
L systems

Lila Kari

Department of Mathematics, University of Western Ontario

London, Ontario, N6A 5B7 Canada

Grzegorz Rozenberg

Department of Computer Science, University of Leiden

P.O.Box 9512, NL-2300 RA Leiden, The Netherlands

Arto Salomaa

Department of Mathematics, University of Turku

20 500 Turku, Finland

1 Introduction

1.1 Parallel rewriting

L systems are parallel rewriting systems which were originally introduced in
1968 to model the development of multicellular organisms, [L1]. The basic ideas
gave rise to an abundance of language-theoretic problems, both mathematically
challenging and interesting from the point of view of diverse applications. After
an exceptionally vigorous initial research period (roughly up to 1975; in the book
[RSed2], published in 1985, the period up to 1975 is referred to, [RS2], as “when
L was young”), some of the resulting language families, notably the families of
D0L, 0L, DT0L, E0L and ET0L languages, had emerged as fundamental ones
in the parallel or L hierarchy. Indeed, nowadays the fundamental L families
constitute a similar testing ground as the Chomsky hierarchy when new devices
(grammars, automata, etc.) and new phenomena are investigated in language
theory.

L systems were introduced by Aristid Lindenmayer in 1968, [L1]. The origi-
nal purpose was to model the development of simple filamentous organisms. The
development happens in parallel everywhere in the organism. Therefore, paral-
lelism is a built-in characteristic of L-systems. This means, from the point of
view of rewriting, that everything has to be rewritten at each step of the rewrit-
ing process. This is to be contrasted to the “sequential” rewriting of phrase
structure grammars: only a specific part of the word under scan is rewritten
at each step. Of course, the effect of parallelism can be reached by several se-

1

quential steps in succession. However, the synchronizing control mechanism is
missing from the customary sequential rewriting devices. Therefore, parallelism
cannot be truly simulated by sequential rewriting.

Assume that your only rule is a −→ a2 and you start with the word a3.
What do you get? If rewriting is sequential, you can replace one a at a time
by a2, obtaining eventually all words words ai, i ≥ 3. If rewriting is parallel,
the word a6 results in one step. It is not possible to obtain a4 or a5 from a3.
Altogether you get only the words a3·2i

, i ≥ 0. Clearly, the language

{a3·2i

| i ≥ 0}

is not obtainable by sequential context-free or interactionless rewriting: letters
are rewritten independently of their neighbours. Observe also how the dummy
rule a −→ a behaves dramatically differently in parallel and sequential rewriting.
In the latter it has no influence and can be omitted without losing anything. In
parallel rewriting the rule a −→ a makes the simulation of sequential rewriting
possible: the “real” rule a −→ a2 is applied to one occurrence of a, and the
“dummy” rule a −→ a to the remaining occurrences. Consequently, all words
ai, i ≥ 3, are obtained by parallel rewriting from a3 if both of the rules a −→ a2

and a −→ a are available.
The present survey on L systems can by no means be encyclopedic; we do

not even claim that we can exhaust all the main trends. Of the huge bibli-
ography concerning L systems we reference only items needed to illustrate or
augment an isue in our presentation. We are fully aware that also some rather
influential papers have not been referenced. In the early years of L systems
it was customary to emphasize that the exponential function 2n described the
yearly growth in the number of papers in the area. [MRS], published in 1981,
was the latest edition of a bibliography on L systems intended to be comprehen-
sive. After that nobody has undertaken the task of compiling a comprehensive
bibliography which by now would contain at least 5 000 items.

On the other hand, L systems will be discussed also elsewhere in this Hand-
book. They form the basic subject matter in the chapter of P.Prusinkiewicz
in Volume III but are also covered, for instance, in the chapters by W.Kuich
G.Paun – A.Salomaa in the present Volume I.

When we write “L systems” or “ET0L languages” without a hyphen, it is
not intentionally vicious ortography. We only follow the practice developed
during the years among the researchers in this field. The main reason for this
practice was that in complicated contexts the hyphen was often misleading. We
want to emphasize in this connection the notational uniformity followed by the
researchers of L systems, quite exceptional in comparison with most areas of
mathematical research. In particular, the different letters have a well-defined
meaning in the names of the L language families. For instance, it is immediately
understood by everyone in the field what HPDF0L languages are. We will return
to the terminology in Section 2 below.

2

1.2 Callithamnion roseum, a primordial alga

We begin with a mathematical model of the development of a red alga, Cal-
lithamnion roseum. The attribute “primordial” can be associated to it because
the model for its development appears in the original paper [L1] by Aristid
Lindenmayer. The mathematical model is a PD0L system, according to the
terminology developed later. Here 0 indicates that the interaction between in-
dividual cells in the development is zero-sided, that is, there is no interaction;
rewriting is context-free. The letter D indicates determinism: there is only one
possibility for each cell, that is, there is only one rule for each letter. Finally, the
letter P stands for propagating: there is no cell death, no rule a −→ λ indicating
that a letter should be rewritten as the empty word. We will return to this
terminology in Section 2 below.

Following the general plan of this Handbook, our present chapter deals ex-
clusively with words, that is, with one-dimensional L systems. Two-dimensional
systems (map L systems, graph L systems, etc.) were introduced quite early,
see [RS1]. An interpretation mechanism is needed for one-dimensional systems:
how to interpret words as pictures depicting stages of development? In the case
of filamentous organisms this normally happens using branching structures. In
the model below the matching brackets [,] indicate branches, drawn alternately
on both sides of the stem.

We are now ready to present the mathematical model for Callithamnion
roseum. The alphabet is Σ = {1, 2, 3, 4, 5, 6, 7, 8, 9, [,]} and the rules for the
letters: 1 −→ 23, 2 −→ 2, 3 −→ 24, 4 −→ 25, 5 −→ 65, 6 −→ 7, 7 −→ 8,
8 −→ 9[3], 9 −→ 9. Beginning with the word w0 = 1, we get the following
developmental sequence:

w0 = 1
w1 = 23
w2 = 224
w3 = 2225
w4 = 22265
w5 = 222765
w6 = 2228765
w7 = 2229[3]8765
w8 = 2229[24]9[3]8765
w9 = 2229[225]9[24]9[3]8765
w10 = 2229[2265]9[225]9[24]9[3]8765
w11 = 2229[22765]9[2265]9[225]9[24]9[3]8765
w12 = 2229[228765]9[22765]9[2265]9[225]9[24]9[3]8765
w13 = 2229[229[3]8765]9[228765]9[22765]9[2265]9[225]9[24]9[3]8765

Selected developmental stages (w0, w6, w7, . . . , w15) are shown in the follow-
ing picture, [PK].

3

1.3 Life, real and artificial

We conclude this Introduction with some observations that, in our estimation,
are rather important in predicting the future developments of L systems. L
systems were originally introduced to model the development of multicellular
organisms, that is, the development of some form of “real” life. However, there
have been by now numerous applications in computer graphics, where L systems
have been used to depict imaginary life forms, imaginary gardens of L and also
non-living specimens ranging from toys and birthday cakes to real-estate ads
(see, for instance, [PL]). Their utmost simplicity and flexibility to small changes
tailor-made according to individual wishes make L systems very suitable to
model phenomena of artificial life.

Artificial life is customarily understood as the study of man-made constructs
that exhibit, in some sense or in some aspects, the behavior of existing living
organisms. Artificial life extends the traditional biology that is concerned with
the carbon-chain-type of life evolved on Earth. Artificial life tries to synthesize
life-like behavior within computers and other man-made devices. It is also
more extensive than robotics. Robots are constructed to do some specific tasks,
whereas the “creatures” of artificial life are only observed. As often explained,
artificial life paints the picture of life-as-it-could-be, contrasted to the picture of
traditional biology about life-as-we-know-it.

It is very difficult to draw a strict border between living and nonliving, an-
imate and inanimate. No definition of “life”, satisfactory in a mathematical or
common sense, has so far been given. Perhaps it is better to view the set of

4

living beings as a fuzzy set rather than to try to define it in crisp mathematical
terms. Another possibility is to give lists of properties typical for living beings
as contrasted to inanimate objects. However, so far none of such lists seems sat-
isfactory. Also many individual properties, such as growth, give rise to doubts.
Although growth is typical for living beings, it can be observed elsewhere.

However, one feature very characteristic for the architecture of all living
beings is that life is fundamentally parallel. A living system may consist of mil-
lions of parts, all having their own characteristic behavior. However, although
a living system is highly distributed, it is massively parallel.

Thus, any model for artificial life must be capable of simulating parallelism
– no other approach is likely to prove viable. Among all grammatical models, L
systems are by their very essence the most suitable for modeling parallelism. L
systems may turn out to be even more suitable for modeling artificial life than
real life.

Indeed, the utmost simplicity of the basic components and the ease of affect-
ing changes tailor-made for clarifying a specific issue render L systems ideal for
modeling artificial life. A good example is the so-called French Flag Problem:
does polarized behavior at the global level imply polarization (that is, nonsym-
metric behavior) at the local level? The idea behind this problem (as described
in [H2] and [HR]) comes from a worm with three parts (like the French Flag):
head, middle, tail. If one of the ends is cut, the worm grows again the missing
part, head for head and tail for tail. The behavior of the uncut part is polarized
– the remaining organism knows which end it assists to grow. However, such
a global behavior can be reached by a fully symmetric local behavior. It can
be modeled by an L system, where the rules for the individual cells are fully
symmetric – there is no distinction between right and left, [HR]. While such a
construction does not in any way prove that the real-life phenomenon is locally
symmetric – the cells of the worm used in experiments can very well be polar-
ized – it certainly constitutes an important fact of artificial life. We can have
living species with polarized global behavior but with fully symmetric behavior
at the level of individual cells – and possibly having some other features we are
interested in implementing.

Other grammatical models, or grammar-like models such as cellular au-
tomata, seem to lack the versatility and flexibility of L systems. It is not easy to
affect growth of the interior parts using cellular automata, whereas L-filaments
grow naturally everywhere. If you want to make a specific alteration in the
species you are interested in, then you very often find a suitable L system to
model the situation. On the other hand, it seems that still quite much post-
editing is needed in graphical real-life modeling. The variations of L systems
considered so far seem to be too simple to capture some important features of
real-life phenomena. We now proceed to present the most common of these
variations, beginning with the basic ones.

5

2 The world of L, an overview

2.1 Iterated morphisms and finite substitutions: D0L and

0L

We will now present the fundamentals of L systems and their basic properties.
Only very few notions of language theory are needed for this purpose. We follow
Section 2.1 of Chapter 1 in this Handbook as regards the core terminology about
letters, words and languages. The most important language-theoretic notion
needed below will be a finite substitution over an alphabet Σ, as well as its
special cases.

Definition. A finite substitution σ over an alphabet Σ is a mapping of
Σ∗ into the set of all finite nonempty languages (possibly over an alphabet ∆
different from Σ) defined as follows. For each letter a ∈ Σ, σ(a) is a finite
nonempty language, σ(λ) = λ and, for all words w1, w2 ∈ Σ∗,

σ(w1w2) = σ(w1)σ(w2).

If none of the languages σ(a), a ∈ Σ, contains the empty word, the substi-
tution σ is referred to as λ-free or nonerasing. If each σ(a) consists of a single
word, σ is called a morphism. We speak also of nonerasing and letter-to-letter
morphisms.2

Some clarifying remarks are in order. Morphisms were earlier called ho-
momorphisms – this fact is still reflected by the notations h and H used in
connection with morphisms. Usually in our considerations the target alphabet
∆ equals the basic alphabet Σ – this will be the case in the definition of D0L
and 0L systems. Then we speak briefly of a finite substitution or morphism on
the alphabet Σ. In the theory of L systems letter-to-letter morphisms are cus-
tomarily called codings; weak codings are morphisms mapping each letter either
to a letter or to the empty word λ. Codings in this sense should not be confused
with codes discussed elsewhere in this Handbook, also in Section 6 below.

By the above definition a substitution σ is applied to a word w by rewriting
every letter a of w as some word from σ(a). Different occurrences of a may
be rewritten as different words of σ(a). However, if σ is a morphism then
each σ(a) consists of one word only, which makes the rewriting deterministic.
It is convenient to specify finite substitutions by listing the rewriting rules or
productions for each letter, for instance,

a −→ λ, a −→ a2, a −→ a7,

this writing being equivalent to

σ(a) = {λ, a2, a7}.

Now, for instance,

σ(a2) = σ(a)σ(a) = {λ, a2, a4, a7, a9, a14}.

6

Similarly, the substitution (in fact, a morphism) defined by

σ1(a) = {b}, σ1(b) = {ab}, Σ = {a, b},

can be specified by listing the rules

a −→ b, b −→ ab.

In this case, for any word w, σ1(w) consists of a single word, for instance,

σ1(a
2ba) = {b2ab2} = b2ab2,

where the latter equality indicates only that we often identify singleton sets with
their elements.

The above results for σ(a2) and σ1(a
2ba) are obtained by applying the rules

in parallel: every occurrence of every letter must be rewritten. Substitutions
σ (and, hence, also morphisms) are in themselves parallel operations. An
application of σ to a word w means that something happens everywhere in w.
No part of w can remain idle except that, in the presence of the rule a −→ a,
occurences of a may remain unchanged.

Before our next fundamental definition, we still want to extend applications
of substitutions (and, hence, also morphisms) to concern also languages. This is
done in the natural “additive” fashion. By definition, for all languages L ⊆ Σ∗,

σ(L) = {u| u ∈ σ(w), for some w ∈ L}.

Definition. A 0L system is a triple G = (Σ, σ, w0), where Σ is an alphabet,
σ is a finite substitution on Σ, and w0 (referred to as the axiom) is a word over
Σ. The 0L system is propagating or a P0L system if σ is nonerasing. The 0L
system G generates the language

L(G) = {w0} ∪ σ(w0) ∪ σ(σ(w0)) ∪ . . . =
⋃

i≥0

σi(w0). 2

Consider, for instance, the 0L system

MISS3 = ({a}, σ, a) with σ(a) = {λ, a2, a5}.

(Here and often in the sequel we express in the name of the system some charac-
teristic property, rather than using abruptly an impersonal G– notation.) The
system can be defined by simply listing the productions

a −→ λ, a −→ a2, a −→ a5

and telling that a is the axiom. Indeed, both the alphabet Σ and the substitution
σ can be read from the productions. (We disregard the case, where Σ contains

7

letters not appearing in the productions.) L systems are often in the sequel
defined in this way, by listing the productions.

Going back to the system MISS3, we obtain from the axiom a in one “deriva-
tion step” each of the words λ, a2, a5. Using customary language-theoretic no-
tation, we denote this fact by

a =⇒ λ, a =⇒ a2, a =⇒ a5.

A second derivation step gives nothing new from λ but gives the new words
a4, a7, a10 from a2 and the additional new words a6, a8, a9, a11, a12, a13, a14,
a15, a16, a17, a19, a20, a22, a25 from a5. In fact,

a5 =⇒ ak iff k = 2i + 5j, i + j ≤ 5, i ≥ 0, j ≥ 0.

(Thus, we use the notation w =⇒ u to mean that u ∈ σ(w).) A third derivation
step produces, in fact in many different ways, the missing words a18, a21, a23,
a24. Indeed, it is straightforward to show by induction that

L(MISS3) = {ai| i 6= 3}.

Let us go back to the terminology used in defining L systems. The letter
L comes from the name of Aristid Lindenmayer. The story goes that Aristid
was so modest himself that he said that it comes from “languages”. The num-
ber 0 in “0L system” indicates that interaction between individual cells in the
development is zero-sided, the development is without interaction. In language-
theoretic terms this means that rewriting is context-free. The system MISS3 is
not propagating, it is not P0L. However, it is a unary 0L system, abbreviated
U0L system: the alphabet consists of one letter only. The following notion will
be central in our discussions.

Definition. A 0L system (Σ, σ, w0) is deterministic or a D0L system iff σ
is a morphism. 2

Thus, if we define a D0L system by listing the productions, there is exactly
one production for each letter. This means that rewriting is completely de-
terministic. We use the term propagating, or a PD0L system, also here: the
morphism is nonerasing. The L system used in Section 1.2 for modeling Cal-
lithamnion roseum was, in fact, a PD0L system.

D0L systems are the simplest among L systems. Although most simple,
D0L systems give a clear insight into the basic ideas and techniques behind L
systems and parallel rewriting in general. The first L systems used as models
in developmental biology, as well as most of the later ones, were in fact D0L
systems. From the point of view of artificial life, creatures modeled by D0L
systems have been called, [S7], “Proletarians of Artificial Life”, briefly PAL’s. In
spite of the utmost simplicity of the basic definition, the theory of D0L systems is
by now very rich and diverse. Apart from providing tools for modeling real and
artificial life, the theory has given rise to new deep insights into language theory

8

(in general) and into the very basic mathematical notion of an endomorphism
on a free monoid (in particular), [S5]. At present still a wealth of problems and
mysteries remains concerning D0L systems.

Let G = (Σ, h, w0) be a D0L system – we use the notation h to indicate that
we are dealing with a (homo)morphism. The system G generates its language
L(G) in a specific order, as a sequence:

w0, w1 = h(w0), w2 = h(w1) = h2(w0), w3, . . .

We denote the sequence by S(G). Thus, in connection with a D0L system G, we
speak of its language L(G) and sequence S(G). Indeed, D0L systems were the
first widely studied grammatical devices generating sequences. We now discuss
five examples, paying special attention to sequences. All five D0L systems are
propagating, that is, PD0L systems. The first one is also unary, that is, a
UPD0L system.

Consider first the D0L system EXP2 with the axiom a and rule a −→ a2.
It is immediate that the sequence S(EXP2) consists of the words a2i

, i ≥ 0, in
the increasing length order. Secondly, consider the D0L system LIN with the
axiom ab and rules a −→ a, b −→ ab. Now the sequence S(LIN) consists of the
words aib, i ≥ 1, again in increasing length order. The notation LIN refers to
linear growth in word length: the j’th word in the sequence is of length j + 2.
(Having in mind the notation w0, w1, w2, we consider the axiom ab to be the
0th word etc.)

Our next D0L system FIB has the axiom a and rules a −→ b, b −→ ab. The
first few words in the sequence S(FIB) are

a, b, ab, bab, abbab, bababbab.

From the word ab on, each word results by catenating the two preceding
ones. Let us establish inductively this claim,

wn = wn−2wn−1, n ≥ 2.

Denoting by h the morphism of the system FIB, we obtain using the definition
of h:

wn = hn(a) = hn−1(h(a)) = hn−1(b) = hn−2(h(b)) =

= hn−2(ab) = hn−2(a)hn−2(b) = hn−2(a)hn−2(h(a)) =

= hn−2(a)hn−1(a) = wn−2wn−1.

The claim established shows that the word lengths satisfy the equation

|wn| = |wn−2| + |wn−1|, n ≥ 2.

Hence, the length sequence is the well-known Fibonacci sequence 1, 1, 2, 3, 5,
8, 13, 21, 34, ...

9

The D0L system SQUARES has the axiom a and rules

a −→ abc2, b −→ bc2, c −→ c.

The sequence S(SQUARES) begins with the words

a, abc2, abc2bc2c2, abc2bc2c2bc2c2c2.

Denoting again by wi, i ≥ 0, the words in the sequence, it is easy to verify
inductively that

|wi+1| = |wi| + 2i + 3, for all i ≥ 0.

This shows that the word lengths consist of the consecutive sequence: |wi| =
(i+1)2, for all i ≥ 0. Similar considerations show that the D0L system CUBES
with the axiom a and productions

a −→ abd6, b −→ bcd11, c −→ cd6, d −→ d

satisfies |wi| = (i + 1)3, for all i ≥ 0.
Rewriting being deterministic gives rise to certain periodicities in the D0L

sequence. Assume that some word occurs twice in a sequence: wi = wi+j , for
some i ≥ 0 and j ≥ 1. Because of the determinism, the words following wi+j

coincide with those following wi, in particular,

wi = wi+j = wi+2j = wi+3j = . . .

Thus, after some “initial mess”, the words start repeating periodically in the
sequence. This means that the language of the system is finite. Conversely, if
the language is finite, the sequence must have a repetition. This means that
the occurrence of a repetition in S(G) is a necessary and sufficient condition for
L(G) being finite. Some other basic periodicity results are given in the following
theorem, for proofs see [HR], [Li2], [RS1]. The notation alph(w) means the
minimal alphabet containing all letters occurring in w, prefk(w) stands for the
prefix of w of length k (or for w itself if |w| < k), sufk(w) being similarly defined.

Theorem 2.1. Let wi, i ≥ 0, be the sequence of a D0L system G =
(Σ, h, w0). Then the sets Σi = alph(wi), i ≥ 0, form an ultimately periodic
sequence, that is, there are numbers p > 0 and q ≥ 0 such that Σi = Σi+p holds
for every i ≥ q. Every letter occurring in some Σi occurs in some Σj with j ≤
card(Σ) − 1. If L(G) is infinite then there is a positive integer t such that, for
every k > 0, there is an n > 0 such that, for all i ≥ n and m ≥ 0,

prefk−1(wi) = prefk−1(wi+mt) and suf(wi) = sufk−1(wi+mt).2

Thus, both prefixes and suffixes of any chosen length form an ultimately
periodic sequence. Moreover, the period is independent of the length chosen;
only the initial mess depends on it.

10

Definition. An infinite sequence of words wi, i ≥ 0, is locally catenative iff,
for some positive integers k, i1, . . . ik and q ≥ max(i1, . . . , ik),

wn = wn−i1 . . . wn−ik
whenever n ≥ q.

A D0L system G is locally catenative iff the sequence S(G) is locally catenative.

2

Locally catenative D0L systems are very important both historically and
because of their central role in the theory of D0L systems: their study has
opened up new branches of the theory. A very typical example of a locally
catenative D0L system is the system FIB discussed above.

Also the system EXP2 is locally catenative: the sequence S(EXP2) satisfies

wn = wn−1wn−1 for all n ≥ 1.

A celebrated problem, still open, is to decide whether or not a given D0L system
is locally catenative. No general algorithm is known, although the problem has
been settled in some special cases, for instance, when an upper bound is known
for the integers i1, . . . ik, as well as recently for binary alphabets, [Ch].

An intriguing problem is the avoidability or unavoidability of cell death:
to what extent are rules a −→ λ necessary in modeling certain phenomena?
What is the real difference between D0L and PD0L systems and between 0L
and P0L systems? There are some straightforward observations. The word
length can never decrease in a PD0L sequence, and a P0L language cannot
contain the empty word. We will see in the sequel, especially in connection with
growth functions, that there are remarkable differences between D0L and PD0L
systems. The theory of D0L systems is very rich and still in many respects
poorly understood.

As an example of the necessity of cell death, consider the D0L system
DEATHb with the axiom ab2a and rules

a −→ ab2a, b −→ λ.

The sequence S(DEATHb) consists of all words (ab2a)2
i

, i ≥ 0, in the increasing
order of word length. We claim that the language L consisting of these words
cannot be generated by any PD0L system G. Indeed, ab2a would have to be the
axiom of such a G, and ab2a =⇒ ab2aab2a would have to be the first derivation
step. This follows because no length-decrease is possible in S(G). The two
occurrences of a in ab2a must produce the same subword in ab2aab2a. This
happens only if the rule for a is one of the following: a −→ λ, a −→ ab2a,
a −→ a. The first two alternatives lead to non-propagating systems. But
also the last alternative is impossible because no rule for b makes the step
b2 =⇒ b2aab2 possible. We conclude that it is not possible to generate the
language L(DEATHb) using a PD0L system.

11

A slight change in DEATHb makes such a generation possible. Consider the
D0L system G1 with the axiom aba and rules a −→ aba, b −→ λ. Now the
PD0L system G2 with the axiom aba and rules a −→ a, b −→ baab generates
the same sequence, S(G1) = S(G2).

We say that two D0L systems G1 and G2 are sequence equivalent iff S(G1) =
S(G2). They are language equivalent, briefly equivalent, iff L(G1) = L(G2). In-
stead of D0L systems, these notions can be defined analogously for any other
class of L systems – sequence equivalence of course only for systems generating
sequences. The two systems G1 and G2 described in the preceding paragraph are
both sequence and language equivalent. Clearly, sequence equivalence implies
language equivalence but the reverse implication is not valid. Two D0L systems
may be (language) equivalent without being sequence equivalent, they can gen-
erate the same language in a different order. A simple example is provided by
the two systems

({a, b}, {a −→ b2, b −→ a}, b) and ({a, b}, {a −→ b, b −→ a2}, a).

Among the most intriguing mathematical problems about L systems is the
D0L equivalence problem: construct an algorithm for deciding whether or not
two given D0L systems are equivalent. Equivalence problem is a fundamental
decision for any family of generative devices: decide whether or not two given
devices in the family generate the same language. For D0L systems one can
consider, in addition, the sequence equivalence problem: Is S(G1) = S(G2),
given D0L systems G1 and G2? The D0L equivalence problems were celebrated
open problems for most of the 70’s. They were often referred to as the most
simply stated problems with an open decidability status. We will return to them
and related material in Section 4. It was known quite early, [N], that a solution
to the D0L sequence equivalence problem yields a solution to the D0L language
equivalence problem, and vice versa.

2.2 Auxiliary letters and other auxiliary modifications

A feature very characteristic for D0L systems and 0L systems is that you have
to accept everything produced by the machinery. You have the axiom and the
rules, and you want to model some phenomenon. You might want to exclude
something that comes out of from the axiom by the rules because it is alien
to the phenomenon, does not fit it. This is not possible, you have to include
everything. There is no way of hiding unsuitable words. Your D0L or 0L models
have no filtering mechanism.

It is customary in formal language theory to use various filtering mecha-
nisms. Not all words obtained in derivations are taken to the language but the
terminal language is somehow “squeezed” from the set of all derived words. The
most typical among such filtering mechanisms, quite essential in grammars in
the Chomsky hierarchy, is the use of nonterminal letters. An occurrence of a

12

nonterminal in a word means that the word is not (maybe not yet) acceptable.
The generated language contains only words without nonterminals. Thus, the
language directly obtained is filtered by intersecting it with Σ∗

T , where ΣT is the
alphabet consisting of terminal letters. This gives the possibility of rejecting (at
least some) unsuitable words.

The same mechanism, as well as many other filters, can be used also with
L systems. However, a word of warning is in order. The original goal was to
model the development of a species, be it real or artificial. Each word generated
is supposed to represent some stage in the development. It would be rather
unnatural to exclude some words and say that they do not represent proper
stages of the development! This is exactly what filtering with nonterminals
does.

However, this objection can be overruled because the following justification
can be given. Some other squeezing mechanisms, notably codings (that is, letter-
to-letter morphisms), can be justified from the point of view of developmental
models: more careful experiments or observations can change the interpretation
of individual cells, after which the cells are assigned new names. This amounts
to applying a letter-to-letter morphism to the language. A rather amazing result
concerning parallel rewriting, discussed below in more detail, is that coding is in
important cases, [ER1], equivalent to the use of nonterminals in the sense that
the same language is obtained, and the transition from one squeezing mechanism
to the other is effective. By this result, also the use of nonterminals is well-
motivated.

The letter E (“extended”) in the name of an L system means that the use
of nonterminals is allowed. Thus, an E0L system is a 0L system, where the
alphabet is divided into two disjoint parts, nonterminals and terminals. E0L
and 0L systems work in the same way but only words over the terminal alphabet
are in the language of an E0L system. Thus, an E0L system G can be also viewed
as a 0L system, where a subalphabet ΣT is specified and the language of the 0L
system is intersected with Σ∗

T to get the language of the E0L system.
The following E0L system SYNCHRO is very instructive. In our notation,

capital letters are nonterminals and small letters terminals. The axiom of
SYNCHRO is ABC, and the rules as follows:

A −→ AA′ A −→ a A′ −→ A′ A′ −→ a a −→ F
B −→ BB′ B −→ b B′ −→ B′ B′ −→ b b −→ F
C −→ CC′ C −→ c C′ −→ C′ C′ −→ c c −→ F
F −→ F

It is easy to verify that

L(SYNCHRO) = {anbncn| n ≥ 1}.

This follows because our E0L system is synchronized in the sense that all ter-
minals must be reached simultaneously. Otherwise, the failure symbol F neces-
sarily comes to the word and can never be eliminated. The language obtained

13

is a classical example in language theory: a context-sensitive language that is
not context-free.

Filtering mechanisms provide families of L languages with a feature very de-
sirable both language-theoretically and mathematically: closure under various
operations. Without filtering, the “pure” families, such as the families of 0L
and D0L languages, have very weak closure properties: most of the customary
language-theoretic operations may produce languages outside the family, start-
ing with languages in the family. For instance, L = {a, a3} is the union of two
0L languages. However, L itself is not 0L, as seen by a quick exhaustive search
over the possible axioms and rules.

We refer the reader to the preceding chapter in this Handbook for a more
detailed discussion concerning the following definition. In particular, the six
operations listed are not arbitrary but exhaust the “rational” operations in
language theory.

Definition. A family L of languages is termed a full AFL (“abstract family
of languages”) iff L is closed under each of the following operations: union,
catenation, Kleene star, morphism, inverse morphism, intersection with regular
languages. The family L is termed and anti-AFL iff it is closed under none of
the operations above. 2

Most of the following theorem can be established by exhibiting suitable ex-
amples. [RS1] should be consulted, especially as regards the nonclosure of E0L
languages under inverse morphisms.

Theorem 2.2. The family of 0L languages is an anti-AFL, and so is the
family of D0L languages. The family of E0L languages is closed under all AFL
operations except inverse morphism. 2

Theorem 2.2 shows clearly the power of the E-mechanism in transforming a
family of little structure (in the sense of weak closure properties) into a struc-
turally strong family. The power varies from L family to another. The difference
between D0L and ED0L languages is not so big. The periodicity result of Theo-
rem 2.1 concerning alphabets holds also for ED0L sequences and, thus, the words
that are filtered out occur periodically in the sequence, which is a considerable
restriction.

We now mention other filtering mechanisms. The H-mechanism means tak-
ing a morphic image of the original language. Consider the case that the orig-
inal language is a 0L language. Thus, let G = (Σ, σ, w0) be a 0L system and
h : Σ∗ −→ ∆∗ a morphism. (It is possible that the target alphabet ∆ equals
Σ.) Then h(L(G)) is an H0L language. The HD0L languages are defined anal-
ogously.

The N-mechanism refers similarly to nonerasing morphisms. Thus, N0L
languages are of the form h(L(G)) above, with the additional assumption that
h is nonerasing. The C-mechanisms refers to codings and W-mechanism to weak
codings.

A further variation of L systems consists of having a finite set of axioms –
instead of only one axiom as we have had in our definitions so far. This variation

14

is denoted by including the letter F in the name of the system. Thus, every finite
language L is an F0L language: we just let L be the set of axioms in an F0L
system, where the substitution is the identity.

When speaking of language families, we denote the family of E0L languages
simply by E0L, and similarly with other families. Consider the family D0L. We
have introduced five filtering mechanisms: E, H, N, C, W. This gives six possibil-
ities – either some filtering or the pure family. For each of the six possibilities,
we may still add one or both of the letters P and F, indicating that we are
dealing with the propagating or finite-axiom variant. This gives altogether 24
families. The following remarkable theorem gives an exhaustive characterization
of the mutual relashionship between these 24 families. That such a complicated
hierarchy is completely understood is a rather rare situation in language theory.
Many of the proofs are rather involved – we return to a tricky question in Section
3. Most of the results are originally from [NRSS], see also [RS1]. In comparing
the families, we follow the λ-convention: two languages are considered equal if
they differ by the empty word only. Otherwise, propagating families would be
automatically different from nonpropagating ones.

Theorem 2.3. The following diagram characterizes mutual relations be-
tween deterministic L families. Arrows denote strict inclusion. Families not
connected by a path are mutually incomparable.

HD0L = WD0L =

= HPD0L = WPD0L =

= HDF0L = WDF0L =

= HPDF0L = WPDF0L

= NDF0L = CDF0L

= NPDF0L = CPDF0L

ND0L = NPD0L = CD0L EDF0L

CPD0L ED0L DF0L EPDF0L

EPD0L D0L PDF0L

PD0L

15

In the nondeterministic case there is much more collapse in the hierarchy
because the C-mechanism has in most cases the same generative capacity as the
E-mechanism. (In the deterministic case the former is much stronger.) A rather
surprising fact in the nondeterministic case is that, although E0L = C0L, CP0L
is properly contained in EP0L, which is the opposite what one would expect
knowing the deterministic case. The key results are given in the next theorem,
[NRSS] and [RS1].

Theorem 2.4. Each of the following families equals E0L:

E0L = C0L = N0L = W0L = H0L = NP0L = EP0L = WP0L =
HP0L = EF0L = CF0L = NF0L = WF0L = HF0L = EPF0L =
NPF0L = WPF0L = HPF0L.

The family E0L lies strictly between context-free and context-sensitive languages
and contains properly the mutually incomparable families CP0L and F0L. 2

Thus, the family E0L contains properly the family of context-free languages.
This fact follows because a context-free grammar can be transformed into an
E0L system, without affecting the language, by adding the production x −→ x
for each letter x. That the containment is proper can be seen by considering
the language generated by the E0L system SYNCHRO. This fact should be
contrasted with the fact that most finite languages are outside the family of 0L
languages.

It is customary in language theory to try to reduce grammars into normal
forms, that is, to show that every grammar can be replaced by an equivalent
(generating the same language) grammar possessing some desirable properties.
The following theorem, [RS1], is an illustration of such a reduction for L systems.
Observe that the special property of the E0L system SYNCHRO concerning
terminals is, in fact, a general property of E0L languages.

Theorem 2.5. Every E0L language is generated by an E0L system satisfy-
ing each of the following conditions: (i) The only production for each terminal
letter a is a −→ F , where F is a nonterminal having F −→ F as the only pro-
duction. (ii) The axiom is a single nonterminal not occurring on the right side
of any production. (iii) The right side of every production is either a terminal
word or consists only of nonterminals. (iv) A terminal word is reachable from
every nonterminal apart from F (and the axiom if the language is empty).2

Usually it is difficult to show that a given language is not in a given family,
because, in principle, one has to go through all the devices defining languages
in the family. E0L languages possess certain combinatorial properties and, con-
sequently, a language not having those properties cannot be an E0L language,
[RS1]. For instance, the language

{ambnam| 1 ≤ m ≤ n}

is not an E0L language. It is very instructive to notice that the languages

{ambnam| 1 ≤ n ≤ m} and {ambnam| m, n ≥ 1}

16

are E0L languages. Finally, the language

{a3n

| n ≥ 1} ∪ {bncndn| n ≥ 1}

is an EP0L language but not a CP0L language.

2.3 Tables, interactions, adults, fragmentation

A feature very characteristic for parallel rewriting is the use of tables, [R1], [R2].
A table is simply a set of rewriting rules. A system has several tables, always
finitely many. It is essential that, at each step of the rewriting process, always
rules from the same table must be used. This reflects the following state of
affairs in modeling the development of organisms, real or artificial. There may
be different conditions of the environment (day and night, varying heat, varying
light, pollution, etc.) or different developmental stages, where it is important
to use different rules. Then we consider all sets of rules, tables, obtained in this
fashion. Observe that tables do not make sense in sequential rewriting. Because
only one rule is used at each derivation step, it suffices to consider the total set
of rules. We now define the variations of 0L and D0L systems, resulting by
augmenting the system with tables.

Definition. A T0L system is a triple G = (Σ, S, w0), where S is a finite
set of finite substitutions such that, for each σ ∈ S, the triple (Σ, σ, w0) is a 0L
system. The language of the T0L system, L(G), consists of w0 and of all words
in all languages σ1 . . . σk(w0), where k ≥ 1 and each σi belongs to S – some of
the σi’s may also coincide. If all substitutions in S are, in fact, morphisms then
G is deterministic or a DT0L system. 2

Thus, D indicates that all substitutions (all tables) are deterministic. How-
ever, according to the definition above, there is no control in the use of the
tables – the tables may be used in an arbitrary order and multitude. Thus, a
DT0L language is not generated in a sequence. A definite sequence results only
if the order in the use of the tables is specified in a unique way.

The letter F has the same meaning as before: finitely many axioms instead
of only one axiom. Also the filtering mechanisms E, H, C, N, W are the same
as before – we will use them below without further explanations.

Following our earlier practice, we will define a T0L system by specifying
the axiom and each table, a table being a set of productions included in brack-
ets to indicate that they belong together. There are no restrictions, the same
production may appear in several tables.

As an example consider the DT0L system PAL with the axiom a and two
tables

Td = [a −→ b, b −→ b2, c −→ a] and Tn = [a −→ c, b −→ ac, c −→ c].

(The indices d and n come from “day” and “night”, the meaning will become
clear below.) Instead of a linear sequence, derivations can be represented as a
tree:

17

a

b

b2 ac

b4 (ac)2 ba c2

b8 (ac)4 (ba)2 c4 b3 ac2 a2

b16 (ac)8 (ba)4 c8 b6 (ac2)2 a4 (ac)3 ba2 c3

Here the branch indicates which of the tables was used: the left descendant
results from an application of Td, the right descendant from an application of Tn.
If a descendant is not marked down (like a and c on the third level), it indicates
that it occurrs already at an earlier level. The continuation can, therefore, be
ignored if one is only interested in determining the language. The left extremity
of the tree contains the powers b2i

, i ≥ 0. However, all powers bi, i ≥ 1, occur
somewhere in the tree and so do all powers ai and ci, i ≥ 1. This is seen as
follows. Observe first that, for all i ≥ 0, bai+1 results from bai by applying first
Tn, then Td. Now from bai the word bi+2 results by applying Td, the word ci+2

by applying Tn twice, and the word ai+2 from ci+2 by Td.
Although seemingly simple, PAL has a rich structure. An interested reader

should have no difficulties in specifying L(PAL) explicitly.) If the order of the
application of the tables is given, a unique sequence of words results. One might
visualize the two tables as giving rules for the day and night. The alternation is

18

the natural order of application: TdTnTdTnTd . . . (we agree that we begin with
Td). Another possibility is to consider “eternal daylight” (only Td is used) or
“eternal night”. Let us still make free the choice of the axiom: instead of the
axiom a, we have an arbitrary nonempty word w over {a, b, c} as the axiom.
(Sometimes the term L scheme, instead of an L system, is used to indicate
that the axiom is not specified.) Denote by DAY-AND-NIGHT-PAL(w), DAY-
PAL(w), NIGHT-PAL(w) the modifications of PAL thus obtained. Each of
them generates a specific sequence of words. In fact, DAY-PAL(w) and NIGHT-
PAL(w) are PD0L systems, whereas DAY-AND-NIGHT-PAL(w) can be viewed
as a CPD0L system. For w = abc, the sequences look as follows.

DAY-NIGHT : abc, b3a, (ac)3c, (ba)3a, (ac2)3c, (ba2)3a,
(ac3)3c, (ba3)3a, (ac4)3c, (ba4)3a, . . .

DAY : abc, b3a, b7, b14, b28, . . .
NIGHT : abc, cac2, c4, c4, . . .

Definition. For an infinite sequence wi, i ≥ 0, of words, the function
f(n) = |wn| (mapping the set of nonnegative integers into itself) is termed the
growth function of the sequence.2

Thus, for NIGHT-PAL(abc), f(0) = 3, f(n) = 4 for n ≥ 1. For DAY-

PAL(abc), f(0) = 3, f(1) = 4, f(i + 2) = 27·2i

for i ≥ 0. Finally, for DAY-
NIGHT-PAL(abc), f(0) = 3, f(1) = 4, f(2i) = f(2i + 1) = 3i + 1 for i ≥ 1.

Thus, the three growth functions possess, respectively, the property of being
bounded from above by a constant, exponential or linear. In fact, the growth
function of any NIGHT-PAL(w) (resp. DAY-PAL(w), DAY-NIGHT-PAL(w))
is bounded from above by a constant (resp. exponential, linear). We will return
to this matter in Section 5, where growth functions will be discussed.

The following two theorems summarize results concerning mutual relashion-
ships between “table families”, [NRSS], [RS1]. The first of the theorems deals
with deterministic families, and the second with nondeterministic families.

Theorem 2.6. The following inclusions and equalities hold:
DT0L ⊂ CDT0L= NDT0L= EDT0L= WDT0L= HDT0L,

PDT0L ⊂ CPDT0L ⊆ NPDT0L ⊆ EPDT0L= WPDT0L= HPDT0L,

DTF0L ⊂ CDTF0L= NDTF0L= EDTF0L= WDTF0L= HDTF0L,

PDTF0L⊂ CPDTF0L⊆ NPDTF0L ⊆ EPDTF0L= WDPTF0L= HPDTF0L.

19

The “pure” families (without any filtering) satisfy the following inclusion dia-
gram:

DTF0L

DT0L PDTF0L

PDT0L

2

Theorem 2.7. Each of the following families equals ET0L:
ET0L= CT0L= NT0L= WT0L= HT0L=

= NPT0L= EPT0L= WPT0L= HPT0L=
= CTF0L= NTF0L= ETF0L= WTF0L= HTF0L
= NPTF0L= EPTF0L= WPTF0L= HPTF0L

The families E0L, TF0L and CPT0L= CPTF0L are all stricly included in
ET0L. 2

The family ET0L is the largest widely studied L family, where rewriting is
context-free (no cell interactions are present). It is also very pleasing mathe-
matically and has strong closure properties. (It is, however, not closed under
the shuffle operation.) It was observed already in the early 70’s that ET0L is
contained in the family of indexed languages (see the preceding chapter of this
Handbook for a description of indexed languages and see [En] for more general
hierarchies) and, consequently, facts concerning indexed languages hold also for
ET0L languages. The facts in the following theorem can be established rather
easily.

Theorem 2.8. The family ET0L is a full AFL, whereas the family T0L
is an anti-AFL. Every ET0L language is generated by an ET0L system with
two tables. Every ET0L language is generated by an ET0L system such that
a −→ F is the only rule in every table for every terminal a, and F −→ F is the
only rule in every table for the nonterminal F . 2

The two normal form results stated in Theorem 2.8, the two-table condi-
tion and synchronization, cannot always be reached simultaneously. A number
of deep combinatorial results, [RS1], can be established for EDT0L and ET0L

20

languages. Using such results, relatively simple examples can be given of lan-
guages not in the families. Let Σ contain at least two letters and k ≥ 2 be a
fixed integer. Then neither of the languages

{w ∈ Σ∗| |w| = kn, n ≥ 0} and {w ∈ Σ∗| |w| = nk, n ≥ 0}

is in EDT0L. The 0L system with the axiom a and rules

a −→ ab, b −→ bc, b −→ bd, c −→ c, d −→ d

generates a language not in EDT0L. None of the languages

{(abn)m| 1 ≤ m ≤ n}, {(abn)m| 1 ≤ n ≤ m},

{(abn)m| 1 ≤ m = n}, {w ∈ {a, b}∗| |w|b = 2|w|a}

is in ET0L. Here |w|x denotes the number of occurrences of the letter x in w.
In the remainder of this subsection 2.3 we survey briefly some areas in

the theory of L systems that are important both historically and language-
theoretically in the sense that they have built bridges between sequential and
parallel rewriting. Our exposition will be informal. More details can be found
in [RS1], [HWa], [RRS].

In all L systems discussed so far the individual cells develop without any
interaction with their neighbours. In language-theoretic terms, rewriting has
been context-free. We now discuss L systems with interactions, IL sysetms.
First some terminology.

In an (m, n)L system, m, n ≥ 0, the rules look like

(α, a, β) −→ w, |α| = m, |β| = n.

This means that, between the words α and β, the letter a can be rewritten
as the word w. Also now, parallelism applies: all letters must be rewritten
simultaneously. In order to get sufficiently many letters on both sides of any
given letter, the whole rewriting takes place between “environment symbols” #,
m of them to the left and n to the right. The rules have to be provided also for
the case that some prefix of α or suffix of β consists of #’s.

The IL system is a collective name for all (m, n)L systems. (1, 0)L and
(0, 1)L systems are referred to as 1L systems: cell interaction is 1-sided, the
rewriting of a letter depends always on its left neighbour only (or always on its
right neighbour).

The use of letters such as D, E, P is the same as before. In particular,
determinism means that, for each configuration consisting of a letter and an
(m, n)-neighbourhood, there is exactly one rule. The following D(1, 0)L system
is known as Gabor’s Sloth, due to Gabor Herman. It is very important in
the theory of growth functions. The alphabet is {a, b, c, d} and the axiom ab.
The rules are defined by the following table, where the row indicates the left
neighbour and the column the letter to be rewritten:

21

a b c d
c b a d
a a b a d
b a b a d
c b c a ad
d a b a d

Here again, because of determinism, the language is produced in a sequence,
the beginning of which is:

ad, cd, aad, cad, abd, cbd, acd, caad, abad, cbad,

acad, cabd, abbd, cbbd, acbd, cacd, abaad, . . .

Such a growth in word length is not possible for D0L sequences. The intervals
in which the growth function stays constant grow beyond all limits – they even
do so exponentially in terms of the constant mentioned. The entire growth is
logarithmic.

It is obvious that the generative capacity increases if the interaction becomes
more extensive: (m + 1, n)L systems generate more than (m, n)L systems. A
similar result concerns also the right context, leading to an infinite hierarchy
of language families. It is, however, very interesting that only the amount of
context matters, not its distribution. All the following families coincide:

(4, 1)L = (3, 2)L = (2, 3)L = (1, 4)L.

The families (5, 0)L and (5, 0)L are mutually incomparable, contained strictly in
(4, 1)L, and incomparable with (3, 1)L. Analogous results hold true in general.

Since already E(1, 0)L systems (as well as E(0, 1)L systems) generate all re-
cursively enumerable languages, further modifications such as tables are studied
for some special purposes only. EPIL systems produce, as one would expect, the
family of context-sensitive languages. There are many surprises in the deter-
ministic case. For instance, there are nonrecursive languages in D1L (showing
that the family is big), whereas ED1L does not contain all regular languages
(showing that even the extended family is small).

At some stage also the organisms modeled by L systems are expected to
become adults. It has become customary in the theory of L systems to define
adults as follows. A word belongs to the adult language of a system exactly in
case it derives no words but itself. For instance, assume that

a −→ ab, b −→ c, c −→ λ, d −→ dc

are the only rules for a, b, c, d in a 0L system. Then all words of the form
(abc)i(dc)j belong to the adult language. Adult languages of 0L systems are
called A0L languages. Of course, A can be used in connection with other types
of L systems as well.

22

We have presented adult languages following their customary definition. It
is maybe not a proper way to model adults in artificial life, perhaps it models
better some kind of “stagnant stability”. It is, however, a very interesting
language-theoretic fact that A0L equals the family of context-free languages.
Similarly, A(1, 0)L equals the family of recursively enumerable languages.

L systems with fragmentation, JL systems, should be quite useful for mod-
eling artificial life. The mechanism of fragmentation provides us with a new
formalism for blocking communication, splitting the developing filament and
also for cell death. (The letter J comes from the Finnish word JAKAUTUA,
to fragment. At the time of its introduction, all letters coming from suitable
English words already had some other meaning for L systems!).

The basic idea behind the fragmentation mechanism is the following. The
right-hand sides of the rules may contain occurrences of a special symbol q. The
symbol induces a cut in the word under scan, and the derivation may continue
from any of the parts obtained. Thus, if we apply the rules

a −→ aqa, b −→ ba, c −→ qb

to the word abc, we obtain the words a, aba and b. The derivation may continue
from any of them. The J0L system with the axiom aba and rules a −→ a,
b −→ abaqaba generates the language

{aban| n ≥ 1} ∪ {anba| n ≥ 1}.

An interesting language-theoretic fact is that E0L languages, in addition to
numerous other closure properties, are closed under fragmentation:

EJ0L= JE0L= E0L.

J0L systems have been used recently, [KRS], for obtaining a compact represen-
tation of certain regular trees.

We have already referred to the quite unusual uniformity in the basic ter-
minology about L systems, in particular, the letters used for naming systems.
The following summarizing glossary is intended to assist the reader. It is not
exhaustive – also other letters have been used but without reaching a similar
uniformity.
A. adult, adult word, adult language
C. coding, letter-to-letter morphism, image under such morphism
D. deterministic, only one choice, only one choice in each table
E. extended, intersection with a terminal vocabulary is taken
F. finite set of axioms, rather than only one axiom
H. homomorphism, morphism, image under morphism
I. interactions, neighbouring cells affect the development of the cell
J. fragmentation, the mechanism of inducing cuts
L. Lindenmayer, appears in the name of all developmental systems

23

N. nonerasing morphism, image under such a morphism
O. actually number 0 but often read as the letter, information 0-sided no inter-
action, rewriting context-free
P. propagating, no cell death, empty word never on the right-hand side of a rule
T. tables, sets of rules, diversification of developmental instructions
U. unary, alphabet consisting of one letter
W. weak coding, a morphism mapping each letter to a letter or the empty word,
image under such a morphism

3 Sample L techniques: avoiding cell death if

possible

It is clear that, due to space restrictions, we are only able to state results, not
to give proofs or even outline proofs. The purpose of this section is to give some
scattered samples of the techniques used. The study of L systems has brought
many new methods, both for general language theory and for applications to
modeling, notably in computer graphics. Therefore, we feel it proper to include
some examples of the methods also in this Handbook. For computer graphics,
we refer to the contribution of P.Prusinkiewicz in this Handbook.

A very tricky problem, both from the point of view of the theory and the
phenomenon modeled, is cell death. Are rules of the form a −→ λ really nec-
essary? Here you have to be very specific. Consider the D0L system DEATHb

defined in subsection 2.1. We observed that S(DEATHb) cannot be generated
by any PD0L system. In this sense cell death is necessary. However, the situa-
tion is different if we are interested only in the sequence of word lengths. The
very simple PD0L system with the axiom a4 and the rule a −→ a2 possesses
the same growth function as DEATHb.

In general, the growth function of every PD0L system is monotonously in-
creasing. There can be no decrease in word length, because in a PD0L system
every letter produces at least one letter. Assume that you have a monotonously
strictly increasing D0L growth function f , that is, f(n) < f(n + 1) holds for all
n. Can such an f always be generated by a PD0L system? It is quite surprising
that the answer is negative, [K3]. There are monotonously strictly increasing
D0L growth functions that cannot be generated by any PD0L system. For some
types of D0L growth cell death is necessary, although it cannot be observed
from the length sequence.

If one wants to construct a D0L-type model without cell death, one has to pay
some price. The productions a −→ λ certainly add to the generative capacity
and cannot be omitted without compensation. The amount of the price depends
on what features one wishes to preserve. We are now interested in languages.
We want to preserve the language of the system but omit productions a −→ λ.

24

We can achieve this by taking finitely many axioms and images under codings,
that is, letter-to-letter morphisms. In other words, the C- and F-features are
together able to compensate the effect of the productions a −→ λ. If we add C
and F to the name of the system, we may also add P. Specifically, we want to
prove that

(*) D0L ⊆ CPDF0L.
The inclusion

CD0L ⊆ CPDF0L

is an immediate consequence of (*). (In fact, since the composition of two cod-
ings is again a coding, we can essentially multiply (*) from the left by C.) More-
over, (*) is an important building block in establishing the hierarchy presented
in Theorem 2.3, in particular, in showing the high position of some P-families.
The earliest (but very compactly written) proof of (*) appears in [NRSS].

We now begin the proof of (*). Let

G = (Σ, h, w0)

be a given D0L system. We have to show that L = L(G) is a CPDF0L language,
that is, L is a letter-to-letter morphic image of a language generated by a PD0L
system with finitely many axioms. This is obvious if L is finite. In this case
we take L itself to be the finite axiom set of our PDF0L system. The identity
rule a −→ a will be the only rule for every letter, and the coding morphism
is the identity as well. If L contains the empty word λ, then L is necessarily
finite. This follows because, whenever λ appears in the sequence, no non-empty
word can appear in the sequence afterwards. This observation implies that,
for the proof of (*), it is not necessary to make the λ-convention considered
in connection with Theorem 2.3. If the empty word appears in the given D0L
language, it can be taken as an axiom of the PDF0L system.

Thus, from now on we assume that the given D0L language L = L(G) is
infinite. We use our customary notation wi, i ≥ 0, for the sequence S(G).
Our argumentation will make use of periodicities in S(G), already mentioned in
Theorem 2.1 (However, we will not make use of Theorem 2.1, our argumentation
will be self-contained.) We will first illustrate periodicities by a simple case
needed only for a minor detail. Consider the minimal alphabets of the words
wi,

Σi = alph(wi), i ≥ 0.

Each Σi is a subset of the finite set Σ. Hence, there are only finitely many
alphabets Σi and, consequently, numbers q ≥ 0 and p ≥ 1 such that Σq =
Σq+p. (We may take q to be the smallest number such that Σq occurs later
and p the smallest number such that Σq = Σq+p. This choice defines q and p
unambiguously.)

We now use the obvious fact that

25

alph(w) = alph(w′) implies alph(h(w)) = alph(h(w′)),

for all words w and w′. Consequently, Σq+1 = Σq+p+1 and, in general,

Σq+i = Σq+p+i, for all i ≥ 0.

Thus, the alphabets form the ultimately periodic sequence

Σ0, . . . , Σq−1,
︸ ︷︷ ︸

initial mess

Σq, . . . , Σq+p−1,
︸ ︷︷ ︸

period

Σq, . . . , Σq+p−1, . . .

From the point of view of a developmental model, we can visualize this as follows.
In the early history, there may be some primaeval cell types which vanish and
never come back again. Strange phenomena are possible, for instance, one can
have in the words of the initial mess any length sequence of positive integers one
wants just by using sufficiently many cell types (letters). After the early history,
p different phenomena have been merged together. (The merged phenomena
should not be too different, for instance, the growth order of the p subsequences
must be the same. Section 5 explains this further.)

The following example might illustrate the situation. Consider the PD0L
system with the axiom d1d

4
2 and productions

d1 −→ d3d
2
4, d2 −→ d4, d3 −→ ad, d4 −→ λ,

a −→ a1, b −→ b1, c −→ c1, d −→ d,
a1 −→ abc2, b1 −→ bc2, c1 −→ c.

The beginning of the word sequence is

d1d
4
2, d3d

6
4, ad, a1d, abc2d, a1b1c

2
1d,

abc2bc4d, a1b1c
2
1b1c

4
1d, abc2bc4bc6d, . . . ,

the corresponding part of the length sequence being

5, 7, 2, 2, 5, 5, 10, 10, 17,

In this case the lengths of the initial mess and period are: q = 4, p = 2. The
reader might have already noticed that our old friend SQUARES is lurking in
this D0L system and, consequently, the growth functon satisfies

f(0) = 5, f(1) = 7, f(2i) = f(2i + 1) = i2 + 1, for i ≥ 1.

The initial mess is used to generate two exceptional values initially, and the
period of length 2 serves the purpose of creating an idle step after each new
square has been produced.

We now go back to the proof of (*), considering again the D0L system
G = (Σ, h, w0) generating an infinite language L = L(G). For each a ∈ Σ,

26

we denote by ua
i , i ≥ 0, the word sequence of the D0L system with the axiom

a and morphism h. Thus, ua
i = hi(a). We divide Σ into two disjoint parts,

Σ = Σfin ∪ Σinf by defining

Σfin = {a ∈ Σ| {ua
i | i ≥ 0} is finite }, Σinf = Σ \ Σfin.

The set Σfin consists of those letters that generate a finite language. In other
words, the sequence ua

i , i ≥ 0, is ultimately periodic, with the period pa and

threshold qa. Of course, the letters a with the rule a −→ λ are in Σfin. Since

the language L is infinite, the set Σinf must be nonempty.
We now choose a uniform period P satisfying

ua
P = ua

iP
, for all i ≥ 0 and a ∈ Σfin.

Conditions sufficient for such a choice are that P exceeds all thresholds qa and
is divisible by all periods pa, a rude estimate for P followed in [NRSS] is to
take the product of all periods and thresholds. Further, let M be the maximum
length of any word derived in G in P steps from a single letter:

M = max {|ua
P | | a ∈ Σ}.

Our true period will be a multiple of P , PQ. Specifically, Q ≥ 2 is an integer
such that

|ua
P (Q+1)| > M, for all a ∈ Σinf.

Observe that by definition all sequences {ua
i }, a ∈ Σinf, contain arbitrarily

long words. However, also length decrease occurs in the sequences. It might
look questionable that we can find a number Q as required. Since D0L sequences
are full of surprises, let us prove this in detail. We prove a somewhat stronger
statement which is of interest also on its own: For any D0L sequence {vi}
containing infinitely many different words and any number t, there is a bound
i0 such that

|vi| > t whenever i ≥ i0.

This claim follows by considering the sequence of the minimal alphabets of the
words vi. As seen above, this sequence is ultimately periodic, with period p and
threshold q. Each of the D0L sequences

{v̄k
i = vip+q+k| i ≥ 0}, 0 ≤ k < p

is conservative, that is, the minimal alphabet of all words in the sequence is the
same. The morphism defining these sequences is the pth power of the original
morphism. This means that all p sequences {v̄k

i } are monotonously length-
increasing. Thus, to exceed the length t, we only have to watch that the word
length in each of the p sequences, merged together to obtain {vi}, exceeds t.

27

Intuitively, the statement just established says that there is some over-all growth
in the sequence because all of the subsequences are growing.

There are three key ideas in the following formal proof. (i) The effect of the
λ-rules can be eliminated in long enough derivation steps. The new productions
will simulate steps of length PQ in G. This means that we must have PQ
starting points. But this will be no problem because we have the F-feature
available. Our first new system G′ may still have λ-rules but they can be
applied to the axioms only. Thus, a straightforward modification of augmenting
the axiom set by words derivable in one step in G gives a second new system G′′

without λ-rules. (ii) Each letter develops according to G in the same way in a
specific number of steps, quite independently of the location of the steps. Our
simulation uses the interchange between the steps from 0 to PQ and from P to
P (Q+1). (iii) In our new system G′ an occurrence of a letter, say b, is replaced
by information concerning where this particular b comes from P steps earlier
in G. The letter b has a definite ancestor on each preceding level. Say c is the
ancestor P steps earlier. We cannot recover b if we know only c. However, c
generates at most M (occurrences of) letters in P steps. Hence, we should also
tell the number i, 1 ≤ i ≤ M , indicating that the particular occurrence of b is
the ith letter (counting from left to right) generated by c in P steps. Altogether
b is replaced by the pair (c, i); the alphabet of G′ includes pairs of this form.
The letter b is recovered for the final language by the coding g:

g((c, i)) = b.

The procedure enables us to get one “free” step (of length P) in the derivations.
The situation can be depicted as follows:

past c
P steps Replace b by (c, i);

in G Coding back:
g((c, i)) = b

present
︸︷︷︸

i−1 letters

b

We are now ready for the formal details. Define first a DF0L system G′.
The alphabet is

Σ ∪ Σplace, where Σplace = Σ × {1, 2, . . . , M}.

Thus, letters of Σplace are pairs (a, i), where a ∈ Σ and 1 ≤ i ≤ M . The axiom

set of G′ is {wi| 0 ≤ i < PQ}. (The words wi are from the sequence of the
original G.) For each a ∈ Σ, the right-hand side of its rule in G′ is a word over
Σplace, obtained from ua

PQ by replacing any occurrence of a letter, say b, with

the letter (c, i) ∈ Σplace iff the particular b is the ith letter (from left to right)

28

generated, in P steps, from an occurrence of the letter c in ua
P (Q−1). If ua

PQ = λ

then a −→ λ is the production for a in G′.
To complete the definition of G′, we still have to define the rules for the

letters of Σplace. Each right-hand side will be a nonempty word over Σplace.

Consider first a letter (a, i) for which i < |ua
P |. The rule is (a, i) −→ (b, j) iff the

ith letter of ua
P (Q+1) is derived as the jth letter from an occurrence of the letter

b in ua
PQ. Consider next the letter (a, |ua

P |). The right-hand side of its rule is
the following nonempty (by the definition of Q) word over Σplace of length

|ua
P (Q+1)| − |ua

P | + 1.

The ith letter in this word is defined as the letter (b, j) for which the (|ua
P |−1+

i)th letter of ua
P (Q+1) is derived as the jth letter from an occurrence of the letter

b in ua
PQ. (The letters (a, i) with |ua

P | < i ≤ M are useless in the sense that
they never occur in L(G′). We may take the identity production (a, i) −→ (a, i)
for such letters. It is also irrelevant how the coding g is defined for such letters.)

We now define the letter-to-letter morphism g as follows:
If a ∈ Σ then g(a) = a,
If (a, i) ∈ Σplace and 1 ≤ i ≤ |ua

P | then g((a, i)) equals the ith letter of ua
P .

It now follows by our construction that g(L(G′)) = L(G). The explanations
given before the construction should be helpful in establishing this fact. G′ is a
DF0L system surely having λ-rules if G has them. However, the λ-rules of G′

can be applied only to the axioms. After the first derivation step λ-rules are no
longer applicable because all words are over the alphabet Σplace for which all

rules are propagating. Let w′
i, 0 ≤ i < PQ, be the word derived in G′ from wi

in one step.
We now transform G′ to a PDF0L system G′′ by augmenting the axiom set

of G′ with the set {w′
i| 0 ≤ i < PQ} and replacing the rules of G′ for letters

a ∈ Σ by the identity rules a −→ a. In this way all λ-rules are removed. The
effect of the rules of G′ for letters of Σ, that is, the introduction of the letters
in Σplace is in G′′ taken care of by the additional axioms w′

i, 0 ≤ i < PQ. The

original axioms of G′ generate themselves in G′′. Thus, the PDF0L system G′′

satisfies L(G′′) = L(G′). We may use the coding g defined above to obtain the
final result

L = L(G) = g(L(G′′)).

This shows that L is a CPDF0L language, which completes the proof of (*). 2

The construction presented above is quite complicated. This is understand-
able because the result itself is perhaps the most sophisticated one about the
elimination of λ-rules in the theory of L-systems. The analogous construction
is much simpler, [SS], if one only wants to preserve length sequences, not the
language, as we have preserved.

We mention finally that, to eliminate λ-rules, we need both of the features
C and F. It is seen from Theorem 2.3 that neither the family CPD0L nor the

29

family PDF0L contains the family D0L.

4 L decisions

4.1 General. Sequences versus languages

We will now present results concerning decision problems in the theory of L
systems. This is a rich area – our overview will be focused on the celebrated D0L
equivalence problem and variations. More information is contained especially in
[CK2] and [RS3]. We will begin with a general overview.

Customary decision problems investigated in language theory are the mem-
bership, emptiness, finiteness, equivalence and inclusion problems. The prob-
lems are stated for a specific language family, sometimes in a comparative sense
between two families, [S4]. When we say that the equivalence problem between
0L and D0L languages is decidable, this means the existence of an algorithm
that receives as its input a pair (G, G′) consisting of a 0L and a D0L system
and tells whether or not L(G) = L(G′). “Equivalence” without further specifi-
cations always refers to language equivalence, in case of deterministic systems
we also speak of sequence equivalence. Given two language families L and L′,
we also speak of the L′ -ness problem for L, for instance, of the D0L-ness (resp.
regularity) problem for 0L languages. The meaning of this should be clear: we
are looking for an algorithm that decides of a given 0L system G whether or not
L(G) is a D0L language (resp. a regular language).

We now present some basic decidability and undecidability results, dating
mostly already from the early 70’s, see [Li1], [CS1], [La1], [La2], [RS1], [RS3],
[S2], [S5] for further information. It was known already in 1973 that ET0L is
included in the family of indexed languages, for which membership, emptiness
and finiteness were known to be decidable already in the 60’s. For many sub-
families of ET0L (recall that ET0L is the largest L family without interactions)
much simpler direct algorithms have been developed.

Theorem 4.1. Membership, emptiness and finiteness are decidable for
ET0L languages, and so are the regularity and context-freeness problem for
D0L languages and the D0L-ness problem for context-free languages. Also the
equivalence problem between D0L and context-free languages is decidable, and
so is the problem of whether or not an E0L language is included in a regular
language. 2

Theorem 4.2. The equivalence problem is undecidable for P0L languages
and so are the context-freeness, regularity and 0L-ness problems for E0L lan-
guages. 2

Because even simple subfamilies of IL contain nonrecursive languages (for
instance, the family D1L), it is to be expected that most problems are undecid-
able for the L families with interactions. For instance, language and sequence
equivalence are undecidable for PD1L systems.

30

For systems without interactions, many undecidable problems become de-
cidable in the case of a one-letter alphabet. Decision problems can be reduced
to arithmetical ones in the unary case. Sample results are given in the following
theorem, [La1], [La2], [S2]. TU0L and U0L are written briefly TUL and UL.

Theorem 4.3. The equivalence problem between TUL and UL languages,
as well as the equivalence problem between TUL languages and regular lan-
guages are decidable. the regularity and UL-ness problems are decidable for
TUL languages, and so is the TUL-ness problem for regular languages. 2

The cardinality dG(n) of the language generated by an L system G using
exactly n derivation steps has given rise to many decision problems. The earliest
result is due to [Da1], where the undecidability of the equation dG1

(n) = dG2
(n)

for two DT0L systems is shown. The undecidability holds for 0L systems as well.
However, it is decidable, [Ni], whether or not a given 0L system G is derivation-
slender, that is, there is a constant c such that dG(n) ≤ c holds for all n. All
derivation-slender 0L languages are slender in the sense that there is a constant
k such that the language has at most k words of any given length, [NiS]. The
converse does not hold true: the language {biabi| i ≥ 0}∪ {b2i+1| i ≥ 0} is a
slender 0L language not generated by any derivation-slender 0L system. Further
results concerning slender 0L languages are presented in [NiS]. However, at the
time of this writing, the general problem of deciding the slenderness of a given
0L language remains open.

We now go into different variations of D0L equivalence problems, this dis-
cussion will be continued in the next subsection. This problem area has given
rise to many important new notions and techniques, of interest far beyond the
theory of L systems. We denote briefly by LE-D0L and SE-D0L the language
and sequence equivalence problems of D0L systems. It was known already in
the early 70’s, [N], that the two problems are “equivalent” in the sense that
any algorithm for solving one of them can be transformed into an algorithm for
solving the other. We will now prove this result. Our proof follows [S6] and is
another illustration of the techniques used in L proofs.

Theorem 4.4. SE-D0L and LE-D0L are equivalent.
Proof from LE-D0L to SE-D0L.
We show how any algorithm for solving LE-D0L can be used to solve SE-

D0L. Given two D0L systems

G = (Σ, g, u0) and H = (Σ, h, v0),

we define two new D0L systems

Gb = (Σ ∪ {b}, gb, bu0), Hb = (Σ ∪ {b}, hb, bv0), b 6∈ Σ,

where gb(b) = hb(b) = b2, and gb(a) = g(a), hb(a) = h(a), for all a ∈ Σ. Clearly,
S(G) = S(H) iff L(Gb) = L(Hb). 2

Proof from SE-D0L to LE-D0L.

31

We assume without loss of generality that the given languages L(G) and
L(H) are infinite. Their finiteness is easily decidable and so is their equality
if one of them is finite. The tools we will be using are decompositions of D0L
systems and Parikh vectors. Decompositions refer to periodicities already dis-
cussed in Subsection 3.1 above. Given a D0L system G = (Σ, g, u0) and integers
p ≥ 1, q ≥ 0 (period and initial mess), we define the D0L system

G(p, q) = (Σ, gp, gq(u0)).

The sequence S(G(p, q)) is obtained from S(G) by taking every pth word after
the initial mess.

For w ∈ Σ∗, the Parikh vector Ψ(w) is a card(Σ)-dimensional vector of non-
negative integers whose components indicate the number of occurrences of each
letter in w. For two words w and w′, the notation w ≤p w′ (resp. w <p w′)
means that the Parikh vectors satisfy Ψ(w) ≤ Ψ(w′) (resp. Ψ(w) < Ψ(w′)).
(The ordering of vectors is taken componentwise, two vectors can be incompa-
rable.)

We use customary notations for the given D0L systems:

G = (Σ, g, u0), H = (Σ, h, v0).

(We may assume that the alphabets coincide.) The notation wi refers to words
in one of the two D0L sequences ui and vi we are considering. We omit the
proofs of the following properties (i) – (iv). They are straightforward, apart
from (iv) which depends on the theory of growth functions discussed in the
following section.

(i) There are words such that wi <p wj .
(ii) We cannot have both i < j and wj ≤p wi.
(iii) Whenever wi <p wj , then wi+n <p wj+n for all n.
(iv) Assume that xi and yi, i ≥ 0, are D0L sequences over an alphabet with

n letters such that Ψ(xi) = Ψ(yi), 0 ≤ i ≤ n. Then Ψ(xi) = Ψ(yi) for all i. (We
call xi and yi Parikh equivalent.)

We now give an algorithm for deciding whether or not L(G) = L(H). The
algorithm uses a parameter m (intuitively, the length of the discarded initial
mess). Originally we set m = 0.

Step 1. Find the smallest integer q1 > m for which there exists an integer p
such that

uq1−p <p uq1
, 1 ≤ p ≤ q1 − m.

Let p1 be the smallest among such integers p. Determine in the same way
integers q2 and p2 for the system H(1, m). (Step 1 can be accomplished by
property (i).)

Step 2. If the two finite languages

{ui| m ≤ i < q1} and {vi| m ≤ i < q2}

32

are different, stop with the conclusion L(G) 6= L(H). (Otherwise, q1 = q2.)
Step 3. Apply the algorithm for SE-DOL. Check whether or not p1 = p2

and there is a permutation Π of the set of indices {0, 1, . . . , p1 − 1} such that

S(G(p1, q1 + j)) = S(H(p1, q1 + Π(j))), for all j = 0, . . . , p1 − 1.

If “yes”, stop with the conclusion L(G) = L(H). If “no”, take q1 as the new
value of m and go back to Step 1.

Having completed the definition of the algorithm, we establish its correctness
and termination.

Correctness. We show first that the conclusion in Step 2 is correct. When
entering Step 2, we must have {ui| i < m} = {vi| i < m}. Indeed, this holds
vacuously for m = 0, from which the claim follows inductively. If some word
w belongs to the first and not to the second of the finite languages in Step 2
and still L(G) = L(H), then w = vi for some i ≥ q2. (We cannot have i < m
because then w would occur twice in the u-sequence.) By (iii), for some j ≥ m,
vj <p w. By the choice of q1 and (ii), vj 6∈ L(G), which is a contradiction.

Also the conclusion in Step 3 is correct. When entering Step 3, we know
that

{ui| 0 ≤ i < q1} = {vi| 0 ≤ i < q1}.

The test performed in Step 3 shows that also

{ui| i ≥ q1} = {vi| i ≥ q1}.

Termination. If L(G) 6= L(H), a word belonging to the difference of the two
languages is eventually detected in Step 2 because the parameter m becomes
arbitrarily large. Assuming that L(G) = L(H), we show that the equality is
detected during some visit to Step 3. It follows by property (iii) that neither
p1 nor p2 is increased during successive visits to Step 1. Thus, we only have to
show that the procedure cannot loop by producing always the same pair (p1, p2).
If n is the cardinality of the alphabet, there cannot be n + 2 such consecutive
visits to Step 1.

Assume the contrary: the same pair (p1, p2) is defined at n + 2 consecutive
visits. We must have p1 = p2. Otherwise, the larger of the two numbers has
to be decreased at the next visit to Step 1, because of property (iii) and the
fact that Step 2 was passed after the preceding visit. The same argument shows
that p1 must assume the maximal value q1 − m. If m is the initial mess at the
first of our n + 2 visits, the sequences S(G) and S(H) contain n + 1 segments
of length p1, beginning with um and vm, such that each segment in S(H) is a
permutation of the corresponding segment in S(G). Moreover, it is always the
same permutation because otherwise, by property (iii), the value of p1 will be
decreased at the next visit to Step 1. This implies, by property (iv), that for
some permutation Π and all j = 0, . . . , p1 − 1, the sequences

S(G(p1, m + j)) and S(H(p1, m + Π(j)))

33

are Parikh equivalent. Since termination did not occur in Step 3, there is a j
such that the two sequences are not equivalent. Thus, for some u ∈ L(G) and
v ∈ L(H), we have Ψ(u) = Ψ(v) but u 6= v. Since L(G) = L(H), we have
also v ∈ L(G). Hence, S(G) has two words with the same Parikh vector, which
contradicts property (ii). 2

4.2 D0L sequence equivalence problem and variations

The decidability of SE-D0L was first shown in [CF]. A much simpler proof based
on elementary morphisms, [ER2], was given in [ER3], a detailed exposition of it
appears in [RS1]. Our argument below follows [CK2] and uses two results, the
correctness of the so-called Ehrenfeucht Conjecture and Makanin’s Algorithm.
We refer the reader to [RS1] and [CK2] for further information concerning the
history of SE-D0L and related problems.

SE-D0L has given rise to many important new notions that have been used
widely in language theory: morphic equivalence, morphic forcing, test set, ele-
mentary morphism, bounded balance, equality set. All these notions are related
to the problem of studying the equation g(x) = h(x) for a word x and morphisms
g and h.

We say that the morphisms g and h defined on Σ are equivalent on a language
L ⊆ Σ∗, in symbols g ≡L h, iff g(x) = h(x) holds for all x ∈ L. The morphic
equivalence problem for a family L of languages, [CS1], consists of deciding, given
a language L in L and morphisms g and h, whether or not g ≡L h. Observe
that SE-D0L is a special case of the morphic equivalence problem for the family
of D0L languages: two D0L systems G and H with morphisms g and h are
sequence equivalent iff g and h are equivalent on L(G) (or on L(H)). So we
have the special case where L(G) is generated by one of the morphisms whose
equivalence on L(G) is to be tested.

Let us go back to the morphic equivalence problem. It would be desirable
to have a finite set F ⊆ L such that, to test g ≡L h, it suffices to test g ≡F h.
Formally, we say that a language L is morphically forced by its subset L1 iff,
whenever two morphisms are equivalent on L1, they are equivalent on L. A
finite subset F of a language L is termed a test set for L iff L is morphically
forced by F . The Ehrenfeucht Conjecture claims that every language possesses
a test set. It was shown correct in the middle 80’s. [AL] is usually quoted as
the first proof but there were several independent ones about the same time –
see [CK2], [RS3] for details.

The notion of an equality set occurs at least implicitly in earlier algorithms
for SE-D0L, [CF], [ER3]. The equality set (also called equality language) of two
morphisms is defined by

E(g, h) = {x ∈ Σ∗| g(x) = h(x)}.

SE-D0L amounts to deciding whether or not one of the languages, say L(G),
is contained in E(g, h). This again amounts to deciding the emptines of the

34

intersection between L(G) and the complement of E(g, h). If E(g, h) is regular
(implying that also its complement is regular), the latter problem becomes de-
cidable because D0L is contained in E0L for which the emptiness is decidable,
and E0L is closed under intersection with regular languages. Therefore, one
should aim towards the case that E(g, h) is actually regular. This situation was
reached in the proof of [ER3] by using elementary morphisms. Essentially, a
morphism being elementary means that it cannot be “simplified” by presenting
it as a composition going via a smaller alphabet, [ER2].

Assume that the morphisms g and h are equivalent on L. We say that the
pair (g, h) has a bounded balance on L iff there is a constant C such that

||g(x)| − |h(x)|| ≤ C

holds for all prefixes x of words in L. (We know that g(w) = h(w) holds for
words w ∈ L. Therefore, if x is a prefix of w, then one of g(x) and h(x) is a prefix
of the other. Having bounded balance means that the amount by which one of
the morphisms “runs faster” is bounded by a constant.) For testing morphic
equivalence, the property of having bounded balance gives the possibility of
storing all necessary information in a finite buffer. Thus, the situation is similar
to the equality set being regular.

Consider two disjoint alphabets Σ and N (N is the alphabet of nonterminals
or variables). An equation over Σ with unknowns in N is a pair (u, v), usually
written u = v, where u and v are words over Σ ∪N . A set T (possibly infinite)
of equations is referred to as a system of equations. A solution to a system T
is a morphism h : (Σ ∪ N)∗ −→ Σ∗ such that h(u) = h(v), for all (u, v) ∈ T ,
and h(a) = a for all a ∈ Σ. Thus, solutions can be viewed as card(N)-tuples of
words over Σ. For instance, the morphism defined by

x −→ a, y −→ ba, z −→ ab

is a solution of the equation xy = zx over {a, b}. This solution can also be
represented as the triple (a, ba, ab).

Makanin, [Ma], has presented an algorithm for deciding whether or not a
given finite system of equations possesses a solution. It is shown in [CK1] how
any such algorithm can be extended to concern finite systems of equations and
inequalities u 6= v. From this follows easily the decidability of the equivalence
problem for two finite systems of equations, that is, whether or not the systems
have the same sets of solutions. This, in turn, leads directly to the decidability
of the problem whether or not a subset of a finite language F is a test set for
F . We are now ready to establish the following main result.

Theorem 4.5. The morphic equivalence problem is decidable for D0L lan-
guages. Consequently, SE-D0L is decidable.

Proof. Because the Ehrenfeucht Conjecture is correct, we know that the
language L(G) generated by a given D0L system G = (Σ, h, w0) possesses a test

35

set F . We only have to find F effectively. Define the finite languages Li, i ≥ 0,
by

L0 = {w0}, Li+1 = Li ∪ h(Li).

We now determine an integer i0 such that Li0 is a test set for Li0+1. Such an
integer surely exists because eventually the whole F is contained in some Li.
The integer i0 can be found because we can decide whether a subset of a finite
language is a test set. We claim that Li0 is a test set for L(G), which completes
the proof. Indeed, since Li0 is a test set for Li0+1, also Li0+1 \ {w0} is a test
set for Li0+2 \ {w}. (Obviously, whenever F ′ is a test set for L′, then h(F ′) is
a test set for h(L′).) Consequently, Li0+1 is a test set for Li0+2. Since “being a
test set for” is obviously transitive, we conclude that Li0 is a test set for Li0+2,
from which our claim follows inductively. 2

If the alphabet consists of two letters, it suffices to test the first four words
in the given D0L sequences in order to decide sequence equivalence. This result
is optimal, as shown by the example

w0 = ab, g(a) = abbaabb, g(b) = a, h(a) = abb, h(b) = aabba.

This has given rise to the 2n-conjecture: in order to decide SE-D0L, it suffices
to test the first 2n words in the sequences, where n is the cardinality of the
alphabet. No counterexamples to this conjecture have been found, although the
only known bound of this kind is really huge, [ER4].

Theorems 4.4 and 4.5 yield immediately
Theorem 4.6. LE-D0L is decidable.
We are able to establish now also the following very strong result.
Theorem 4.7. The HD0L sequence equivalence problem is decidable.
Proof. Without loss of generality, we assume that the two given HD0L

systems are defined by the morphisms f1 and f2 and D0L systems H = (Σ, h, w0)
and G = (Σ, g, w0), respectively. We consider a “barred copy” Σ of the alphabet
Σ: Σ = {a| a ∈ Σ}. The “barred version” w of a word w ∈ Σ∗ is obtained
by barring each letter. We define three new morphisms, using the descriptive
notations f1, f2 and h ∪ g, as follows:

f1(a) = f1(a), f2(a) = λ, (h ∪ g)(a) = h(a) for a ∈ Σ,

f1(a) = λ, f2(a) = f2(a), (h ∪ g)(a) = g(a) for a ∈ Σ.

Clearly, the original HD0L sequences are equivalent iff the morphisms f1 and f2

are equivalent on the D0L language defined by the morphism h ∪ g and axiom
w0w0. Thus, Theorem 4.7 follows by Theorem 4.5. 2

The decidability of the HD0L sequence equivalence is a very nontrivial gen-
eralization of the decidability of SE-D0L. For instance, no techniques based on
bounded balance can be used because two morphisms may be equivalent on a
D0L language L without having bounded balance on L. Our simple argument
for Theorems 4.5 and 4.7 is no miraculous “deus ex machina”. Two very strong

36

tools (Ehrenfeucht and Makanin) have been used. (We want to mention in this
connection that, in spite of their efforts, the editors failed in including in this
Handbook a reasonably detailed exposition of Makanin’s theory.) For a class-
room proof, where all tools are developed from the beginning, the proof based
on elementary morphisms, presented in [RS1] or [S5], is still to be recommended.

Some related results are collected in our last theorem. See also [CK2], [Ru2],
[Ru3], [Ru4].

Theorem 4.8. The morphic equivalence is decidable for HDT0L languages,
and so is the equivalence between D0L and F0L and between D0L and DT0L,
as well as the inclusion problem for D0L. The equivalence is undecidable for
DT0L, and so is the PD1L sequence equivalence. 2

5 L Growth

5.1 Communication and commutativity

This section will discuss growth functions associated to sequences generated by
L systems. The theory will be presented in an unconventional way, as a dis-
cussion between a mathematician, a language theorist and a wise layman. We
have two reasons for this unconventional approach. First, there already exist
good detailed expositions of the theory in a book form, [SS], [RS1]. In a conven-
tional exposition, we could not do much better here than just repeat, even in a
condensed form, what has been already said in [SS] or [RS1]. Secondly, growth
functions require considerably more factual knowledge in mathematics than do
other parts of the L system theory. Since L systems in general are of inter-
est to a wide audience not otherwise working with mathematics, conventional
mathematical formulation might scare away many of the readers of this chapter.
While we are convinced that this is less likely to happen with our exposition
below, we also hope that our presentation will open new perspectives also for a
mathematically initiated reader.

Dramatis personae

Bolgani, a formal language theorist,
Emmy, a pure mathematician,
Tarzan, a lonesome traveller.

Emmy. I often wonder why we mathematicians always write texts incom-
prehensible practically to everybody. Of course every science has its own ter-
minology and idioms, but our pages laden with ugly-looking formulas are still
different. I have the feeling that in many cases the same message could be
conveyed much more efficiently using less Chinese-resembling text.

Bolgani. Just think how Fermat got his message across, in a passage that
has influenced the development of modern mathematics perhaps more than any
passage of comparable length. Cubum autem in duos cubos, aut quadratoquadra-

37

tum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadra-
tum potestatem in duos ejusdem nominis fas est dividere: cujus rei demonstra-
tionem mirabilem sane detexi. Hanc marginis exiguitas non caperet1. Isn’t it
like beautiful poetry? And think of the philosophical implications. That some-
thing is correct is expressed by saying “fas est” – follows the divine law. Not
even the gods among themselves can break mathematical laws.

Emmy. It still remains a problem whether some “demonstratio mirabilis”
exists for Fermat’s Last Theorem. One can hardly imagine that Fermat had in
mind anything even remotely resembling the fancy methods of Andrew Wiles.
But coming back to poetry: the words sound beautiful but one has to know
something in order to appreciate the beauty.

Tarzan. Some basic knowledge is always necessary but in many cases rather
little will suffice. Take a passage from Horace, also with references to divine
activities.Pone me pigris ubi nulla campis arbor aestiva recreatur aura, quod
latus mundi nebulae malusque Juppiter urget. Pone sub curru nimium propinqui
solis, in terra domibus negata: dulce ridentem Lalagen amabo, dulce loquentem2.
Certainly it sings much better than Fermat. But still you have to have some
background in order to fully appreciate it, a mere understanding of the language
is not enough.

Bolgani. I have an idea. Tarzan already read about the basics of L systems.
(This refers to Sections 1 and 2 above.) Let us try to explain to him the theory
of growth functions, using as few formulas as possible. This might open some
interesting perspectives, even if no poetry would come up.

Tarzan. I already know something about the topic. Take, for instance, a
D0L system. It generates a sequence of words. One considers the length of each
word, as a function of the position of the word in the sequence. This function
will be the growth function of our D0L system. One starts counting the positions
from 0, the axiom having the position 0. This means that every growth function
maps the set of nonnegative integers into the same set. Some things are obvious
here. The growth function of a PD0L system is monotonously increasing, not
necessarily strictly increasing at every step, whereas decrease is possible in the
D0L case. Whenever 0 appears as a value of a D0L growth function, then
all values afterwards, that is values for greater arguments, are also equal to 0.
Whenever we have the empty word in the sequence, then only the empty word
appears afterwards. Once dead, always dead. No resurrection is possible in this
model of life, be it real or artificial. However, this is the only restriction I have.

1“It is improper (by divine right) to divide a cube into two cubes, a fourth power into
two fourth powers and, generally, any power beyond a square into two powers with the same
exponent as the original. I really found a miraculous proof for this fact. However, the margin
is too small to contain it.”

2“Place me where never summer breeze/ Unbinds the glebe, or warms the trees/ Where
ever-lowering clouds appear,/ And angry Jove deforms th’inclement year:// Place me beneath
the burning ray,/ Where rolls the rapid car of day;/ Love and the nymph shall charm my
toils,/ The nymph, who sweetly speaks and sweetly smiles.” (Ode XXII, tr. by P.Francis
Horace, Vol.I, London, printed by A.J.Valpy, M.A., 1831)

38

If I can take as many letters as I want, I can get the first million, billion or
any number of values exactly as I like: 351, 17, 1934, 1, 1964, 15, 5, 1942,... I
just introduce new letters at every step, getting the lengths as I like. Since my
alphabet is altogether finite, at some stage there will be repetitions of letters
and, accordingly, patterns in the growth sequence. The over-all growth cannot
be more than exponential. The length of the ith word is bounded from above
by ci+1, where the constant c equals the maximum of the lengths of the axiom
and any right-hand side of the rules. This bound is valid for DIL systems as
well.

Bolgani. We are dealing here with issues concerning communication and
commutativity. I think we have already agreed that we can communicate with
each other in a less formal manner – even about technically complicated topics.
Commutativity is the key to D0L growth functions. It also opens the possibility
of using strong mathematical tools. Why do we have commutativity? Because
the order of letters is completely irrelevant from the point of view of growth.
We only have to keep track of the number of occurrences of each letter or, as the
saying goes, of the Parikh vector of the word. Only the number is significant,
we can commute the letters as we like. But we have to know the Parikh vector,
it is not sufficient to know the total length of the word. Two different letters
may grow very differently.

Emmy. All information we need can be stored in the growth matrix of
the D0L system. It is a square matrix, with nonnegative integer entries and
dimension equal to the cardinality of the alphabet, say n. We have a fixed
ordering of the letters in mind, and the rows and columns of the matrix are
associated to the letters according to this ordering. The third entry in the
second row indicates how many times the third letter occurs on the right side of
the rule for the second letter. In this way the matrix gives all the information
we need for studying growth.

Take our old friend SQUARES as an example. The rules were a −→ abc2,
b −→ bc2, c −→ c. The growth matrix is, accordingly,





1 1 2
0 1 2
0 0 1





See that? The first entry in the second row is 0, because there are no a’s on
the right side of the rule for b. To complete the information, we still need the
Parikh vector of the axiom. In this case it is Π = (1, 0, 0) since the axiom is a.

So far we have been able to store the information in matrix form. We now
come to the point which makes the play with matrices really worthwhile. One
derivation step amounts to multiplication by the growth matrix if we are only
interested in the length sequence. This is a direct consequence of the rule for
matrix multiplication. Let us go back to SQUARES and take the word abc2bc4 in
the sequence, two steps after the axiom. Its Parikh vector is (1, 2, 6). Compute

39

the matrix product (1, 2, 6)M . It is another Parikh vector, obtained as follows.
You take a column of M , multiply its entries by the corresponding entry of
(1, 2, 6), and sum up the products. If your chosen column is the first one, this
gives the result 1 · 1+ 2 · 0+ 6 · 0 = 1, and 1 · 1+ 2 · 1+ 6 · 0 = 3 and 1 · 2+
2 ·2+ 6 ·1 = 12 in the other two cases. Altogether we get the new Parikh vector
(1, 3, 12). What does, for instance, the last entry tell us? The third column





2
2
1





indicates how many c’s each of the letters a, b, c produces. The numbers of
occurrences of the letters were 1, 2, 6 to start with. Thus, the last entry 12 =
1 · 2+ 2 · 2+ 6 · 1 tells how many c’s we have after an additional derivation step.
Similarly the entries 1 and 3 tell how many a’s and b’s we have.

There is nothing in our conclusion pertaining to the particular example
SQUARES. We have shown that after i derivation steps we have the Parikh
vector Π M i. (This holds true also for i = 0.) Let η be the n-dimensional
column vector with all components equal to 1. The values f(i) of the growth
function are obtained by summing up the components of the Parikh vector
Π M i,

f(i) = Π M i η, i ≥ 0.

We have derived the basic interconnection with the theory of matrices, and have
now all the classical results available, [MT], [HW].

Tarzan. I know some of them. For instance, the Cayley-Hamilton Theorem
says that every matrix satisfies its own characteristic equation. If we have n
letters in the alphabet, we can express Mn in terms of the smaller powers:

Mn = c1M
n−1 + . . . + cn−1M

1 + cnM0,

in this case with integer constants cj . By the matrix representation for the
growth function, we can use the same formula to express each growth function
value in terms of values for smaller arguments:

f(i + n) = c1f(i + n − 1) + . . . + cnf(i), i ≥ 0.

I see it now quite clearly. I can do my arbitrary tricks at the beginning. But
once the number of steps reaches the size of the alphabet, I am stuck with this
recursion formula.

Bolgani. We will see that many mysteries remain in spite of the formula.
But the formula surely gives rise to certain regularities. For instance, the so-
called “Lemma of Long Constant Intervals”. Assume that f is a D0L growth
function and, for every k, there is an i such that

f(i) = f(i + 1) = . . . = f(i + k).

40

Then f is ultimately constant: there is an i0 such that f(i) = f(i0) for all i ≥ i0.
The matrix representation gives also a very simple method for deciding

growth equivalence: two D0L systems G and G′, with alphabet cardinalities
n and n′, possess the same growth function iff the lengths of the first n + n′

terms are the same in both sequences. The bound is the best possibe. This
algorithm is very simple, both as regards the proof of its validity and as re-
gards the resulting procedure. This striking contrast to the difficulty of the
D0L sequence equivalence problem is again due to commutativity. Consider an
example of language-theoretic interest. Two D0L systems have both the axiom
a. The rules of the first system are a −→ ab3, b −→ b3, and the rules of the
second system:

a −→ acde, b −→ cde, c −→ b2d2, d −→ d3, e −→ bd.

You can verify that the first seven numbers in both length sequences are 1, 4,
13, 40, 121, 364, 1093. Hence, the systems are growth equivalent.

Tarzan. The D0L system DEATHb had the axiom ab2a and the rules a −→
ab2a, b −→ λ. We noticed that cell death is necessary to generate its language.
However, the very simple system with the axiom a4 and rule a −→ a2 is growth
equivalent, and is without cell death. What is really the role of cell death, that
is rules a −→ λ, in D0L growth? Does it consist only of making decreases
possible? What is the difference between D0L and PD0L growth? If I have a
non-decreasing D0L growth function, can I always get the same function using
a PD0L system, perhaps at the cost of taking vastly many new letters?

Emmy. That would be too good to be true. The effects of cell death are
deeper, also from the growth point of view. The answer to your question is
“no”, and we still come to the difference between D0L and PD0L growth. At
the moment, I would like to dwell on more immediate matters.

The interconnection with matrices, in particular the recurssion formula you
are stuck with, open the possibility of using a lot of classical results from the
theory of matrices and difference equations. The values f(i) can be expressed
as “exponential polynomials” in i, that is, finite sums of terms of the form

(α0 + α1i + . . . + αt−1i
t−1)ρi.

Indeed, here ρ is a root, with multiplicity t, of the characteristic equation of M .
Maybe you like an example. Take the system with the axiom abc and the rules

a −→ a2, b −→ a5b, c −→ b3c,

yielding

M =





2 0 0
5 1 0
0 3 1





41

Since the matrix is in lower diagonal form, the roots of the characteristic equa-
tion are seen immediately: 2 and 1 (double). This results in the expression

f(i) = (α0 + α1i) · 1
i + α2 · 2

i

for the growth function. Finally, the coefficients α are determined by considering
the first few values (here first three) in the length sequence. Observe that here
the axiom becomes important – so far we did not use it at all! The final result
is

f(i) = 21 · 2i − 12i − 18.

This solves the growth analysis problem for any system: we can write down
the exponential polynomial representing the growth function of the system.
Although the values f(i) are nonnegative integers, the numbers ρ and α are
complex numbers, sometimes not even expressible by radicals. Since the growth
function is always an exponential polynomial, some growth types can never oc-
cur as D0L growth. D0L growth cannot be logarithmic: whenever the growth
function is not bounded by a constant, the growth is at least linear. Similarly,
nothing faster than exponential or between polynomially bounded and expo-
nential, something like the 2

√
n, is possible.

Bolgani. Such in-between growth orders are possible in the DIL case, [K1].
As Tarzan already observed, super-exponential growth is impossible also in the
DIL case.

Emmy. Still a few things. The theory says a lot also about the converse
problem, growth synthesis. We have in mind a function, obtained experimentally
or otherwise, and we want to construct a D0L system having the function as
its growth function. For instance, we can synthesize any polynomial p(i) with
integer coefficients and assuming integer values for all integers i ≥ 0. (p(i)
may assume negative values for non-integral values of i.) We cannot synthesize
i2 − 4i + 4 because it represents death at i = 2, but i2 − 41 + 5 is OK. It is the
growth function of the D0L system with the axiom a3

1a2a3 and rules

a1 −→ λ, a2 −→ a4, a3 −→ a5, a4 −→ a6, a5 −→ λ,

a6 −→ ad, a −→ abc2, b −→ bc2, c −→ c, d −→ d.

Observe that our old friend SQUARES is lurking in the stomach of this new
D0L creature, where Tarzan’s technique of disposable letters is also visible.

Making use of periodicities, we can also synthesize several polynomials in a
single D0L system. Explicitly, this technique of merging means the following.
Assume that we have some synthesizable polynomials, say p0(i), p1(i), p2(i), of
the same degree. Then we can construct a D0L system whose growth function
satisfies, for all i,

f(3i) = p0(i), f(3i + 1) = p1(i), f(3i + 2) = p2(i).

42

It is essential that the polynomials are of the same degree; in general, the quo-
tient of two mergeable functions should be bounded from above by a constant.

Recall the matrix representation of D0L growth functions, f(i) = Π M i η.
Functions of this form, where M is a square matrix and Π and η are row and
column vectors of the same dimension, all with integer entries, are termed
Z-rational. (This terminology is quite natural, see [SS].) If the entries are
nonnegative integers, the function is termed N-rational. D0L growth functions
are a special case of N-rational functions: it is required that all entries in ρ are
equal to 1. PD0L growth functions are a further special case: it is also required
that every row of M has a positive entry. The part of the matrix theory that
comes into use here is customarily referred to as the Perron-Frobenius theory.

5.2 Merging and stages of death

Bolgani. We now face the challenging task of discussing the differences between
the four classes of functions Emmy just introduced. By definition, the classes
constitute an increasing hierarchy from PD0L growth functions (smallest class)
to Z-rational functions (biggest class). That the inclusions between the classes
are strict is also obvious. N-rational functions cannot assume negative values,
as Z-rational functions clearly can. 0, 1, 1,... is an N-rational but not a D0L
length sequence. Decrease is possible in D0L but not in PD0L length sequences.
Such examples can be viewed as trivial, forced by definitions. However, in each
case we can show the strictness of the inclusion also by a nontrivial example.
Moreover, mathematically very nice characterizations are known for each of the
four classes of functions. Emmy should say more about it, let me just give the
following rough idea.

The difference between Z-rational and N-rational functions stems from the
idea of merging or mergeability. An N-rational sequence can always be obtained
by merging sequences with a “clean dominant term”, whereas this is not nec-
essarily possible for Z-rational sequences. By a “clean dominant term” I mean
that the expression for an individual member of the sequence has a term αikρi,
where α, ρ are constants and k is a nonnegative integer, completely determining
the growth, that is, the member is asymptotically equal to this term. One can
say that the growth order of the term, as a function of its position i, equals ikρi.
As you recall, ρ is a root of the characteristic equation and can in general be a
complex number but is real in a clean dominant term.

The difference between D0L and PD0L growth functions can be said to
happen at the primary stage of death: death affected by the rewriting model
itself. We will see that mathematically this difference amounts again to the
difference between Z-rational and N-rational functions. Finally, the difference
between N-rational and D0L comes from the fact that a secondary stage of death
is possible for the former. Because some entries of the final vector ρ may equal
0, letters can be erased after the actual D0L sequence has been created. We
can also speak of death occurring in the system, contrasted with death caused

43

by outside forces.
Tarzan. I can see the difference between N-rational and D0L very clearly.

The secondary stage of death can be viewed also as the invisibility of some
letters: the letters themselves cannot be seen, although they sometimes produce
visible offsprings. Take the very simple D0L system with the axiom ac and rules

a −→ b, b −→ a, c −→ d2, d −→ c.

Take

η =







1
0
0
1







so only a and d are kept visible. See? In the underlying D0L sequence a and
b alternate, similarly c and d, and the latter also affect exponential growth.
But because of death caused by outside forces, the exponential growth is visible
only at even stages, the length sequence being 1, 2, 1, 4, 1, 8, This is
obtained by merging a constant and an exponential sequence. Only sequences
with the same growth order can be merged in a D0L system. This follows

because clearly f(i+1)
f(i) is bounded from above by a constant, an obvious choice

being the maximal length of the right sides of the rules. It is clear by definition
that N-rational functions coincide with HD0L growth functions. It is also easy
to prove directly that if all entries of η are positive then the N-rational function
is, in fact, a D0L growth function: a D0L system can be constructed by use
of a dummy “filling letter” that takes care of the components of η exceeding 1.
This means that the secondary stage of death, caused by the entries 0 in η, is
really the essential characteristic of N-rational functions, when contrasted with
D0L growth functions. The secondary stage of death can be used to eliminate
the primary stage, HPD0L growth functions are the same as HD0L ones. This
should be easy enough to establish directly; it is of course also a consequence of
the characterization result, Theorem 2.3.

Emmy. Essentially everything has already been said. I still want to elabo-
rate the fundamental issues. Take first the role of N-rational functions among
Z-rational ones; what Bolgani talked about clean dominant terms. As we have
seen, an individual member of a Z-rational sequence can be expressed as an ex-
ponential polynomial. Such an exponential polynomial has a part determining
its growth order: in the asymptotic behavior only this part is significant. This
part is determined by terms itρi, where ρ has the greatest possible modulus and
t is the greatest (for this modulus). Thus, among the roots of the characteris-
tic equation of the growth matrix, we are interested in those with the greatest
modulus. There may be many of them since in general the ρ’s are complex
numbers.

Tarzan. What Bolgani spoke about clean dominant terms means of course
that in the decomposition, in the parts to be merged, the dominant terms are

44

real numbers, implying that the original ρ’s are real numbers multiplied by roots
of unity. This is equivalent to saying that some integral power of ρ is real. I
have seen that the term rational in degrees is used for such ρ’s: the argument
of ρ is a rational multiple of π – now the classical π, not your initial vector!

Emmy. You have seen many things during your trips, also from our fields.
It was shown in [Be] that the phenomenon described by you happens for ρ’s in
the N-rational case, the converse result being due to [So2]. Parts of this theory
go back to Kronecker. What would be an example? Here it is good that you
know some classical analysis. Consider a number α such that

cos 2πα = 3/5, sin 2πα = 4/5.

Then α must be irrational: the imaginary part of (3 + 4i)t is always congruent
to 4 modulo 5. Thus, we have here irrationality in degrees. Along these lines
one can show that, for instance, the function assuming positive values, defined
by

f(2m) = 30m, f(2m + 1) = 25mcos2 2πmα

is Z-rational but not N-rational. It is an interesting detail that Z-rational and
N-rational functions coincide in the polynomially bounded case, [SS].

The difference between Z-rational and N-rational functions turns out to be
decisive also in the characterization of PD0L growth functions among D0L
growth functions, [So1]. For any D0L growth function f(m), the differences
d(m) = f(m+1)− f(m) constitute a Z-rational function. The function f(m) is
a PD0L growth function iff the differences d(m) constitute an N-rational func-
tion. (We exclude here the empty word as the axiom.) This result gives the
possibility of using any Z-rational function g(m) assuming nonnegative values
and being not N-rational to obtain a non-decreasing D0L growth function that
is not a PD0L growth function. The idea is to merge the sequences Rm and
Rm + g(m), where R is a large enough integer. If you do not like the cosine
present in the preceding example, I will give you another, still closely related
example:

f(2m) = 10m, f(2m + 1) = 10m + m · 5m + (3 + 4i)m + (3 − 4i)m.

Thus, although the total size of this D0L creature keeps increasing all the time, it
must have cells which die immediately! This holds independently of the number
of cell types (letters) we are using.

Bolgani. The D0L system of this example has an estimated 200 letters.
You are not likely to find such examples just by playing around with D0L
systems. The method works here in a backward manner. You begin with some
roots ρ, algebraic numbers not rational in degrees. You then construct your
characteristic equation, and then the matrix. When you have expressed the
resulting Z-rational sequence as the difference of two PD0L sequences, you start
to be in business and can work with L systems from that point on. These new

45

aspects have brought with themselves several questions and decision problems
not normally asked and studied in classical mathematics. For instance, how to
decide of a given polynomial equation with integer coefficients whether or not
it has a root outside the unit circle? This information can be used to decide
whether or not growth is exponential.

Emmy. I failed to mention that every Z-rational function can be expressed
as the difference of two PD0L growth functions. This result, with PD0L re-
placed by N-rational, was known already before the theory of L systems, and
the strengthening is an application of the merging techniques, [SS]. We have
clarified just about everything concerning the four classes of functions. We still
have to be explicit about the relation between D0L growth functions and N-

rational functions. Tarzan already observed that f(i+1)
f(i) is bounded from above

by a constant whenever f is a D0L growth function. Also the converse holds:
whenever f is an N-rational function assuming positive values and there is a

constant c such that f(i+1)
f(i) ≤ c holds for all i, then f is a D0L growth function.

The proof of this converse, if presented in detail, is the most involved among the
proofs of the results concerning growth functions we have been talking about.
The most elegant approach is the use of generating functions, originally due to
[KOE] and presented in detail in [RS1]. Another consequence of this converse is
that a finite number of D0L growth functions with the same growth order can
always be merged into one D0L growth function.

Bolgani. Although we have a basic understanding of D0L growth functions,
a lot of open problems still remains. We should still talk about them. D0L
systems have quite amazing features and capabilities behind their very simple
and innocent-looking outer appearance. Let me mention an example.

Recall the Lemma of Long Constant Intervals. If a function stays constant
in arbitrarily long intervals then it must be ultimately constant in order to
qualify as a D0L growth function. A D0L length sequence can stagnate only
for as many consecutive steps as the alphabet size indicates. If we see only
the length sequence, we do not know the alphabet size but we know it must
have some specific size. It is very natural to expect that a statement analogous
to the Lemma of Long Constant Intervals holds true also for intervals, where
the length increases strictly at every step. Indeed, when I was first asked this
question, I felt sure when I gave a positive answer, thinking that it was only
a matter of straightforward matrix calculation to prove the result. But not at
all! The opposite result holds true, as shown in [K3]. There is a D0L system
SURPRISE whose growth function f satisfies f(i) < f(i−1) for infinitely many
values of i. Thus, SURPRISE shrinks every now and then, and this continues
forever. Thinking about the periodicities in D0L sequences, you would not
expect SURPRISE to have arbitrarily long phases of strict growth. But it does.
For each k, there is an i such that

f(i) < f(i + 1) < f(i + 2) < . . . < f(i + k).

46

No matter how long a phase you need for SURPRISE to become bigger and
stronger during the whole phase, a proper timing gives you such a phase!

5.3 Stagnation and malignancy

Tarzan. Cancer is sometimes identified with exponential growth. I would like
to call growth in a D0L system malignant if, for some rational t > 1 and i0 ≥ 0,

f(i) > ti whenever i ≥ i0.

We know that, for D0L growth functions but not in the DIL case, this is equiv-
alent to saying that there is no polynomial p such that f(i) ≤ p(i) holds for all
i.

Suppose I want to play a doctor for creatures of artificial life, modeled by
D0L systems. One of them comes to me and I have to tell whether or not he/she
will eventually grow cancer. How can I do it? I know how he/she looked as an
infant (the axiom) and the rules for the cell development. It is clear to me that if
there is some letter that derives in some number of steps two copies of itself and
possibly some other letters as well, then the growth is malignant. Here I take
into account only letters actually occurring in the sequence, a condition that can
be easily tested. So the occurrence of such an expanding letter is sufficient for
malignancy but is it also necessary? Could the creature develop cancer without
having any expanding cell? Probably not. If the condition is also necessary and
if I can test of any letter whether or not it is expanding, then I can diagnose all
creatures and tell each of them either good or bad news!

Bolgani. You sure can. The necessity of your condition is fairly easy to
establish by purely language-theoretic means. If there are no expanding letters,
a growth-equivalent system can be constructed having letters a1, . . . , an such
that the right side of the rule for ai has at most one ai and no letters aj with
j < i. The growth in this new system is bounded by a polynomial of degree
n − 1. The system SQUARES is of this type with n = 3. In the early years of
L systems D0L systems of this type were referred to as systems with “rank”.
Essentially, the rank r is equivalent with polynomial growth of degree r − 1.

How to test whether a given letter a is expanding? The following algorithm
works. Studying the rules, form a sequence of sets S0, S1, S2, . . . Each set Si will
be a subset of a finite set T , consisting of all letters of the given D0L system, as
well as of all unordered pairs of letters, pairs (b, b) being included. Explicitly,
S0 consists of the pair (a, a). For all i, Si+1 is the union of Si and S′

i, where S′
i

is obtained as follows. Take an element y of Si. If y is a single letter c appearing
on the right side of the rule for b, include b to S′

i. Assume next that y is a pair
(b, c). Then we include the letter d to S′

i if both b and c (or b twice if b = c)
occur on the right side of the rule for d. Finally, we include the pair (d, e) to S′

i

if the right sides of the rules for d and e, put together, contain both b and c.
The sets Si form an increasing sequence of subsets of a finite set T . There

must be an index j such that Sj+1 = Sj . The letter a is expanding exactly in

47

case it belongs to Sj . Indeed, we begin in S0 with the situation where two a’s
occur, and investigate backwards all possibilities where they might have come
from. In Sj we have reached the point where there are no more possibilities.
Since Sj+1 = Sj , nothing new can come up later. So it is decisive whether we
have reached a single a latest by Sj. Whenever we reach a single a, we stop.
This is bad news for our creature. If we reach Sj without seeing a single a, it is
not yet good news. Every other letter has to be tested in the same way.

Tarzan. In the system DEATHb, a is already in S1, so it is immediately
bad news. If you diagnose b in FIB, you get both (a, a) and (a, b) in S1 and,
hence, you get b in S2. The letter a is also expanding but you have to go up to
S4 to reach bad news. As you described D0L systems with rank, it seems that
for them no diagnosis is needed: it follows by the very definition that the system
has no expanding letters. I can immediately tell the good news to SQUARES.

Emmy. The diagnosis can also be based on powers of the growth matrix,
[K2]. You compute powers M i, i = 1, 2, Whenever you find a diagonal
element greater than 1, you diagnose malignancy. If you have reached the value
i = 2n +n− 1, where n is the dimension, and have found only 0’s and 1’s in the
main diagonal, you may tell the good news.

Tarzan. Recall our friends DAY-PAL and NIGHT-PAL. The growth matrix
of the former has the diagonal entry 2, corresponding to the letter b. The letter
b is reachable from any nonempty axiom, in fact all letters eventually become
b’s. Thus, it is bad news for any DAY-PAL(w).

I would like to talk about another notion. Bolgani used the term “stagna-
tion” in connection with the Lemma of Long Constant Intervals. Let us say
that a D0L sequence stagnates if it has two words wt and wt+p, p > 0, with the
same Parikh vector. Clearly, this implies that

f(i) = f(i + p) for all i ≥ t,

that is, the lengths start repeating periodically with the period p after the
threshold t. The condition is certainly decidable. For instance, we decide
whether the language is finite. Every NIGHT-PAL(w) stagnates. Any axiom
becomes a power of c in two steps.

What about a much weaker requirement? A D0L sequence stagnates momen-
tarily if f(t) = f(t+1) holds for some t. I can decide momentary stagnation for
PD0L sequences. I just look at the subalphabet Σ′ consisting of letters mapped
to a letter by the morphism. Momentary stagnation is equivalent to the fact
that some subset of Σ′ appears in the sequence of minimal alphabets. Since
the latter sequence is ultimately periodic, I can decide the fact. But things are
different in the general D0L case, and momentary stagnation can take place in
many ways. It sure must be decidable but how can I decide it?

Bolgani. You got me. This happens to be a celebrated open problem. Given
a D0L growth function f , one has to decide whether or not f(t) = f(t + 1)
holds for some t. The term “constant level” had also been used, instead of

48

your “momentary stagnation”. The following formulation is equivalent in the
sense that an algorithm for either one of the problems can be converted into an
algorithm for the other problem. Given two PD0L growth functions f and g,
decide whether or not f(t) = g(t) holds for some t. An algorithm is known in
both cases, [SS], if “for some t” is replaced by “for infinitely many values of t”.

Emmy. Also the following is an equivalent formulation for the problem of
momentary stagnation. Given a square matrix M with integer entries, decide
whether or not the number 0 appears in the upper right-hand corner of some
power of M . So far all attempts to determine an upper bound for the exponents
to be tested have failed. The problem is decidable for 2× 2 matrices. Examples
are known of 3×3 matrices where you have to go to the exponent 50 to find the
first 0. Again, this problem is decidable if you ask for infinitely many 0s instead
of just one 0.

Bolgani. The following problems of proper thinness and continuing growth
are more involved than the problem of momentary stagnation, in the sense
that an algorithm for either one of them yields an algorithm for the problem
of momentary stagnation but not necessarily vice versa, [PaS], [KS]. Decide
whether or not a given D0L language has two words of the same length. (A
language is called properly thin if all its words are of different lengths. This is a
special case of slenderness.) Decide whether or not a given D0L growth function
f satisfies the inequality f(i) ≤ f(i + 1) for all i.

Tarzan. The whole theory of growth functions can apparently be extended
to concern DT0L systems as well. Take the system PAL, with some specific
axiom. Once we have fixed an order of the tables Tn and Td, that is a word
over the alphabet {n, d}, we end up with a unique word. From the growth point
of view we get a mapping f of the set of words over the alphabet of tables, in
the example {n, d}, into the set of nonnegative integers. In the D0L case the
alphabet of tables consists of one letter only. In the DT0L case we can ask
basically the same questions as before. Growth equivalence makes sense only
if the table alphabets are of the same cardinality. Momentary stagnation takes
place if there is a word x and letter a such that f(xa) = f(x). We are now
dealing with several growth matrices, one for each letter of the table alphabet;
Mn and Md for PAL. We get the expression ΠMdMnMdMnρ for the length
of the DAY-AND-NIGHT-PAL after 48 hours – you understand what I mean.
One can also start with a fixed DT0L system, for instance PAL, and investigate
what kind of growth phenomena are possible or likely to happen.

Emmy. One can also introduce Z-rational and N-rational functions as be-
fore, now the domain of the functions will be some Σ∗ instead of N . From
the point of view of power series, [SS], [KS], this means several noncommuting
variables. Several undecidability results are obtained by a reduction to Hilbert’s
Tenth Problem, for instance, the undecidability of the problems of momentary
stagnation and continuing growth. On the other hand, growth equivalence can
be shown decidable by a nice argument using linear spaces, [RS1].

Tarzan. It seems to me that you can be proud of many nice and certainly

49

nontrivial results. Many challenging problems remain open. After some progress
in areas such as artificial life you surely will ask entirely new kinds of questions
about L growth. I have to go.

6 L codes, number systems, immigration

6.1 Morphisms applied in the way of a fugue

In the remainder of this chapter, we will present some recent work dealing with
L systems. Two problem areas will be presented in more detail in Sections 6
and 7, whereas the final Section 8 will run through results in different areas in
a rather telegraphic way. Unavoidably, the choice of material reflects at least
to some extent our personal tastes. However, we have tried to choose material
significant beyond L systems, as well as to present techniques showing the power
of language-theoretic methods in completely different areas, a typical example
being the results concerning number systems presented below.

The purpose of this Section 6 is to present some recent work in L systems,
dealing with several developmental processes that have started at different times.
One can visualize the different processes as chasing one another like the tunes
in a fugue. We will restrict our attention to D0L processes. In fact, apart
from some suggestions, very little work concerning other types of L systems
has been done in this problem area, although most questions can be readily
generalized to concern also other types of L systems. The issues discussed
below will concern also generalized number systems, combinatoricss on words,
codes and cryptography.

We consider again morphisms h : Σ∗ −→ Σ∗. The morphisms can be used
as an encoding in the natural way: words w over Σ are encoded as h(w). If h is
injective, decoding will always be unique. This is not the case for the morphism
h defined by

h(a) = ab , h(b) = ba, h(c) = a.

The word aba can be decoded both as ac and cb because h is not injective.
Because of unique decodability, injective morphisms are referred to as codes.
There is a chapter below in this Handbook dealing with the theory of codes.
Usually codes are defined as sets of words rather than morphisms. For finite
codes, our definition is equivalent to the customary definition in the following
sense. A morphism h is a code iff the set {h(a)| a ∈ Σ} is a code, provided h is
non-identifying, that is, a 6= b implies h(a) 6= h(b) for all letters a and b. We still
repeat the decodability aspect in terms of cryptography. The morphism h being
a code means that every “cryptotext” w′ can be “decrypted” in at most one
way, that is, there is at most one “plaintext” w that is “encrypted” by h into w′:
h(w) = w′. Most “monoalphabetic” cryptosystems in classical cryptography are
codes in this sense.

50

We now come back to the morphism h : Σ∗ −→ Σ∗ (not necessarily injective)
and apply it in the “fugue way”. This means that h is applied to the first letter,
h2 to the second, h3 to the third, and so on, the results being catenated. This
gives rise to a mapping h : Σ∗ −→ Σ∗, referred to as the L associate of h. We
now give the formal definition.

Definition. Given a morphism h : Σ∗ −→ Σ∗, its L associate h is defined
to be the mapping of Σ∗ into Σ∗ such that always

h(a1a2 . . . an) = h(a1)h
2(a2) . . . hn(an),

where the a’s are (not necessarily distinct) letters of Σ. By definition, h(λ) = λ.
The morphism h is termed an L code iff its L associate is injective, that is, there
are no distinct words w1 and w2 such that h(w1) = h(w2). 2

The L associate h is rather seldom a morphism itself. In fact, h is a morphism
exactly in case h is idempotent, that is, h2 = h. Also the equation hh =
hh is not valid in general, which makes many problems concerning L codes
rather involved. Consider the classical “Caesar cipher” h affecting a circular
permutation of the English alphabet:

h(a) = b, h(b) = c, . . . , h(y) = z, h(z) = a.

For the L associate we obtain, for instance,

h(aaaa) = bcde, h(dcba) = eeee.

The L associate is not a morphism but h is both a code and an L code, satisfying
the equation hh = hh. The proof of the next result is straightforward.

Theorem 6.1. Every code is an L code but not vice versa. 2

A significant class of L codes that are not codes results by considering unary
morphisms. By definition, a morphism h is unary iff there is a specific let-
ter a such that h(b) is a power of a for every letter b. (Unary morphisms
should not be confused with unary L systems; for the former, the alphabet Σ
may still contain several letters.) Consider the unary morphism h defined by
(*) h(a) = a2, h(b) = a.
Clearly, h is not a code, for instance, h(bb) = h(a). However, h is an L code.
Indeed, this follows by considering dyadic representations of integers, with the
digits 1 and 2. Compute the exponents of a in h(aaa), h(baaba), h(bbbb):

2 ·20+2 ·21+2 ·22, 1 ·20+2 ·21+2 ·22+1 ·23+2 ·24, 1 ·20+1 ·21+1 ·22+1 ·23.

Observe that the original letters b and a behave exactly as the digits 1 and
2, respectively, in the dyadic representation of positive integers. For instance,
baaba represents the number 53, written in dyadic notation 21221 = 2 · 24 + 1 ·
23 + 2 · 22 + 2 · 21 + 1 · 20.

See [S1] for an exposition concerning n-adic and n-ary number systems. In
both cases n is the base of the representation, but the digits are 1, 2, ...,n in

51

the n-adic and 0, 1,..., n − 1 in the n-ary representation; 1, 2 in dyadic, and
0,1 in binary representation. The presence of 0 among the digits renders n-ary
systems ambiguous, because an arbitrary number of initial 0’s can be added to
any word without changing the represented number. n-adic representation is
unambiguous. There is a one-to-one correspondence between positive integers
and nonempty words over {1, 2} when the latter are viewed as dyadic represen-
tations. Normally in number systems the leftmost digit is defined to be the most
significant one, and we will follow this practice below. The definition of an L
associate, which is the natural one because words are normally read from left to
right, makes the rightmost letter most significant because there the morphism
is iterated most. Thus, actually the mirror image 12212 of the dyadic word
21221 corresponds to the original word baaba. This technical inconvenience (of
going from words to their mirror images) is irrelevant as regards ambiguity. The
morphism h defined by (*) is an L code. If there were two distinct words w and
w′ such that h(w) = h(w′), then the mirror images of w and w′ would be (inter-
preting b as the digit 1 and a as the digit 2) two distinct dyadic representations
for the same number, which is impossible.

Similarly, one can associate a number system to any unary morphism. The
morphism is an L code iff the number system is unambiguous. This quite
remarkable interconnection between number systems and L systems will now be
presented more formally.

Definition. A number system is a (v + 1)-tuple

N = (n, m1, . . . , mv)

of positive integers such that v ≥ 1, n ≥ 2, and 1 ≤ m1 < m2 < . . . < mv. The
number n is referred to as the base and the numbers mi as digits. A nonempty
word mik

mik−1
. . .mi1mi0 , 1 ≤ ij ≤ v over the alphabet {m1, . . . , mv} is said

to represent the integer

[mik
. . . mi0] = mi0 + mi1n + mi2n

2 + . . . + mik
nk.

The set of all represented integers is denoted by S(N). A set of positive integers
is said to be representable by a number system (briefly, RNS), if it equals the
set S(N) for some number system N . Two number systems N1 and N2 are
called equivalent if S(N1) = S(N2). A number system N is called complete if
S(N) equals the set of all positive integers, and almost complete if there are
only finitely many positive integers not belonging to S(N). A number system is
termed ambiguous if there are two distinct words w1 and w2 over the alphabet
{m1, . . . , mv} such that [w1] = [w2]. Otherwise, N is termed unambiguous.
An RNS set is termed unambiguous if it equals S(N), for some unambiguous
number system N . Otherwise, it is termed inherently ambiguous.2

Number systems as defined above are often referred to as “generalized num-
ber systems”. They are more general than the customary notion because the
number and size of the digits is independent of the base. Some integers may

52

also have several representations or none at all. On the other hand, we have
excluded the digit 0 (ordinary binary and decimal systems do not qualify) be-
cause it immediately induces ambiguity. For each n ≥ 2, the number system
N = (n, 1, 2, . . . , n) is complete and unambiguous. It is customarily referred to
as the n-adic number system.

Let h : Σ∗ −→ Σ∗ be a unary morphism. Thus, there is a letter a ∈ Σ such
that all h-values are powers of a. Assume that h(a) = an, n ≥ 2. The associated
number system is defined by

N(h) = (n, m1, . . . , mv),

where the mi’s are the exponents, arranged in increasing order, in the equations
h(b) = ami where b ranges over the letters of Σ. (We assume that h is non-
erasing and non-identifying. The assumptions about h are needed to ensure that
N(h) is indeed a number system. On the other hand, if h(a) = a or h is erasing
or identifying, it is not an L code.) Observe that the base is always among the
digits in a number system N(h). By the above discussion, the following theorem
is an immediate consequence of the definitions.

Theorem 6.2. A unary morphism is an L code iff the associated number
system is unambiguous. 2

L codes were introduced in [MSW2], where also the basic interconnections
with number systems were discussed. The ambiguity problem for number sys-
tems was shown decidable in [Ho1]. The theory of generalized number systems
was initiated in [CS2]. We focus here our attention to basic issues and issues
connected with L codes. The reader is referred to [Ho2] – [Ho9] for related
problems and some quite sophisticated results (concerning, for instance, regu-
larity, degrees of ambiguity, changes of the base and negative digits). The next
theorem summarizes some basic results from [MSW2] and [CS2].

Theorem 6.3. A number system N = (n, m1, . . . , mv) is ambiguous if
v > n. N is unambiguous if the digits mj lie in different residue classes modulo
n. No finite set is RNS, whereas every cofinite set is RNS, Every union of
some residue classes modulo n, n ≥ 2, is RNS. Consequently, both even and
odd numbers form RNS sets. The former is unambiguous, whereas the latter
is inherently ambiguous. There is an RNS set possessing representations with
different bases m and n such that it has an unambiguous representation with
m, whereas every representation with the base n is ambiguous. There are a 0L
systems G and a DT0L system G1, both with the alphabet {a, b} such that

L(G) = L(G1) = {b} ∪ {bai| i ∈ S(N)}.2

Equivalence is undecidable for 0L systems, whereas it is decidable for U0L sys-
tems (see Theorems 4.2 and 4.3). The last sentence of Theorem 6.3 gives a
somewhat stronger decidability result. This follows by the decidability results
for number systems, discussed still in Section 6.2.

53

Is an arbitrary given morphism an L code? At the time of this writing,
the decidability of this problem is open in its general form, There is every
reason to believe the problem to be decidable, especially because the remaining
class of morphisms with an open decidability status seems rather small. For
unary morphisms, the decidability follows by Theorem 6.2. The decidability
was established for permutation-free morphisms in [Ho4], that is, for morphisms
h such that h permutes no subalphabet Σ1 of Σ. The next theorem gives the
decidability result in its strongest known form, [Ho7].

Given a morphism h : Σ∗ −→ Σ∗, we call a letter a bounded (with respect to
h) if there is a constant k such that |hn(a)| ≤ k holds for all n. Otherwise, a is
said to be growing. A letter a is pumping if hn(a) = uav holds for some n and
words u and v such that uv is nonempty but contains only bounded letters.

Theorem 6.4. It is decidable whether or not a morphism for which no
letter is pumping is an L code. 2

6.2 An excursion into number systems

This subsection deals exclusively with number systems. We feel that such a
brief excursion is appropriate to show the versatility of L systems. The work
dealing with L codes has led to problems dealing with the representation of
positive integers in arbitrary number systems. Typical questions concern the
equivalence and ambiguity of number systems. In spite of their fundamental
number-theoretic nature and also in spite of the fact that the representation
of integers is fundamental in the theory of computing, very little was known
about the solution of such problems before the interconnection with L codes
was discovered. Many of the results below are interesting also withing a general
language-theoretic setup: no other than a language-theoretic proof is known
for these number-theoretic results. Our exposition will be illustrated by some
examples.

Consider first the number system N1 = (2, 2, 3, 4). We claim that S(N1)
consists of all positive integers that are not of the form 2k − 3, for some k ≥ 2.
(Thus, 1, 5, 13, 29, 61 are the first few numbers missed.) To show that no
number of this form is in S(N1) we proceed indirectly. Let x = 2k − 3 be the
smallest such number in S(N1), and consider the representation [a1 . . . am] = x.
We must have m ≥ 2 and am = 3 because, otherwise, the represented number is
even. But now obviously [a1 . . . am−1] = 2k−1 −3, contradicting the choice of x.
On the other hand, for any k ≥ 1, an arbitrary integer x satisfying 2k+1−2 ≤ x ≤
2k+2 − 4 is represented by some word of length k, the upper and lower bounds
being represented by 2k and 4k, respectively. Thus, our claim concerning S(N1)
follows. The system N1 is ambiguous: [32] = [24] = 8. The first sentence of
Theorem 6.3 can be used to show that S(N1) is inherently ambiguous. In the
dyadic number system (2, 1, 2), S(N1) is represented by all words over {1, 2}
that are not of the form 2i1, for some i ≥ 0. (Thus, a regular expression can
be given for the set of words representing S(N1) in dyadic notation. A general

54

statement of this fact is contained in the Translation Lemma below.)
The number system N2 = (2, 1, 4) is unambiguous, by the second sentence of

Theorem 6.3. We claim that S(N2) equals the set of numbers incongruent to 2
modulo 3. Indeed, all numbers in S(N2) are of this type. This is clearly true of
numbers represented by words of length 1 over the digit alphabet. Whenever x is
congruent to 0 (resp.1) modulo 3, then both 2x+1 and 2x+4 are congruent to 1
(resp.0) modulo 3. Hence, by induction, every number in S(N2) is incongruent
to 2 modulo 3. That all such numbers are in S(N2) is again seen indirectly.
If x = 3k or x = 3k + 1 is the smallest such number outside S(N2), we can
construct by a simple case analysis a still smaller number outside S(N2).

Very simple number systems can lead to tricky situations not yet clearly
understood. Consider, for k ≥ 3, the number system N(k) = (2, 2, k). When
is N(k) unambiguous? This happens if k is odd or if k = 2m with an even
m. The remaining case is not so clear. The first odd values of m yielding an
unambiguous N(K) are: 11, 19, 23, 27, 35, 37, 39, 43, 45, 47, 51, 53, 55, 59,
67, 69, 71, 75, 77, 79, 83, 87, 89, 91, 93, 95, 99. [MSW2] contains a more
comprehensive theory about this example.

We now introduce a tool basic for decidability results. It consists of viewing
the sets S(N) as regular languages.

Translation Lemma. Given a number system N = (n, m1, . . . , mv), a reg-
ular expression α(N) over the alphabet {1, . . . , n} can be effectively constructed
such that the set of words in the regular language denoted by α(N), when the
words are viewed as n-adic numbers, equals S(N). 2

The reader is referred to [CS2] for details of the proof. The argument is a
very typical one about regular languages and finite automata. It is easy to get
a rough idea. A finite automaton (sequential machine) translates words w#,
where w ∈ {m1, . . . , mv}+, into words over {1, . . . , n}. The word w is viewed
as a number represented according to N in reverse notation, and the translate
will be the representation of the same number in reverse n-adic notation. The
“carry” (due to digits exceeding the base) is remembered by the state of the
automaton. (A reader not familiar with this terminology is referred to Chapter
2 of this Handbook.) It turns out that 2 max(n, mv) states will suffice. In one
step, when reading the letter j in the state i, the automaton outputs j′ and
goes to the state i′, where i′ and j′ are unique integers satisfying

i + j = j′ + i′n, 1 ≤ j′ ≤ n.

When reading the boundary marker # in the state i, the automaton produces
the output i in reverse n-adic notation. This is the only step, where the output
may consist of more than one letter.

As an example, consider the number system N = (2, 13, 22). We use the
notation a = 13, b = 22 to avoid confusion. The computation of the automaton
for the input abaa# looks as follows:

55

state 0 6 13 12 12
input a b a a #
output 1 2 2 1 212
new state 6 13 12 12

The mirror image aaba of the input abaa represents in N the number 213:

[aaba] = 13 · 23 + 13 · 22 + 22 · 2 + 13 = 213.

The mirror image 2121221 of the output is the dyadic representation of 213. We
have already pointed out the notational inconvenience caused by the fact that
in the number-system notation the leftmost digit is the most significant one.

The claims in the following theorem are either immediate consequences of
the Translation Lemma, or can be inferred from it using decidability results
concerning regular languages.

Theorem 6.5. It is decidable whether or not a given number system is
ambiguous, complete or almost complete. The equivalence problem is decidable
for number systems. It is undecidable whether or not a given recursively enu-
merable set is RNS. It is also undecidable, given a recursively enumerable set S
and an integer n ≥ 2, whether or not there is a number system N with base n
such that S = S(N). It is decidable of a given number system N and an integer
n ≥ 2 whether or not there exists an unambiguous number system N ′ with base
n satisying S(N) = S(N ′). 2

For the number system N = (3, 1, 3, 4, 6, 7) and n = 2, the decision method
of the last sentence produces the number system N ′ = N2 = (2, 1, 4) already
discussed above. On the other hand, every representation of S(N) with base 3
is ambiguous. Thus, although the property characterizing S(N) is intimately
connected with the number 3, one has to choose a different base in order to get
an unambiguous representation of S(N)!

Using more sophisticated methods, dealing with recognizable sets and formal
power series, the decidability of the equivalence can be extended to concern
number systems with arbitrary integer digits, [Ho5]. Also the final theorem in
this subsection, [Ho9], results from an application of such methods. A weaker
version of the theorem was established in [Ho6].

Theorem 6.6. Given a number system, it is decidable whether or not there
exists an equivalent unambiguous number system. 2

6.3 Bounded delay and immigration

We now return to codes and L codes. For easier reference, we use certain bold
letters to denote classes of morphisms: C stands for the class of codes and L for
the class of L codes. The notation P refers to prefix codes, that is, morphisms h
for which there are no distinct letters a and b for which h(a) is a prefix of h(b).
(It is clear that morphisms satisfying this condition are codes.) We now present
the idea of bounded delay.

56

With cryptographic connotations in mind, let us refer to the argument w
as plaintext and to the encoded version h(w) or h(w) as cryptotext. The idea
behind the bounded delay is the following. We do not have to read the whole
cryptotext on order to start writing the plaintext but rather always a certain
prefix of the cryptotext determines the beginning of the plaintext.

The notation prefk(w) for the prefix of w of length k ≥ 1 was already in-
troduced in Section 2. The notation first(w) stands for the first letter of a
nonempty word w. A morphism h is of bounded delay k if, for all words u and
w, the equation

prefk(h(u)) = prefk(h(w))

implies the equation first(u) = first(w). The morphism h is of bounded delay,
in the class B, if it is of bounded delay k, for some k. It is again easy to see
that the property of bounded delay implies the property of being a code. The
morphism h defined by

h(a) = aa, h(b) = ba, h(c) = b

is a code but not of bounded delay. Indeed, one might have to read the whole
cryptotext in order to determine whether the first plaintext letter is b or c.
Different notions of bounded delay are compared in [Br] and [BeP]. The same
class B is obtained no matter which definition is chosen, but different definitions
may lead to different minimal values of k.

The idea of bounded delay is the same for codes and L codes: first k letters
of the cryptotext determine the first plaintext letter. For codes the situation
remains unaltered after handling the first letter a, because the cryptotext is still
of the form h(w) when h(a) has been removed from the beginning. However, for
L codes, the remainder of the cryptotext equals hh(w) rather than h(w). This
means that we obtain different notions of bounded delay, depending on whether
we are interested in finding only the first plaintext letter (weak notion, W), or
the first letter at each stage of decryption (strong or medium strong notion).
The difference between the two latter notions depends on the way of bounding
the delay: is the bound kept constant (strong notion S), or is it allowed to grow
according to the stage of decryption (medium strong notion, M). We now give
the formal definition.

Definition. A morphism h is of weakly bounded delay k ≥ 1 if, for all words
u and w, the equation

prefk(h(u)) = prefk(h(w))

implies the equation first(u) = first(w). If for all i ≥ 0 and all u and w, the
equation

prefk(hih(u)) = prefk(hih(w))

implies the equation first(u) = first(w), then h is of strongly bounded delay k.
In general, h is of weakly or strongly bounded delay if it is so for some k. The

57

notations W and S are used for the corresponding classes of morphisms. Finally,
h is of medium bounded delay (notation M) if, for some recursive function f and
all i ≥ 0, u and w, the equation

preff(i)(h
ih(u)) = preff(i)(h

ih(w))

implies the equation first(u) = first(w). 2

Observe that we do not require h to be an L code in these definitions. The
situation is analogous to that concerning ordinary codes. However, a morphism
being in B implies that it is in C, whereas L and W are incomparable. All
inclusion relations between the classes introduced are presented in the following
theorem [MSW3].

Theorem 6.7. The mutual inclusion relations between the families intro-
duced are given by the following diagram, where an arrow denotes strict inclu-
sion and two families are incomparable if they are not connected by a path:

C L
S P B

M W

2

Medium bounded delay can be viewed in the theory of L codes as the most
natural counterpart of bounded delay codes. It is natural to require that only a
bounded amount of lookahead at each stage of the decryption process is needed.
If the amount of lookahead remains the same throughout the process, the re-
sulting notion is a very restricted one, as will be seen below. On the other
hand, the drawback in the definition of M is that, in general, the construction
of the sequence of values f(i) = ki, i = 0, 1, 2, . . ., seems to be an infinitary
task. The following theorem, [HoS], is pleasing because it shows that it suffices
to construct values only up to card(Σ) − 2.

We say that a morphism h : Σ∗ −→ Σ∗ is an the set M’ if, for some k > 0
and all i with 0 ≤ i ≤ card(Σ) − 2, the equation

prefk(hih(u)) = prefk(hih(w))

always implies the equation first(u) = first(w). Thus, we consider the sequence
f(i) = ki only up to card(Σ) − 2, and take the maximum of the resulting
numbers.

Theorem 6.8. M’ = M. 2

We now present a simple characterization for the family S.
Theorem 6.9. A morphism h is in S iff, for any distinct letters a and b,

first(h(a)) 6= first(h(b)).
Proof. Consider the “if”-part. The assumption means that there is a per-

mutation Π of the alphabet Σ such that, for all a,

first(h(a)) = Π(a).

58

Consequently, for all i ≥ 0 and a,

first(hi(a)) = Πi(a).

Therefore,
pref1(h

ih(a)) = first(hi+1(a)) = Πi+1(a)

uniquely determines a, that is, h is of strongly bounded delay 1.
For the “only if” part, we need two auxiliary results that are simple exercises

concerning morphisms. Growing letters were defined at the end of Subsection
6.1.

Claim 1. Assume that h is a code and a is a letter. Then either a is growing,
or else |hi(a)| = 1, for all i.

Claim 2. If h is a prefix code and a is growing, then first(h(a)) is growing.
Let h be in S. By Theorem 6.7, h is a prefix code. We proceed indirectly

and assume that there are two distinct letters a and b such that first(h(a)) =
first(h(b)). Since h is a prefix code, we may write

h(a) = cxdy and h(b) = cxez,

where x, y, z are (possibly empty) words and c, d, e are letters such that d 6= e.
By Claim 1, a and b are growing. By Claim 2, also c is growing. Hence, for
every k, there is an i such that

prefk(hih(a)) = prefk(hi+1(a)) = prefk(hi+1(b)),

which contradicts the assumption that h is in S. 2

At the time of this writing, no general decision method is known for testing
membership in M or W.

Some more sophisticated decidability results are obtained, [Ho7], by consid-
ering ambiguity sets closely connected with the theory of L codes. Essentially,
a morphism being an L code means that the ambiguity set is empty. It can be
shown that in most cases the ambiguity set is regular, which leads to decidabil-
ity.

Variations in degrees of iteration constitutes the basic idea behind L codes.
One can view the definition also as developmental processes started at different
times. The same idea has led to the notion of L systems with immigration.
One begins with a finite set of words consisting, intuitively, of “beginnings”,
“origins”, “atoms”, “founding fathers” that start to develop in an environment.
An L system is used to model the development in the environment. The more
time has elapsed since immigration, the more steps have been taken in the
developmental process.

For any types of L systems, the corresponding system with immigration can
be defined. However, so far only D0L systems have been investigated in this
respect. We conclude with a few remarks about this area. We begin with a
definition.

59

Definition. A D0L system with immigration (shortly, ImD0L system) is a
triple G = (Σ, h, B) where Σ is an alphabet, h : Σ∗ −→ Σ∗ a morphism and B
is a finite subset of Σ∗. Its language is defined by

L(G) = {b0h(b1) . . . hn(bn)| n ≥ 0, bi ∈ B}.

An ImD0L system is growing if each word of B contains a growing letter. 2

As a construct, an ImD0L system is a DF0L system. However, the defini-
tion of its language is entirely different. Intuitively, the words of B describe the
various possibilities of immigration to the population, and the words of L(G) de-
scribe various developmental stages of the immigrants. Mathematically ImD0L
systems constitute a very natural generalization of D0L languages. Especially
results concerning subword complexity, with some best-possible bounds, are of
interest, [Ho8]. We conclude with some further results from [Ho8].

Theorem 6.10. Every ImD0L language is an HDT0L language and pos-
sesses effectively a test set. Regularity is decidable for languages generated by
growing ImD0L systems. 2

7 Parallel insertions and deletions

L systems are based on the language-theoretic notion of finite substitution over
an alphabet Σ. So far, a substitution has been defined as an operation on an
alphabet. A substitution is never applied to λ (except for the convention that
λ is always mapped into λ). The work on parallel insertions, [Ka1], [Ka2],
[KMPS], can be viewed as an attempt to understand the substitution on the
empty word.

Let L1, L2 be two languages over an alphabet Σ. The operation of parallel
insertion of a language L2 into a language L1, can be viewed as a nonstandard
modification of the notion of substitution. It maps all letters of Σ into themselves
and the empty letter into L2, with the following additional convention. For
each word w, between all the letters and also at the extremities, only one λ
occurs. The effect of the substitution applied to L1 will be the insertion of
words belonging to L2 between all letters and also at the extremities of words
belonging to L1.

The exact effect of the classical substitution that maps all letters into them-
selves and λ into a language L2 would be the insertion of arbitrary many words
of L2 between letters and at the extremities of words in L1. According to the
definitions mentioned above, this would amount to the parallel insertion of L∗

2

into L1.
While preserving the type of parallelism characteristic to L systems, parallel

insertion has a greater degree of nondeterminism: words of L2 are indiscrimi-
nately inserted between all letters of the target words in L1. One way to regulate
the process of insertion is by introducing the notion of controlled parallel inser-
tion: each letter determines what can be inserted after it.

60

Another way to look at operations of controlled insertion is the following.
Such an operation can be viewed as a production of the form a −→ aw, where
the word w comes from the language to be inserted next to a. The mode of
controlled insertion determines how the productions are going to be applied.
The controlled parallel insertion resembles, thus, the rewriting process of 0L
systems. However, it gives rise to something different from 0L systems because
the productions are always of the special form and, on the other hand, there are
infinitely many productions.

Formally, if L1, L2 are languages over the alphabet Σ, the parallel insertion
of L2 into L1 is defined as:

L1 ⇐= L2 =
⋃

u∈L1

(u ⇐= L2),

where

u ⇐= L2 = {v0a1v1a2v2 . . . akvk| k ≥ 0, aj ∈ Σ, 1 ≤ j ≤ k,

vi ∈ L2, 0 ≤ i ≤ k and u = a1a2 . . . ak}.

The case k = 0 corresponds to the situation u = λ, when only one word v0 ∈ L2

is inserted.
As parallel insertion is associative, it induces a monoid structure on P(Σ∗),

the set of all subsets of Σ∗, with {λ} as the neutral element. The monoid is
not commutative. For example, a ⇐= b = {bab} whereas b ⇐= a = {aba}.
The families of regular, context-free and context-sensitive languages are closed
under parallel insertion. Indeed, for L1, L2 languages over Σ we have that
L1 ⇐= L2 = L2s(L1), where s is the λ-free substitution defined by

s : Σ∗ −→ 2Σ∗

, s(a) = aL2, for every a ∈ Σ.

The assertion above now follows as the families of regular, context-free and
context-sensitive languages are closed under catenation and λ–free substitutions.

The parallel insertion amounts thus to the application of a single substitu-
tion. If, as in the case of L systems, we consider iterated applications of the
substitution, the obtained operation is much more powerful than the parallel
insertion: starting with two one-letter words the iterated parallel insertion can
produce a non-context-free language. Formally, if L1, L2 are languages over
Σ, the parallel insertion of order n of L2 into L1 is inductively defined by the
equations:

L1 ⇐=0 L2 = L1,
L1 ⇐=k+1 L2 = (L1 ⇐=i L2) ⇐= L2, i ≥ 0.

The iterated parallel insertion of L2 into L1 is then defined as

L1 ⇐=∗ L2 =

∞⋃

n=0

(L1 ⇐=n L2).

61

The iterated parallel insertion is not commutative: the word bbb belongs to
λ ⇐=∗ b but not to b ⇐=∗ λ. It is not associative either as the word cbcab
belongs to a ⇐=∗ (b ⇐=∗ c) but not to (a ⇐=∗ b) ⇐=∗ c.

The iterated parallel insertion of the letter b into itself is

b ⇐=∗ b = {b2k−1| k > 0},

which proves that the families of regular and context-free languages are not
closed under iterated parallel insertion. However, the family of context-sensitive
languages is still closed under it. Indeed, given two context-sensitive gram-
mars G1 and G2 generating the languages L1 and L2, a grammar G generating
L1 ⇐=∗ L2 can be obtained as follows. G contains the rules of G2, the rules
of G1, and the rules of G1 modified in such a way that next to each letter, the
axiom of G2 is attached.

An interesting variation on the theme of parallel insertion is to combine it
with the commutative closure. The commutative closure of a language L is the
smallest commutative language containing L . The commutative closure can be
viewed as a unary operation associating to every language L its commutative
closure com(L). The permuted parallel insertion of the word v into u consists
thus of the parallel insertion into u of all words which are letter-equivalent to
v (Two words are letter-equivalent if one of them is obtained by permuting the
letters of the other.)

More precisely, L1 ⇐=p L2 =
⋃

u∈L1,v∈L2
(u ⇐= com(v)). Obviously, the

permuted parallel insertion can be expressed as L1 ⇐=p L2 = L1 ⇐= com(L2).
As expected , the fact that the families of regular and context-free languages are
not closed under the commutative closure implies that they are not closed under
permuted parallel insertion. On the other hand, being closed under both parallel
insertion and commutative closure, the family of context-sensitive languages is
closed under permuted parallel insertion.

We have dealt so far with operations where the same language is inserted
in parallel between all the letters and at the extremities of a given word. The
process resembles more the type of rewriting characteristic to L systems if every
letter determines what can be inserted after it. Let L be a language over Σ and
∆ : Σ −→ 2Σ∗

a so-called control function satisfying ∆(a) 6= ∅, ∀a ∈ Σ. The
∆–controlled parallel insertion into L (shortly controlled parallel insertion) is
defined as:

L ⇐=c ∆ =
⋃

u∈L

(u ⇐=c ∆),

where

u ⇐=c ∆ = {a1v1a2v2 . . . akvk| u = a1 . . . ak, k ≥ 1, ai ∈ Σ.

and vi ∈ ∆(ai), 1 ≤ i ≤ k}.

Note that in the above definition, the control function cannot have the empty set
as its value. This condition has been introduced because of the follwing reason.

62

If there would exist a letter a ∈ Σ such that ∆(a) = ∅, then all the words u ∈ L
which contain a would give u ⇐=c ∆ = ∅. This means that these words would
not contribute to the result of the controlled parallel insertion. Consequently
we can introduce, without loss of generality, the condition ∆(a) 6= ∅, ∀a ∈ Σ.

If we impose the restriction that for a distinguished letter b ∈ Σ we have
∆(b) = L2, L2 ⊆ Σ∗, and ∆(a) = λ for every letter a 6= b, we obtain a particular
case of controlled parallel insertion: parallel insertion next to the letter b. It
is a binary language operation, whereas the arity of the ∆-controlled parallel
insertion equals card(Σ) + 1.

The families of regular, context-free and context-sensitive languages are
closed under controlled parallel insertion. This follows as the result of the con-
trolled parallel insertion L ⇐=c ∆, where L ⊆ Σ∗ and ∆ : Σ −→ 2Σ∗

, ∆(a) 6= ∅,
∀a ∈ Σ, can be accomplished by the λ-free substitution

σ : Σ∗ −→ 2Σ∗

, σ(a) = a∆(a), ∀a ∈ Σ.

For each of the above mentioned variants of insertion, a dual deletion opera-
tion can be defined. Take, for example, the parallel deletion. Given words u and
v, the parallel deletion of v from u consists of the words obtained by simultane-
ously erasing from u all the nonoverlapping occurrences of v. The definition is
extended to languages in the natural way. Given a word u and a language L2,
the parallel deletion u =⇒ L2 consists of the words obtained by erasing from u
all the nonoverlapping occurrences of words in L2:

u =⇒ L2 = {u1u2 . . . ukuk+1| k ≥ 1, ui ∈ Σ∗, 1 ≤ i ≤ k + 1 and
∃vi ∈ L2, 1 ≤ i ≤ k such that u = u1v1 . . . ukvkuk+1,
where {ui} ∩ [Σ∗(L2 \ {λ})Σ∗] = ∅, 1 ≤ i ≤ k + 1}.

Note that, besides the fact that the parallel deletion erases from u nonoverlap-
ping occurrences of words from L2, a supplementary condition has to be fulfilled:
between two occurrences of words of L2 to be erased, no nonempty word from
L2 appears as a subword. This assures that all occurrences of words from L2

have been erased from u, and is taken care of by the last line of the definition.
The reason why λ had to be excluded from L2 is clear. If this wouldn’t be the
case and λ would belong to L2, the condition {ui} ∩ Σ∗L2Σ

∗ = ∅ would imply
{ui} ∩ Σ∗ = ∅ – a contradiction. Note that words from L2 can still appear as
subwords in u =⇒ L2, as the result of catenating the remaining pieces of u. If
L1, L2 are languages over Σ, we can define now L1 =⇒ L2 = ∪u∈L1

(u =⇒ L2).
If L, R are languages over the alphabet Σ, L a λ-free language and R a

regular one, then there exists, [Ka1], a rational transducer g, a morphism h and
a regular language R′ such that L =⇒ R = h(g(L) ∩ R′). As a corollary, the
families of regular and context-free languages are closed under parallel deletion
with regular languages. On the other hand, the family of context-free languages
is not in general closed under parallel deletion. For example, consider Σ = {a, b}

63

and the context-free languages:

L1 = #{aib2i| i > 0}∗,

L2 = #a{biai| i > 0}∗.

If the language L1 =⇒ L2 would be context-free, then also the language

(L1 =⇒ L2) ∩ b+ = {b2n

| n > 0},

would be context-free, which is a contradiction.
A similar nonclosure situation happens in the case of context-sensitive lan-

guages: there exists a context-sensitive language L1 and a word w over an
alphabet Σ such that L1 =⇒ w is not a context-sensitive language. Indeed, let
L be a recursively enumerable language (which is not context-sensitive) over an
alphabet Σ and let a, b be two letters which do not belong to Σ. Then there
exists a context-sensitive language L1 such that (see [S1]):

(i) L1 consists of words of the form aibα, where i ≥ 0 and α ∈ L;
(ii) For every α ∈ L, there is an i ≥ 0 such that aibα ∈ L1.
It is easy to see that aL1 =⇒ {a} = bL, which is not a context-sensitive

language. We have catenated a to the left of L1 in order to avoid the case i = 0,
when the corresponding words from L would have been lost.

In a similar way we have defined the iterated parallel insertion, we can
define the iterated parallel deletion. Despite of the simplicity of the languages
involved, it is an open problem whether or not the family of regular languages
is closed under iterated parallel deletion. Not only that, but it is still an open
problem whether the iterated parallel deletion of a singleton word from a regular
language still belongs to the family of regular languages. The answer to both
of the previous questions is negative in the case of context-free and context-
sensitive languages. For example, if we consider the alphabet Σ = {a, b}, the
context-free language L = {ai#b2i| i > 0}∗, and the word w = ba then

(L =⇒∗ ba) ∩ a#+b+ = {a#nb2n

| n > 0},

which implies that L =⇒∗ ba cannot be context-free.
The permuted parallel deletion of a language L2 from L1 is obtained by

erasing from words in L1 words that are letter-equivalent to words in L2:

L1 =⇒p L2 =
⋃

u∈L1,v∈L2

(u =⇒p v),

where u =⇒p v = u =⇒ com(v). If Σ = {a, b} and L1 = $a∗b∗##a∗b∗$ and
L2 = #$(ab)∗ then the permuted parallel deletion of L2 from L1 is

L1 =⇒p L2 = {$anbm#| m, n ≥ 0, m 6= n}∪
{#anbm$| m, n ≥ 0, m 6= n} ∪ {λ},

64

which shows that the result of permuted parallel deletion between two regular
languages is not necessarily regular. If L1 is the context-free language

L1 = {an
1 bm

1 cl
1#cl

2b
m
2 an

2#| n, m, l ≥ 0}

and L2 is the regular language L2 = ##(a2b2c2)
∗ then

L1 =⇒p L2 = {an
1 bn

1 cn
1 | n ≥ 0}.

This shows that the family of context-free languages is not closed under per-
muted parallel deletion with regular languages. By using an argument similar
to the one used for parallel deletion, one can show that the family of context-
sensitive languages is not closed under permuted parallel deletions with singleton
languages.

A controlled variant of the parallel deletion can be defined as follows. Let
u ∈ Σ∗ be a word and ∆ : Σ −→ 2Σ∗

be a control function which does not have
∅ as its value. The set u =⇒c ∆ is obtained by finding all the nonoverlapping
occurrences of ava, va ∈ ∆(a), in u, and by deleting va from them. Between
any two ocurrences of words of the type ava, va ∈ ∆(a), in u, no other words
of this type may remain.

If one imposes the restriction that for a distinguished letter b ∈ Σ we have
∆(b) = L2, and ∆(a) = λ for any letter a 6= b, a special case of controlled
parallel deletion is obtained: parallel deletion next to the letter b. The parallel

deletion next to the letter b is denoted by
b

=⇒. Let us examine the set u
b

=⇒ L2,
where u is a nonempty word and L2 is a language over an alphabet Σ. If u = bk,
k > 0, and no word of the form bv, v ∈ L2 occurs as a subword in u, the set

u
b

=⇒ L2 equals the empty set. If u contains at least one letter different from b,
u is retained in the result as we can erase λ near that letter. The other words
in u

b
=⇒ L2 are obtained by finding all the nonoverlapping occurrences of words

of the type bvi, vi ∈ L2 in u, and deleting vi from them. There may exist more
than one possibility of finding such a decomposition of u into subwords.

One can use similar techniques as for the parallel deletion to show that the
family of regular languages is closed under controlled parallel deletion, while the
families of context-free and context-sensitive languages are not (except when the
languages to be deleted are regular).

Besides studying closure properties, one can get more insight into the power
of parallel insertion and deletion operations by investigating classes of languages
that contain simple languages and are closed under some of the operations. Such
a class should be closed under a parallel insertion operation, a parallel deletion
one and an iterated parallel insertion one. Particular controlled operations will
be chosen in order to allow an increase as well a decrease of the length of the
words in the operands. The iterative operation has been included to provide an
infinite growth of the strings. Finally, we have to introduce the mirror image
and the union with λ for technical reasons.

65

Thus, let P be the smallest class of languages which contains the empty set,
the language {λ}, the singleton letters and is closed under mirror image, union
with {λ}, controlled parallel insertion, iterated controlled parallel insertion and
controlled parallel deletion with singletons. Then, [Ka2], P is contained in the
family of context-sensitive languages and properly contains the family of regular
languages. If we replace in P the controlled parallel deletion with singletons by
unrestricted controlled parallel deletion, the new family P ′ is a Boolean algebra
properly containing the family of regular languages.

The study of parallel insertion and deletion operations is closely connected
to the study of equations involving them. If ⋄ denotes a parallel insertion or
deletion operation, the simplest equations to consider are of the form L⋄X = R,
Y ⋄L = R, where R is a regular language, L is an arbitrary language, and X, Y
are the unknown languages.

If ⋄ denotes parallel insertion, permuted parallel insertion or parallel in-
sertion next to a letter, the problem whether there exists a singleton solution
X = {w} to the equation L ⋄ X = R is decidable for regular languages L and
R. Indeed, if ⋄ denotes parallel insertion, let L, R be regular languages and
m be the length of the shortest word in R. If there exists a word w such that
L ⇐= w = R then it must satisfy the condition lg(w) ≤ m. As the family of reg-
ular languages is closed under parallel insertion, our problem is decidable. The
algorithm for deciding it will consist of checking whether or not L1 ⇐= w = R
for all words w with lg(w) ≤ m. The answer is YES if such a word exists and
NO otherwise. A similar proof can be used to show that, for ⋄ denoting parallel
insertion, controlled parallel insertion and parallel insertion next to a letter, the
existence of a singleton solution Y to the equation Y ⋄ L = R is decidable for
regular languages L and R.

In contrast, given context-free languages L and regular languages R, the
existence of both a solution and a singleton solution X , to the equation L⋄X =
R is undecidable for ⋄ denoting parallel insertion, iterated parallel insertion,
permuted parallel insertion or parallel insertion next to a letter. Let # be a
letter which does not belong to Σ. We can actually prove a stronger statement:
there exists a fixed regular language R = Σ∗# such that the problem above
is undecidable for context-free languages L1. This follows by noticing that the
equation (L1#) ⇐= X = Σ∗# holds for languages L1, X over Σ exactly in
case L1 = Σ∗ and X = λ. Hence, if we could decide our problem, we would
be deciding the problem “Is L1 = Σ∗?” for context-free languages L1, which
is impossible. A similar proof, taking R = Σ∗ ∪ {#} and L1 = L ∪ {#}, can
be used to show that the existence of both a solution and singleton solution Y
to the equation Y ⇐= L = R is undecidable for context-free languages L and
regular languages R. Analogously it can be shown that the existence of both a
solution and singleton solution to the equation Y ⇐= ∆ = R is undecidable for
context-free control functions and regular languages R.

If we consider the same problems for parallel deletion operations, special
attention has to be paid to the fact that, while the result of parallel insertion is

66

always a word or set of words, the result of parallel deletion can be the empty
set. If ⋄ denotes a binary deletion operation and L is a given language, a word
y is called right-useful with respect to L and ⋄ if there exists x ∈ L such that
x ⋄ y 6= ∅. A language X is called right-useful with respect to L and ⋄ if it
consists only of right-useful words with respect to L and ⋄. The notion of left
useful can be similarly defined.

In the following, when we state the undecidability of the existence of a
solution to a certain equation, we will mean in fact that the existence of a useful
solution is undecidable. For example, if ⋄ denotes the parallel deletion, permuted
parallel deletion or iterated parallel deletion, the existence of a solution to the
equation L ⋄ X = R is undecidable for context-free languages L and regular
languages R. Let us consider the case of parallel deletion. If $, # are letters
that do not occur in Σ, there exists a regular language R = #Σ+# ∪ $Σ∗$
such that our problem is undecidable for context-free languages L. Indeed, for
a context-free language L, consider the language L1 = #Σ+# ∪ L. For all
languages L2 ⊆ Σ∗, the equation

#Σ+# ∪ L =⇒ X = #Σ+# ∪ $Σ∗$

holds if and only if X = {λ} and L = Σ∗. If we could decide our problem, we
could decide whether for given context-free languages L, the equation L = Σ∗

holds, which is impossible.
The problem remains undecidable even if instead of considering a binary

operation, like parallel deletion, we consider a card(Σ)+1 – ary operation like
controllel parallel deletion. It can be namely shown that the existence of a
singleton control function with the property L =⇒c ∆ = R is undecidable for
context-free languages L and regular languages R. The proof is similar to the
preceding one and is based on the fact that the equation

L1$ ∪ {#a$| a ∈ Σ} =⇒c ∆ = Σ+ ∪ {#a| a ∈ Σ}

holds for L1 ⊆ Σ∗ and singleton control functions ∆ if and only if

∆(#) = ∆($) = λ, ∆(a) = $, a ∈ Σ and L1 = Σ+.

The operations of parallel insertion and deletion are associated with several
notions rather basic in the combinatorics of words. A parallel deletion set is a
set of the form w =⇒ L, w ∈ Σ∗, L ⊆ Σ∗. Parallel deletions sets are universal
in the sense that every finite language can be viewed as a parallel deletion set
(see [KMPS]). If we fix the nonempty finite set F in the equation

w =⇒ L = F,

we can ask for an algorithm deciding for a given context-free language L whether
or not a solution w to the equation w =⇒ L = F exists. If such an algorithm
exists, we say that F is CF-decidable, otherwise CF-undecidable. F is called

67

CF-universal if for any (nonempty) context-free language L, there is a word w
such that w =⇒ L = F . We have that the set {λ} is CF-universal and it is the
only CF-universal set.

In spite of the fact that parallel deletion sets coincide with finite sets, every
finite nonempty set F 6= ∅ is CF-undecidable, ([KMPS]).

The parallel deletion number, [KMPS], associated to a word w equals the
cardinality of the largest parallel deletion set arising from w, that is

pd(w) = max{card(w =⇒ L)| L ⊆ Σ∗}.

For the alphabet with only one element, pd(w) can be computed, but for the
general case the question seems not to be simple at all. Indeed, one can show
that if w = an, n ≥ 1, then pd(w) = n. In the case of arbitrary alphabets with
at least two symbols the following surprising result, [KMPS], is obtained. If
card(Σ) ≥ 2, then there is no polynomial f such that for every w ∈ Σ∗ we have
pd(w) ≤ f(|w|).

Let us prove this result. It suffices to show that, given a polynomial f (in
one variable), there are strings w such that pd(w) > f(|w|).

Take a polynomial f of degree n ≥ 1 and consider the strings

wn,m = (ambm)n.

Moreover, take
Lm = {aibj | 1 ≤ i, j ≤ m − 1}.

and evaluate the cardinality of wn,m =⇒ Lm.
As each string in Lm contains at least one occurrence of a and one occurrence

of b, we can delete from wn,m exactly n strings of Lm, which implies

wn,m =⇒ Lm = {am−i1bm−j1am−i2bm−j2 . . . am−inbm−jn |

1 ≤ is, js ≤ m − 1, 1 ≤ s ≤ n}.

Consequently,
card(wn,m =⇒ Lm) = (m − 1)2n.

Clearly, because 2n is a constant, for large enough m we have

pd(wn,m) ≥ (m − 1)2n > f(2nm) = f(|wn,m|),

which completes the proof.
We observed that, for every word w, w =⇒ Σ∗ = {λ}. We can express

this by saying that every word collapses to the empty word when subjected to
parallel deletion with respect to Σ∗. We speak also of the collapse set of Σ∗.
Thus, the collapse set of Σ∗ equals Σ∗. In general, we define the collapse set of
a nonempty language L ⊆ Σ∗ by

cs(L) = {w ∈ Σ∗| w =⇒ L = {λ}}.

68

This language is always nonempty because it contains each of the shortest words
in L. For example, cs({anbn| n ≥ 1}) = (ab)+ and cs({a, bb}) = a∗bb(a+bb)∗a∗∪
a+, hence cs(L) can be infinite for finite L. On the other hand, cs({ab} ∪
{anbmap| n, m, p ≥ 1}) = {ab}, hence cs(L) can be finite for infinite L. We
have that, [KMPS], there is a linear language L such that cs(L) is not context-
free. Indeed, take

L = {ddanbmcn| n, m ≥ 1} ∪ {danbmcp| n, m, p ≥ 1, m ≥ p}.

While it is clear that L is linear,

cs(L) ∩ d2a+b+c+ = {d2anbmcn| 1 ≤ m ≤ n},

which, being non-context-free, shows that cs(L) cannot be a context-free lan-
guage. In fact, the collapse set of a language can be characterized as follows. If
L ⊆ Σ∗ then

cs(L) = L+ − M,

where
M = (Σ∗L ∪ {λ})(Σ+ \ Σ∗LΣ∗)(LΣ∗ ∪ {λ}).

As a corollary, we deduce that if L is a regular (context-sensitive) language,
then cs(L) is also a regular (context-sensitive) language.

Another natural way to define a parallel deletion operation is to remove
exactly k strings, for a given k. Namely, for w ∈ Σ∗, L ⊆ Σ∗, k ≥ 1, write

w =⇒k L = {u1u2 . . . uk+1| ui ∈ Σ∗, 1 ≤ i ≤ k + 1,
w = u1v1u2v2 . . . ukvkuk+1, for vi ∈ L, 1 ≤ i ≤ k}.

Sets of this form will be referred to as k-deletion sets; for given k ≥ 1 we denote
by Ek the family of k-deletion sets. For all k ≥ 1, Ek ⊂ Ek+1, strict inclusion.
Moreover, for every finite set F , there is a k such that F ∈ Ek, and given a
finite set F and a natural number k, it is decidable whether F ∈ Ek or not.

The operations of insertion and deletion seem to occur time and again in
modeling natural phenomena. We have seen how L systems model the growth
of multicellular organisms. The related notions of parallel insertion and deletion
have recently become of interest in connection with the topic of DNA computing.

The area of DNA computing was born in 1994 when Adleman, [Ad1], suc-
ceeded in solving an instance of the Directed Hamiltonian Path solely by ma-
nipulating DNA strands. This marked the first instance where a mathematical
problem could be solved by biological means and gave rise to a couple of inter-
esting problems: a) can any algorithm be simulated by means of DNA manipu-
lation, and b) is it possible, at least in theory, to design a programmable DNA
computer?

To answer these questions, various models of DNA computation have been
proposed, and it has been proven that these models have the full power of a

69

Turing machine. The models based on the bio-operations proposed by Adleman
can be already implemented in laboratory conditions, but the fact that most
bio-operations rely on mainly manual handling of tubes prevents the large scale
automatization of the process.

There are two ways to overcome this obstacle and to further the research in
DNA computing. The first approach is to try to speed-up and automatize the
existing operations.

The second one is to try to design a model based entirely on operations that
can be carried out by enzymes (cutting and pasting DNA strands at certain
places). Indeed, already in [Ad2] the idea was advanced to “design a molecular
computer (perhaps based on entirely different ”primitives” than those used here)
which would accomplish its task by purely chemical means inside of a single
tube”.

As DNA strands can be viewed as strings over the four letter alphabet Σ =
{A, C, G, T} (Adenine, Cytosine, Thymine and Guanine), it is natural to pursue
this second approach within the frame of formal language theory (see the chapter
in this Handbook written by Head, Paun, and Pixton for a formal language
model of DNA computing, based on splicing). The cut and paste operations
performed by enzymes can then be modeled as controlled parallel insertions
and deletions. Further study of the power of these operations could assist in
proving the claim in [SmS] that “ only a finite collection of rewrite rules which
insert or delete single U’s in specified contexts of an mRNA sequence will suffice
to get universality.”

For attaining this goal, and with biological motivations in mind, the notion
of control needs strenghtening: a word can be inserted into a string only if
certain contexts are present. Formally, given a set C ∈ Σ∗ ×Σ∗ called a context
set, the parallel contextual insertion, [KT], of a word v into the word u is

u ⇐=C v = {u1x1vy1u2x2vy2 . . . ukxkvykuk+1| k ≥ 0,

u = u1u2 . . . ukuk+1, (xi, yi) ∈ C, 1 ≤ i ≤ k}.

The proof that controlled parallel insertions and deletions are enough to
simulate the action of a Turing machine, would thus open a possible way for
designing a molecular computer with all the operations carried out by enzymes.

8 Scattered views from the L path

We conclude this chapter with some scattered remarks, mostly about recent
work. We have already emphasized that, in such a vast field as L systems, one
cannot hope to be encyclopedic in a chapter of this size, especially if one tries
to survey also the methods as we have done. Some of the areas neglected by us
could have deserved even a section of their own.

Inductive inference certainly constitutes one such area. How much knowledge
of the language or sequence is needed to infer the L system behind it, or one

70

of the many possible L systems? This is relevant, for instance, in modeling
experimental data. Inductive inference is a part of the theory of learning: one
tries to get a complete picture from scattered information. Here the setup may
vary. New data may come independently of the observer, or the latter may want
some specific information, for instance, whether or not a specific word is in the
language. Inductive inference (or syntactic inference as it is sometimes called)
has been studied for L systems from the very beginning, [HR], [RSed1], [H1].
The reader is referred to [Yo2] and its references for some recent aspects.

There is a special chapter in this Handbook about complexity. [Ha], [JS],
[vL] are early papers on the complexity of the membership problem for systems
with tables, [vL] being especially interesting in that it provides a very nice class-
room example of a reduction to an NP-complete problem. [Ke], [SWY], [LaSch]
are examples of various areas of current interest. Most of the complexity issues
studied in connection with L systems have been on the metalevel : complexity
of questions about the system (membership, equivalence) rather than things
happening within the system (length of derivations, workspace). This reflects
perhaps the lack of really suitable machine models for L systems, [RS1].

If an L system is viewed as an L form, then it produces a family of lan-
guages rather than just a single language.The original L system is used as a
propotype giving rise to a collection of systems resembling it. The study of L
forms was originated in [MSW1]; they are also discussed in a later chapter in
this Handbook.

[Sz], [V], [K2], [PS], [S3] represent different aspects of the early work on
growth functions. A related more recent approach has been the application
of L operations to power series, [Ku], [KS]. This approach will be dealt with
in the chapter by W.Kuich in this Handbook. Also the recent very intensively
investigated questions about splicing and DNA, [He], will be discussed elsewhere
in this Handbook.

Many recent invetigations concerning length have dealt with slenderness,
[APDS], [DPS1]. Restricted parallelism has been the object of many recent
studies; the reader is referred to [Fe] and the references given therein.

Since the L families have weak closure properties, we face the following
decision problem. Assume, for instance, that a family L is not closed under
union. Given two languages from L, their union may or may not belong to L.
Can we decide which alternative holds? The problem is decidable for PD0L
languages and for U0L languages but undecidable for P0L languages, [DPS2].
For D0L languages the problem is open, due to difficulties discussed above in
connection with growth functions.

It is quite common in language theory that an undecidable problem becomes
decidable if sharper restrictions are imposed on the phenomena under study.
For instance, equivalence is undecidable for context-free grammars, whereas
structural equivalence, where also the derivation structures of the two grammars
have to be the same, is decidable. The situation is exactly the same for E0L
systems, [SY]. The papers [OW], [Nie], [SWY] present related results.

71

For stochastic variants of 0L systems, the reader is referred to [JM] and the
references there. Stochastic variants have been useful in picture generation, [PL].
The area of cooperating grammars and L systems, [Pa], is discussed elsewhere
in this Handbook.

[Yo1] and [Da2] introduce control mechanisms for 0L and DT0L systems,
respectively. For instance, a table can be used if some other table has not been
used. [IT], [Lan], [Har1], [Har2], [Ko] represent various D0L-related studies. In
[Ko] conditions are deduced for D0L-simulation of DIL systems. In the piecewise
D0L systems (or PD0L systems) of [Har2], the set Σ∗ is partitioned, and the
morphism depends on which part of the partition the word derived so far belongs
to. A sequence of words still results. “Dynamical properties” such as finiteness
and periodicity are decidable if the sets in the partition are regular languages.

The monographs [HR] and [RS1] and the collections of papers [RSed1] –
[RSed4] contain many further references. The collections [RSed1] – [RSed3] also
reflect the state of the art after roughly ten-year intervals. Of special value are
the survey articles [L3], [L4], [LJ], where Aristid Lindenmayer was the author
or coauthor.

References

[Ad1] L.Adleman, Molecular computation of solutions to combinatorial
problems. Science v.266, Nov.1994, 1021 – 1024.

[Ad2] L.Adleman, On constructing a molecular computer. Manuscript in
circulation.

[AL] M.Albert and J.Lawrence, A proof of Ehrenfeucht’s conjecture. The-
oret. Comput. Sci. 41 (1985) 121 – 123.

[APDS] M.Andrasiu, G.Paun, J.Dassow and A.Salomaa, Language-theoretic
problems arising from Richelieu cryptosystems. Theoret. Comput. Sci.
116 (1993) 339 – 357.

[Be] J.Berstel, Sur les pôles et le quotient de Hadamard de séries N-
rationelles, C.R. Acad.Sci., Sér.A 272 (1971) 1079 – 1081.

[BeP] J.Berstel and D.Perrin, Theory of codes. Academic Press, New York
(1985).

[Br] V.Bruyere, Codes prefixes. Codes a delai dechiffrage borne. Nouvelle
thèse, Université de Mons (1989).

[Ch] C.Choffrut, Iterated substitutions and locally catenative systems: a
decidability result in the binary case. In [RSed3], 49 – 92.

72

[CF] K.Culik II and I.Fris, The decidability of the equivalence problem for
D0L systems. Inform. and Control 35 (1977) 20 – 39.

[CK1] K.Culik II and J.Karhumäki, Systems of equations over a free monoid
and Ehrenfeucht’s conjecture. Discrete Math. 43 (1983) 139 – 153.

[CK2] K.Culik II and J.Karhumäki, A new proof for the D0L sequence equiv-
alence problem and its implications. In [RSed2], 63 – 74.

[CS1] K.Culik II and A.Salomaa, On the decidability of homomorphism
equivalence for languages. J.Comput.Systems Sci. 17 (1978) 163 –
175.

[CS2] K.Culik II and A.Salomaa, Ambiguity and decision problems con-
cerning number systems. Inform. and Control 56 (1983) 139 – 153.

[Da1] J.Dassow, Eine Neue Funktion für Lindenmayer-Systeme. Elek-
tron.Informationsverarb.Kybernet. 12 (1976) 515 – 521.

[Da2] J.Dassow, On compound Lindenmayer systems. In [RSed2], 75 – 86.

[DPS1] J.Dassow, G.Paun and A.Salomaa, On thinness and slenderness of L
languages. EATCS Bull. 49 (1993) 152 – 158.

[DPS2] J.Dassow, G. Paun and A.Salomaa, On the union of 0L languages.
Inform. Process. Lett. 47 (1993) 59 – 63.

[ER1] A.Ehrenfeucht and G.Rozenberg, The equality of E0L languages and
codings of 0L languages. Internat.J.Comput.Math. 4 (1974) 95 – 104.

[ER2] A.Ehrenfeucht and G.Rozenberg, Simplifications of homomorphisms,
Inform. and Control 38 (1978) 298 – 309.

[ER3] A.Ehrenfeucht and G.Rozenberg, Elementary homomorphisms and a
solution of the D0L sequence equivalence problem. Theoret. Comput.
Sci. 7 (1978) 169 – 183.

[ER4] A.Ehrenfeucht and G.Rozenberg, On a bound for the D0L sequence
equivalence problem. Theoret. Comput. Sci. 12 (1980) 339 – 342.

[En] J.Engelfriet, The ET0L hierarchy is in the 0I hierarchy. In [RSed2],
100 – 110.

[Fe] H.Fernau, Remarks on adult languages of propagating systems with
restricted parallelism. In [RSed4], 90 – 101.

[HW] G.Hardy and E.M.Wright, An introduction to the Theory of Numbers.
Oxford Univ.Press, London and New York, (1954).

73

[Ha] T.Harju, A polynomial recognition algorithm for the EDT0L lan-
guages, Elektron. Informationsverarb. Kybernet.. 13 (1977) 169 – 177.

[Har1] J.Harrison, Morphic congruences and D0L languages. Theoret. Com-
put. Sci. 134 (1994) 537 – 544.

[Har2] J.Harrison, Dynamical properties of PWD0L systems. Theoret. Com-
put. Sci. 14 (1995) 269 – 284.

[He] T.Head, Splicing schemes and DNA. In [RSed3], 371 – 384.

[H1] G.T.Herman, The computing ability of a developmental model for
filamentous organisms. J.Theoret.Biol. 25 (1969) 421 – 435.

[H2] G.T.Herman, Models for cellular interactions in development with-
ough polarity of individual cells. Internat. J. System Sci. 2 (1971)
271 –289; 3 (1972) 149 – 175.

[HR] G.T.Herman and G.Rozenberg, Developmental Systems and Lan-
guages North-Holland Publ., Amsterdam (1975).

[HWa] G.T.Herman and A.Walker, Context-free languages in biological sys-
tems. Internat. J. Comput. Math. 4 (1975) 369 – 391.

[Ho1] J.Honkala, Unique representation in number systems and L codes.
Discrete Appl. Math. 4 (1982) 229 – 232.

[Ho2] J.Honkala, Bases and ambiguity of number systems. Theoret. Com-
put. Sci. 31 (1984) 61 – 71.

[Ho3] J.Honkala, A decision method for the recognizability of sets defined
by number systems. RAIRO 20 (1986) 395 – 403.

[Ho4] J.Honkala, It is decidable whether or not a permutation-free mor-
phism is an L code. Internat. J. Computer Math. 22 (1987) 1 – 11.

[Ho5] J.Honkala, On number systems with negative digits. Annales
Academiae Scientiarum Fennicae, Series A.I.Mathematica 14 (1989)
149 – 156.

[Ho6] J.Honkala, On unambiguous number systems with a prime power
base. Acta Cybern. 10 (1992) 155 – 163.

[Ho7] J.Honkala, Regularity properties of L ambiguities of morphisms. In
[RSed3], 25 – 47.

[Ho8] J.Honkala, On D0L systems with immigration. Theoret. Comput. Sci.
120 (1993) 229 –245.

74

[Ho9] J.Honkala, A decision method for the unambiguity of sets defined by
number systems. Journal of Univ. Comput. Sci, to appear.

[HoS] J.Honkala and A.Salomaa, Characterization results about L codes.
RAIRO 26 (1992) 287 – 301.

[IT] M.Ito and G.Thierrin, D0L schemes and recurrent words. In [RSed2],
157 – 166.

[JS] N.Jones and S.Skyum, Complexity of some problems concerning L
systems. Lecture Notes in Computer Science 52 (1977) 301 – 308.

[JM] H.Jürgensen and D.Matthews, Stochastic 0L systems and formal
power series. In [RSed2], 167 – 178.

[K1] J.Karhumäki, An example of a PD2L system with the growth type 2
1/2. Inform. Process. Lett. 2 (1974) 131 – 134.

[K2] J.Karhumäki, On Length Sets of L Systems, Licentiate thesis, Univ.
of Turku (1974).

[K3] J.Karhumäki, Two theorems concerning recognizable N-subsets of σ∗.
Theoret. Comput. Sci. 1 (1976) 317 – 323.

[Ka1] L.Kari, On insertions and deletions in formal languages. Ph.D. thesis,
University of Turku, Finland, 1991.

[Ka2] L.Kari, Power of controlled insertion and deletion. Lecture Notes in
Computer Science, 812 (1994), 197 – 212.

[KMPS] L.Kari, A.Mateescu, G.Paun, A.Salomaa. On parallel deletions ap-
plied to a word, RAIRO – Theoretical Informations and Applications,
vol.29, 2(1995), 129 – 144.

[KRS] L.Kari, G.Rozenberg and A.Salomaa, Generalized D0L trees. Acta
Cybern., 12 (1995) 1 – 9.

[KT] L.Kari, G.Thierrin, Contextual insertions and deletions. Submitted.

[KOE] T.Katayama, M.Okamoto and H.Enomoto, Characterization of the
structure-generating functions of regular sets and the D0L growth
functions. Inform. and Control 36 (1978) 85 – 101.

[Ke] A.Kelemenová, Complexity of 0L systems. In [RSed2], 179 – 192.

[Ko] Y.Kobuchi, Interaction strength of DIL systems. In [RSed3], 107 –
114.

[Ku] W.Kuich, Lindenmayer systems generalized to formal power series
and their growth functions. In [RSed4], 171 – 178.

75

[KS] W.Kuich and A.Salomaa, Semirings, Automata, Languages. Springer-
Verlag, Berlin, Heidelberg, New York (1986).

[Lan] B.Lando, Periodicity and ultimate periodicity of D0L systems. The-
oret. Comput. Sci. 82 (1991) 19 – 33.

[LaSch] K.J.Lange and M.Schudy, The complexity of the emptiness problem
for E0L systems. In [RSed3], 167 – 176.

[La1] M.Latteux, Sur les T0L systémes unaires. RAIRO 9 (1975) 51 – 62.

[La2] M.Latteux, Deux problemes decidables concernant les TUL langages.
Discrete Math. 17 (1977) 165 – 172.

[L1] A.Lindenmayer, Mathematical models for cellular interaction in de-
velopment I and II. J.Theoret. Biol. 18 (1968) 280 – 315.

[L2] A.Lindenmayer, Developmental systems without cellular interactions,
their languages and grammars. J. Theoret. Biol. 30 (1971) 455 – 484.

[L3] A.Lindenmayer, Developmental algorithms for multicellular organ-
isms: a survey of L systems. J.Theoret. Biol. 54 (1975) 3 – 22.

[L4] A.Lindenmayer, Models for multi-cellular development: characteriza-
tion, inference and complexity of L-systems. Lecture Notes in Com-
puter Science 281 (1987) 138 – 168.

[LJ] A.Lindenmayer and H.Jürgensen, Grammars of development:
discrete-state models for growth, differentiation and gene expression
in modular organisms. In [RSed3], 3 – 24.

[Li1] M.Linna, The D0L-ness for context-free languages is decidable. In-
form. Process. Lett. 5 (1976) 149 – 151.

[Li2] M.Linna, The decidability of the D0L prefix problem. Intern. J. Com-
put. Math. 6 (1977) 127 – 142.

[Ma] G.Makanin, The problem of solvabillity of equations in a free semi-
group. Math. USSR Sb. 32 (1977) 129 – 138.

[MSW1] H.Maurer, A.Salomaa and D.Wood, E0L forms. Acta Inform. 8 (1977)
75 – 96.

[MSW2] H.Maurer, A.Salomaa, D.Wood, L codes and number systems. Theo-
ret. Comput. Sci. 22 (1983) 331 – 346.

[MSW3] H.Maurer, A.Salomaa and D.Wood, Bounded delay L codes. Theoret.
Comput. Sci. 84 (1991) 265 – 279.

76

[MT] L.M.Milne-Thompson, The Calculus of Finite Differences Macmillan,
New York (1951).

[MRS] J.Mäenpää, G.Rozenberg and A.Salomaa, Bibliography of L systems.
Leiden University Computer Science Technical Report (1981).

[N] M.Nielsen, On the decidability of some equivalence problems for D0L
systems. Inform. and Control 25 (1974) 166 – 193.

[NRSS] M.Nielsen, G.Rozenberg, A.Salomaa and S.Skyum, Nonterminals, ho-
momorphisms and codings in different variations of 0L systems, I and
II. Acta Inform. 3 (1974) 357-364; 4 (1974) 87 – 106.

[Nie] V.Niemi. A normal form for structurally equivalent E0L grammars.
In [RSed3], 133 – 148.

[Ni] T.Nishida, Quasi-deterministic 0L systems. Lecture Notes in Com-
puter Science 623 (1992) 65 – 76.

[NiS] T.Nishida and A.Salomaa, Slender 0L languages. Theoret. Com-
put.Sci., to appear.

[OW] Th.Ottman and D.Wood, Simplifications of E0L grammars. In
[RSed3], 149 – 166.

[Pa] G.Paun, Parallel communicating grammar systems of L systems. In
[RSed3], 405 – 418.

[PaS] G.Paun and A.Salomaa, Decision problems concerning the thinness
of D0L languages. EATCS Bull. 46 (1992) 171 – 181.

[PS] A.Paz and A.Salomaa, Integral sequential word functions and growth
equivalence of Lindenmayer systems. Inform. and Control 23 (1973)
313 – 343.

[PK] P.Prusinkiewicz, L.Kari, Subapical bracketed L systems. To appear in
Proceedings of the 5th International Workshop on Graph Grammars
and their Applications, Williamsburg, Virginia, 1994.

[PL] P.Prusinkiewicz and A.Lindenmayer, The Algorithmic Beauty of
Plants. Springer-Verlag, Berlin, Heidelberg, New York (1990).

[R1] G.Rozenberg, T0L systems and languages. Inform. and Control 23
(1973) 262 – 283.

[R2] G.Rozenberg, Extension of tabled 0L systems and languages. Inter-
nat. J. Comput. Inform. Sci. 2 (1973) 311 – 334.

77

[RRS] G.Rozenberg, K.Ruohonen and A.Salomaa, Developmental systems
with fragmentation. Internat. J. Comput. Math. 5 (1976) 177 – 191.

[RS1] G.Rozenberg and A.Salomaa, The Mathematical Theory of L Sys-
tems. Academic Press, New York (1980).

[RS2] G.Rozenberg and A.Salomaa, When L was young. In [RSed2], 383 –
392.

[RS3] G.Rozenberg and A.Salomaa, Cornerstones of Undecidability. Pren-
tice Hall, New York (1994).

[RSed1] G.Rozenberg and A.Salomaa (eds.), L systems. Lecture Notes in
Computer Science 15 (1974).

[RSed2] G.Rozenberg and A.Salomaa (eds.), The Book of L. Springer-Verlag,
Berlin, Heidelberg, New York (1985).

[RSed3] G.Rozenberg and A.Salomaa (eds.), Lindenmayer Systems. Springer-
Verlag, Berlin, Heidelberg, New York (1992).

[RSed4] G.Rozenberg and A.Salomaa (eds.), Developments in Language The-
ory. World Scientific, Singapore, New Jersey, London, Hong Kong
(1994).

[Ru1] K.Ruohonen, Zeros of Z-rational functions and D0L equivalence, The-
oret. Comput. Scci. 3 (1976) 283 – 292.

[Ru2] K.Ruohonen, The decidability of the F0L-D0L equivalence problem.
Inform. Process. Lett. 8 (1979) 257 – 261.

[Ru3] K.Ruohonen, The inclusion problem for D0L langugaes. Elektron. In-
formationsverarb. Kybernet. 15 (1979) 535 – 548.

[Ru4] K.Ruohonen, The decidability of the D0L-DT0L equivalence problem.
J. Comput. System Sci. 22 (1981) 42 – 52.

[S1] A.Salomaa, Formal Languages. Academic Press, New York (1973).

[S2] A.Salomaa, Solution of a decision problem concerning unary Linden-
mayer systems. Discrete Math. 9 (1974) 71 – 77.

[S3] A.Salomaa, On exponential growth in Lindenmayer systems. Indag.
Math. 35 (1973) 23 – 30.

[S4] A.Salomaa, Comparative decision problems between sequential and
parallel rewriting. Proc. Symp. Uniformly Structured Automata Logic,
Tokyo (1975) 62 – 66.

78

[S5] A.Salomaa, Jewels of Formal Language Theory. Computer Science
Press, Rockville (1981).

[S6] A.Salomaa, Simple reductions between D0L language and sequence
equivalence problems. Discrete Appl. Math. 41 (1993) 271 – 274.

[S7] A.Salomaa, Developmental models for artificial life: basics of L sys-
tems. In G.Paun (ed.) Artificial life: Grammatical Models. Black Sea
University Press (1995) 22 – 32.

[SS] A.Salomaa and M.Soittola, Automata-Theoretic Aspects of Formal
Power Series. Springer-Verlag, Berlin and New York (1978).

[SWY] K.Salomaa, D.Wood and S.Yu, Complexity of E0L structural equiv-
alence. Lecture Notes in Computer Science. 841 (1994) 587 – 596.

[SY] K.Salomaa and S.Yu, Decidability of structural equivalence of E0L
grammars. Theoret. Comput. Sci. 82 (1991) 131 – 139.

[SmS] W.Smith, A.Schweitzer, DNA computers in vitro and in vivo. NECI
Research Report, Mar.31, 1995.

[So1] M.Soittola, Remarks on D0L growth sequences. RAIRO 10 (1976) 23
– 34.

[So2] M.Soittola, Positive rational sequences. Theoret. Comput. Sci. 2
(1976) 317 – 322.

[Sz] A.Szilard, Growth Functions of Lindenmayer Systems, Tech. Rep.,
Comput. Sci, Dep., Univ. of Western Ontario (1971).

[vL] J.van Leeuwen, The membership question for ET0L languages is poly-
nomially complete. Inform. Process. Lett. 3 (1975) 138 – 143.

[V] P.Vitany, Structure of growth in Lindenmayer Systems. Indag. Math.
35 (1973) 247 – 253.

[Yo1] T.Yokomori, Graph-controlled systems – an extension of 0L systems.
In [RSed2], 461 – 471.

[Yo2] T.Yokomori, Inductive inference of 0L languages. In [RSed3], 115 –
132.

79

