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Patterned self-assembly is a process whereby coloured tiles self-assemble to build a rect-
angular coloured pattern. We propose self-assembly (SA) hypergraph automata as an
automata-theoretic model for patterned self-assembly. We investigate the computational
power of SA-hypergraph automata and show that for every recognizable picture lan-

guage, there exists an SA-hypergraph automaton that accepts this language. Conversely,
we prove that for any restricted SA-hypergraph automaton, there exists a Wang Tile Sys-
tem, a model for recognizable picture languages, that accepts the same language. The

advantage of SA-hypergraph automata over Wang automata, acceptors for the class of
recognizable picture languages, is that they do not rely on an a priori defined scanning
strategy.

1. Introduction

DNA-based self-assembly is an autonomous process whereby a disordered system

of DNA sequences forms an organized structure or pattern as a consequence of

Watson-Crick complementarity of DNA sequences, without external direction. A

DNA-tile-based self-assembly system starts from DNA “tiles”, each of which is

formed beforehand from carefully designed single-stranded DNA sequences which

bind via Watson-Crick complementarity and ensure the tiles’ shape (square) and

structure. In particular, the sides and interior of the square are double-stranded

DNA sequence, while the corners have protruding DNA single strands that act

as “sticky ends”. Subsequently, the individual tiles are mixed together and inter-

act locally via their sticky-ends to form DNA-based supertiles whose structure is

dictated by the base-composition of the individual tiles’ sticky ends. Winfree [17]

introduced the abstract Tile Assembly Model (aTAM) as a mathematical model for

tile-based self-assembly systems. Ma and Lombardi [15] introduced the patterned

self-assembly of single patterns, whereby coloured tiles self-assemble to build a par-

ticular rectangular coloured pattern. Patterned self-assembly models a particular

type of application in which tiles may differ from each other by some distinguish-

able properties, modelled as colours [16, 2]. Orponen et al. [7, 12] designed several

algorithms to find the minimum tile set required to construct one given coloured

pattern. Czeizler and Popa [4] proved that this minimization problem is NP-hard.

The problem remains NP-hard for patterns with a constant number of 29 colours
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[10] and for three-coloured patterns when the tile numbers for two of the three

colours are fixed [11].

In this paper, we propose self-assembly (SA) hypergraph automata as a general

model for patterned self-assembly and investigate its connections to other models

for two-dimensional information and computation, such as 2D (picture) languages

and Wang Tile Systems. A 2D (picture) language consists of 2D words (pictures),

defined as mappings p : [m]× [n] → [k] from the points in the two-dimensional space

to a finite alphabet of cardinality k. Here, [k] denotes the set [k] = {1, 2, . . . , k}.
Note that, if we take the alphabet [k] to be a set of colours, the definition of a

picture is analogous to that of a coloured pattern [15].

Early generating/accepting systems for 2D languages comprise 2×2 tiles [6], 2D

automata [3], two-dimensional on-line tessellation acceptors [8], and 2D grammars.

More recently a generating system was introduced by Prophetis and Varricchio [5]

that used Wang tiles. A Wang tile system [5] is a specialized tile-based model that

generates the class of recognizable picture languages, a subclass of the family of 2D

languages. The class of recognizable picture languages is also accepted by Wang

automata, a model introduced in [13]. Like other automata for 2D languages [1],

Wang tile automata use an explicit pre-defined scanning strategy [14] when reading

the input picture and the accepted language depends on the scanning strategy

that is used. Due to this, Wang automata are a suboptimal model for self-assembly.

Indeed, if we consider the final supertile as given, the order in which tiles are read is

irrelevant. On the other hand, if we consider the self-assembly process which results

in the final supertile, an “order of assembly” cannot be pre-imposed. In contrast to

Wang automata, SA-hypergraph automata are scanning-strategy-independent.

SA-hypergraph automata are a modification of the hypergraph automata in-

troduced by Janssens and Rozenberg [9] in 1982. An SA-hypergraph automaton

(Section 3) accepts a language of labelled “rectangular grid graphs”, wherein the

labels are meant to capture the notion of colours used in patterned self-assembly.

An SA-hypergraph automaton consists of an underlying labelled graph (labelled

nodes and edges) and a set of hyperedges, each of which is a subset of the set of

nodes of the underlying graph. Intuitively, the hyperedges are meant to model tiles

or supertiles while the underlying graph describes how these can attach to each

other, similar to a self-assembly process.

We investigate the computational power of SA-hypergraph automata and prove

that for every recognizable picture language L there is an SA-hypergraph automaton

that accepts L (Thm. 5). Moreover, we prove that for any restricted SA-hypergraph

automaton, there exists a Wang tile system that accepts the same language of

coloured patterns (Thm. 6). Here, restricted SA-hypergraph automaton means an

SA-hypergraph automaton in which certain situations that cannot occur during

self-assembly are explicitly excluded.
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2. Preliminaries

A picture (two-dimensional word) p over the alphabet Σ is a two dimensional matrix

of letters from Σ. Each element of this matrix is called a pixel. p(i,j) denotes the

pixel in the ith row and jth column of this matrix. Two pixels p(i,j) and p(i′,j′) are

adjacent if |i − i′| + |j − j′| = 1. The function w(p) denotes the width and h(p)

denotes the height of the picture p. Σ∗∗ is the set of all pictures over the alphabet

Σ. Let # be a letter which does not belong to the alphabet Σ. The framed picture

p̂ of p ∈ Σ∗∗ is defined as:

p̂ =

# # · · · # #

# p(1,1) · · · p(1,w(p)) #
...

...
. . .

...
...

# p(h(p),1) · · · p(h(p),w(p)) #

# # · · · # #

A picture language (2D language) is a set of pictures over an alphabet Σ. For

example, L = {p ∈ Σ∗∗| for all 1 ≤ i ≤ h(p), p(i,1) = p(i,w(p))} is the language of all

rectangles that have the same first and last column.

A function δ : N2 → N2 is a translation function if there exists i′, j′ ∈ Z such

that δ(i, j) = (i+ i′, j+ j′) for all i, j ∈ N. A subpicture over Σ is a two-dimensional

matrix of letters from Σ ∪ {empty}. A subpicture q is connected if for every pair of

pixels q(i′,j′), q(i,j) ∈ Σ there exists a sequence of pixels s = ⟨s0, s1, . . . , sn⟩ from q

such that s0 = q(i,j) and sn = q(i′,j′), for all 0 ≤ k < n, we have sk ∈ Σ. Moreover,

sk and sk+1 must be adjacent. If p is a picture, then q is a subpicture of p if there

exists a translation function δ such that for all (i, j) ∈ [h(q)]× [w(q)] we have either

q(i,j) = empty or q(i,j) = pδ(i,j).

A picture tile is a 2 × 2 picture (for example
a b

c d
). The language defined

by a set of picture tiles ∆ over the alphabet Σ ∪ {#} is denoted by L(∆) and is

defined as the set of all pictures p ∈ Σ∗∗ such that any 2 × 2 subpicture of p̂ is in

∆. Giammarresi and Restivo [6] defined a Picture Tiling System (PTS) as a 4-tuple

T = (Σ,Γ,∆, π), where Σ and Γ are two finite alphabets, ∆ is a finite set of picture

tiles over Γ∪{#} and π : Γ → Σ is a projection. The PTS T recognizes the language

L(T ) = π(L(∆)). A picture language L is called PTS-recognizable if there exists a

picture tiling system T such that L = L(T ).
A equivalent definition of recognizability was proposed using labelled Wang tiles

[14]. A labelled Wang tile, shortly LWT, is a labelled unit square whose edges may

be coloured. Formally, a LWT is a 5-tuple (cN , cE , cS , cW , l), where l belongs to a

finite set of labels Σ and cN , cE , cS , and cW belong to C ∪ {#} where C is a finite

set of colours and # represents an uncoloured edge. Intuitively, cN , cE , cS , and cW
represent the colour of the north, east, south, and west edge of the tile, respectively.

Labelled Wang tiles cannot rotate. The colours on the north, south, east, and west

edges of an LWT t are denoted by σN (t), σS(t), σE(t), and σW (t), respectively;
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moreover, λ(t) denotes the label of t.

A Wang Tile System (WTS)[5] is a tripleW = (Σ, C,Θ) where Σ and C are two

finite alphabets (the alphabet of tile labels and the alphabet of colours, respectively)

with # /∈ C, and Θ is a finite set of labelled Wang tiles with labels from Σ and

colours from C. The WTS W recognizes the picture language L(W ) where the

picture p ∈ Σ∗∗ belongs to L(W ) if and only if there exists a mapping m : [h(p)]×
[w(p)] from the pixels of p to tiles from Θ such that the label of the tile m(p(i,j))

is equal to p(i,j); moreover, this mapping must be mismatch free. The mapping m

is mismatch free if for two adjacent pixels p(i,j) and p(i+1,j) in p the south edge of

m(p(i,j)) and the north edge of m(p(i+1,j)) are coloured by the same colour from C;

for two adjacent pixels p(i,j) and p(i,j+1) in p the east edge of m(p(i,j)) and the west

edge of m(p(i,j+1)) are coloured by the same colour from C; and for every border

pixel p(i,j) with i = 1, j = 1, i = h(p), or j = w(p) we require that the north, west,

south, or east edge, respectively, of m(p(i,j)) is uncoloured. For a pixel in a corner,

e. g. p(1,1), this implies that two edges are uncoloured. Let p̄ be a two dimensional

array of labelled Wang tiles from Θ. We call p̄ a Wang tiled version of the picture

p if the width and the height of p and p̄ are equal, and there exists a mismatch

free mapping m such that for any i and j we have p̄(i,j) = m(p(i,j)). Two tiles p̄(i,j)
and p̄(i′,j′) are adjacent if the pixels p(i,j) and p(i′,j′) are adjacent. A language L is

WTS-recognizable if there exists a Wang tile system W such that W recognizes L.

Figure 1 shows an example.
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Fig. 1. Let W = (Σ, C,Θ) be the Wang Tile System where Σ = {a}, C = {0, 1} and Θ consists

of the 13 LWTs shown in i). This Wang tile system recognizes the picture language containing
all square pictures p with h(p) = w(p) ≥ 3 and where every pixel is labelled by a. Part ii) is an
example picture and iii) shows the Wang tiled version of the picture in part ii).

Proposition 1 ([6]) A picture language L is PTS-recognizable if and only if it is

WTS-recognizable.

A coloured pattern, as defined in [15] is the end result of a self-assembly process

that starts with a fixed-size L-shaped seed supertile and proceeds as in Figure 2,

(i), until one coloured rectangle is formed. Note that Wang Tile Systems can be

seen as generating (potentially infinite) languages of such coloured patterns where
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the L-shaped seed is of an arbitrary size and is generated starting from a single-

tiled seed with uncoloured North and West edges, and is extended by tiles with

uncoloured North or West edges, as shown in Figure 2, (ii).

# # # # #

#

#

#

#

#

# #

#

#

# # # # #

#

#

#

#

i) ii)

Fig. 2. (i) The self-assembly of a single coloured pattern, starting with a fixed-size L-shaped seed.
(ii) The process of generating a picture in the language of a Wang Tile System.

3. Hypergraph Automata

Let f : A→ B be a function and let A′ ⊆ A. The restriction of f to A′ is f |A′ : A′ →
B such that f |A′(x) = f(x) for all x ∈ A′. For any set A we let idA : A→ A denote

the identity. When the set A a is clear from the context, we will omit the subscript

and simply write id.

Let Σ be an alphabet. A pseudo-picture graph is a directed labelled graph G =

(N,Ev ∪ Eh, π) where N is a finite set of nodes, Ev, Eh ⊆ N × N are two sets of

edges such that Ev ∩ Eh = ∅, and π : N → Σ is the label function. Edges from Ev

and Eh will frequently be denoted by
v−→ and

h−→, respectively. The node-induced

subgraph of G by a subset N ′ ⊆ N is defined as the graph (N ′, E′
v ∪E′

h, π|N ′) where

E′
v = {(x, y) ∈ Ev | x, y ∈ N ′} and E′

h = {(x, y) ∈ Eh | x, y ∈ N ′}. A graph G′ is

called a full subgraph of G if for some N ′ ⊆ N it is the node-induced subgraph of

G by N ′.

A pseudo-picture graph G = (N,Ev ∪ Eh, π) is an (n × m-)picture graph (for

n,m ∈ N) if there is a bijection fG : N → [n]× [m] such that for x, y ∈ N , we have

(x, y) ∈ Ev if and only if fG(x) + (1, 0) = fG(y), and (x, y) ∈ Eh if and only if

fG(x)+(0, 1) = fG(y). We want to stress that we do not use Cartesian coordinates;

our pictures are defined as matrices, hence, incrementing the first coordinate corre-

sponds to a step downwards, and incrementing the second coordinate corresponds

to a step rightwards. In other words, the nodes of a picture graph G can be em-

bedded in N2 such that every edge in Ev has length 1 and points downwards, every

edge in Eh has length 1 and points rightwards, and every two nodes with Euclidean

distance 1 are connected by an edge. Note that if a pseudo-picture graph is an

n×m-picture graph, it cannot be an n′×m′-picture graph with n ̸= n′ or m ̸= m′,

and the function fG is unique. If G is a picture graph, we call e ∈ Ev a vertical

edge and e ∈ Eh a horizontal edge. The set of all picture graphs is denoted by G.
Every n × m-picture graph G = (N,Ev ∪ Eh, π) represents a picture p(G) ∈ Σ∗∗
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with h(p(G)) = n and w(p(G)) = m. More precisely, for all (i, j) ∈ [n]× [m] we let

p(G)(i,j) = π(f−1
G (i, j)). Hence, p : G → Σ∗∗ can be seen as a function.

A connected pseudo-picture graph G is called a subgrid if it is a full subgraph

of a picture graph G′. We also say G is a subgrid of G′.

A hypergraph [9] is a triple H = (N,E, f) where N is the finite set of nodes,

E is the finite set of hyperedges, and f : E → P(N) is a function assigning to each

hyperedge a set of nodes; the same set of nodes may be assigned to two distinct

hyperedges. For every hyperedge e ∈ E, we let

IH(e) = {x ∈ N | ∃e′ ∈ E \ {e} : x ∈ f(e) ∩ f(e′)}

be the set of intersecting nodes in f(e). Rozenberg and Janssens [9] introduced

hypergraph automata to describe graph languages. Here, we modified their definition

in order to study pseudo-picture graphs. The formal definition is as follows.

Definition 2. A self-assembly (SA) hypergraph automaton is a tuple A =

(N,E, f, d,G,E0) where H = (N,E, f) is a hypergraph, called the underlying hyper-

graph, d : E → IH(e)× IH(e) is the transition function assigning to each hyperedge

e ∈ E a transition Q1 → Q2 with Q1, Q2 ⊆ IH(e), G is a pseudo-picture graph with

node set N called the underlying graph, and E0 ⊆ E is the set of initial hyperedges.

Every hyperedge e ∈ E defines a graph Ge which is the subgraph of G induced

by f(e). For d(e) = Q1 → Q2 we call Q1 and Q2 the incoming active nodes and

outgoing active nodes of Ge, respectively. In order for the hypergraph automaton

to be well-defined, we require that Ge is connected and that the subgraph of Ge
induced by its incoming active nodes is also connected, for all e ∈ E. If e ∈ E0,

then Ge is also called an initial graph.

A configuration of the hypergraph automaton A is a triple (M,O, g) whereM =

(NM , EM,v ∪ EM,h, πM ) is a subgrid, O ⊆ NM is the set of active nodes, and

g : NM → N is a function such that πM (x) = π(g(x)) for all x ∈ NM . The set NM
consists of (possibly multiple) copies of nodes from N and the function g assigns

to each node in NM its original node in N . An edge (x, y) ∈ EM,h is a copy of the

edge (g(x), g(y)) ∈ Eh and (x, y) ∈ EM,v is a copy of the edge (g(x), g(y)) ∈ Ev.

However, for two nodes x and y in M , if their originals g(x) and g(y) are connected

by a horizontal (or vertical) edge, this does not imply that x and y are connected

by a horizontal (or vertical) edge.

Let (M1, O1, g1) be a configuration withM1 = (N1, E1,v∪E1,h, π1) and let e ∈ E

be a hyperedge with d(e) = Q1 → Q2. If there exists a non-empty subset P ⊆ O1

such that g1|P forms a graph-isomorphism from the subgraph ofM1 induced by P to

the subgraph of Ge induced by the incoming active nodes Q1, then the hyperedge

e defines a transition or derivation step (M1, O1, g1) →
A

(M2, O2, g2). Informally

speaking, the resulting graph M2 consists of joining together the graphs M1 and

Ge by identifying every node x ∈ P with the corresponding node g1(x) ∈ Q1. The

active nodes O2 in M2 are the active nodes O1 \ P in M1 plus the outgoing active

nodes Q2 in Ge, see Figure 3. We also say that (M2, O2, g2) is the result of gluing
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the hyperedge e to (M1, O1, g1). Formally, the configuration (M2, O2, g2) where

M2 = (N2, E2,v ∪ E2,h, π2) is constructed as follows. Let N ′ = {x′ | x ∈ f(e) \Q1}
be a set containing a copy of each node from Ge except for the incoming active

nodes such that N ′ ∩ N1 = ∅. Let N2 = N1 ∪ N ′ and let g2 : N2 → N such that

g2(x) = g1(x) for x ∈ N1 and g2(x
′) = x for x′ ∈ N ′. An edge (x, y) belongs to E2,v if

(x, y) ∈ E1,v or x, y ∈ P ∪N ′ and (g2(x), g2(y)) ∈ Ev; an edge (x, y) belongs to E2,h

if (x, y) ∈ E1,h or x, y ∈ P ∪N ′ and (g2(x), g2(y)) ∈ Eh. Naturally, π2(x) = π(g2(x))

for all x ∈ N2 and O2 = (O1 \P )∪{x′ ∈ N ′ | x ∈ Q2}. The reflexive and transitive

closure of →
A

is denoted by
∗→
A

and called a derivation. For e ∈ E0 we let Oe such that

h

h

v v

h

h

v v

v

h

h

v v

v

h

h

v

M1 Ge M2

g1 

P Q1

Q2
+ =
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Fig. 3. A transition (M1, O1, q1) →A (M2, O2, q2) joins together the graphs M1 and Ge by identi-
fying every node x ∈ P with the corresponding node g1(x) ∈ Q1. The set O2 of the active nodes
of the new configuration M2 consists of the nodes of the union of the active nodes in O1 \ P with

the outgoing active nodes Q2 of Ge. The active nodes of M1 and M2 are represented as circled
nodes.

d(e) = Q1 → Oe and we call the configuration (Ge, Oe, id) an initial configuration

of A. A final configuration is a configuration (M, ∅, g) without active nodes. The

graph language accepted by the SA-hypergraph automaton A is

L(A) =
{
M ∈ G

∣∣∣ ∃e ∈ E0 : (Ge, Oe, id)
∗→
A

(M, ∅, g)
}
.

Note that L(A) contains picture graphs only. The picture language associated to the

graph language L(A) is the language p(L(A)).

Remark 3. Since we only talk about picture graphs, we can assume that for every

hyperedge e ∈ E the underlying graph Ge is a subgrid, or e can be removed from the

set E.

Example 4. Figure 4 shows an example of a self-assembled coloured pattern and

an SA-hypergraph automaton that accepts that pattern. Part i) depicts a coloured

self-assembled pattern. Parts ii) and iii) together depict the underlying graph of the

SA-hypergraph automaton that constructs the same pattern.

The SA-hypergraph automaton for the example in Figure 5 is defined as follows.

The SA-hypergraph automaton is A = (N,E, f, d,G,E0), where

• N = {x1, x2, . . . , x9, z1, z2, . . . , z7},
• E = {e1, e2, . . . , e16},



November 12, 2013 13:44 WSPC/INSTRUCTION FILE SAHypergraphu

8 Lila Kari, Steffen Kopecki, and Amirhossein Simjour

z5

z1 h

v

h

z6

h

z3

z2

z4

v

v

h

z7

x1 x2 x3

x7

x4

x1

v

x7 x8 x9

x6x5x4

x1 x2 x3h h hh

h h h h

hhhh

v v v

vvvv

vvvv

vvvv

x1 x2 x3

x7 x8 x9

x7

x

x1

x9

x6

x3

i) iii)ii)

v v v

h

h

h

Fig. 4. Part i) shows an example of coloured self-assembled pattern. Parts ii) and iii) together

depict the underlying graph of the SA-hypergraph automaton that constructs the same pattern.
Part ii) constructs the white top row and white left column, and part iii) constructs the coloured
pattern.

• function f is defined such that

f(e1) = {x1, x2, x4, x5}, f(e2) = {x2, x3, x5, x6}, f(e3) = {x3, x1, x6, x4},
f(e4) = {x4, x5, x7, x8}, f(e5) = {x5, x6, x8, x9}, f(e6) = {x6, x4, x9, x7},
f(e7) = {x7, x8, x1, x2}, f(e8) = {x8, x9, x2, x3}, f(e9) = {x9, x7, x3, x1},
f(e10) = {z1, z5, z2, x1}, f(e11) = {z5, z6, x1, x2}, f(e12) = {z6, z7, x2, x3},
f(e13) = {z7, z5, x3, x1}, f(e14) = {z2, x1, z3, x4}, f(e15) = {z3, x4, z4, x7},
f(e16) = {z4, x7, z2, x1}.

• For each hyperedge in ii), the function d describing the active areas where

we can glue new hyperedges is defined as to build a horizontal (vertical)

chain of nodes that models the top row (left column) of tiles.

d(e11) = {z5, x1} → {z6, x1, x2}, d(e12) = {z6, x2} → {z7, x2, x3},
d(e13) = {z7, x3} → {z5, x1, x3}, d(e14) = {z2, x1} → {z3, x1, x4},
d(e15) = {z3, x4} → {z4, x4, x7}, d(e16) = {x7, z4} → {z2, x1, x7}.

The backward edges e.g. (x3, x1), (x6, x4), (x9, x7), and (z7, z5), make it

possible to reuse the hyperedges to build a periodic pattern.

For each hyperedge in iii), the function d changes the active input nodes

(top-left, bottom-left, and top-right) to the new set of active nodes (top-

right, bottom-left, and bottom-right), signifying the change of the places
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where the new hyperedges can be glued.

d(e1) = {x1, x2, x4} → {x2, x4, x5}, d(e2) = {x2, x3, x5} → {x3, x5, x6},
d(e3) = {x3, x1, x4} → {x1, x6, x4}, d(e4) = {x4, x5, x7} → {x5, x7, x8},
d(e5) = {x5, x6, x8} → {x6, x8, x9}, d(e6) = {x6, x4, x9} → {x4, x9, x7},
d(e7) = {x7, x8, x1} → {x8, x1, x2}, d(e8) = {x8, x9, x2} → {x9, x2, x3},
d(e9) = {x9, x7, x3} → {x7, x3, x1}, d(e10) = {z1, z5, z2} → {z5, x1, z2}.

• Parts ii) and iii) depict the underlying graphs of the white Γ-shaped top

and left border of the pattern, and the white-grey-black part of the pattern

respectively.

• E0 = {e10}

The SA-hypergraph automaton A starts from the top-left white tile, correspond-

ing to E0 = {e10}. Afterwards, the automaton continues the construction with the

hyperedges in the top row or the left column. The construction of the white-grey-

black part starts after the construction of the white top row and left column. Figure 5

shows an example of possible transitions of the SA-hypergraph automaton A.

The concept of hypergraph automata was introduced by Janssens and Rozenberg

in 1982 [9]. Our definition of SA-hypergraph automata is a variant of the original

definition with the following modifications. Firstly, we start from a set of initial

graphs whereas the original definition used a single initial graph. For unlabelled

graphs both models are capable of accepting the same class of graph languages, as

long as one makes an exception for the empty graph. However, for labelled graphs a

single initial graph is not sufficient; e. g., if a language L of labelled graphs contains

one graph A where every node is labelled by a and one graph B where every node

is labelled by b, then L cannot be generated from the same initial graph since

A and B do not have a common non-empty isomorphic subgraph. Secondly, we

use final configurations in order to accept only some of the graphs that can be

generated by rules from the initial graph. In the original definition, for simplicity,

final configurations were omitted and every graph which can be generated from the

initial graph belonged to the accepted language. Thirdly, it seemed more convenient

to us to use the notion of active nodes rather than active intersections.

4. Hypergraph Automata for Picture Languages

In this section, we establish a strong connection between (WTS-)recognizable pic-

ture languages and picture graph languages that can be accepted by SA-hypergraph

automata. We prove that the self-assembly of a Wang Tile System can be simulated

by an SA-hypergraph automaton, see Theorem 5. The main idea is to start the tiling

in the top left corner of a tiled picture and then extend the tiled picture downwards

and rightwards, just as in Figure 2. Our converse result is slightly weaker: the

picture language L = p(L(A)), associated to the graph language accepted by an
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Fig. 5. In this example, the construction of a picture graph from Figure 5 is explained. At each

step, one hyperedge or a sequence of hyperedges is glued.

SA-hypergraph automaton A, is WTS-recognizable if A does not contain a strong

loop, see Theorem 6. The restriction for A not to contain a strong loop is a natural

assumption as strong loops cannot be used in any derivation that accepts a picture

graphs.

Theorem 5. For any recognizable picture language L there is an SA-hypergraph

automaton A such that the picture language associated to the graph language L(A)
is L.

Proof. Let V = (Σ, C ′,Θ′) be a Wang Tile System that recognizes the picture

language L, that is L = L(V ). We will slightly modify the WTS V such that it fulfils

a certain property as described in the following. We define a WTS W = (Σ, C,Θ)

which recognizes L and such that any two copies of a tile t ∈ Θ in a tiling of W

must have a row- and a column-distance which is a multiple of 3. The modification

of V will become of importance later in the proof: We need to ensure that for a

2×2 square of matching tiles t1, t2, t3, t4, it is not possible to directly attach another
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copy of any of t1, t2, t3, t4 to this square.

We will define a SA-hypergraph automaton A = (N,E, f, d,G,E0) which simu-

lates the assembly of a tiled picture from L = L(W ) as described in Fig. 2 ii). Let

N be a set of nodes such that |N | = |Θ | and let ϑ : N → Θ be a bijection. For each

node x ∈ N there is a corresponding tile ϑ(x) and vice versa. Let NT , NR, NB, NL
be the set of nodes which correspond to tiles on the top, right, bottom, left border

of a tiled picture, respectively:

NT = {x ∈ N | σN (ϑ(x)) = #} , NR = {x ∈ N | σE(ϑ(x)) = #} ,
NB = {x ∈ N | σS(ϑ(x)) = #} , NL = {x ∈ N | σW (ϑ(x)) = #} .

Let G = (N,Ev ∪ Eh, π) be the underlying graph of A. The label function π

is naturally defined as π(x) = λ(ϑ(x)) for x ∈ N . For all nodes x, y ∈ N there is

an edge (x, y) ∈ Eh if and only if σE(ϑ(x)) = σW (ϑ(y)) ̸= # and either x, y ∈
N \ (NT ∪ NB) or x, y ∈ NT or x, y ∈ NB ; there is an edge (x, y) ∈ Ev if and

only if σS(ϑ(x)) = σN (ϑ(y)) ̸= # and either x, y ∈ N \ (NL ∪ NR) or x, y ∈ NL
or x, y ∈ NR. This means if the east edge of a tile t can attach to the west edge of

tile s, then their corresponding nodes x = ϑ−1(t) and y = ϑ−1(s) are connected by

an h-edge (x, y) ∈ Eh. Analogously, if the south edge of a tile t can attach to the

north edge of tile s, then their corresponding nodes x = ϑ−1(t) and y = ϑ−1(s) are

connected by an v-edge (x, y) ∈ Ev.

If NT ∩NB ̸= ∅ or NR ∩NL ̸= ∅, the language L(W ) possibly contains pictures

p with h(p) = 1 or w(p) = 1, respectively, which can be seen as one-dimensional

pictures. These pictures have to be treated separately. For now we assume that

NT ∩NB = NR ∩NL = ∅.
The hyperedges E and the transition function d define the possible transitions of

A. In every transition we add exactly one node to the graph of a configuration of A.

Our naming convention is that x is the node which is attached in the derivation step

and y, y1, y2, y3 are incoming active nodes of the hyperedge. Every graph containing

only one node which corresponds to a tile in the top left corner is an initial graph. In

order to construct a picture graph which represents a picture in L(W ) we introduce

three types of transitions, see Figure 6. The transitions of type I generate the top row

of the graph and transitions of type II generate the left column of the graph; both

transition types keep every generated node active. Transitions of type III generate

the rest of the graph: A node is attached if it has a matching east neighbour (y1),

a matching north neighbour (y3), and these two nodes are connected by another

node (y2); unless we reach the right or bottom border of the graph the nodes x, y1,

and y3 are active after using the transition.

Formally, we define the set of hyperedges E, the set of initial edges E0, the

function f , and the transition function d as following:

Initial hyperedges: For each x ∈ NT ∩NL, corresponding to a tile in the top

left corner, we define a hyperedge ex ∈ E0 ⊆ E with associated nodes f(ex) = {x}
and the transition function d(ex) = ∅ → {x}.
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Fig. 6. The hyperedges in the SA-hypergraph automaton A induce three different types of graphs.
White nodes represent incoming active nodes of the hyperedges.

Type I: For all nodes x, y ∈ NT , in the top row, such that (x, y) ∈ Eh,

we define a hyperedge ex,y ∈ E with associated nodes f(ex,y) = {x, y} and the

derivation function d(ex,y) = {y} → {x, y}.
Type II: For all nodes x, y ∈ NL, in the left column, such that (x, y) ∈ Ev,

we define a hyperedge ex,y ∈ E with associated nodes f(ex,y) = {x, y} and the

derivation function d(ex,y) = {y} → {x, y}.
Type III: For all nodes x ∈ N \ (NT ∪ NL) and y1, y2, y3 ∈ N such that

(y2, y1), (y3, x) ∈ Ev and (y2, y3), (y1, x) ∈ Eh, we define a hyperedge ex,y1,y2,y3 ∈ E

with associated nodes f(ex,y1,y2,y3) = {x, y1, y2, y3} and the derivation function

(1) d(ex,y1,y2,y3) = {y1, y2, y3} → ∅ if x ∈ NB ∩NR, (bottom right corner)

(2) d(ex,y1,y2,y3) = {y1, y2, y3} → {x, y3} if x ∈ NB \NR, (bottom row)

(3) d(ex,y1,y2,y3) = {y1, y2, y3} → {x, y1} if x ∈ NR \NB , (right column)

(4) d(ex,y1,y2,y3) = {y1, y2, y3} → {x, y1, y3} otherwise.

Consider the graph Ge which is induced by the hyperedge e ∈ E. Depending

on the type of the hyperedge e, the graph Ge contains at least the edges shown

in Figure 6. However, by the modification of the Wang tile system V above, we

ensured that the graph Ge contains exactly those edges shown in Figure 6. Suppose

one of the graphs Ge would contain an edge (x′, y′) which is not shown in Figure 6,

then the tile corresponding to y′ could occur in two positions which are less than

three rows and columns apart — a property that was excluded by the modification.

We will show that p(L(A)) = L. Firstly, consider an array p̄ of tiles from Θ

which is the Wang-tiled version of the picture p ∈ L(W ). We will show that the

SA-hypergraph automaton A accepts a picture graph M such that p(M) = p. We

assumeM to be embedded in Z2 such that the nodes cover the axis-parallel rectangle

spanned by the points (1, 1) and (h(p), w(p)), every v-edge points downwards, and

every h-edge points rightwards; recall that our coordinates represent the rows and

columns of a matrix. The derivation leading to the final configuration (M, ∅, g)
simulates the assembly of tiles which form p̄ as shown in Figure 2. The north and

west edges of the tile tTL = p̄(1,1) in the top left corner of p̄ are labelled by #,

and therefore, the node xTL = ϑ−1(tTL) corresponding to tTL forms an initial

graph M0. The adjacent edges of two neighbouring tiles s, t in p̄ are labelled by the

same colour. Suppose s is the west neighbour of t, then σE(s) = σW (t) ̸= # and

both tiles belong to the same row, implying that σN (s) = # ⇐⇒ σN (t) = #
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and σS(s) = # ⇐⇒ σS(t) = #. Therefore, their corresponding nodes in G

are connected by an h-edge (ϑ−1(s), ϑ−1(t)) ∈ Eh. Analogously, if s is the north

neighbour of t, then (ϑ−1(s), ϑ−1(t)) ∈ Ev. Next, we see that the hyperedges of

type I and type II can be used in order to create the top row and left column of

the graph M , respectively. Furthermore, the hyperedges of type III can be used in

order to create all the remaining nodes of M . We conclude that (M0, {xTL}, id)
∗→
A

(M,O, g) is a derivation in A and we will prove that (M,O, g) has to be a final

configuration with O = ∅. Observe, that hyperedges of types I and II leave all the

nodes active while hyperedges of type III deactivate at least the top left node in

the hyperedge. Thus, all nodes except for those in the bottom row and in the right

column will be deactivated in the configuration (M,O, g). Furthermore, in order to

create the bottom row and right column hyperedges of type III.2 and III.3 are used,

respectively, and one rule of type III.1 is used in order to create the bottom-right

node of M . It is easy to see that the derivation function is designed such that all

nodes will be deactivated in the configuration (M,O, g) and, therefore, A accepts

M .

Now, let M = (NM , Ev,M ∪ Eh,M , πM ) ∈ L(A) be a graph which is generated

by A. Let G be accepted by the derivation

(M0, O0, g0) →
A

(M1, O1, g1) →
A

· · · →
A

(Mk, Ok, gk)

where (M0, O0, g0) = (Ge0 , Oe0 , id) is an initial configuration with e0 ∈ E0 and

(Mk, Ok, gk) = (M, ∅, g) is a final configuration. Let Ni be the node set of the graph

Mi. Note that for any 0 ≤ i ≤ k the function gi is the restriction of g by Ni, that

is gi = g|Ni . In order to avoid confusion, nodes in the graph M are consistently

denoted by x, y and nodes in the graph G are consistently denoted by x′, y′; the

nodes may have subscripts.

Let the nodes in the graphs M0, . . . ,Mk be embedded in Z2 such that all h-

edges point rightwards and all v-edges point downwards; just like we did above.

The creation of graph M = Mk starts with the initial graph M0 which contains

only one node xTL ∈ NT ∩ NL. Let xTL lie on position (1, 1) in all of the graphs

M0, . . . ,Mk. The graphM0 can be extended rightwards by using hyperedges of type

I and downwards by hyperedges of type II. Since none of the hyperedges attach a

new node upwards or leftwards of an existing node in Mi−1 in order to obtain Mi,

the node xTL lies in the top row and in the left column of Mi. By the definition

of type I and II hyperedges, for every node y in the top row (resp., left column)

of M we have g(y) ∈ NT (resp., g(y) ∈ NL). By using hyperedges of type III the

area spanned by the top row and left column can be filled with nodes. It is easy

to see that for all graphs M0, . . . ,Mk we have that if a node lies on position (i, j),

then for all (i′, j′) ∈ [i] × [j] a node lies on position (i′, j′). Furthermore, if i′ < i,

then the node on position (i′, j′) has an outgoing v-edge, and if j′ < j, then the

node on position (i′, j′) has an outgoing h-edge. In other words, in the axis-parallel

rectangle spanned by the points (1, 1) and (i, j) all nodes are connected by edges
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with all direct neighbours (nodes which have an Euclidean distance of 1).

In the final configuration (Mk, ∅, g) there is no active node. Thus, the last node

which is added to the graph Mk−1 in order to obtain Mk is a node xBR such that

g(xBR) ∈ NB ∩NR, as all other derivation rules will leave some nodes active. Next,

let us consider the nodes which belong to the same row and column as xBR does.

Note that if two nodes x and y in M are connected by an edge, then the corre-

sponding nodes g(x) and g(y) in G are connected by an edge, too; more precisely, if

(x, y) ∈ Ev,M , then (g(x), g(y)) ∈ Ev, and if (x, y) ∈ Eh,M , then (g(x), g(y)) ∈ Eh.

Since a node in NB (resp., NR) is connected only by h-edges (resp., v-edges) in G

to other nodes from NB (resp., NR), we see that for every node y in the row of xBR
(resp., column of xBR) we have g(y) ∈ NB (resp., g(y) ∈ NR). A node y′ ∈ NB
(resp., y′ ∈ NR) does not have any outgoing v-edges (resp., h-edges) as the south

edge (resp., east edge) of ϑ(y′) is labelled by #. We conclude that xBR sits in the

bottom row and right column of the graphM and, by the observations made above,

this implies that M is a picture graph.

We claim that the picture p(M) which corresponds to the graph M can be

generated by the assembly p̄ given by the embedding of nodes inM and the function

ϑ ◦ g. Clearly, for every node y on position (i, j) in M we have that p(M)i,j =

πM (y) = λ(ϑ(g(y))), therefore, the pictures p and λ(p̄) coincide. Next, we prove

that p̄ is a tiled picture in the Wang tile systemW . Recall, that all nodes on the top,

right, bottom, and left border of M correspond to tiles in MT , MR, MB , and ML,

respectively, and therefore, p̄ is well-bordered. Let tx and ty be two neighbouring

tiles in p̄ which lie on positions (i, j) and (i, j + 1), respectively. Let x and y be

the nodes in M which lie on the positions (i, j) and (i, j + 1), respectively. Note

that tx = ϑ(g(x)) and ty = ϑ(g(y)). Since M is a picture graph, (x, y) ∈ Eh,M and

(g(x), g(y)) ∈ Eh. The edge set Eh was built to ensure that σE(tx) = σW (ty). We

conclude that all adjacent east-west edges in p̄ have matching colours. By symmetric

arguments, we also conclude that all adjacent north-south edges in p̄ have matching

colours. Therefore, p̄ is a tiled picture in W and p ∈ L.

Finally, let us consider the case when NT ∩NB ̸= ∅. We can add a component

to the SA-hypergraph automaton which works similar to a non-deterministic finite

automaton and where every hyperedge induces an graph of type I in Figure 6.

The initial graphs are given by all nodes from NT ∩NB ∩NL. For all nodes x, y ∈
NT ∩NB with (y, x) ∈ Eh we define a hyperedge ex,y such that f(ex,y) = {x, y}. The
derivation function is given as d(ex,y) = {y} → {x} if x /∈ NR, and d(ex,y) = {y} →
∅ otherwise. Obviously, this attachment to the hypergraph A accepts all graphs

which correspond to pictures p ∈ L with h(p) = 1. The case when NL ∩ NR ̸= ∅
can be covered analogously.

Next, we prove that a picture language L = p(L(A)), associated to the graph

language L(A), is WTS-recognizable if A does not contain a strong loop.

Let A be an SA-hypergrph automaton. A series of hyperedges s = ⟨e0, e1, . . . , en⟩
from A is a (derivation) loop if e0 = en and Q2,i ∩Q1,i+1 ̸= ∅ where d(ei) = Q1,i →
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Fig. 7. Let A = (N,E, f, d,G,E0) be an SA-hypergraph automaton where N , E, f , and G are
defined in part i). funtion d is defined such that d(e1) = {x1} → {x2, x4, x5}, d(e2) = {x2, x5} →
{x2, x5, x6} and d(e3) = {x2, x4, x5, x6} → {}. SA-hypergraph automaton starts from e1. Part ii)
shows the set of all the possible tile candidates. On each tile related node and the set of ψ are
written. The tiling on part iii) is the result of overlapping of three hyperedges e1, e2 and e3.

Q2,i for 0 ≤ i < n. Loops in an SA-hypergraph automaton are a prerequisite

for using a hyperedge several times in one derivation. Therefore, an SA-hypergraph

automaton without any loops can only accept a finite graph language. Let Gi = Gei
be the graph induced by ei, let x be a node in G0 = Gn, and let Oi = Q2,i∩Q1,i+1 be

set overlapping incoming/outgoing active nodes of Gi and Gi+1. There is a path in

the underlying graph of A from x to x which only visits the subgraphs G0, . . . , Gn,

in the given order, and passes through at least one node of each Oi (the path may

use incoming and outgoing edges). The loop s is a strong loop if, on this path, the

number of incoming horizontal edges equals the number of outgoing horizontal edges

and the number of incoming vertical edges equals the number of outgoing vertical

edges. In other words, when starting from a configurationM and successively gluing

the hyperedges from s to M , then the subgraph added by the hyperedge e0 and the

subgraph added by the hyperedge en fully overlap when naturally embedded in Z2.

Note that, by Remark 3, all graphs Gi are subgrids which implies that the choice

of the path from x to x does not matter in this definition.

Theorem 6. Let A be an SA-hypergraph automaton without any strong loops. The

picture language L = p(L(A)), associated to the graph language L(A), is WTS-

recognizable (Wang tile system recognizable).

Proof. Let A = (N,E, f, d,G,E0) and let G = (N,Ev ∪ Eh, π). We may assume

that e ∈ E0 if and only if d(e) = ∅ → Oe. Therefore, none of the initial hyperedges

can be used in a transition. This assumption is justified by the fact that we can

duplicate all hyperedges in E0 such that one copy can be used in a transition but

does not belong to E0 and the other copy which belongs to E0 cannot be used in a

transition. Furthermore, any hyperedge without incoming active nodes which does

not belong to E0 is useless and can be removed from E.

For a node x ∈ N we define the list of related hyperedges to x, Hx =

{e ∈ E | x ∈ f(e)}. Let x be a node and ψ ⊆ Hx. We call a hyperedge g ∈ ψ a

generator of (x, ψ) if x /∈ Q1 with d(g) = Q1 → Q2. Note that if g ∈ E0, then g
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must be a generator. We call a hyperedge c ∈ ψ a consumer of (x, ψ) if x /∈ Q2

with d(c) = Q1 → Q2. The pair (x, ψ) is a tile candidate if ψ contains exactly one

generator g(x,ψ) and exactly one consumer c(x,ψ); furthermore, if g(x,ψ) = c(x,ψ),

we require that ψ = {g(x,ψ)}. Note that if g(x,ψ) ̸= c(x,ψ), then for all e ∈ ψ with

d(e) = Q1 → Q2, we have that x ∈ Q1 unless e is the generator and x ∈ Q2 unless e

is the consumer. The tile candidate (x, ψ) describes the attachment of a copy of the

node x to the output graph by the generator; afterwards, x is used as active node

by all hyperedges in ψ \ {g(x,ψ), c(x,ψ)}; finally, x is deactivated by the consumer.

Let Gψ be the node-induced subgraph of G by
∪
e∈ψ f(e). If Gψ is not a subgrid (a

subgraph of some picture graph), we remove (x, ψ) from the set of tile candidates.

Let Ψ denote the set of all remaining tile candidates.

The Wang tile systemW = (Σ, C,Θ) which recognizes L is constructed based on

the list Ψ. In order to recognize the picture language associated to L(A), we have to
define the attachments of tile candidates. We use unordered pairs {(x, ψ), (y, φ)} ∈
Ψ2 of tile candidates for the colours on the edges. For a tile candidate (x, ψ) ∈ Ψ

we define the set of labelled Wang tiles

Θ(x,ψ) = SN,(x,ψ) × SE,(x,ψ) × SS,(x,ψ) × SW,(x,ψ) × {lx}

where lx is the label π(x) and SN,(x,ψ), SE,(x,ψ), SS,(x,ψ), SW,(x,ψ) are sets of colours
which are defined below. The set of all tiles is the union Θ =

∪
(x,ψ)∈Ψ Θ(x,ψ).

For (x, ψ), (y, φ) ∈ Ψ, we let {(x, ψ), (y, φ)} ∈ SE,(x,ψ) and {(x, ψ), (y, φ)} ∈
SW,(y,φ) if and only if

(1) (x, y) ∈ Eh,

(2) Hx ∩ φ ⊆ ψ,

(3) ψ ∩Hy ⊆ φ, and

(4) g(x,ψ) = g(y,φ) or y ∈ Q1 for d(g(x,ψ)) = Q1 → Q2 or x ∈ Q′
1 for d(g(y,φ)) =

Q′
1 → Q′

2.

For (x, ψ), (y, φ) ∈ Ψ, we let {(x, ψ), (y, φ)} ∈ SS,(x,ψ) and {(x, ψ), (y, φ)} ∈ SN,(y,φ)
if and only if (x, y) ∈ Ev and conditions 2 to 4 are satisfied. For (x, ψ) ∈ Ψ, we let

SE,(x,ψ) = {#} if x does not have an outcoming horizontal edges in the graph Gψ.

By symmetric condition we let SN,(x,ψ) = {#}, SS,(x,ψ) = {#}, or SW,(x,ψ) = {#}.
Now, consider an m × n-picture graph M = (NM , Ev,M ∪ Eh,M , πM ) ∈ L(A).

We will show that there is a tiled version p̄ of picture p = p(M) which uses tiles

from Θ and, therefore, p is recognized by W . Let G be accepted by the derivation

(M0, O0, g0) →
A

(M1, O1, g1) →
A

· · · →
A

(Mk, Ok, gk)

where (M0, O0, g0) = (Ge0 , Oe0 , id) is an initial configuration (that is e0 ∈ E0)

and (Mk, Ok, gk) = (M, ∅, g) is a final configuration. Let ei be the hyperedge and

Pi ⊆ Oi−1 be the active nodes which are used in the transition (Mi−1, Oi−1, gi−1) →
A

(Mi, Oi, gi). Let d(ei) = Q1,i → Q2,i for 1 ≤ i ≤ k. Recall that, by definition, Mi−1

is a full subgraph of Mi and, by induction, every graph Mi is a full subgraph of
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M . Being an m × n-picture graph, the nodes in M can be naturally embedded in

[m]× [n] by the function fM .

Consider one node x′ ∈ NM and its original x = g(x′) in G. We assign to x′ a

list of hyperedges ψ ⊆ E such that ei ∈ ψ if x′ ∈ Pi or x
′ belongs to Mi but not

Mi−1. We intend to use a tile from Θ(x,ψ) for the pixel p̄fM (x′) representing x′ in

the tiled picture p̄. Observe that ψ contains a consumer as x′ is not active in the

final configuration and ψ cannot contain two consumers because a node can only

be deactivated once. In addition, the hyperedge ei such that x′ belongs to Mi but

not Mi−1 is the single generator in ψ. Since Gψ is isomorphic to a subgraph of M ,

we conclude that (x, ψ) is indeed a tile candidate. If x′ does not have an outgoing

horizontal edge, then the node x in the graph Gψ cannot have an outgoing horizontal

edge either and, therefore, SE,(x,ψ) = {#}. Symmetric arguments apply if x does

not have an incoming horizontal, outgoing vertical, or incoming vertical edge.

Next, consider two nodes x′, y′ ∈ NM which are connected by an edge and, by

symmetry, assume (x′, y′) is a horizontal edge. Let x = g(x′), y = g(y′) be their

originals and let ψ,φ be the set of hyperedges associated to x′, y′, respectively. We

will show that {(x, ψ), (y, φ)} is a colour in SE,(x,ψ) as well as in SW,(y,φ). Thus, we
can choose tiles from Θ(x,ψ) and Θ(y,φ) for the positions fM (x′) and fM (y′) in p̄,

respectively. Clearly, the choice of the tiles also depends on the other neighbours

of x′ and y′. We have to show that conditions 1 to 4, above, are satisfied. The first

condition is satisfied by assumption. By contradiction, suppose the second condition

is not satisfied. There is ei ∈ Hx ∩ φ \ ψ; thus, in the i-th step of the derivation

we use the hyperedge ei that presupposes or generates an edge (x′′, y′) in M where

g(x′′) = x but x′′ ̸= x′. This would imply that y has two incoming horizontal edges

whence M is not a picture graph. The third condition is satisfied by symmetric

arguments. The edge (x′, y′) in M can only be created in step i where x′ or y′ is

added to the graph Mi−1. Thus, x
′ and y′ either have the same generator in (x, ψ)

and (y, φ), or x′ is in the active nodes when y′ is generated, or y′ is in the active

nodes when x′ is generated. In all cases condition 4 is satisfied.

We conclude that a tiled picture p̄ such that p = p(M) and M ∈ L(A) can be

generated by using tiles from Θ and, therefore, p(M) ∈ L(W ).

Consider a picture p ∈ L(W ) and let p̄ be the tiled version of p, using tiles from

Θ =
∪

(x,ψ)∈Ψ Θ(x,ψ).

We start by introducing the concept of masks which can be seen as connected

subpictures of the tiled picture p̄ that represent the nodes in one hyperedge. A mask

m is a h(p̄)×w(p̄) matrix of tiles from Θ∪{empty}, such that either m(i,j) = empty

or m(i,j) = p̄(i,j) for all (i, j) ∈ [h(p̄)]× [w(p̄)]. In addition, we require that the non-

empty entries in m are connected; that is, for every pair of tiles m(i′,j′),m(i,j) ∈ Θ

there exists a sequence r = ⟨r0, r1, · · · , rn⟩ of tiles in m such that r0 = m(i,j),

rn = m(i′,j′), rk ∈ Θ, and rk, rk+1 must be adjacent for all 0 ≤ k < n.

Let e ∈ E be an hyperedge and let Ge = (Ne, Ee,v ∪ Ee,h, πe) be the graph

induced by this hyperedge. By Remark 3, we assume that Ge is a subgrid. We say

Ge is mapped to a mask m if there is a injective function h : Ne → [h(p̄)] × [w(p̄)]
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which satisfies: m(i,j) belongs to Θ if and only if (i, j) is in the domain of h; for all

nodes x, y ∈ Ne there is an edge (x, y) ∈ Ee,h (resp., (x, y) ∈ Ee,v) if and only if

h(x) is in north (resp., west) neighbour of h(y). Whenever we use this mapping, we

will ensure that for all x ∈ Ge the tile p̄h(x) belongs to Θ(x,ψ) for some ψ ⊆ E.

Consider a tile t ∈ p̄(i,j) ∈ Θ(x,ψ) and a hyperedge e ∈ ψ. We define the mask

m[(i,j),x,e] such that the graph Ge can be mapped by function h to m[(i,j),x,e] and

h(x) = (i, j). We say that e is the hyperedge related to the mask m[(i,j),x,e]. Let

t′ = p̄(i′,j′) ∈ Θ(y, φ) be a tile that is adjacent to t and let e ∈ ψ. For simplicity we

only consider the case when t′ is the east neighbour of t; i.e., (i′, j′) = (i, j+1). We

will show that if (i′, j′) is non-empty in m[(i,j),x,e], then e ∈ φ. Since t′ is the east

neighbour of t conditions 1 to 4, above, apply. As (i′, j′) is non-empty in m[(i,j),x,e],

there exists a horizontal edge (x, z) in Ge. Furthermore, from conditions 1 and 4 it

follows that (x, y) is a horizontal edge in the graph Gg induced by the generator

g = g(x,φ). As both graphs Ge and Gg are subgraphs of the subgrid Gψ, we see that

the edges (x, y) and (x, z) coincide, thus, y = z. We conclude y ∈ Ge and e ∈ Hy.

By condition 3, e ∈ φ. Because the hyperedge e induces a connected graph, we can

infer that for all non-empty m
[(i,j),x,e]
(i′′,j′′) ∈ Θ(z,χ), we find e ∈ χ. Note that this also

implies that m[(i,j),x,e] = m[(i′,j′),y,e] = m[(i′′,j′′),z,e].

We define the set of masks µ = {m[(i,j),x,e]|p̄(i,j) ∈ Θ(x,ψ), e ∈ ψ} which are

induced by hyperedges in the above manner. Intuitively, every mask in µ represents

one transition in the derivation of a picture graph M which represents the picture

p = p(M). In order to use a transition defined by a mask, we need to guarantee that

all of its input areas exist and are active. We will order the set µ accordingly. Let us

define the relation R ⊆ µ× µ such that (m, n) ∈ R if the transition represented by

m has to be used before the transition represented by n. Let m and n be two distinct

masks in µ. The pair (m, n) is in R if there exists (i, j) such that m(i,j) = n(i,j) ∈
Θ(x,ψ), and m = m[(i,j),x,g] where g = g(x,ψ) or n = m[(i,j),x,c] where c = c(x,ψ). The

pair (µ,R) can be seen as directed graph Gµ. First, we show that the graph Gµ
does not contain any loops, afterwards, a topological sort of this graph is used to

order the transitions represented by the masks.

When two masks overlap on a tile (have a common non-empty entry), regarding

the construction of tile candidates, we know that the related hyperedge of exactly

one of these masks is the generator of the input area of the other hyperedges.

Hence, these masks are connected in the graph Gµ. By contradiction, assume that

⟨n0, n1, . . . , nl⟩ is a non-trivial loop in Gµ (i.e., (ni, ni+1) ∈ R for every 0 ≤ i < l− 1

and (nl, n0) ∈ R). However, the sequence of related hyperedges to this sequence

of mask is a strong loop in the SA-hypergraph automaton A which was excluded

by assumption. Moreover, since two tiles with different generators cannot connect

without satisfying conditions 4, the graph Gµ must be connected. Therefore, graph

Gµ can be topologically sorted. Sorting of the hyperedges guaranteed that the active

input nodes of one hyperedge are generated before the gluing of the hyperedge.
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By contraction, assume that graph Gµ has two distinct nodes m1 and m2 without

any input edges. Let m3 be the first node in the topological order such that paths

m1 →∗ m3 and m2 →∗ m3 exist in Gµ. As m3 is chosen minimal, these paths do not

share any node other than m3. Recall that all incoming active nodes of a hyperedge

are connected. Considering that two nodes cannot connect to each other unless they

are in the same hyperedge or they have glued to each other, we have a contradiction

as m3 cannot be the first common node on both paths. We conclude that graph Gµ
has only one node without input.

Now, let m0,m1, . . . ,mk be the topological sort of µ by the relation R. We

define m + n = o such that o(i,j) = empty if m(i,j) = n(i,j) = empty; otherwise,

o(i,j) = p̄(i,j). We will show that a graph Mk can be generated by a derivation

(M0, O0, g0) →
A

(M1, O1, g1) →
A

· · · →
A

(Mk, Ok, gk)

such that the graph Mi can be mapped to the mask
∑i
j=0 mj ; this implies that

mk can be mapped to p̄ =
∑k
j=0 mj . Let ei be the hyperedge related to the

mask m. The graph M0 = Ge0 is an initial graph because m0 has no incoming

edges in Gµ and, therefore, the derivation function of e0 is d(e0) = ∅ → Q2; thus,

(M0, O0, g0) where O0 = Q2 and g0 = id is an initial configuration. In derivation

step (Mi−1, Oi−1, gi−1) →
A

(Mi, Oi, gi) we use the hyperedge ei. By induction, we

can assume that Mi−1 can be mapped to
∑i−1
j=0 mj by a function hi−1. There is

only one way to glue the hyperedge ei to Mi−1 such that resulting graph Mi can be

mapped to
∑i
j=0 mj . We have to prove that all incoming active nodes of Gei exist

and are active in Mi. Let x be an incoming active node which is represented by the

tile p̄(a,b) ∈ Θ(x,ψ). The definition of R ensures that the mask representing the gen-

erator of (x, ψ) in (a, b) has already been used and that the mask representing the

consumer of (x, ψ) in (a, b) has not yet been used. Finally, every tile candidate has

a consumer which means that there are no active nodes in the final configuration

(Mk, Ok, gk). As result, the picture p, generated by the suggested tiling system, is

in p(L(A)).

5. Conclusion

We introduced SA hypergraph automata, a language/automata theoretic model

for patterned self-assembly systems. SA hypergraph automata accept all recog-

nizable picture languages but, unlike other models, (e.g. Wang Tile Automata)

SA-hypergraph automata do not rely on an a priori given scanning strategy of a

picture. This property makes the SA hypergraph automata better suited to model

DNA-tile-based self-assembly systems.

SA-hypergraph automata provide a natural automata-theoretic model for pat-

terned self-assemblies that will enable us to analyse self-assembly in an automata-

theoretic framework. This framework lends itself easily to, e.g., descriptional and

computational complexity analysis, and such studies may ultimately lead to classi-

fications and hierarchies of patterned self-assembly systems based on the properties
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of their corresponding SA-hypergraph automata. An additional feature is that each

SA-hypergraph automaton accepts an entire class of “supertiles” as opposed to a

singleton set, which may also be of interest for some applications or analyses.

Acknowledgements

We thank Professor Grzegorz Rozenberg for extended discussions and his suggestion

of applying hypergraph automata to the DNA self-assembly setting.

References

[1] M. Anselmo, D. Giammarresi, and M. Madonia. Tiling automaton: A computational
model for recognizable two-dimensional languages. In CIAA, pages 290–302. 2007.

[2] R. D. Barish, R. Schulman, P. W. K. Rothemund, and E. Winfree. An information-
bearing seed for nucleating algorithmic self-assembly. Proceedings of the National
Academy of Sciences, 2009.

[3] M. Blum and C. Hewitt. Automata on a 2-dimensional tape. In SWAT (FOCS), pages
155–160, 1967.

[4] E. Czeizler and A. Popa. Synthesizing minimal tile sets for complex patterns in the
framework of patterned DNA self-assembly. In DNA Computing and Molecular Pro-
gramming, volume 7433 of Lecture Notes in Computer Science, pages 58–72. Springer
Berlin / Heidelberg, 2012.

[5] L. de Prophetis and S. Varricchio. Recognizability of rectangular pictures by Wang
systems. Journal of Automata, Languages and Combinatorics, 2(4):269, 1997.

[6] D. Giammarresi and A. Restivo. Two-dimensional languages, pages 215–267.
Springer-Verlag, 1997.
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