SIX ARITHMETIC-LIKE OPERATIONS ON LANGUAGES

LILA SANTEAN

Operations on languages are intensively studied in formal language
theory. For example, there are representations of some families of languages
starting from simpler languages and using suitable operations, finding of
counterexamples often uses operations on languages, the theory of abstract
families of languages (ATL) studies just operations, many operations appear
in formal language theory applications [17], and so on.

The existing operations can be roughly clustered in three classes :
set operations (union, intersection, complementation), algebraic opera-
tions (homomorphism, substitution) and purely language theoretical ope-
rations (Kleene closure, shuffle). Within this frame, it is obvious to ask
for language operations corresponding to the arithmetic operations on
numbers : sum, produect, power, factorial, square ‘root, and so on. Six
such operations will be defined and investigated in the following, namely
the compact subtraction, the literal subtraction, the generalized subtrac-
tion, the multiplication, the power, and the factorial.

The aim ot this paper is to examine the closure of an abstract family
of languages (when positive results are true) or directly of families in Chom-
sky hierarchy (when negative results hold) under these operations.

Generally, the results are the expected ones, in the sense that the
family of context-sensitive languages is not closed under erasing opera-
tions, whereas for the families of context-free and regular langunages, the
situation is just the opposite.

1. Compaet sublraction

Tor a vocabulary 1”, we denote by I'* the free monoid generated by
17 under the concatenation operation; the null element of 17 is 2 and
la| denotes the length of the string a € 1'*, The four families in Chomsky
hierarchy are denoted by %, i=0,1,2, 3 (L denotes the family of
linear languages). For other notation and terminologies in formal language
theory, the reader is referred to [2].

Definition 1.1. Let 1y, Ly be languages on V*. \We define the compact
subtraction of Ly and Ly by :

Lol = U (vOy), where

el
NELy

xQy = {z € V¥ z = aw,, ¥ = aya,}.
Compact subtraction is a generalization of right or left quotient : instead
of extracting the word g from the left or right extremity ot @, we extract
it from an arbitrary place in .

R.R.L. — CLT.A., XXV, 1, p. 6573, Bucaresl, 1988

S—c. 2078

606 LILA SANTEAN 2

Theorem 1.1. %, is not closed under compact sublraction.

Proof. 1t 1,, L, are two languages on 1%, we notice that
{}L,0{e} Ly = Ly,\1y, where ¢ is a symbol which doesn’t belong to V.

As the family % is not closed under left quotient with regular lan-
auages, it follows that it its not closed under operation ©, either.

Theorem 1.2. If L, and L, are languages on V¥, Ly « vegular one,
then there is a gsm g (with erasing) so that Ly© Ly = g(1.).

Proof. Let A = (I, V, 8o £, P) be a finite automaton that recog-
nizes I,. We construct the gsm :

g =V, V,K u {8/}, s, {8/} P'), where
P = {sqa = asilac V} U P U {sqa = s/s,a - s € P}
U {sa — s/fsa »s' €D, s €ll} U {s,a = as;jacV}

U {sha — 8;/spa = s€Pysel} U {sqa — asJa€V, 1€ Ly}

Clearly, ¢(I,) = L;©L, and thus the proof is finished.

Corollary. Loy Limy L3 arve closed under compact subtraction with regu-
lar languages.

Open problems : The closure of the families Z and &1 under compact
subtraction,

Probably, these families are pot closed under compact subtraction,
or, if they ave, this result canvot he proved in a consiruetive way, because
we have :

Theorem 1.5. There is no algorithm to decide whether 1o,©1, s emply
or not, for Ly, Ly arbitrary in & i

Proof. Let us consider the linear languages

Ty = {ada'™b ... batbabexiwi, ... wydll 2 1, 4y, Gy .o T {1 8 e v oy RY Y
L, = {da'vb .., ba babbe yiyi, ... yud/k = 1,0, 4, o0y =R Tl

The statement 1 I,© L, # @ it there ix a sequence of indexes
Ty Tay ooy U € 11, 2, .00y) 50 that @iy, .. o= Yili o Yy is obvious.

Therefore, we have Ly © L, #@ ift the POST correspondence problem
has a solution, which is undecidable.

Coneluding, we cannot construct in an algorithmic way a context-free
orammar G so that L(G) = 1h© Ly, Ly, Ly € L, as, otherwise we ean de-
cide it L,©1, = @ (the problem if L(G) is empty, finite or infinite is deci-
dable for context-free grammars)—contradietion.

2. Literal subtraction

Definition 2.1. Let Ly, L, be languages on 1'*. We define the literal
subtraction, L, —+ Ls, by
Ly — L, =\ (% — y), where

xely
yeL,

® — y = {2y ... dxf;rbyxedy ... b = T biby ... iy =¥,k 22,

3 SIX ARITHMETIC-LIKE OPERATIONS ON LANGUAGES 67

bieV,yie{l, 2, .,k — 1}, ;e V¥, je 1,2, ..k} (if the letters of y
can also be found in @, in the same order, then theliteralsubtraction erases
them from a, without taking into account their places; else we cannot
subtract y trom).

Pheorem 2.1, If Ly is @ regular language, then the literal sublraction
Ly —+ L, can be altained by a gsm (with erasing).

Proof. Let A = (I{, V, s, I, P) be a finite automaton that recog-
nizes the language L, (therefore P contains rules of the form sa — s, s,
fell,ae V)

We construet the gsm g = (V, V, I, s, I', P’) with I, 1V, s, I
according to A and I’ = P U {sa — as/[se K, ae V}.

One can easily prove that Ly—.L, = g(1) (the rules of P erase
the symbols which come from y, in the correct order, and those of the form
sa — as cross the symbols that will remain in & —- 7).

Corollary. L3, Liny Ly ave closed under Wteral subtraction with reqular
languages.

Theorem 2.2. L, is nol closed under lleral subtraction with regular
languages.

Proof. We deline the gsm
K= {50, 8}, I ={s}, V' ={dJa€]
S a'sjae VY U {sa = da'sla€ V}.

It L, = 1%, we have the relation :

g(L) = {wavsjwyne, € Ly (the gsm g marks the symbols that arve situat-
ed on the right side of the strings ot L),

We also have the relation :

I/ Ly = [g(dn) — -h(Ly)]n V¥, where Ly, L,< V* and A is a homo-
morphism, k17— 17, ha) = a’.

As 2, is closed under intersection but it is not elosed under right
(and lett) quotient with regular languages, it follows that &, is not closed
under operation —-

Theorem 2.3. L and L are nol closed under literal subtraction with
linear languages.

Proof. Let Ly, LIy be the linear languages

=(V,V u V', K,s, ', P'), where
1 e— 3 | | [
}, P = {sp0 > asp/a € V} U {58 —

1y = {a"(be)" (df)"[n, m = 1},

L, = {c"d"[n = 1}.
One can easily see that :

Ly — Lyl 0 {a}* ()% {f)* = {af"(n > 1),

As 2, and L are closed under intersection by regular sets bub
{a"b*f"/n > 1}isnot a contexi-free language, it follows that these families
are not closed under literal subtraction.

In fact, we have obtained a stronger result, namely that there are
linear languages I, Iy such that I, — L, is not a context-free language.

68 LILA SANTEAN 4

3. Generalized subtraction

Definition 3.1. Let Ly, L, be languages on V¥, We define the qenerda-
lized sublraction I, + L, by :

Iy # Ly =\ (a # y), where
rEL; '
vEL,

T7Y = {@1® ... Bpsy/w = @100y .. . wibrars,, where ¥ is a per-
mutation of the word bib, ... by, k = 1} (if the letters of y can also bhe
found in %, then the generalized subtraction erases the letfers of y from
@ without taking into account their places ; else we cannot subtract y
trom). Notice that the generalized subtraction is a generalization of the
compact and literal subtraction,

Theorem 3.1, %4 is not closed under gencralized subtraction.

Proof. T.iet Ly, Ly be the regular languages

Ly = {(be)™ (df)yr[m, p > 1},
Ly, = {(cd)*/n = 0},
One can prove that
(Ly # Lp) n {b}*{f}* = {b"f"/m > i

As Z4is closed under intersection by regular languages hut {omfmjm =
> 1} s not regular, it follows that %, is not closed under operation #.

Theorem 3.2. 2y, 4 are not closed under generalized subtraction wilh
reqular languages.

Proof. Let L,, L, be the lincar languages :

Ly = {a"(be) (df)"|n, m = 1},
Ly, = {(ed)*/n = 1).
The relation

(In # Ly) 0 {a}*{b}*{f}* = {a"b"f*/n > 1} is obvious.

As Z, and L, are closed under intersection b y regular languages
but {a"b"c¢"/n =1} is not contexi-free, it follows that %, and £, are not
closed under generalized subtraction with regular languages,

Theorem 3.3. % is not closed under generalized subtraction with regu-
lar sels.

Proof. Tor each L, e % (hence also for L,e.%, — %, Ly = V*),
there is I, € &y, L, <a*bly, a, b ¢V, such that for each e L, there is
a natural # such that «"ba € L, ([2]). Consider such a language Ly e &,
We have
ol Ly = (Ly # a*b) n V*

. As &, is closed under intersection, it follows that it connot be closed
Junder generalized' subtraction ‘with regular sets.

5 SIX ARITHMETIC-LIKE OPERATIONS ON LANGUAGES 69

4. Multiplication

Definition 4.1. Let L,, L, be languages on V¥, We define their naul-
liplication by :

Ly x Ly = {@"|w € L,y € L,} on condition that A* =) «el,
and g =), Bel,.

Theorem 4.1. L5 is not closed under multiplication.

Proof. Let Ly, L, be the regular languages

Ly = {a"b/n = 1},
Ly = {aaa}.
In accordance with definition 4.1 we have
Ly x Ly = {a"ba"bab/n > 1}, which is not even context-free.

Corollary. The families £, and £ are not closed under muliipli-
cation. _
Theorem 4.2. % is closed under multiplication.

Proof. A standard (straightforward, but long) construetion would
prove this statement ; we omit the details. For a similar proof, see theo-
rem 5.2, helow. ;

5. Power

Definition 5.1, 1f I, and I, are languages on 1'%, we define Lywnl,
(In power L,) by :

| B "
¥ 0 IR P)

e A . -
J/[**_[zgz {4)?1 £ 'ff(,l?i EL], 1 €1 £ 2y ?E_I/E}

on condition that if 2 € L, or A€ Ly, we put 2 in Lopxxdi},
Theorem 4.1. 25 is not closed under operationss.
Proof. Let Ly, L, be the regular languages :

Iy = {aa’}l
Ly, = {a"/n 2 1}.
ol .
Then, LjsxlL, = {a* [n> 1}, language that is not even contexi-free.
Corollary. &5, Ly are not closed under operation »x.
Theorem 5.2. If L, V2%, Ly V¥, LyL, €%, then Lix+L, € &,.

Proof. Let Ly, I, be two languages which satisty the requested con-
ditions, and Gy, G, the generating grammars :

G, = (V}\': T?’![‘j SU Pl)

Gz — (TF}Z\" szf‘J Sz, Pz).

0 LILA SANTEAN [

We construet the grammar G = (1'y, 17, 8, P), where Py = 1L o
U l"“;_ U I.,i| U '115" (l‘ IL'“, “l" (II, (Ffr. (lfﬂﬂ‘ Iﬁ. [}, IJ{,]))I’]f"’ 71'1, [}, I','"—_— |.’!,‘ "Ill(]
P is constructed as follows :

L contains Py u Py, on condition that it 12, or P, contain rules giving
the null word, we eliminate them from L, and introduce in its stead
the rule § — 3.,

Moreover, we shall add to P the rules (1)—(24), which will be explai-
ned in the sequel,

IFirst, we generate z € L,, bordering it with £C {o its lefl, and with
7 1o its right :

(1) § — FCS,E.

Because we want to obtain 'z words from L, we.change every le(ter
ol = into Sy, separating them by A :

(2) Ca — ('S4, ae '
(3) da - A8 A, e)y
(4) dak — A8 E, e Vi,

Derviving on with rules from P, we gel :
1“(".1'];1;1'2;! con Awn B, v € 1.

Now, we try to obtain the word a'» = y, then g% — g s

Naleeeld

on, till we get a7 #'

During the tirst step, we work only with the first (wo words. Thug,
we limit the working zone :

(5) ((— (,”(.”’_

Fomarks the lett extremity of the whole word, € the left extremity
ot @y, and €7 the other limits, in the following way : " goes to the right,
crossing only the terminals ; when it meets the left extremity of w,, it
points this out by turning itself into € and 4 into B; € goes to the
right, and, when it meets the rvight extremity of w,, it turns <0 into D,
S ! . - . a1 ;
it ey is not the last word, or K into [, if &, is (he last word, and disap-
pears :

(6) C""a - aC"’, a€Vh

() O A =s BO™

(8) 0" A — al"", ae vVl

() ("[Ifr“l Loy])

(10) C""'E - H

After using these rules we get either the word
'y oo auBbiby oL 0, D, or FC 0y Bay I

LY Xy

7 SIX ARITHMETIC-LIKE OPERATIONS ON LANGUAGES 71

To obtain .r}-*:i we have to generate a word ap for every lefier of a,.
We bring a letter b to the left of 5, marking it :

(11) Bb - b'B, be V.

This b’ goes to the left, adding a marked lining to every letter of ay,
and disappears when attaining the extremity of ay

(12) ab’ - b'a'a, i, b el

(13) C"ad” - C'a''u

y a€Vy be).

The marked symbols move (o the left, in order, and when they
attain (", cross it, loosing their marks :

(1) ba’" = a''b, a, hell

(13) "a"”" — aC”, e 1.

After using these 1ules we obtain cither
Fayay ... a"aya, ... a3, ... 0, D or
Fayay ... a."ayay .. aBhb, ... b, I

We repeat these rules for every letter b, When we reach the last
e, we destroy it :

(16) BbD — B'A, be 'l

Alterwards, if 2, is not the last word of Ly — in the word we are
falking about —, (o use the set of rules (H)—(16) again, we must bring
the current word to the initial form -

(17) a3’ - B'a, ael’
(18) 0'B' - B".
We continue the moving of 5’ to the left, until it reaches I ;
(19) aB"" - By, el
(20) F'B" — I'(.
Now, the current word is
LCxy '\ dayd ... Ao B,

and we ean resume the set of rules, beginning with (5).

Tt 2y is the last oceurrence of a word of Ly in the current word, then
the last b, disappears, and B and JI {urn into [, which moves to the left,
crasing all nonterminals :

(21) Bbll - I, bel)
(22) al — [a, as 1
(23) ("] - [
(24) 11 —).

~1
V]

LILA SANTEAN 8

Trom the above explanations, it easily results that 1(G) = Ly==L,.
To show that 1{G) € &, we shall use the work-space theorem ([21).
: . walebrg) Loyl il
Let 2 he a word in L(G), 2 # 2, 2 = T and a deriva-
tion D 1w, =, = ... =Wy = 2.
The only places w = w' where we can have
ces where we apply :
— rule (9), (16) or (18); ecach of them decreases 2 with one letter
and can be applied |y| —1 times in D.
— rule (10), (23), or (24); each of them decreases w with one letter
and can be applied once in D.
— yule (21) which decreases w with two letters and can be applied
once in .
(‘onsequently, we conclude that the greatest length of a word in
D cannot be larger than |o| + 3(ly] — 1)+ 2 + 2 4 1.
For k = 4, and taking into account that the words from I have the
length greater or equal to two, we have:
WSz, G) < min WS(D, G) < WS(D,) = max [wi| =
D

1gign

w'| << w! are the pla-

= lg| +3ly|+1+1 <2k < kln

According {o the work-space theorem, [(G) = L xxl, € ..
Open problem. Is %y closed under operation ko 4

lwe| ... |2s] = kl2].

6. Factorial

Definition 6.1. Let L be a language on 1'*. We define L factorial

by :

L! = {a!/ze L} where, it 2 = @y, ... @, then
@) = 4y @y Wy tyly . . . 1005 . .. @y, on condition that wl=r2rand a! =ua,
ac V. ‘

Theorem 6.1. %4 is not closed under operation!.

Proof. Let L be the regular language L = {a"/n = 1}.

In accordance to definition 6.1, L!= {«""*%2/n > 1}, language
which is not even context-free. .

Corollary. %5, Lyun are not closed under operation L

Theorem 6.2. %, is closed under operation!.

Proof. Let L be a language in 2, and G = (Vy, Vi, &, P) the gene-
rating grammar.

Let G' be a grammar, G'=(Vy, Vr, 8, P'), where Ve = {8, X
Xy, X uVy, Vi=Vyu{c} and P’ is constructed as tollows :

P’ contains P. We shall also introduce into P’ the rules (1)—(7)
constructed in the following way :

First, we produce a word from L :

(1) S’ = 1\'0)YISA'2.

9 SIX ARITHMETIC-LIKE OPERATIONS ON LANGUAGES 73

A derivation will continue only with rules from P, until we obtain
N, X wX,, e L. Assuming that @ = aya ... @y, we'll try to produce a
lining of the first # — 1 letters. It on the right side of .Y, there ave at least
two letters, the first one passes on the lelf side of Y, and produces a mar-
ked lining :

(2) Xiab = a’aX b, a,bely

When we attain the last letter of 2, which must not be doubled, we
pass it to the right side of Y, and point this out by marking .\, :

(3) ‘Yl\ff_-‘,rz = ,‘Yi’.‘l’ga, e lv',l'.
All the unmarked symbols pass, in order, to the right side of X,:
(4) ad - da, a€Vy,de {djae V) u{X], X},

In this moment, on the right side of XX, we have the initial word,
and on the left side, the first # — | letters, marked.

We have to repeat the preceding operations and, with this end in
view, we move Aj to the left, until it reaches the extremity, when it
turns back into .X;. In this way, Y| erases all the marks, so that, when
it reaches the left extremity and becomes .\, we can repeat our method
for the n — 1 letters between X .\; and .Y,:

(h) a'X| - Xia, aely

(6) X&) —» A X,

Finally, when we have no more letters between Y4, and X,

(7) XA\ - cce.

One can easily see, from the above explanations, that L{G")={cec} L.
L(G") is, clearly context-sensitive.

Let h be the homomorphism h: (17, U{c})* = Vi delined by

ha) = a, ae Vyp, h(c) = 2

We have that A(I(G')) = L1

Z; is closed under restrictedh omomorphisms, so h(I4G")) € &, there-
fore L! € ¥,. Thus, the proot is complete.

NOXE: I wish to express my gratitude to dr. Gheorghe Piun for his
suggestions and remarks.

REFERENCES

1. Gh. Piun, Mecanisme generative ale proceselor econemice (Generalive Mechanisms for
Economic Processes), Bucuresti, Editura Tehnied, 1980.
2. A. Salomaan, Formal Languages, New York, London, Academic Press, 1973,

Regional Compuling Centre
Tuleea

