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Abstract. We define a class of grammars with regulated rewriting based on the idea of
oracles: certain nonterminals act as “bifurcation symbols”, having associated language oracles;
if the left/right neighbouring (maximal) teiminal string for a given symbol belongs to the cor-
responding oracle, then a precisely identified nonterminal is produced, otherwise another one is
introduced. We investigate mainly the (rather large) generative power of such grammars and
the closure properties of one of the obtained families (it is closed under “hard” operations, like

intersection and complement, but not under arbitrary morphisms).

1. Introduction. The study of regulated rewriting is a significant branch
of formal language theory, developed (some decades ago) mainly with the aim
of increasing the power of context-free grammars (to generate as large families of
languages as possible using as sitnple machineries as possible, extensions of context-
free granunars). Many variants of regulating mechanisms were considered (the
reader can find details in [1]), but still there 1s room for further ones. We consider
here such a new—old restriction on derivations of context—free grammars, hased
on the idea of oracles. Special nonterminals are able to ask whether or not a
well-defined part of the current sentential form belongs to an associated oracle.
Depending on the answer, the derivation continues on one path or another (possibly
it is blocked). The construct is somewhat related to the conditional grammars
considered in [2], [3], with differences we shall discuss in the last section of this
paper. The results we find show the large generative capacity of these mechanisius.
(One-letter non-regular languages can be generated with grammars with context-
free rules and regular oracles, without probably achieving the power of context-
sensitive grammars in this case. This proper inclusion in the family of context-
sensitive languages is true in the case of languages generated by grammars with
regular rules and context-free oracles, a family with surprising closure properties:
it is closed under intersection and complement, but not under A-free morphisms).

2. Definitions and examples. The reader is referred to [5] for basic elements
of formal language theory. We denote by A the empty string and by | | the length
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of a string 2 € V*.
Definition. An oracle grammar is a construct & = (N, T, 5, P, @), where
N=NuU | {XF XE X, X/}, for Ny a finite alphabet,
XeEN,

T = finite alphabet, TN'N = 0,

S S Nl)

PC(TUN —{X{§| X eN,de{L, R} x(NUT)",

Q={Qx CT" X € Ny).

(N is the nonterminal alphabet in which the set of basic noterminals, Ny, is distin-
gm‘shed for each basic nonterminal, a left-asking nonterminal X£, a nght. asking
one X, an answer X; (true), an answer X; (false) are associated; T'is the ter-
minal alphabet, S is the axiom, P is the set of rewriting rules, Q is the set of
oracles, lanuages over T associatecl with symbols X € Ny, hence to quadruples
X?‘", Xf, Xy, Xy; the symbols /\’f‘:‘,)(r_f? cannot appear on left-hand sides of rules in
2,

) For z,y € (N UT)*, we define the relation 2 = y if one of the next cases
holds:

l. x _.Llaaz,J_:Llﬁmg,n — e P,

2. » = :LlA.TgB-; zg (orz = 3287 r3), y = x1AzoBaay ( respectively, y =
zoBaxg), for A € N, a2y, 23 € (NUT), 2z, € T, B € Ny, a € {t,f}, and (if
zy €EQp then a =1t else a=f);

3. 2 = 51 AlesBag, (or @ = 21Afey), y = 21A.22 Bz (respectively, y =
2Agy), for A € Ny,zy,23 € (NUT)*, 2 € 1%, B € N, a € {t,f}, and (if
29 € Q4 then a =1 else a = f).

(Therefore, Xr_{‘, X1 is replaces by X when the neighbouring terminal string,
to the left of X} and to the right of X[ respectively, belongs to Qx, and by Xy
otherwise.)

Asusual, L(G) = {z € T* | S =" z}.

Convention. When specifying an oracle grammar, only the nonterminals
used in rules are written (in general, from each qualdruple X% X[ X1, Xy only
two symbols are used), and only the associated oracle languages are given

Examples.

G = ({S,X,Y,X-;?,Xt,y?ll;}/f}s {(i,b},S,Pth)
={5—- XY, X —>Xf_f?,X1 — aXb,
Y - YE Y, - aYy,
X — ab,Y — ab}
Qx = Qy = {b"a™ | n+ m'even }.

Assume we have a sentential form a! Xb'a'Yb', i > O(initially i = 0). Both X
and Y can introduce asking symbols, namely X, Y.\, respectively. If the length
of the string between the two nonterminals is even, then X% can be replaced by
X and if this string is of odd length, then Y,X can be replaced by Yy. Then X,
introduces aXb, Yy introduces a¥'b, which both modify the parity. Therefore we

musl first work on the first nontemnnd[ and then on the second one. We obtain
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d XV YY = a XFbd Y = o' Xibla' YV
— (P XV A Y H = oL XD @Y
= o't X b @'Yl = o't XbitlaitlY it

The procedure can be iterated, hence we can obtain one of the following strings

adtixpitigtiypti i>0,5>0,
atitLx pititlgitiy piti 1>0,7>0.
If in one of these strings we use Y — ab, then the checked string will no more

be of the form 6"a™, hence introducing X4 will block the derivation. Thus we
have to use X — ab, too, and we obtain

ai+i+lbf+j+1ﬂi+j+lbt'+j+1’ i,j >0,
af+j+2bi+j+2“i+j+lbi+j+1‘ i,j >0,

respectively. If we use first the rule X — ab, then we can also use ¥ — ab and we
obtain strings as above, but we can also Follow the cycle Y, Y,, , Y, Y, an arbitrary
number of times, because in all moments the string to the left of Y.L is not in Qy .
In conclusion,

L(GHY) = {a"b"a”™b™ |n =m+ 1l or m > n, forn,m > 1},

a language which is not context-free although the rules of Gy are context—free and
the oracle languages (the same for X and Y) are regular.

(o= ({S,A,BX,Y, XE XY q JYih{a,b,e}, S, P2, @2),
2_{5—ra5,.5—+(:AA—>bAA—>X.,,
/\t“ﬂB,B*—?CB,B—P} Yj_‘}C}
Qx = {a"8" | n > 1),
Qy = {ab™e™ ! n>1, m>1}.

It is easy to see that

L(Gy) = {a"b"c" | n > 1},

again a non—context—free language (this time the rules of the grammar are regular
and the oracle languages are context—free; moreover, the oracles are asked only
once each, and only for left strings and only the true answer is used).

3. Generative capacity. Denole by REG, C'F, C'S, RE the families in the
Chomsky hierarchy (regular, context—free, context—sensitive, recursively enumer-
able languages, respectively) and by OR(F, F') the families of languages generated
by oracle grammars with rules of type F, ¥ € {REG,CF,CF*,CS, RE}, with the
following meaning: RIEG = right-linear, C'F = A-free cont.cxt free, CF* = ar-
bitrary context—free, C'S = length—increasing, BRI = unrestricted, a.ml the oracle
languages of type F', F' € {REG,CF,CS, RE}.
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Theorem 1. If Ly, Ly C V*,L1,L; € F\F € {REG,CF,CS, RE}, then
Ly, LN Ly, V* =Ly are in OR(REG, F)N OR(CF, ).

Proof. Write

Li = (Lin{ahu | op(Lida}, =12
aeV
All the above families  are closed under the right derivative (denoted here by an),
hence d%(L;) € F,i=1,2,a € V. Then construct
G'l = ({S} u {'S‘alsi'?s'sla,t | a e V-}a V1 Sl P]lQ])!
P={S—=AX| if xel}u
U{S — Sa, 5 — ,S'f;‘?,.S'“ —ala€e VU
U{Sa — bSa |a,b e VY,
C)Sa :()g(l‘i)l G’EVI
Gy= ({S}U{Sa S‘f"?,.S'uJ |a€ V},V,S, P2, Q2),
Po={S—X| il A¢gLi}U
{S — S5a,5 — SGL'?,.S'(,J —ala€e ViU
U{S, — bS, | a,b eV},
qu :():I(Lg), aecV,
Ga= ({S,TYU{Sa,Ta,SLs,TEs Sayt,Tap la €V} VLS, P, Qs),
P;}:{S—’Al if AEL]HLQ}U
U{S — Sa,Sa = Sk, Sap = T, Tar — a|a € VIU
U{S, — bS5, |a,be V],
Qs, = 0z(L1),
Qr, = di(Lg), a€V,

[t is easy to see that L(G1) = Ly, L(G2) = V™ — Ly, L(Ga) = LiN Ly and Gy,
(75, G'3 contain only A-free right-linear rules (hence they are of the desired type).
|

Corollary. All the inclusions F' C OR(F, ), F € {REG,CF, CFr*,
CS,RE}, I € {CF,RE}, and CI' C OR(CF, REG) are proper.

Proof. Neither of the families C'F and RE is closed under complement,
hence we obtain the inclusions F' C OR(F, F') from the theorem. The inclusion
C'F c OR(CF, REG) is proper in view of the first example in the previous section.
B

Theorem 2. OR(F,CS) = CS, F € {REG,CF,CS}.

Proof. The inclusions D are proved in Theorem 1, the converse inclusions can
be proved by a straightforward construction, based on the fact that C'S is closed
under complement ([4], [6]): start from an oracle grammar ¢/ and construct a type-
0 grammar with a linearly bounded workspace simulating both the rules of (¢ and
the oracles; the passing from some Xy to X; is done when the terminal string to
left of X% can be reduced nondeterministically to the axiom of the grammar for
the corresponding oracle, whereas the passing to X is done when the axiom of the
grammar for the complement of the oracle is reached; similary for symbols X/*.
The details of such a construction are left to the reader. o
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Theorem 3. OR(F, F') C RE for F € {CF* RE}, F' € {REG,CF,CS}.

Proof. A similar construction as the previously sketched one, without concern
about the workspace,
Theorem 4. OR(REG, REG) = REG.
Proof. We have to prove only the inclusion C.
Take an oracle grammar ¢ = (N,T,5, P, Q). For every nonterminal A €
Ny, besides the possible symbols A% A¢.A; (because the grammar is right-linear,
symbol A% are no interest), consider also the symbols A;, Ay. Construct the right-
linear graimar .
= (N,TU{A,A; | A€ N,},S, P,
PP= {A-x|A—-zePre(NUT)U
U{A — Jfﬁ( Bg | A— .lf[f-f;r’ € P}U
U{A —2B;B; | A — 2Bk € P}

Consider also the languages

L] = U ('Iw = Q}\)Hf’j.*|

AeEN,

Ly = U Qad,T™,
AEN, k

as well as the morphism h: (T'U {A, Ay | A € Ny})* — T* defined by h(A,) =

h(Ag) = A A€ Ny h(a) = a,a €T, and the regular substitution defined by

sta) = {a}{A, Ay | A€ Ny}, a€T.
Then we have

LG = (LGN ((TU{A, A; | A€ Ny 1) — s(L1 U L»))).

Indeed, the strings in L) represent cases when Ay is illegally introduced, the strings
in Ly represent cases when Ay is illegally introduced. Taking the complement (after
nondeterministically inserting further symbols E;,E;) we ensure the correct use
of symbals A, Ay The granmmar G follws the derivations in & without involving
oracles. By intersection, hoth the restrictions of rules in (¢ and of oracles are
observed, Finally, i crases the auxiliary symbols.

All the operations involved preserve the regularity Ly, Ly € RIEG, henee the
proof is complete.

Corollary. The inclusions OR(REG, REG) C CTTEC,CF),
OR(REG, RIEG) C OR(CF, RE() are proper.

Proof. Obvions, as OR(REG, CF) and OR(CH /o0 0 strictly inelud: the
Tangly C'I°.
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Theorem 5. The family OR(CF, REG) contains one-letter non-semilinear
(hence non-regular) languages.

Proof. Let us consider the following oracle grarnmar
G = (N, {a},5,PQ),

with
N ={S A B,C DA B B C' A}, A, B, B, CF,C,,
AR AL B8 B B B GG,

and P containing the subsequent ru'cs
1. §— /‘l?RaSB.{’D,
9. D— a°BED,
3D — (1585‘056'.{",
4. Ay — Ala,
5. B, — a?BRa,
6. (l“t —* (IS(_'-;T',
7. Cy — (13(,‘.':1’.
8. B — aBFfa,
9. B} — a3, La,
10. A} — Alta,
1. A} — a®,

13. C}' — a®.
The set ¢ contains the lollowing oracle languages:

Qa = {a®* | k> 1),
Qp=Qc= {”5k+| | k> 1},
Qai = @ = {a™H [& 3 1),
Qpr = Qcn = {(15“‘2 | k= 1}

We obtain
KG) = @ |n.m > 3},

a language which is not semilinear (by a gsm we can map L(() into {a"™ | n,m >
2} = { a” | p composite number }, which is obviously non-senilinear.)

Let us look at the way the grammar G works. :

After generating a string A% (a®BE)a®CE, i > 2, using rules 1. 2, 3, the only
oracle which is satisfied is Q 4, hence we can pass to A;a® BE(a® 8F)~'a®CF. Now
the oracle @p of the leftmost B.f‘ is satisfied, which makes possible the passing
to Ara®Bia®BE(a®BE) %P CE. We can go in this way to the right, from one
occurrence of B¥ to the next one, and this is the only possibility we have. When
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reaching the right end, the same oracle Qp = Q¢ is satisfied, Lhence we can pass
from CL to a*CE. The obtained string is A%a® B, a® ... a®BRa®CF.

Now the only oracle which allows a continuation is () g+ for the last occurrence
of B.7' From the right to the left we can replace step by step B by B!, which
introduces aB¥a; when 1'eachin;g the left end we can replace A% by A} and this
one by Akta. Thus we obtain A%a'® BLa'®...a'0Ct.

By iterating this scanning of the string in both directions, in turn, we can
produce AR(a®F BE)e®*CH, k> 1.

The derivation can be ended only by rules 11, 12, 13, hence after replacing
each 1 and € oceurrence by double-primed symbols (rules 7, 8). After introducing
b we must again go to the left until replacing At by A7 and this one by a®. The
symbol A} is introduced having a?%4+4 iy its right haud side; plus a® gets aBlk+2)+2,
This satisfies the next H:L and only this symbol can continue the derivation, After
replacing Bs ¥ by a®, the left prefix is again of the form a®*2, hence we can proced
step by step to the right. The derivation can be finished when only symbols B.';['
are present. Finally, also rule 13 can be used, hence we obtain a string of the form
(BUHDH25(k42) T gBk+2) — SR+ for | > 2, k > 0.

From the form of the rules and of oracles one can see that only the described
strings can be obtained, which coneludes the proof.

Covollary. The inclusion OR(REG,CF) C OR(CF,CF) is proper, more-
over, OR(CF, REG) - OR(REG,CF) # 0.

Proof. If (7 is an oracle grammar with 7" = {a} and of type (REG,CEY,
then it is in fact of type (REG, REG), because the one-letter oracle languages
are reguler.  This implies L(G) € OR(REG,REG) = REG. Cn the other
hand, OR(CF, REG), hence also QR(C'F, C'F), contains one-letter non-regular
languages

Open problems. Are the inclusions OR(CF,REG) C OR(CF,CF) C CS
proper ? Is the difference OR(REG, C'F) - OR(CF, REG) non—-empty ?

We conjecture that the answer is affirmative in all cases. For instance, we feel
that

{a"b™a" | m < n < 2m} ¢ OR(CF, REG),
but cleary this language is the intersection of two context—{ree languages, hence it
is in OR(REC,CI).
4. Closure properties. We shall investigate only the family OR(REG,CTI™),
for which surprising results are chlained.

Theorem 6. The family OR(REG,C'F) is closed under union, intersection
and complemnent.

Proof. The closure under union can be proved in the standard way {make
the nonterminal alphabets disjoint and put together all symbols, rules and oracles,
respectively)..
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Take now G = (N, T, S, P,@) an oracle grammar with right-linear rules in
P and context—free oracle languages, Construct the right-linear grammar ¢/ =
(N,T,S, P"), with

P' = PU{A} — A, AY — A; | Ae Ny}

The language L(G') contains all strings which can be generated by ¢ without ob-
serving the oracles restriction. Then T — L((') contains strings in the complement
of L(G), namely those violating the restrictions imposed by the rules of (. The
language T* — L(G') is regular, hence in OR(REG,CF). We have

P* =BG =T~ HEN U E,

where L C L((i') contains the strings generated by ' but violating at least once
the oracles. The language L can be generated by the oracle grammar

C!'” — (N”, T, (Sr, 0)’ P”, Q”))

where
N" = N % {Ual} U{("11"")%!(A'i)h(fq‘i)f |A € Nyie {D| l}},
P'"= {(Ai)—2(B,i)|A—aBePic{0,1},B€N}U
U{(A,i) — 2(B,i)¥ | A —» «Bf € P,i € {0,1}}U
U{(B, ). — (B, i), (B,i); — (By.4) | i € {0,1}, B € N;}u
%gyii)f — (Bf1j)1(B‘?)f = (Bi).?) I (!'sj) € {(011)1(1: 1)}8 € Arl}U

B,l)-z|B—oaePzeT"}

A derivation can be finished if and only if one “crossing rule” (B,i), — (By,J),
(B,i)y — (B, J) is used, hence at least one oracle is violated.

As OR(REG,CF) is closed under union, it follows that 7* — L(G) €
€ OR(REG,CF'), hence we have the closure under complement.

The closure under intersection follows now from deMorgan laws,

Corollary 1. The family OR(REG,CF) includes the Boolean closure of the
family CF.

Because every recursively enumerable language is the morphic image of the
intersection of two context—free languages, it follows that OR(REG, C'F') is not
closed under arbitrary morphisms. Moreover, we have

Corollary 2. The family OR(REG,CF) is not closed under Afree mor-
phisms (hence it is neither an AFL nor an anti-AFL).

Proof. Consider the context—free languages

Ly = {a"b" | n > 1},
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Lg = {“nbm,“m.lbm?”mg . .l')m""’(tm"_lbp I n,p 2 1,??1{ 2 1‘ 1 S i S n— l}
We have
Ly N Ly = {(a"0®)" | n > 1}.

Take now the. morphism h: {a,b}* — {a}* defined by A(a)

[

h(b) = a. We obtain

h(LyNLy) = {(12"2 | n > 1},

which is not in OR(REG,C'F), because this family does not contain non-regular
one-letter languages. However, L) N Ly € OR(REG,CIF') in view of the previous
theorem.

Corollary 3. All undecidable problems for CI' are undecidable for
OR(REG,CF) too; moreover, the emptiness and the finiteness problems are un-
decidable for OR(REG,C'I7).

Proof. [t is known that the emptiness and the finiteness of the intersection
of two context—free languages are undecidable problems.

5. Discussions and further problems

Some interrelations can he observed between our oracle grammars and the
conditional grammars in the sense of [3] and [4] (details can be found also in [2],
[6]). However, here we check only one terminal subword of the current sentential
form. (In the case of right-linear grammars this is in fact practically the whole
string, hence Theorem 4 corresponds to the similar results for regular conditional
grammars with regular condition languages. Another difference between our gram-
mars and the conditional ones is that here the “condition” concerns about certain
nonterminals, not the use of the grammar rules; moreover, we can have here two
possibilities to continue the derivation.

The A - free context—free grammars with regular condition languages (possibly
the same for all rules, [4]) characterize the context-sensitive languages. The oracle
grammars with context—free rules seems to be weaker, as apparently they cannot
simulate context-sensitive derivations. However, results like Theorems 5 and 6
show that the families OR{(C'F, REG),OR(REG,CF) have properties different
from these of basic families obtained by regulated rewriting. For instance, the
family of matrix (hence programmed, controlled etc.) languages is not closed under
intersection and complement [1], but it is closed under A —free morphisms and it is
conjuctwred not to contain one-letter non-regular languages ([2], [6])

In the previous sections we have already pointed out open problems. Many
other directions of research remain to be explored.

For instance, we can impose the restriction that all languages coincide (for all
A, B € Ny,Qa = Qpg); in the first example considered in Section 2 this is the case.
We can also consider grammars in which either only left-asking symbols or only
right-asking symbols are present (the case of the second example in Section 2).
Moreover, we can impose the restriction that the questions must be answered im-
mediately after introducing a symbol A%, AJ (thus considering that the oracle has
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priority over rewriting). Another possible modification is to use different answering
symbaols for left and right questions: /\’l‘".f\'}‘ for X¥ and X[, /\'F for X'

All these variants remain to be investigated.

Another natural question is whether or not the number of oracles leads to
hierarchies. There are two possible variants: considering the number of oracles in
the grammar and considering the number of times they are asked.

Another possibly frutful approach to oracle grammars is to consider complex-
ity. We have to deal with usual derivation steps and recognizing steps (with respect
to regular or context-free oracles, hence of known complexity).
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