PARALLEL COMMUNICATING GRAMMAR SYSTEMS: THE
: REGULAR CASE
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The parallel communicaling grenunar syslems cre introduced here as grammar systems wor-
Ling in parallel and sending messages (strings ) lo « master grammor whose lerminal strings
constille the language we lock for. Many carionis can be covsidered © in ihis poper, we resrict
lo the case when all grammars are regular and we investigale the generative capacily of suel devices.
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1. Introduetion

As it is wellknown, the formal language theory has been developed
mainly in connection with programming languages and a lot of theore-
tical problems were raised in this frame, The topic we discuss here is
also suggested by a question of our days practical computer science, na-
mely by the important topic of parallel computing. There are many
other models of parallel computers (see the algebraic one of [ 4], the auto-
mata theoretical one of [2], and so on). In {his paper we propose a
grammatical model, trying to involve as few as possible non syntactic
components. The parallel communicating grammar systems were intro-
duced in this aint. They consist of » separated nsual Chomsky grammais
‘working simultancously (each of them starts from”its own axiom): one
of these grammars is distinguished. (is @ anaster) and can ask to
the other grammars the current strings as they are (terminal or noty. The
grammar which communicates in this way to the master returns to the
axiom and resumes working. The terminal strings genetated by the master
grammar constitute the generated language. (In xome sense, our mecha-
nisms are similar to the distributed grammar systems of [1], but there
{he grammars do not work simultancously and they cooperate in quite a
different way to the generation of a string.)

Of course, one can define a lot of variants of such systems, depen-
ing on the communication protocol, on the type. of grammars and so on.
We consider here the simplest case, with (i) enly one master giammar,
(ii) which only asks for messages from other grammars, (iii) with regular
grammars, and (iv) returning to the axiom after each communication step.
As it is expected, the power of such systerns is considerably larger than
that of regular grammars. ‘

2, Definitions and examples

Tor a voeabulary V, denote by V* the free monoid génerated by
V under the operation of concatenation and the null element 2. The
length of @ e V* is denoted by [z] and |#]y, U < V, is the length of
{the string obtained by erasing from a all symbols not in U.
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A parallel communicating grammar system (PCGS, for short) of
degree n, n > 1, is an u-tuple

N = ((l[l’ G'Z} ey Gn)

where each G, is a Chomsky grammar, G; = (Vy,;, 17, S, Py, 1 <i <,
and Vy, includes a set € = {4, A, «voy Ay, of distinguished symbols
n
such that ¢ p U Ve, = O (as usual, Ves = Vxi U Vi) (Cis ealled the.
communication :;j and 4, 2 <@ <n,are called communication symbols)
n
and l",\"l ] (U l.,T,f') =0,

=2

For two n-tuples (), ..., r,), (Bps o~ s W)y By i€ I’f;[, 1 <i <.
We wWrite (@, ..., @) = (4, - .., y,) if either

].-;.:1 le = 0 and, for cach i, 1 <i <n, wehave z, = Yiin the grammar
Gy or @, is terminal (according to G)and y;, = a,, or

& = dizd, .. Hdizna k21, 26 (Ve — O)F, 1 <i <k + 1,

4i,€C 1 <j <kyy, = ATiyTp Eiy v e 2 i Ryyy AN

Yo=afor te{2, ..., 0} —{i,..., Tl

Yiy = S for 1 <j < k.

(The communication has priority and during a communication step,
besides replacing each A; ; by the corresponding string a; ;and each z, by
Sipy no further rewritings are done. When no communication symbol
appears, the derivation is a usual componentwise one, one step in each

grammar G, 1 <i<n.)
The language generated by ~ is
= 5 i

%
L(v) = {a e V;,J (S ovviy 83) = (@ &gy + .0, %)y

«; € V:n’ 2 <i <}
where .:> is the reflexive transitive closure of the relation =*>

Example 1. Let v, = (G, &,) be the POGS with

G, = ({8, 8, Az}: 1a, b, ¢ty 18 — aly, S, - ad,,

8, — asy, 8, = ¢}),
Gz = HSE}: {?}}, Sz! {S = sz})
A terminal derivation in y, has the following form :
(81 82) = (a458,, BhS,) = (aht14,, Bh+18,) =
(@b bIg,, 8,) = (ahHibht1as,, BS,) = . ..

*
coeo= (@RTIBRY L ghrbiphetlg g bS,) =
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= (“I;l.f.jbkl,;,J . _(;,"r*'lb"’r-i-fa"l'ﬂ*i_AE, hfrt Sg) =
= (ahtiphtt | glrectipbra g, §0) =

= (ahHphrl L ahratipreatie, DS), r> 0,k 2> 0, 1 <8 < 4 1,
hence
L{vy) = {ahbh o Loabrbbreir 21, by 21, 1 <4 <1}

i
This language is not linear, although @, G, are regular grammars.
Fzample 2. Consider v, = (G}, G,) with

¢ = (15, 43}y {a, by e, @}, Sy, {8, — e8yd, 8 — cdydl)

Gy = (19,}, 14, bl, S,y 18, — aS,b, 8, — ab})
One can casily see that

L(y) = {e"ab"d™ | m > n > 1}

and this language is not context-free (mark the occurrences of the symbol
a and use Ogden lemma) although ¢, G, are linear grammars.
Leample 3. Consider the system v, = (G}, G,, () with

G‘J = ({’S‘I’ .13'2., JSra, 1[2, ;,13}, -{(&, ,), (!}-, b‘l’ {J‘_\r[ - (LJSI.

8 = a4, 8y = 024, 83 — )

Gy = ({S.}, {b), Sy, {8, = b))
t . (Y A < (W} o
Gy = ({83} 1€}y Sy 153 = Sy}

A derivation in v, is of the form

= # .
(Sy, Say 8y) = (@S}, BBS,, 88,) =
o (@¥48 g, S, o8] = (a¥H® IFAES,, B, P18,
= (a¥+3 43 A b, F428,) = (af+3 bF+3 (F+2 8y, S, S;)

= (aF3 P33 k8BS, eSy) k> 0,
hence
Lvy) = {ab*c* | n > 3}
a language which is not context-tree; note that G, G, G, are regular
grammars.

As we have said, we investigate here only PCGS's with reguolar
conmrponents, that is with rules of the forms .\ - «¥, X' - a, X, ¥ von-
terminals, a terminal. We denote by 2 (n) the family of languages genc-
rated in this way, » > 1. As usual, &, 1 = 0, 1, 2, 3, will denote the four
families in Chomsky hierarchy and .%,,, will be the 1amilyof lincailar guages.
Two languages will be considered identical if they differ at most in the
null string 2.
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3. The generative capaeity ol regular PCGN’s

Lemma 1. R(n) < An - 1)

Proof. Given v = (6, ..., G,) a regular PCGS, we construet " =
,,((rl. (r‘,, . (1". ('n+1)' \\Hll ('1""( lv_\,l U ‘tl ”+]I. l"j',], ‘\'l' PI,) and (-'I-‘i--—l e
= ({8t} 1"1 NS 8 = al). As Py does not introduce the syinbol
sy We have Ify) = _L(*; ), hence the inclusion Z(n) < Z(n 4+ 1) follows.

Theorem 1, (i) #(n) — Lyw = O, 0= 25 (i) 2) — L, # G, n >

Proof. Tollows from Lemma 1 and E \«Ll!]])ll’\‘ L, 3, respectively.

Theorem 2. %, — #n) £ O for all n>

tin
Proof. Let mi denote the mirror image mul consider the language

Ao = {xe mi () | weia, b *}

The linear grammar G = ({S}, {a, b, ¢}, S, {8 - aSa, 8 > bSh, § — ¢})
generates L, hence e 2, Suppose that L e #(n) for some n, I, = L(+),
= (G, ..., G). The communication steps do not im-r(um-thv numbher of
terminal symbols introdueed in an n-tuple (o, ..., 0,), @, € Vool <i<n,
henee, in order to generate an arbitrarily long string of ,L \\u uvvd arbi-,
travily many non-communication steps.
Given a string « == e i () in L with a long enough 2, we can find
a derivation of « of {the form

DS,y o0y S, = (e sy WaXsy o ooy MaVp) .
= (ey i Xy ¥eNay « ooy JEX,) = (e mi(a), iy ooy ylt
with X, e Vg — C, X, e V5 u {2], 2 <1 <.
Note that the symbol’s ¢ occurrence in this derivation was already
produced and that the subderivation (wey, Xy, oo ooy V) X

= (e iy Yoy yaXay ooy V) cans be iterated. Moreover., yy # n (G, is
a regular 2-free grammar). Denote by D’ the dervivation obtained trom 1)
by repeating two times the above subderivation. Clearly, D' is a correct
derivation in v and the generated string is of the form wey, with ly > @
This is not a \l] ing in L, contradiction, therefore L ¢ %(n).

Corollary. &, s tm-nmpamh}’r’ with all #(n), n =2, and L, 1s incom-
parable with all #(n), n> 3.

Proof. Combine thu above two theorems.

Theorem 3. R(2) < L,y strict inclusion.

- Proof. In view of Theorem 2, it is_enough to prove the inclusion.

For, let v = (G, G,) be a POGS and construet the context-free granmar

( = {l'.\-, l,]‘!], J\‘lf, ])) with A :
Vo=V U Vg X (Vi U 5) U LY T € Vg 0 P} u {87
and P containing the next rules :
1) 8 -8

2) ¥ —»al, Alm‘ X, Hu')’el’l,ﬂ' 7é A,
X = oa, Tm X —ae P,
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(We simulate in this way the derivations in: &, which involve no communi-
cation step.)
NS =S, D72 ZeVvin Vae

N o= (S, =)

(X, X)) —alX, ¥, for X - aX' el as= Vo1

Y = hYelybe 'y,

(X, Y) = ab,for X —»ad,e ), el

Ny, = bY el be Vg,

(X, %) = a(A’y %), for X - aX'e P, aec 'y,

(X, %) = a(X', V)b, for X - aX’ € P}, ae Vyy,

Y obelPybely,

(X, %) = ab, for X - ad,e P, aelr,.

Ny, 2 belPybelyy
(‘The derivations in G, (i, are sinltancously simulated, that in (r i
{he nsual way and that in G, reversed, from the right to 1hv left. The ([(1 i-
valion in Gy may he lumnml or ahmim than llml in ¢7; — this is the rolg

ol the symbol *, The communication is simulated hy” e rules (X, X) — ab,
(VL) = ab.) :

1) 2 > (%, %)
"o (Z, )Y, Z, N e Vo n Ve

(Ir the derivation in G, produces a string o7 and we have (o doa conununi-
cation slep, then the devivation ean continue only when Z% e 'y n V).

From the above explanations it is casy 1() see that L{v) = L(G),
henee L(y) € &, and the proofl isx over. =7

We shall establish now the relation between fmmliv.\‘. A(n), n=1,
and 2, the family of context sensitive languages.

Theorem 4. INaeh !rnu/um]r’ lre %(Jr).’ n= 1 s h’Hm* equivalent o a
regular language. V el

LProof: Let 1€ Z(n) be a Llnnuanv “l’ll(‘l.tll‘(l by a -POGS v ==
== (i, ..., G WY v construet a matrix g mnar (.wl-. [3], 5]y Tor defi-
nitions) G = (1, Ve SO M) with SN . s

n '
My =UJIYO| X eV} uil,2 <t <n} u Vag U {8, 2}
=1
Ve = Ve v fe, |1 <t g} u {8 L <i <n}
and. ) consisting of the following matrices :
1) (N - ('l»\'f”('zSég) R O\ 1600 R

2) (J_’ljl'l g ”!}(lll, q‘ ‘,_;"' g (_’ﬂygzl, L 5-\..-9” - ;(:r“)",;“),

where .\, = a1, is acrule in P, -
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and, for i = 2, ..., #, one of the next cases holds :
i)y X, -« Y, el

T
i

i) X, »a,e Py a,€ Vry, and Y =

iii ap=n XYP=¥YP=1U,
(We simulate in this way a non-communication step in a derivalion in +.
The derivation in @, starts from S¢ and the obtained string is bounded
by the ,brackets” e, ¢;. When the derivationinsome G, is finished, a spe-
c¢ial nonterminal, U, is introduced, encoding that.)

3) (AN S e, XY - e X P e, 8P), 2< 1 <ny

(AD e, Uy = ¢ 4), 2 <1<
(These matrices simulate a communication step in y. When a symbol A,
appears and the derivation in G; was not terminal, the corresponding
symbol X, is prepared for further derivations in @, — it is replaced by
A0, with ¢, in its left hand side —and ¢, resumes rewriting from S
When the derivation in G, was terminal, the whole derivation ends, as
@, cannot o further rewritings. The symbol Z is introduced in order to
encode this information. At each communication step, the right ,,brac-
kets” ¢ and ¢ are introduced.)

(L -Z, XP 5 ), Xie Vg 2 <t <0,
(Z — %)

(In the presence of Z, all nonterminal occurrences are crased, then 7 is
removed too.)

5) (8 = ¢8,¢)
(X = aY), for X »aY el ¥Y¢{d] 2 <i<n}
(X »a), for X »ael, aeVr,

(The non-communication derivations in G, are simulated in this way.)
As one can casily see, each sentential form of a derivation in (7 con-
~ tains at most » nonterminal symbols. Consequently, @ is a matrix grammar
of finite index.
From the above explanations, we find that the strings of L(G) are
of the form

o = C,1\CI LG CLY ol B0 W o v Yl Xi O Wiy
where a, € 1-’3.’], Y iy € “'“;‘,m for some k, 1 <k <n, and all strings @y, 2y,
1 <j <m, correspond either to strings generated by G, or to strings gene-
rated by some Gy, 2 <k <n, and communicated to G, in a correet deriva-
tion in v ; the strings ¥, 1 <i <m (that.is the substrings not bounded by
Phrackets” ¢, ¢, 1 < * <n), correspond to strings generated by some G,
2 <k <n, which were not communicated to G, in the y derivation. Clearly,
if we remove from e all markers ¢, ¢;as well as all the parasitic substrings
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¥,, then we obtain a permutation of a string in L(v). These removings can
be done by the following gsn :
g = {{Ri 1 0 '-<~f ‘<\‘”}'1 }'J's i"f‘,h Soy {SO}'! 1))

with P containing the next rules for all 4, 1 <t <n:

Sty — 8y

g — as; @ € Vry

3[.{;‘, — S

8¢ = So

gt — 8qy € € V1

Consequently, L(y) is letter equivalent to g(L(G})). The family of
finite index matrix languages is closed under arbitrary g¢gsm mappings
([37]), hence IL(y) is letter equivalent to a finite index matrix language ;
in_turn, these languages are letter-equivalent to regular languages ([21),
which completes the provf.

Corollary. (1) Each language in #(n), n > 1, is semilinear (its tmage
through Parikh mapping is a semilinear set).

(i) Kach one-letter language in ZA(n), n > 1, is regular.

Theorem 5. Each family #(n), n > 1, is strictly included in &,

Proof. In view of the previous result, it is enough to prove the in-
clusion. This will be done by a direct construction : we synchronously
simulate derivations in grammanrs G, of a PCGS 1, and, using the possibi-
lities offered by a type — 0 grammar, we move the strings asked for by &,
and erase the parasitic strings and symbols (markers). As the grammars
@, are regular (cach rule introduces a terminal), the workspace of this
tvpe—0 erammar will be linearly bounded, hence the generated language
LR L= R o bl bl = k“
will be context sensitive.

Here are the details of this construction.

b~ — (G4, ..., @,) be a regular PCGS and consider the type—0

i 1 sl o A

grammar ¢ = (Vy, Vra S, 1) with

Vy =J Ve Ui |1 < i<an+ 110Dl <t <n+ 110

=1
Uiz Z, B, St {“'} we U ‘.vr’li}
i=2

and P containing ths next rules:
1) § = X, 28, X8, ... XS Xy
Ao — aZ,ae Vi

2P = DB, Be Vg — (g s ¢ o5y}
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(We check whether the string between WY, 2V, is not terminal and contains
no communication symbol. In the affivmative casze one introduces the
symbol D))

2) DYy — o Xy Dy, for B — 22 Py 1 <0<
DX, =Y Doy, 1< €
Da —»abyae Ve 1 <0 g0 _
(The symbols Dy, L <i <n, simulate a synchronous derivation in v

" soa )
r;) OE'[)“JH - U,,_Hff!, o e U 1'(,"_ 8] ‘L\ Ay 4o e s A
t=1

'|i+l}'
X, ]’)H_1 - X7
(The process can be iterated.)

~l) Z_.l,- —)Z;,Q <1 < N

i—1
Lo = ol 2 € I'(:J U tdg ..o, Xigdy 2 <4 g2
j=2

INiw =" XN, ne |'G£, 2t <n

5, T o K S

" "
’ r o o - [ -
B -*)ifj._!.i:lJl(;f.(jeij_TlGi_U1\‘......\,,‘}-
=2

i=2

‘ M
N o L
‘ _‘,._)_(y_’ — Cf_.\ 2y % € U I Gy

=2 i B ., -‘ . ':‘:

" v o ° :it‘

al’ = ZL'ay €Y l'-'Gi no\a, ey _’{T,,‘,- ' .
=1

RV AR
(Whena symbol 2y is present, then the siring generated between 2V, Vi
is transpoited in the left hand of X, and N is intreduced between UV,
N Thesyvmbol Z7 checks whetlior the process is conectly accomplished.)

5) 4N, > B

H
Wy = K. 2e€ U I“f S0 ) G o,

=2
I — : ¢ !
X, =0

(The devivotion (nds wher the string between X, 0, i terminall)
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s UGlearly, L{y) = 1{@), and, for each string o e L(G) we have

WN(e, ) <ol 4= (n — 1) w0+ 2 <(20-F2) 2!

i I
|

therefore L((7) € 2 and the prooris over,

4, Final remarlks

1Mirst, let us note that all the proofs of this paper — excepting the
last one — remain  valid  (with minor modifications) for right-linear
erammars (1ules X — ¥, .V - oy with & terminal string, not necessarily
a symbol). The proof of Theorein 5 remains valid only for a-free POGS,
without rules of the form A — [, in the master grammar ¢, (otherwise
unbounded erasings can appear, henee a ditferent constiuetion is needed
for proyving — if possible — the containement into £,).

AMoreover, it is natural to investigate further types of grammars :
linear, context-free, ete. (a sister paper, dealig with this topic, is in pro-
gress). Besides this research topie, also remained open one specific pro-
blem :is the hierarchy #(n), n > 1, an infinite one ? From Theorems 1, 2, 3
we Tind thal 2(1) € #(2) = #Z(3) ave strict inclusions, It is likely that
A(n) < A(n -+ 1) is proper for all »n = 1. '

Of course, a more general problem is that of defining and investi-
gating different variants of PCGS's, maybe starting from “practical”
guestions. The domain seems to be quite promising.
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