFA that recognizes a regular language Y over
�

. Construct the following
gsm � � &�� :)- � - � -��
	�-��2: -��2:l* , where

� : � ��� ; �
	�-���
A>
- and
��
�-��
	��$���� ��-

� : � � � ; ��
�>
-
� : � ; �
	 ] � ] �
	 O ]G$ � > (1)

� ; �
	 ] � _ � : O � J ] � � : $ ��� ] - _ $ � > (2)
� ; � ] � _ � : O � ] � � : $ ��� ] - _ $ � > (3)
� ; ��
 ] � ] ��
 O ]G$ � > (4)
� ; � ] � ] ��
 O ]G$ � -�� $ �C> 8 (5)
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Recall that � � � � is a block substitution of
�

in � by a word of equal length. The gsm � is constructed
from NFA

�
in a way that allows each transition of

�
to replace an input character by any character of

the alphabet, which is then outputted by the gsm. In addition, � has a new start state
� 	

and an extra final
state

��

, which are used to skip over any input prefix and/or suffix, outputting it without change. The

production rules
� :

can be explained as follows. Rule (1) allows the gsm to output any prefix of its input
without change. Rules (2) and (3) are responsible for recognizing a subword of its input equal to a word
in Y and substitution of that subword by an arbitrary word of the same length. Rules (4) and (5) allow
the gsm to output any suffix of its input without change.

��

Corollary 1. The REG and CF families of languages are closed under
� �

with regular languages.

Proposition 8. CF is not closed under
� �

.

Proof:
There exist two context-free languages

X J and
X � such that

X J � � X � is not context-free. Let
� �; ] - _ - � -��5-���> and consider the two context-free languages over

�
X J �%; ] � _ � � i � i O � - � S%U >
-X � �%;�_ � � � O � S%U > 8

Consider the language
X

defined asX � & X J � � X � *�� ] � � � � �98
Observe that X �%; ] � N � � � ��� � � M � � N M O � -
	�- QIS%U >
-

which is not context-free. As CF is closed under intersection with regular languages, it follows that CF
is not closed under

� �
.

��

Proposition 9. The family of CS languages is closed under
� �

.

Proof:
Let

X J - X � be two context-sensitive languages over
�

and let
� : � ; ] : O ] $ � > , ��: : � ; ] : : O ] $ � > .Let the gsm � be such that it transforms a nonempty subword of its input into its primed version.

Formally, � � &�� - � - � � �a:)-��
	�-���-��"* , with � �T; �
	�-�� J -�� � > , � �%; � J -�� � > , and

� � ; �
	 ] � ] �
	�-��
	 ] � ] : � J -�� J ] � ] : � J -�� J ] � ] : � � -
� J ] � ] � � -�� � ] � ] � � O � ]G$ � > 8

Let � be a morphism that changes each letter to its double-primed version, i.e., � � � � ��: :)- � & ] * �] : :)- ] $ � . Also, let � : �V� � ��: � ��: : � � � ��: � ; 
 > be a morphism that deletes all double-primed
letters, i.e., � : & ] * � ] - � : & ] : * � ] : - � : & ] : :l* ��
 .

Let � : be a gsm that changes all primed letters of its input into any non-primed letters. Formally,
� : � & ; �
	�>
- � � ��: - � -��
	�- ; �
	�>
-��"* , where

� �T; �
	 ] � ] �
	 O � ]G$ � > � ; �
	 ]
: � _ �
	 O for any ] - _ $ � > 8
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We claim that X J � � X � � �
: ; � : ��� � & X J * H � & X � *�� � Y � >
-

where Y is the regular language Y%� � � & �j � � ]
: ] : : * � � �98

Informally, Y is the set of all strings where a primed letter is immediately followed by its double-
primed version and the unprimed letters appear only in the prefixes and suffixes of the words. The
intersection with Y ensures that only words � & � * and � & �+* are shuffled where

�
is a subword of � . Only

words where a primed letter is followed by an identical double primed letter are kept. Applying � :
erases the double primed letters, while � : replaces the primed subword with any word (of equal length)
containing only unprimed letters.

The morphism � : is a
	
-linear erasing morphism with respect to the language it is applied to as it

erases at most half of each word. CS is closed under Q -linear erasing as well as the other operators
involved, hence CS is closed under

� �
.

��

Proposition 10. If
X J - X � e � �

,
X � regular, then

X J ��� X � is the image of
X J through a 
 -free gsm.

Proof:
Let

� � &�� - � -��
-���-��"* be an NFA that recognizes
X � over

�
. Construct the gsm �G� &�� : - � - � -��
	�-��2: -

� : *
, where

� : � ��� ; �
	�-���
A>
-
� : � � � ; ��
�>
-
� : � ; �
	 ] � ] �
	 O ]G$ � > (1)

� ; �
	 _ � ] � : O � J ] � � : $ ��� ] - _ $ � > (2)
� ; � _ � ] � : O � ] � � : $ ��� ] - _ $ � > (3)
� ; ��
 ] � ] ��
 O ]G$ � > (4)
� ; � ] � ] ��
 O ]G$ � -�� $ �C> 8 (5)

The gsm � is constructed from NFA
�

in a way that allows each transition of
�

to replace any input
subword by a word from

X � of equal length. In addition, � has a new start state
� 	

and an extra final
state

��

, which are used to skip over any input prefix and/or suffix, outputting it without change. The

production rules
��:

can be explained as follows. Rule (1) allows the gsm to output any prefix of its input
without change. Rules (2) and (3) are responsible for the substitution of a random subword of its input
by a string from

X � of the same length. Rules (4) and (5) allow the gsm to output any suffix of its input
without change.

��

Corollary 2. The REG, CF and CS families of languages are closed under
� �

with regular languages.

Proposition 11. CF is not closed under
���

.

Proof:
Let

� �%; ] - _ - � -��5-���> and take two context-free languagesX J �%; ] � _ � � i � i O � - � S%U > and
X � �%; � ��� � O � S%U > 8
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Let
X � & X J ��� X � *�� ] � � � � � � � ��; ]�� � M � � � i O 	 QIS � [ � - �\[ � even

- Q S�U > . Observe that
X

is
not a context-free language.

��

Proposition 12. CS is closed under
���

.

Proof:
Let

X J - X � be two context-sensitive languages over
�

and let
� : � ; ] : O ]3$ � > , ��: : � ; ] : : O ]P$ � > .Let � be the same gsm that was defined in Proposition 9 and that transforms a nonempty subword of its

input into its primed version. Let � ��� � �d: :
be the morphism defined as � & ] * � ] : :)- ] $ � . Let

� : ��� � ��: � ��: : � �
be the morphism defined as � : & ] * � ] - � : & ] : * ��
 - � : & ] : : * � ] - ]G$ � 8

We claim that X J ��� X � � � : ��� � & X J * H � & X � *�� � Y � -
where Y is as defined in Proposition 9.

Indeed, let � � � J # � � $ X J and
� $ X � , where # � # J 8�8�8 # � - � � � J 8�8�8 � � and � � - # ��$ � .

Then

�VJ #
:
J
8�8�8 # :� � � $ � & X J *.- � : :

J
8�8�8 � : :

� $ � & X � *.-
�VJ #

:
J
� : :
J #
:� � : :� 8�8�8 # :� � : :� � � $ �

� & X J * H � & X � *�� � Y -
� : & �VJ #

:
J
� : :
J #
:� � : :� 8�8�8 # :� � : :� � � * � �VJ � J � � 8�8�8 � � � � � �VJ � � � $ � ��� � 8

Note that � : is a 2-linear erasing morphism with respect to the language it is applied to, as it erases at
most half of each word. As CS is closed under linear erasing homomorphisms, intersection with regular
languages, shuffle, it follows it is closed also under

���
.

��

Proposition 13. CF, REG are closed under � � with regular languages.

Proof:
Let

X � be a regular language,
� � &�� - � -�� 	�-���-��"* be a finite automaton,

X & � * � X � . Let
��: �Z; ] : O]G$ � > and let � � �a: � ��: : � �

be the homomorphism defined by � & ] : * ��
 - � & ] : :)* � ] . Construct the
gsm � � &�� - � - � � ��: -��
	�-���-��2: * , where

� : �%; �7] � ] :�� O �7] �
� $ �C> � ; � _ � ] : :�� O �7] �

� $ �C> 8
In the above productions, ] and _ are not necessarily distinct. If � $ X J -6� $ X � , and O � O � O � O ,then the first type of rules marks (with a single prime) subwords that are common between � and

�
. The

second type of rules outputs marked (with a double prime) subwords of
�

which may or may not be
common with � .

Observe that X J � � X � � � & � & X J *�� � & � : * � & � : : * � & � : * � � * 8
Recall that REG, CF are closed under gsm mappings and other operations used. Hence REG, CF are also
closed under � � with regular languages.

��

Proposition 14. The family of CF languages is not closed under � � .
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Proof:
Consider the languages X J �%; ] � _

� � O � S%U >
- andX � �%; ] � � i � i ] � O � - � S%U >
8

Then & X J � � X � * � � N � N ] N � ; � � � � ] � O � [ 	
is even and U � 	 � � >

, which is not a context-
free language, and since CF is closed under intersection with regular languages, the statement of the
proposition follows.

��

Proposition 15. The family of CS languages is not closed under � � . In particular, there exists a regular
language Y and a CS language

X
such that Y � � X is not a CS language.

Proof:
The proof depends on a result from [16], which is Theorem 9.9 (p. 89). The statement of the theorem is
as follows.

Let
X

be a recursively enumerable language over the alphabet
�

and let ] - _ �$ � . Then there is a CS
language

X J such that (i)
X J consists of words of the form ] � _ � where

� S �
and

� $ X , and (ii) for
every

� $ X , there is an
� S � such that ] � _ � $ X J .

Let
X

be some language over alphabet
�

which is recursively enumerable, but not context-sensitive.
Take

X J to be the CS language in the statement of the above result, i.e.,X J �%; ]
� _ � O � S � - � $ X�>
- ] - _ �$ � 8

Let
X :
J �

X J � , where
�

is a symbol not in
� � ; ] - _ > . X�: J is also a CS language. Consider the regular

language Y%�%; ] ��� # �

O � S � - #0$ �
� >
- � �$ � � ; ] - _ >
-

where ] - _ are the special symbols mentioned above. Let � � � � ;�_ - � > � �
be the homomorphism

defined by
� & _ * � 
 - � & � * ��
 - � & � * � � ��� = ] < < ��$ � 8

Then X � � &6& Y � � X : J
*�� _ � ��� * 8

Notice that � is k-linear erasing with respect to the language it is applied to. This is because it only
erases at most two letters from any word, so we could say it is

	
-linear erasing. Since the family of CS

languages is closed under linear erasing and intersection with regular languages, the statement of the
proposition follows.

��

The following two examples illustrate that for an operation
� $ ; � � - � � > there exists a regular

language Y and a context-free language
X

, such that Y ��X is not regular.

Example 4.1. There exists a regular language Y and a CF language
X

, such that Y � � X
is not regular.

For instance, let Y be the language � �
and

X
be the language ; ]�� _ � O � S U > . Then Y ��� X

is the
language � � ]�� _ � � �

, which is not regular.
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Example 4.2. There exists a regular language Y and a context-free language
X

, such that Y � � X is not
regular. For instance,

Y%� � � & ; ] > � ;�_ >�* � � �5-X �%; � � ] � _ � � � O � S%U >
8

Then & Y � � Xa*�� & � ] � _ � � * � � ]�� _ � � , which is not regular.

To summarize this section, for
� � $ ; ��� - � � - � � > we have that REG and CF are closed under

� �
with REG, while CF and CS are not closed under

� �
.

5. Language Equations

In this section we study language equations of the types � ��X �gY and
Xa� �0�gY , where � and � are

the unknowns and
�

is one of the block substitution operations. We answer questions about the existence
of a solution to a given language equation.

We employ a result from [8] that uses the left and right inverse operations to solve language equations.

Theorem 2. Let
Xd- Yfe � �

be two languages and let
�

be a binary word operation. If the equation� ��X �gY (respectively
Xa� �c�hY ) has a solution, then the language �\i�j ? � & Y2k ��!lXa* k (respectively�/i�j ? � & Xa� 1 Y2k * k ) is also a solution, namely one that includes all the other solutions to the equation.

Proposition 16. The problem “Does there exist a solution � to the equation
X � � �c�gY ?” is decidable

for regular languages
X

and Y .

Proof:
For given regular languages

Xd- Y over an alphabet
�

define Y : � & X � � Y2k * k . From the above theorem
it follows that if there exists a solution � e � �

to the equation
X � � �c�gY , then

X ��� Y : �gY .
Moreover, the regular solution Y : can be effectively constructed. The algorithm which decides the

problem begins by constructing Y : and then testing whether or not
X ��� Y : equals Y .

��

Proposition 17. The problem “Does there exist a singleton solution � �f; # > to the equation
X � �

�c�gY ?” is decidable for regular languages
X

and Y .

Proof:
Let

Xd- Y be nonempty regular languages over an alphabet
�

and let � be the length of the shortest word
in Y . If there exists a word # such that

X ��� ; # > �%Y , then it must satisfy the condition < � &)# * � � .
The algorithm for deciding the problem consists of checking whether or not

X � � ; # > � Y for all
words # with < � &)# * � � . This can be decided because

X ��� ; # > is a regular language (by Cor. 2) and
set equality is decidable for regular languages. The answer of the algorithm is YES if such a word # is
found and NO otherwise.

��

Proposition 18. The problem “ Does the equation
X ��� � �TY have a solution � ?” is undecidable for

context-free
X

and regular Y .
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Proof:
Let

�
be an alphabet and let

�
be a letter which does not occur in

�
. There exists a regular languageYb� � � � � � & � � H ;

� >�*
such that the problem of the proposition is undecidable for a context-free

language
X

.
Let

X : e � �
be a context-free language and consider the language

X � � X :
. We claim that for all

languages � : e � �
the equation:

� X : ��� & � : � * � � � � � � & � � H ;
� >�*

holds if and only if � : �%; 
 > and
X : � � �

. Indeed, suppose that � : �%; 
 > and
X : � � �

. Then

� X : ��� & � : � * � � � � ��� ; � > � � � � � � & � � H ;
� >�* �gY 8

For the other direction now, suppose that
� Xa: ��� & � : � * �gY , where

Y%� � � � � � & � � H ;
� >�* 8

It must be that � : �c; 
 > . Otherwise we could obtain a word in Y that does not begin with
�

, which is
a contradiction. The fact that � : �%; 
 > implies that

XR: � � �
.

Hence the claim holds. If we could decide the problem of the proposition, we could also decide
whether for a given context-free language

X
, there exists a solution � to the equation

X � � � �� � � � � & � � H ;
� >�*

. According to the claim proved above, this would in turn imply that we could
decide the problem “Is

X�: � � �
?”, which is impossible for context-free languages.

��

Noticing that in the above proof � � ; 
 > is a singleton language, the proof can be used to show
that the problem “Does there exist a singleton solution �
� ; # > to the equation

X � � � � Y ���
is

undecidable for context-free languages
X

and regular languages Y .

We now turn to examining the language equation � ��� X �TY . We can obtain the following result,
using the same method as in Proposition 16.

Proposition 19. The problem “Does there exist a solution � to the equation � � � X �gY ?” is decidable
for regular languages

X
and Y .

Proof:
For given regular languages

Xd- Y over an alphabet
�

define Y : � & Y2k � � Xa* k . It follows that if there
exists a solution �fe � �

to the equation � � � X �^Y , then Y : ��� X �gY .
Moreover, the regular solution Y : can be effectively constructed. The algorithm which decides the

problem begins by constructing Y : and then testing whether or not Y : ��� X equals Y .
��

Proposition 20. The problem “Does there exist a singleton solution � � ; # > to the equation � � �X �gY ?” is decidable for regular languages
X

and Y .

Proof:
Let

Xd- Y be nonempty regular languages over an alphabet
�

. Observe that if such a solution �
� ; # >
exists, then all words of Y must be of the same length, namely O # O , i.e. Y is a block code. Hence if Y
is infinite or not a block code, then the answer to the problem is NO. Otherwise, if Y is a block code
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of length � , then the decision algorithm checks whether or not � � � X ��Y for all words # of length� . This can be decided because � ��� X
is a finite language and set equality is decidable for finite

languages. The answer of the algorithm is YES if such a word # is found and NO otherwise.
��

We now show that if
X

is a regular language, the existence of solution to the equation is undecidable.

Proposition 21. The problem “Does the equation � ��� X �TY have a solution � ?” is undecidable for
context-free

X
and regular Y .

Proof:
Let

�
be an alphabet and let

�
be a letter which does not occur in

�
. There exists a regular languageY%� � �

such that the problem of the proposition is undecidable for context-free languages
X

. We assume
the contrary and show how to solve the problem “Is

X�: � X : : � � ���
for context-free languages

X�:
andX : :

. For given context-free
X�: - X : :

, define:X � � & X : � X : : * � � � 8
We claim that there exists a language � such that � ��� X �gY iff

X : � X : : � �
, where

X
and Y are

defined as above. Indeed, if
X�: � X : : � �

, then
X � � �

and � � � �
is a solution to � � � X �gY . On the

other hand, suppose there exists � such that � ��� X �hY . Then
X : � X : : � �

. Indeed, if
XR: � X : : 	� �

,
then take � $ & XR: � X : :l* , implying

�

� $ X . Take #�$ � such that O # O�ScO
�

� O (such # exists as � has
to be infinite to satisfy � ��� X � � �

). Then # � � & � � * $ Y , which contradicts the structure of Y .
The problem “Is

XR: � X : : � � ���
is undecidable for context-free

Xa:)- X : :
, hence the problem of the

proposition is undecidable.
��

The operations
� �

and � : � are right-inverses of each other and so are the operations � � and
���

. The
family of regular languages is closed under all four of these operations.

Using similar reasons as in Proposition 16, we have the following results.
The problem “Does there exist a solution � to the equation

X � � � ��Y (resp.
X � � � ��Y )?” is

decidable for regular languages
X

and Y . If the solution � exists, then Y : � & X � : � Y2k * k (resp. Y : �& X � : � Y2k * k ) is a solution as well. Moreover, Y : includes all other solutions of the equation.

Proposition 22. The problem “Does there exist a singleton solution ���%; # > to the equation
X � � �c�Y ?” is decidable for regular languages

X
and Y .

Proof:
Similar to that of Proposition 17.

��

Proposition 23. The problem “Does the equation
X � � � � Y have a solution � ?” is undecidable for

context-free
X

and regular Y .

Proof:
Let

�
be an alphabet and let

�
and

�
be letters which do not occur in

�
. There exists a regular language

Y%� �j � � � ������� � �
	 ] _
� �



L. Kari and E. Losseva / Block Substitutions and Their Properties 13

such that the problem of the proposition is undecidable for context-free languages
X

. Let
X : e � �

be a
context-free language and consider the language

X � � � X : � � � � �A8
We claim that for all languages � : e � �

the equation:

& � � X : � � � � � * � � & � � : � * � �j � � � ������� � �
	 ] _
� �

holds if and only if � : �%; 
 > and
X : � � �

. Indeed, suppose that � : �%; 
 > and
X : � � �

. Then

& � � X : � � � � � * � � & � � : � * � & � � � � � � � � � * � � & � � * � �j � � � ������� � �
	 ] _
� � �gY 8

Suppose now that & � � XR: � � � � � * � � & � � : � * �hY , where Y is as defined above. It must be that� : � ; 
 > . Otherwise, we could obtain a word in Y that is of the form
� # �

, where # 	� 
 , which is a
contradiction. Indeed, if # 	��
 is in � : , then since we have

� # � $ X , we obtain
� # � $ Y .

The fact that � : �%; 
 > implies that
XR: � � �

.
Hence the claim holds. If we could decide the problem of the proposition, we could also decide

whether for a given context-free language
X

, there exists a solution � to the equation

X � � �c� �j � � � ������� � �
	 ] _
� � 8

According to the claim proved above, this would in turn imply that we could decide the problem “IsX : � � �
?”, which is impossible for context-free languages.

��

Noticing that in the above proof � � ; 
 > is a singleton language, the proof can be used to show
that the problem “Does there exist a singleton solution �
� ; # > to the equation

X � � � � Y ���
is

undecidable for context-free languages
X

and regular languages Y .

We now turn to examining the language equation � � � X �TY . We can obtain the following results,
using the same methods as in Propositions 16 and 20 respectively.

Proposition 24. The problem “Does there exist a solution � to the equation � � � X �gY ?” is decidable
for regular languages

X
and Y .

Proposition 25. The problem “Does there exist a singleton solution � �%; # > to the equation � � � X �Y ?” is decidable for regular languages
X

and Y .

Currently it is not known whether the problem “Does the equation � � � X �gY have a solution � ?”
is decidable for context-free

X
and regular Y . (Probably undecidable.)
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