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NUMBER-THEORETIC MAPPINGS COMPUTED
BY G.S.MS
by
GIIEORGIIE PAUN AND LILA SANTEAN (ROMANIA)

Encoding the natural numbers as strings over some snitable alpha-
bet, the natural mappings can be viewed ag string mappings and can
be simulated by string transducers. The mappings computed in this way
by gsm’s are considered here : examples, necessary and sufficient condi-
tions, characterization, infinite hierarchies with respect to variouns syn-
tactic complexity measures of gsm’s ete.

1. Introduetion

The syntactic treatment of numerical mappings, by encoding them
as string mappings, is an already considered topic in formal language
theory (see [56], [7], [8], [9], for instance). The reason is twotold : fo
test the power of various generative mechanisms in formal language
theory and to say something about numerical mappings through this
unstandard way of studying them.

The present paper continues this path of research, by investigating
mappings computed by sequential transducers. Only linearly bounded
natural mappings can be obtained in this way, bul the study is still
worth : infinite complexity hierarchies of such mappings are obtained by
considering the syntactic complexity of associated transducers. Please
note that the class of linear mappings was not gene rally splitted into
complexity classes in the frame of recursive function theory (see [17]).

2. Delinitions and examples

A gsm is a system (we use the style of [6]in writing its components)
= (I, 0, K, s, I, P)
where T is the input alphabet, O is the output alphabet, K is the (finite

and nonempty) set of states, s, € K isthe initial state, I < I is the set
of final states, and P is a finite set of rewriting rules of the form sa—ws’,
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8,8 eli, ael,weO* (for a given alphabet 1, 17 is the free monoid
generated by 17 under the operation of concatenation and the null ele-
ment 75 [ 2 denotes the length of « string o and o, is the number of
occurrences of the symbol @ in the string ).

For two, strings @, 4, @ = asar, y — WS @y, 1y € OF e [#, gq—
—ws' e P, we write @ = y (in the state 8, the gsm 101(1\ Hw symbol a,
translates it into the string w and passes lo state s'). We denote by =
the reflexive and transitive closure of =. For a string @ e I'* we define

g(2) = {y € 0% & = y according Lo g}
For a language I, = I* we put

g(L) = U g(w)

YEL

Given a (partial) mapping [:N* - N we can consider the (partial
string) mapping

Js g, o - {ad#
defined by
Jolatr .. &F) = a", m = f(ny, ... 0),
for all (n,, o) =dom fo A bviee whieh would compute the mapping f,
e said to compute f.

In this way we can say that a mapping f:N* — N is computed by a
gsm g = ({ay,. . .0, Ia}, K So, 1, P) Al glals .. oaf%) = a™ m—f(n,,. . .0

for (ny,...,m) e dom I — 0)1 and g(ajr. . u”’») isnof defined for (n,, . . .
coita) E dom . (We ]ld\ e 10 omit the argument (0,...,0) because we
hawe ¢(2) = 2, hence the mappings value in origin Lannot ])e computed.)

When a gsm g computes a mapping f we write g = f.
Please note that we are interested only in the behavior of g over

ay. ..k and we ignore its'behavior outside this language.
We denote .
Tk | . & ‘
= {f:N* = N|there is a gsm g such that g =N
Loy | i i ‘ ]
L.J i
L3

&
Bramples. (1) The mapping f(n,, .. ofg) =Y e 4 B, €N,

i=1
1 <7<k 8>0,is computed by
— (S fal. $o. el o $¢
q = ('L”,U . -9“’.(}1 L”}} 150, S5y Yoy IRIIR) P)
P = {s4a; — a” P |1 < i < kin

Uisiy > a™is; |1 <4 < It
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&
(2) The mapping f(ny, .. .,n) = %, v (mod 3) is computed by

i=

—

— (S 1 f i G @ " , )
g = ({ty, . . i}, 1€} 150y S1y Spy Sats Sos 183}, )
4
P = {Suuf ==y S.li 1 €1 < f;'} U {.s*lcr.i — .‘?2| 1 €1 < ]r‘} U
Ufsotts = 850 1 <4 < kIU{seas — asg| 1 <4 < k}U

Ufsa, — a2a,| 1 <7 < kU {800 — 83| 1 <@ < K}

(3) The so-called Collatz mapping ([3], pages 121 —122),
Mt is even
: 2
J(?z‘) = n —1
3 _v,.,z,:_ - 20f n is odd

ig also in ¥, as being computed by

g ol fo o : >
g = ({ey}, 14}, 30y S1y 2 Sas Sa)s Sos {84, 83}, P)

P = {spa, — 8;, 8§, — U8y, Sty 7> 8y

. Sl = (%Sg, Saly —> Sy Sty — aPSg}

The relation f = g is obvious : on the path sy §, s, one computes f(n)
for even n and on the path s, s;, s, one computes f(n) for odd n.

3. Neeessary and sullieient conditions

The aim of this section is to characterize the class @. First, two
sufficient conditions are given.

THEORIEM 1. lh(’ family # s closed under composilion.

Proof. LL‘t' S N N, 1<i<r, [N >N be in 4 and let
gi = ({ag, « . s}y {60}y 1oy S0 F,, P, y = {(Ll, o)y {a), K, s, Iy P)
be gsm’s such 111(1.13 fi = ¢y [ = g. We construct the gsin

! = ({ @y - osti}s {a}, X', qo, {8/}, P, t = “F k

i=1

with
':(UK‘)X K x {0, 1} 0 {qo, 5/}
i=1
«(f)-1
Tor j, 1 <j <1, denote v(j) =j — %] ki, where
i=1
; 1ifj <k
Cl.(j) = l:?—l !

uifEk,—I—lsi<Ek¢,u22

i==1 i=1
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Then, P’ contains the following rules:

1) oty — a‘h(svz(in 8, B), for
1<j<t pefo, 1},

Soa(nlytn > @"Sx(p is a rule in P,

* : L }=1(0300010)
sqwatyy = a's in g, w = af®0, g0 it

B =0 iff w =0 (therefore s = s;);
(Satny 85 Bl — @'(s4p, 8'y B), for
1<) <, B,8" € {0, 1},
Supnlvey — @"8yp 18 a rule in P,
sal = a's' in g,

B’ =0 iff p = 0 and u = 0 (therefore s = s’ = sy);

(Sx(ys 8 E’) Ajypp — “h(sa(.’+u); S’, B'), G‘U + ) > Ot(j), for
L<j<jtov<t 8 ¢efo 1}

IR

L : 0 d . )
Suty € Fatnyy 80 atrsn,fxtirn = Q"Sxgieey 18 I Prgipy,
" e hot 3 0
swak 4y = a"s’ in g, where

Ty 1000000 Tati+v)—1 (00,0
w = @i RIS ) S A

B’ = 0 iff p =0 and w = 0 (therefore s’ = s = s;,);

4) Tor each rule ga; — a"(3,, 8, B) as above, with s, € Fyy,, we also
introduce in P’ the rules

ga; — a"*'s, for
- { 0 if «(j) =1 and sel

TN i)4100,...,0 £ A0, ..\0) *
p if aj) < r, where saf‘(”’f'( %y g .afr'( )

g’ 1 : 4 7
et = ars’in g, and s’ e 1.

5) TFor each rule ga; — (Sq 8, 0) asabove, with s = o, Su) € Fas))
Fane1(0,. . ,0) = 0,.. ., f:(0,...,0) = 0, we introduce in P’ the rule
qay; — a,f(os...-,o)sf

Trom the above definition one can check that g'(aj:...a}t) = g(aj . ..
ng Ny 41 Ny 4 Rg
...ab), where wy = fi(afr...a1), = fula,"" .. .a)T ),

y " ! u — af(¥,...% ! =
vy=Y ky 2 <0 <. As g(als...a'r) = a’"v") we have ¢g' = ],
1

J+ . .
where 7 : N' =N is the mapping A(ty, .. %, B e gt) = JUslngy o oomy )y
Falmy 4o NRTAN PR 1 ("B TRE .,%)). The parameter pin states of K’ and
1

the rules in group 5 ensure also the computation of k(ny, .. .,n,) for % =0,
1 < i < 7, uas above, that is they selve the case when we have to deal
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Ky
with f(0,...,0), each zero being the value of some f(n,...,m,), ¥, w#0
j=1

for atl least one 7.

COROLLARY. If fi, fo€ 9, then also [, -+ f,€ 9.

Proof. Consider the mapping f:N? = N, f(n, m)=mn+ m.
According to Example 1, fe %. In view of the previous theorem, also
FUfl s folo o D) = A0 4 Sl L) is in @

THREOREM 2. Let f: N* — N be a mapping such that there are
the regular languages Ly 1 <1 <7, for given v such that :

iy LenIynaf...af=0,1 <1 <j<r,

i) U (Ienak...ay) = {ap. ..q¥|(ny, .. ) € dom f},

i=1

iii) for each i, 1 < i < r, there are u;; € N, 1 <j<k and 8,eN
A ;
such that a'v...aix € L iff f(ny, .. o) = Y gy + B
=1

Then, fe @ (when a mapping is lineary defined on finilely many

disjoint reqular paris of its domain, then the mapping 1s in %).
Proof. Let A = ({a,. .., Ky sq0 By Py, 1 <i <1, be

hnite automata for languages Iy, and assume K;n I; = O for all ¢ # j.
We construct the gsm g = ({ay . . @}, {a}, K, s, 18/}, P) with

K = [:j I U {8, 87}

im1
N . .
P = {sgu; » @] L < <k, L €17, 840 2 S€E Plu
U iset; — iitligl 1 < <k, L <P <800 2sePy sell}U

U {sa; — a*1’s'|saq; — 8’ € Pi}u {sa; — a"Vs;| sa; — 8' € Py, §' e Fy}

Rach translation s,a™.. .a-”[{f;‘; a's; in g corresponds to a rewriting

k
* . . "
8.4 G, . .0M% = 5, s € Fy, according to some Aiy and has w = ¥} neai; + Biy
j=1
therefore f € %. ;
Consider now some necessary conditions for a mapping to be in %.
LEMMA 1. If fe @, then there exists a nalural nwmber « such
k k
that f(ny,. . .yng) <@y, na for all ny, .. .o with Y, ne > 0.

i=1 i=1

Proof. It f=g for g = ({ay,...,a, {a}, K, 8,, 1", P), then the
needed « is :

« — max {t] sa; > a's' e P, 1 <1 < k}.
COROLLARY . The non-linear bounded mappings are not in .

Generally, for a given gsm g = (I, 0, K, s, I, P), it is known
that the language

L,= {weI* |g(w) is defined}
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is regular. Therefore .
Ligom 1 = {0t ..k (ny, . .. ong) € dom [}
is regular for all fe @, because, for g = o we have
Lagmr = L,naf .. af

A more precise condition is true, namely
LIMMA 2. If fe @, then for all m e X, the language

L = {als. ..a"™|f(ny,...n0,) = m}
18 rveqular,
Proof. Let g = ({a,...,a,}, 1, K, sy, F, P) be a gsm compu-
ting f. We conslruet the gsm
; 1 F gl g
4 = (.. 0}, {a,.. 0, a, K, LITIR P i
P'={sa; »as’'|1 <1<, sa;, > a's’ e P}
and consider the regular language
Ly = Shuf ({a7}, af. . .af), m = 0,

where Shuf is the operation defined by

Shuf (z, y) = {"’“.I'.'f'r'?-‘z."/z- gl t 2 1, & = x .. <2y
Y=Yy & €1, 1 €4 g t},

Shuf (Ly, Ly) = qw | we Shuf(x, y), ve i, ye Ly},
Then we have

I = h(g'({af*. . . x| neN,1 <9 < k}nL), m >0,

where. o :{ay, .. a4, a}* - {a,,...,q,}% is the homomorphism detined by

ha)) = ai, 1 <@ < &, h(a) = 2. All the above operations (Shuf. h. o n
s y x : it~ v Ny Uy

preserve the regular languages, therefore 1., is regular,

COROLLARY 1L Themapping f(n, m)=mn--m= {n—m T ik

0 otherwise
i3 not in 4,
Proof. The language I, = {aja}| n < m} is not a regular one.

COROLLARY 2. The mapping f(n, m) = [} }-is not in 9,
n

Proofl.Clearly, f(n, m) = 0iff n < m, therefore Ly = {ajay| n<<m}
and this languages is not regular.

Please note that both these mappings satisfy the condition in
Lemma 1, therefore Lemma 1 does not give a sufficient condition for a
mapping to be in 4. Neither the condition in Temma 2 is sufficient :
the mapping f(n) = »2 is not linear, hence it is not in &, but £, is
regular for all m (either L, =0 or L,is a singleton). The next condi-
tion will reject such a mapping.
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LIMMA 3, If fe@, then the {anguaye

- Teng, . 1
Ly = fah. . e "W

(s ey i) € dom [
is inear (Ly is the graph of f, wiilten as language [51).

Proo i _I.OF 7= (1. . i}, 10}, K, s, F, If) he a gsim which
computes f and construet the linear grammar ¢ == (It {@yy . . stt5}s 89y P7)
where

P ={s »as'd|l <1<k sa, »ds'el}U
Uf{s »aa’| sa; > as;e Pyi €1 < hys8,e ]
Clearly,
Ly = LG)naf...afa*

As the linear languages family is closed under intersection by regular sets,
the lemma iz proved.

Remark. Neither this condition ix sufficient for a mapping to
be in @ the mapping f(n, m) = n = m is not in %, but

L, = {&aja™" 0 = m) U{diay | n < m}

is the union of two linear languages, therefore also L, is linear. (Two
grammars generating these languages are

G, = ({8, A}, {a, ag a3}, S, {§ = a,8a, S » 4, A —»aday, A =1},
Gy = ({8, 4}, {ay, ay ag}, S, {8 = aSay S - 4, A o= day,, A = ag}))

This shows that the inclusion %< %, %, being  the family of
mappings with linear graph in [5], is proper.

Clearly, f(n) = n* does not fulfil the condifion in Lemma 3. This
condition also rejects mappings which canunot be rejected by both con-
ditions in Lemmas 1 and 2. Here is an example.

COROLLARY . The mapping f(n) == [Vn] is not in @.

Proof. We shall prove that the language I, is not linear; in
act, it is neither context-free. For, suppose 1, satisties Bar-Hillel lemma,
and let p, ¢ be the involved pumping constants. Let 2z = ale/), m > p,
be a string in L, and let z = wowary be a splitting such that |vz| > 0,
wvhwaty e L, tor all ¢ > 0. Clearly, we must have v =af, @ =da’, 1,
s >0 (otherwise we cam puwmp only «, or only «, and the relation
between n and f(n) is lost). We have z = arajalaa’ay v vy +t=
=, ry 8 =fn) and epalapaata’ie I, for oll 1 %0, that
is oy - vy -+ 18 = f(r, -+ g it), for all 7 > 0. Let 1, be an integer
such that ¢ < [r, &= r, 4 15l (¢ is non-null) and consider the strings a,';la,;u'
ara’ata’s, ahap’ Platae e’ Both these strings ave in L, there-
for 75 + 148 - 10y = [ll“r;‘| + Aot - 15y ¥y igs284-1 = [V gt --:2&?‘2]_

tlowever, from 1ihe cheosing of Sy 4+ 2 4y <

, . - e E k3 e o r— B . va T e
L'ri + Ak & Py o4 2 Vry 4 gt + 72 <V(VH‘Hoi“!\“"z“{']-)":]’{?'1‘1‘7'01'%7'3"'1-

oy
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For all 2 e R, we have [a -+ 1] = [x] + 1, therefore [|/r iy + 2t + r,] <
< [l/:»’l + gt + 1y + 11 = [Vr, + i4 + 2] + 1. This means that »r, |-
+ 498 + 28 + 1y < vy A4 4 + 1+ 1, a contradiction, because s> 0. In
conelusion, I, cannot be a context-free language, hence f is not in 4.

No one of the above theree conditions is sufficient. However, the
last two of them together give such a condition, hence a characteriza-
tion of mappings in %,

THEOREM 3. A mapping f:X* - N is in @ if and only if Ly
is reqular for all m = 0 and L; is linear (L, and I, are defined as in
above Lemmas 2 and 3).

Proof. Let G = (Vy, {a,...,a; a}, S, P) be a linear grammar
for I, We assume G completely reduced, that is without a-rules, without
chain rules A — B, and with each A eV, involved in a derivation
S = wAdx, S pa,r,e VE For A e Vy, denote Ly = {we ViA £ 2 in
the grammar ¢}. We successively modify ¢ in the following way :

1) If a rule A - xaBa, is in P, then card Ly = 1. Indeed, we
have card Ly = 1 (@ is completely reduced); suppose card Ly > 1, ¥,
Yo € Ly yy # ¥y Clearly, y, —= ', y, = «’. Consider a derivation § =
= wy Aw, = wwaBrav,. Bolh strings 2, =w,2,ay, w0, and By =130 AY 2510
must be in L(G). However =z, = ajr...a/*a", w = |wa,ay,20,], and
g = At . .ka", v = 02,4y, 2500, |, Decause awgw, € a¥. Clearly w # v,
because y, # y, which implies either z; or 2, is not in L, (only one of
w, v can be the image of (n,,...,n;) by f). Contradiction.

As Ly is a singleton, we can replace B by z e Lp, hence the rule
becomes A — wazx,. In conclusion, we can assume that & contains no
rule of the form A — »aBx,.

2) Rules of the form A — Bawx, can be in P, but no eycle of the
form A = Aar, may exist. For, takea derivation § = w,Aw, = W 2w,
and consider the corect derivations '

c * * . W
S = 1w dw, = w Adaraw, = wravyw,
P 4 *
S = w dw, = w darw, = w daryargw, = wzar,a,w,

Again, only one of the strings wzawgw, wgzaz,aww, can be in Iy,
otherwise one contradicts the fact that f is a mapping.

In conclusion, we can assume that only finitely many derivations
of the form A 2 Ba'or A = a' are possible in G.

2) All rules of the form A — Ba" can be removed from P in the
following way. Take all the derivations’ of the form A £ Ba!, 4 & 4
(their set is finite). For given A & Ba' consider all rules of the form
0 — xa Aw, in P,. Clearly, we must have #, = a°. Introduce in P the
rules ¢ — a0 Ba'**. Consider also the rules B — @, Da,, #,#, containing
at least a symbol «; and introduce in P the rules 4 — »,Daya’. Finally,
consider the rules B — @, @ € V}, containing at least a symbol a;, and
introduce in P the rules A — zaf. For given A % gt and for each rule
C — madaz, (we must have x, = «¢°) we introduce in P all rules ¢ —

— Bttt
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In conclusion, we can assume that no rule of the form 4 — Be'
ig in P.

Synthetising the above arguments, we can assume that all rules in
P are of the forms:

(i) 4 - aya Baga,

(i) A — @, Ba

(iily A —

(iv) A — paa

4) Tach rule » :4 — ayq;Ba® of type (ii) can be replaced by
A = oyl oy, rlal

Loy vy 7] = apgloy «ovapy, 71,1 < < [ay] — 1
[z, 7] — a;B3,
where @ = ;... %,, o€ {ty, ..., @ ;
Tach rule r: A — o of type (ii) can be replaced by

A = oyloy, 7]

ooy U] = gl P 1 € <

al—1
[ay, 7] — @
where @ = oy...%,, o€ {0y« @i} ;
Tach rule r: A — xa’ of type (iv) can be replaced by
A oyfay, rld
[otgeovoy 7] = oo, o 1 €3 < oy —1
Lz, 7] — ay
where @ = oy.. %, , @€ {5 .« o5t}
5) Take now a rule »: A — weBagr, of type (i) and assume
@, = wyana', t < 0. Clearly, Ly < af ... «af. Consider an arbitrary given

. . * r
derivation 8§ = w Aw, = w,x,q;Ba;ria,a'w,. We must have

Wy, = a°-
The language I, is regular. Consider the language

L = {w,wab (L s 7 {0;050,,})

This is a regular language in a¥...a¥ which includes Ly and for each
z e Ly, the string w,2az0,20,0'w, is in Ly hence in L(@). Therefore
Ly = {zad Lifaswian}
is regular and cach string w,za'w,, with zec L}, is in I, hence in, I(G).
Let @, be a regular grammar for the language Ly, G, = (Vy, {ay, ..., au}l,
A, P, assume Vin Vy = {4} introduce in P all nonterminal rules in

P’ as well as the rule

X = a0

m

ingtead of X — a, e P'. Remove from P the rule r. In this way, the
generaled language does not change.
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Using this procedure for all rules of tvpe (i), we can lead G to a

grammar without such rules,
In conclusion, we can assume that ¢ contains only rules of the

following forms :
A —aBd, 1 <i <kt >0,

A —ae, Ui <Rt 20.-
Given such a grammar for ’f,f, we construel a gsm g, g = ({d,y. ..
T o 17 )
cooldy 1), Vyuisd, 8, {8, P") with
P" = {da; = d'B 4 - «,Ba' e Py

“-. 3 r‘ _ — 3 f_- )l
Urdds = alsy[ 4 — aat e P}

Clearly, g computes f, hence fe @ and the prool is over,

4. The syatactie complexity of mappings in &

Fora given gsm g — (I, O, I{, s,, I, P) we define

State (g) = card I

Iin(g) = cavd I

Prod (g) = card P

Leagth (g) = max {La||lsa — rs' e P}

Symb(g) =Y, Symb(r), where Symb(r) = || -+ 4 for

oy
rrsa -+ as’ € P

For a mapping e @ and a measure M e {State, Fin, Prod, Length,

Symb} we define
M(f) = inf{d(g) ¢ = f}

In the style of {27, we say that M is nontrivial if for all n > g
there is f,e @ such that M(f,) > n; M is called connected if for al
n 2= ng there is f, ¢ ¥ such that 3(f,) = ». .

TIHEORIDM 4. All above defined measures are connecled, excep-
ting Hin, which s trivial.

Lroof. It g=(I, 0, K, s, ¥, P) has card F > 1 then we eon-
sider the gsm ¢ = (I, 0, K U {s;}, s, {3/}, P') where s, is a new state

and
sa —» s’ e P, 8’ € '}

P'= Pu{sa — as,

Clearly, ¢' is equivalent to g, hence Fin is a trivial measure.
Congider now the mapping f,:N - N, f,(n) = { _]f T B B
. m — n il m > n.
It is computed by g = ({a}, {a}, {55, s, coSaly Sy {81, ..., 8}, P),
with _ ‘ .
P = {80, 58,0 <i<n—1}u
U{suaty — asy}

Therefore State (f.) < n -+ 1, Prod (f,) < n + 1.
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Let us suppose that a gsm 9 = ({a,}, {a}, IV, sy, I, P) there is

such that ¢ = f and State (9') << n + 1. Take a translation ENGEE S

It is of the form sy} = 7= =8, =8, 8 I Clearly, all states
ap . i % .

80y Sy .- % must be diffevent, otherwise a eyele s~ g, — 4, is pos-

sible, which leads to translations of the form St~ S g qr-tti-1 sy~ =
=gt 2 gal-t-itt K s, which implies f,(n - J—1) =0, a contradic-
tion. Consequently, State (¢') = n -+ 1, hence State (fa) = n 1.

The # + 1 states are linked by at least » productions and at least
‘a cyele there exists, hence for a state s we need two rules of the form
Salty = &8, say — ws;. This implies Prod (') = »n 4 1, hence Prod (fu)==
=n -+ 1.

Consider now the mapping f, : N - N defined by fulm) = n. 1t iy
computed by g = ({a;}, fode {80 85 181}, P), with

P = {sya; — a"s;, 8,04, - 8y k.

Therefore, Length(f,) < n, Symb(fa) = n - 8. As the translation sya, <
£ s, must contain only one step, we find that the rule Sotty — s, i
in all gsm's for f,, hence Length (f,) = n. Such a rule Sotty — a's, cannob
be used in o cyele therefore there is also a further rule sga, — ws’. This
means that cach ¢" = fo has Symb (¢") < n 4 8, therefore Symb(f,) = n -
-+ & and the proof is over.

Another important problem in the theory of syntactic complexity
of languages is the minimization. The problem remains open for {he
above measures other than Fin. We deal here only with the related
compatibility problem : Ior a measure M :@ _, N we define

MNf)={g g = f and M{g) = M(f)}, fe®.

Two measures M,, 3, are said to he tncompatible when there iy fe®
such tha

MY n Mi-(f) = O.
(the two measures cannot be simultaneously minimized).
LEMMA 4. The measuies Length and Fin are incom patible with
Lrod and Symb.
Proof. Consider the mapping f: N — N defined by

Jin) = {1 %t " 1. It is computed by g, — ({a}, {a}, {30, 8, 85}, sy,
4if n>09

{8, s}, 180, — as,, 818; = a%,, 4y — 5,}), hence Prod(f) < 3,

S']?ﬂb(f) < 165 as -W’OII a8 hy gB = ({a'l}i {“}7 {801 S]) 82}’ SO! {32}) {30“'1 _*“‘89’

Sothy — 6%, 9,0, — 8, 8,0, — a%s,1), hence Length(f) < 2.

Let ¢ be a gsm for J with Length (g) < 2. As we need a transiation
Sowi=a's,0; = ats, we 1nust have t €2, 4 —¢ < 2, hence ¢ = 2. Thiy
implies that a further rule Solty = a8y must exists. No one of these rules
can be used in a cycle (f(n) < 4 for all n), therefore also a rnle sy, —> ¢’
must exist, used in a cyele. In conclusion, Prod(g) > 4, hence Prod and

- Length are incompatible. The above rules have the total Symb equal to
4+4 4 5 = 21, therefore also Symb and Lencth are Smomymmm diia] .
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If ¢ has Fin(g) = 1, then we have two translations sya;, = as,.
Soltyty = a's,a; = a's,. When the rule sga; — as; is used in syaa, = a's,q,,
this implies that ¢ = 1, s, = s, and the rule s,a; — a%, is in ¢, a contra-
diction, because illegal tianslations can be obtained. Therefore, s, # s,
and we have three rules involved in these traunslations. No one can be
used in a ecyele, hence again Prod(g) > 4, which implies Symb(g) = 21,
hence also Fin is incompatible with Prod and Symb.

LEMMA 5. The measure Fin is incompatible with Siate, bul il
18 compai*r'ble with Length.

Proof. The compatibility of Fin and Length easily follows from
the construct which shows the triviality of #in (Theorem 4 : thatl con-
struction does not change the length of rules in g).
n-4-mit ns£0
2m if n=0.
It is computed by ¢ = ({a;, @}, {a}, {30, 51}y S0y 500 &1} 1860, — a5y,
8,00, — a8y, S04 — a8, Sy, — 625,}) therefore State (f) < 2. Suppose that
a gsm ¢ there exists, g = f, with Fin(g) = 1, State(g) = 2. If 5, is the
final state, then we must have the rules sya, — s, s,a, — a*s,, which lead
10§00, = as,0,=a%s,, & contradiction. Therefore the final state s, is diffe-
rent from .s' . We need a cycle of the form sa? = a** 5, as well as one of the
form s'a’ & a*s’. We cannot have s = s’, neither s = s,, s = s, (in both
cases we can obhtain sgata, £ a“s;,, with # # 0, w # w 4+ »). Therefore
$ = 8, 8 = s,. In order to obtain sya,0f = a,"“’ for arbitrary k, we

also need a cycle s”a% = a"s"’, If 5" = s,, then .90af_,("+”"“i-(z-?""soa;““ =

Consider now the mapping f :N? =N defined by f(n, m)= {

*

= a2 rurg g, a2+t and for large enough r we have 2kr 4 ru-+v #
# 2(7-]“ + U _F' L) If s’ ” tﬂen f)‘ ark+ru+1 =*> ﬂ?-”s ﬂﬂr+1 ="> f,‘.lp‘crhlsfaru ._'7;
* it

= g*¥+v g, Again, for large enough » we have 2kr - v 4 ru # 2(vk +

4+ ru + 1). Bobh ca%eb are contradlmo*y, the Q\.lbtbhct‘ of ¢ is impossible,
hence either Fin(g) = 2, or State (g) > 3.

Open problems. Which of the next pairs contain incompa-

tible rneac;ureq (Prod, Sy va) (Prod, State), (State, Symb), (Siate, Length).

Note. Useful remarks by dr. Cristian Calude are acknowledged.
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