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1. Introduction

The cooperating distributed (CD for short) grammar systems in the form we consider here
were introduced in Csubaj-Varju and Dassow (1990) with motivations from artificial
intelligence; earlier versions appear in Atanasiu and Mitrana (1989) and Meersman and
Rozenberg (1978), motivated by questions related to two-level grammars and regulated
rewriting, respectively.

Roughly speaking, such a system consists of several ordinary grammars (any type of
rewriting device can be used) working by turns on the same sentential form: at each moment,
one component is active, the others are waiting; one starts from a common axiom and one
continues working until a terminal word is obtained.

Systems of agents cooperating in solving a common task according to a similar protocol
can be met in various areas of artificial intelligence, cognitive psychology and computer
science. Following Csuhaj-Varju and Dassow (1990), Csuhaj-Varju and Kelemen (1989),
Dassow and Kelemen (1991), Kelemen (1991) and Chapter | of Csuhaj-Varju er al. (1994),
we briefly emphasize here the adequacy of such a model to the so-called blackboard
architecture for problem solving systems (see the survey of Nii 1989). More discussion
about this relationship and about motivations for CD grammar systems arising from other
branches of artificial intelligence can be found in the quoted papers,

The blackboard model consists of three basic parts:
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e the knowledge sources, necessary to solve a given problem;

@ the global database, represented by the blackboard, describing the current state of the
problem-solving process and to which the knowledge sources can operate;

e the control of the order in which the knowledge sources work.

One starts having on the blackboard the initial formulation of the problem; the knowledge
sources contribute to the problem solving by changing the current state of the blackboard.
During this process, they communicate with each other only through the blackboard content.

The following natural analogy with systems of grammars was already pointed out in
Csuhaj-Varju and Kelemen (1989); the knowledge sources correspond to grammars, the
current state of the blackboard to a sentential form; the rewriting of a nonterminal can be
interpreted as a step of processing the information contained in the current description of
the problem, a solution of the problem corresponds to a terminal word. The control can be
ensured by some mechanism which determines the order of grammars enabling.

In fact, in the study of CD grammar systems it seems to be more appealing to not consider
an external control, but to work according to an opportunistic strategy: a component takes
the current sentential form when it can do at least one rewriting and leaves it when a precise
condition is fulfilled. The most important such condition is that corresponding to the
maximal competence rule: a component works as long as it can. This is called the -mode
of derivation in Csuhaj-Varju and Dassow (1990). Other investigated stopping conditions
ask for a component to work a given number of steps, at least, or at most a given number
of steps, or arbitrarily many steps.

Two results for the -mode of derivation are particularly interesting (Csuhaj-Varju and
Dassow 1990, Csuhaj-Varju et al. 1994): (i) systems consisting of two context-free
components can not generate non-context-free languages but three components suffice,
systems with an arbitrary number of components can be simulated by systems with three
components only; (i) the family of languages obtained in this way equals the family of
languages generated by extended tabled Lindenmayer systems without interaction (ETOL
systems), one of the most important (comprehensive, rich in mathematical properties, well
studied) in the theory of Lindenmayer languages.

Thus, the cooperation is useful as generative power and (in the +-mode) a comprehensive
family of languages is obtained. In view of the discussed relation with the blackboard
architectures and with other topics related to complex systems, and also natural from a
mathematical point of view, it is of interest to increase (as much as possible) the power of
CD grammar systems (using as simple as possible extra features). If a graph is considered
as external control or certain predicates depending on the current sentential form are used
as start and stop conditions, then in general the family of programmed languages is obtained
(Csuhaj-Varju et al. 1990), which includes properly the ETOL family (Dassow and Pdun
1989). What about not considering such new elements of the model, but increasing the
degree of cooperation? A natural possibility is to imagine systems in which more
components are active at the same time (a ream), namely a prescribed number of them,
non-deterministically chosen. Such a mixed system, sequential in essence but also involving
some degree of parallelism, is probably the most common (and the most efficient) mode
of work of complex problem solvers, met for instance, at the level of the brain activity. On
the other hand, formally, a team CD grammar system can be also seen as intermediate
between the CD grammar systems as described above and the parallel communicating
grammar systems introduced in Pun and Sintean (1989) as a gram matical model of parallel
(synchronized) computing. In such systems, all components are simultaneously active (but
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they work on separate sentential forms and cooperate by direct communication, sending
on request the current string from one to another).

We investigate here mainly the -derivation mode (a team works until exhausting its
competence, that is until no further symbol from the left sides of its rules is present in the
current sentential form, hence no rule of any member of the team can be used). The results
are both interesting from the ‘practical’ point of view—the team feature increases strictly
the power of CD grammar systems, hence the cooperation by means of teams is useful—and
surprisingly—the size of teams induces no hierarchy, teams of two members suffice (half
of this second statement is proved here, the other half appears in Csuhaj-Varju and Piun
1993).

Besides the generative capacity of team CD grammar systems we investi gate also closure
properties of the family obtained in the +-mode. Studying operations with languages seems,
at first sight, a purely theoretical question. However, representing a complex problem as
a ‘product’ of simpler problems amounts exactly to starting from simpler languages
describing the simpler problems and mixing them by using appropriate operations. The
operations to be used in a particular case is a matter of practice. Putting together by union,
renaming by morphisms and inverse morphisms, selecting subsets by intersection with
regular languages are only a few possibilities. In language theory the operations are
systematically studied in the frame of AFL theory (abstract family of languages—families
closed under six basic operations: union, concatenation, morphisms, inverse morphisms,
Kleene closure and intersection by regular sets). The result we obtain here is quite pleasant
from this point of view: the family generated by team CD grammar systems in the -mode
is a full AFL,

2. Definitions
The reader is referred to Salomaa (1973) for basic elements of formal language theory and
to Csuhaj-Varju et al. (1994) for details about grammar systems.

For an alphabet V, we denote by V" the free monoid generated by V under the operation
of concatenation; / is the empty string and | x| is the length of x € V. The families of
context-free and of ETOL languages are denoted by CF, ETOL, respectively; EDTOL is the
family of deterministic ETOL languages.

A CD grammar system (of degree n, n=1) is a construct

r:(NsTuPisPZ,---afunaS)a

where N is a (nonterminal) alphabet, 7 is a (terminal) alphabet disjoint from N, § € N and
P; are finite sets of context-free rules over NUT, 1 <i=n.

For given P;, the direct derivation = r; 1s defined in the usual way; we denote by :>pﬁ*,
= E‘ =3 E. k :ﬁji. =}, a derivation in P; consisting of exactly & steps, at most £, at least
k steps, k =1, of any number of steps and as long as possible, respectively (x =}, v means
that x= ». y and there is no z such that Y=p.2).

For fe {# t}U{=k =k =klk=1} we denote by L(T') the language generated by
I" in the f mode, that is

LAD)={xe T'|S=h, xi=h, ... =h =x,

*UJ'

l=ij=nl=j=mm=1)

and by CD(f) the family of such languages. (Note that we do not distinguish here between
systems with /-free and with arbitrary components.)
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Given a grammar system I'=(N, T, Py, ..., Py, w) with components N, T, Py, ..., P,
as above but with a string axiomw € (NU 7Y instead of asymbol § € N, and given a natural
number s = 1, a subset @ = {P;,, ..., P} of (Pi,..., P} is called an s-team. For such
an s-team Q and for x, y e (NUT)", we write

¥ yiff x=x A1 AN, Y S XY s
yeWUT, Isjss+ LAy eP,l1sj=s

(in a direct derivation step, each member of the team uses one of its rules, in parallel with
the other components of the team; as Q is a set, no order of the components is assumed,
hence the rewritten symbols Ay, ..., A, can appear in x in any order).

Then the relations = g% =5% =5% =» o =0 k=1, can be defined as above, with
the clarification that in the r case the derivation is correct when no more rules of any of
the team components can be used (for instance, the team Q= {{A—=a}, {B—b}] can
rewrite correctly AABB in two steps, AABB= g aAbB= gaabb, hence we have
AABB = aabb, but AAB cannot be rewritten in the t-mode: after AAB = ¢ aAb, the team
cannot work, but A is still present and it can be rewritten according to the first component
of the team).

For given s = 1 and f as above, we denote by LI, s) the language generated by I" in
the f-mode, with s-teams. The family of these languages is denoted by TCD,(f); morecover,
we put TCD(f) = U= TCD,(f). (Note that we allow /-rules in the systems we deal with.)

3. Examples
We shall consider two examples, both for illustrating the previous definitions and the way
in which the teams work, and for proving the power of team CD grammar systems of various

types.
I'=({A, B, A", B}, (a,b,c}, P, Py P3Py, AB),
Pi={A—aA’b,A—ab]},
P,={B—cB', B>},
Pi={A"—>A),
P,={B"—>B}.
We have
LT, 2)=L_ (T, 2)=L=([,2)=L(",2) = L=(I'}, 2)
= (a"b""|n=1),k=1.

Indeed, we start from a string with two nonterminals (AB); at any moment of time, if a string
has only one nonterminal, then no team can work. Therefore the rules A = ab, B— ¢ can
be used only at the same time, in the last step of a derivation. On the other hand, the only
possible teams are Q) = { Py, P.} and Q> = { Ps, P4}, In conclusion, the possible derivations
are
AB=, aA'bcB' = b, aAbcB =5, a’A'b** B =%, a*Ab’ B =Y,
. =p, a"AV'c"B =f, a"* D" ettt

forn=0,fe{=1, =L+ 1)U{=klk=1).
Note that this language is not context-free, although CD(x)=CD(=1)=
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CD(=1)=CD(=k)=CF, k=1 (Csuhaj-Varju and Dassow (1989)). Moreover, as each
rule in I'y can be considered terminal if we separate the nonterminal and the terminal
alphabets on components, the system I') can be considered a colony, in the sense of Kelemen
and Kelemenova (1992). (A colony is a grammar system with regular components
generating finite languages and rewriting only the occurrences of the axioms in the current
string.) As the colonies with (= 1)-derivation characterize the context-free languages and
colonies with t-derivation characterize the 1-restricted ETOL languages in the sense of
Kleijn and Rozenberg (1980) (the result is proved in Kelemenova and Csuhaj-Varju 1992),
which in turn cannot generate the language { a'b'c|n=1 }, the previous example shows
that in the case of colonies the team feature enlarges the generative power. As we shall see,
this is the case also for general grammar systems for many derivation modes.
Let us now examine a more sophisticated example:

I'=({A,B,A",B"}, {a, b, c}, Py, Ps, P3, P, Ps, P, AB),
Pi={A—>A'A"),
Py={B—aB,B—bB,B—aB',B—bB'},
Py={A">AA},

Py={B'"—=aB',B" > bB',B'—aB, B' > bB),
Ps={A—=c, BB, B =B},
Ps={B—cB,Boc,A>A A=A,
We obtain
L(T22) = {¢""we™|we {a, ) |w|l =22 |, n= 0}.

Indeed, Ps and Pg cannot be in a team with components P,, P, P3, Py, due Lo the presence
of the ‘trap rules’ A - A, A" > A’, B— B, B' — B': at least one of these symbols is present,
hence the derivation cannot be correctly finished in the --mode of derivation. By using Ps, Pg
together, we end the derivation (by introducing the same number of ¢ occurrences on the
left side and on the right side of the generated string). Starting from AB, besides Ps, Pg, we
can use only the team Py, P2}, which leads to A’A’aB’ or to A’A'bB’. Now only P, Py
can be applied and we get A%YB, x € {a, b}",|x| = 3. The process can be iterated, for i =0
times, thus obtaining A”'wB, w € {a, b)",|w| =2% — |. Using now the team {Ps, Py} we
get ¢™we™. (Please note, besides the role of the ‘trap-rules’ of the form X — X, the way
in which the last team produces the same number of symbols ¢ both from A2” and from
the single B, by synchronizing the rewriting in the two components of the team.)

4. On the generative power
Theorem 1: CD(f) =TCD\(f/)CTCDy(f).fe {* =1, =1} U{=klk=1 }.

Proof: We have already pointed out that CF=CD(f),f as above. The equality
CD(f)=TCD\(f)is obvious from definitions and the first example in Section 3 shows that
TCDx(f) = CF # 0. Therefore it remains to prove that CF C TCDs(f). We shall prove the
more general relation CFC TCD,(f), s = 2.

Take G=(N, T, 5, P) a context-free grammar and construct the system

Fi=(NU(A|l=iss—1},T,P, Pa.... P, 1, P, SAA:. .. A,_ ),
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with
Pi={AioA, 4> i) L <iss—1,
P.=P.
The only possible s-team consists of all components Py, . .., P;, hencein Py, ..., Py we

have to use the rules A; = A;, 1 =i =<s— I, respectively, and in P any rule of P, excepting
the last step, when in P;, | =i=s— 1, the rules A;— / are used, together with a terminal
rule in P, = P. The equality L(G)= L«(I;) follows. [l

It is plausible to expect that the size of the team leads to a hierarchy of language families
generated by various classes of grammar systems. Surprisingly enough, for the -mode of
derivation the result is different: teams of size two suffice. The cases of other modes of
derivation remains open. We want to emphasize that our situation differs from analogous
situations in language theory: it is by no means obvious that an increase in the size of teams
implies an increase in the language family.

Theorem 2: TCD,(1) CTCD, (1), s= 1.

Proof: For a CD grammar system I’ =(N, T, P, ..., Py, w) and for given s = | construct
the CD grammar system I'' having the terminal alphabet T, the nonterminal alphabet

N =NU{A,...,ALAlL ..., AL Al ..., A, B, B, B"},
the axiom string
w =wA1A,. . A,B,
and the next components:

1. Py ={B—B,B—>B"},
Py ={B'—>B'.B"—B"),
Py ={B">B' B"—B),
Pl ={BoilU{X>X|XeN}U
U (Ao A, Al oA Al oAl 1 =i=n),

2. Pl =({A—>i Al U{X>X|XeNJU{B"SB"},
Pl = {ADAMU{XSX|XeNIU{B —>B"),
P = {Al> A U{X>X|XeNJU{B >B"},
foralli=1,2,...,m

3, P,"M: {A,—)A;] U
U{A—2AljeM)U (Al —Alje{l,2,...,n) - M}U
U{B—B,B"—>B"),ieM,

iu=PU{Al oAl lje(1,2,...,n} —M}U
U(A;—Alje MYU{B—B,B'-B'},ieM,
Ply= (Al =AU

UlAl oAl ljeMiu(a—alje(,2,...,n) —M}U
U{B'—B,B"—>B"},ieM,
forMC{l1,2,...,n},card(M)=ys.

Let us examine the possible derivations in I'" by teams of s + 1 components.
Every nonterminal string generated by I'" is of the form w'zz w" e (TU NY,
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ze{An, .. ALAL L ALAYL L ALY oe (B, B', B"). (The nonterminal B is re-
moved only in the last step of a derivation, using the component Pj.) Initially we have
w' =wA, ... A,B. Therefore, every team can contain at most one of the components
Py, P}, Pb.

No pair of components (P ary, Pfary)y (Pisys P a,)s (P ar,, P ag,) can belong to the same
team, because all rules B— B, B’ — B, B" — B" appear in all such pairs, irrespective of the
values of i, j, M), M, hence the derivations cannot be correctly finished (at least one of
B, B', B" is present).

Similarly, P cannot be in a team with any P; 5 (P requests the presence of B, which
will be replaced by B, whereas P; y contains the rule B' — B'), or with any P} : P} cannot
be in a team with any P; » or Pi y and P§ cannot be in a team with any of P, 4 or Pl

No component P{ , P{ s can be in a team with Py (due to the rules A;— A, A] — A/
in Pg'); if Pi s or Piy is together with a component P, P, P}, then the string generated
from w is already terminal, hence the sentential form belongs to T°{A,, ..., A,
Al L ALAY L AL (B, B', B") and only modifications of the auxiliary symbols are
possible.

No component Piy can be in a team with P}, P}, P/ because all the rules
B—B,B"—»B', B"— B" are present and one of the symbols B, B', B" appears in the

1

sentential form. If P y is used together with Py, then no symbol A;, A], A”;is present, which
implies that the components Pp, Pg, Pg' were used, hence no symbol X € N has been present
at that time, hence P/ s cannot be used, a contradiction. Therefore, no component in group
2 can be in a team with a component in group 3.

Assume now that a team can contain s+ 1 components from one class
Pia, Pias Pl 1=i=n, MC{1,2,...,n}. As card (M) =, at least two components
with different Ms appear—say P;, My Pjoa, My #F My ThenletAy e My — Ms, Aje M> — My;
Pi_m, contains the rules A, — Ay, Af > Aj, and P; y, contains the rules A{ — Aj, A,— A, As
either A, or A", as well as either A; or A/ is present in the obtained string, the derivation
cannot be ended, hence the team is illegal.

In conclusion, the only teams containing the components in group 3 are
OQu={Pinlie MYU{P), Q= (Piulie MyU (PS), Ql=1{(P},MlicM)U (P},
forMC{1,2,...,n}, card(M)=s.

By On we can transform wA, ... A,B to a string having the symbols A; with i e M
replaced by A; and B replaced by B’. No team Oy, Ofy can now be used (8 and B” are not
present), hence we have to continue by a team Qj,. If M’ # M, this is not allowed (for
ieM—M' Ajis present in the string and the rule A] = A} in the components of Q).
Therefore we have to use exactly the components P, with i € M, hence we use the
components P, i € M, as in ['. Now, exactly as above, only O}, can be used and we return
to a string of the form zA, ... A,B, z e (NU T)", Every such step simulates a derivation in
I" using an s-team and, conversely, every derivation in I" can be simulated in I'" by using
the associated (s + |)-teams Qu, Qu, Ol

When we obtainastring zA, . . . A,B withz € T" we can use teams of components in group
2 plus Py’ for finishing the derivation. Indeed, assumen+ 1 =k(s+ D+t k=1, 0=1=35.
If t=0, then using & suitable teams of components P§, P/, 1 =i=n, we can erase all
symbols Ay, ..., A,, B. If k # 0, then we use & — 1 such teams. For the remaining s + | + 1
symbols (including B) we use first f teams consisting of one component P} and s components
P}, P} forsuitable , j, r(all i, j, r different). Thus we obtain a string containing exactly s + 1
nonterminals A;, A7 and B. Using a team composed of suitable components P, and P§ we
can end the derivation.

In conclusion, L(I", s) = L,(I'", s + 1), which proves the inclusion in the theorem. [
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A counterpart of this result has been proved in Csuhaj-Varju and Pdun (1993).
TCD,(1) C TCD,(t), s = 2. Consequently, for s = 2 we have TCDF (1) = TCDx(t), the team
size induces a hierarchy with at most two levels TCD (1) T TCDa(t ).

In order to prove the main result of this section, showing that the team feature increases
the power of grammar systems also for the t-mode of derivation, we need the next two results
from Rozenberg and Salomaa (1980).

Theorem V.2.10: Letr V), V> be two disjoint alphabets. Let Ly C V[, Ly C V5" and let f be
a surjective function from L; onto L. Let L= {wf{w)lw € L;}.

(i) If L is an ETOL language, then L, is an EDTOL language.

(ii) If L is an ETOL language and f is bijective, then L, is also an EDTOL language.

Corollary 1V.3.4: Let V be a finite alphabet with card(V) = 2. Let k be a positive integer
larger than 1. Then neither {w € V'] lwl =" for some n=0) nor {w e V| Twl = nt for
some n=0) are EDTOL languages.

Theorem 3: CD(t)=TCD,(t) CTCD:(t).

Proof: The equality follows from definitions, the inclusion from the previous theorem. In
order to prove its properness we consider the following grammar system, similar to some
extent with the second example in Section 3:

T'=((A, B, A", B'}, (a, b,c,d, e}, P\, Ps, Py, Py, Ps, Ps, AB),
Pi=(ADAA'),
P>={B—aBc, B> bBd, B—aB'c, B—bB'd},
Py=({A"—>AAY},
P,={B'—=aB'c,B"—>bB'd, B —aBc, B' = bBd},
Ps={A—e,A'>e,B>B,B =B},

Pe={B—>B B—oac,B—bd,B'>B B —ac,B'—bd, A—A,
A=A}
We obtain
L(I'.2)= [c’znn_'f'(u')|n =0, wela b}, || =27,

where f(w) = h(mi(w)), with mi denoting the mirror image and /i the morphism defined
by h(a)=rc, h(b)=d.

Indeed, when using Ps, no symbal B, B' can be present at the end of that step, when using
Pe no symbol A, A’ can remain in the current sentential form. Therefore Ps, Po can
participate in a team only together, namely at the last step of a derivation. Now P cannot
be in the same team with Ps, and P> cannot be in the same team with P,. Starting from a
string containing only symbols A and B (initially we have AB), besides the team (Ps, Pg},
only the team Q, = { Py, P5} is applicable, leading to a string containing only symbols A’
and B'. Now only Q> = {Ps, P4} can be applied, leading again to a string containing the
nonterminals A, B. In such a cycle the number of occurrences of A is doubled and for each
use of a rule A = A'A’ or A" = AA, one rule in P> or in Ps is used; therefore the number
of symbols a, b and ¢, d, respectively, equals the number of occurrences of A, A’ subtracted
by one. Finally, every A, A" is replaced by e, but in this time rules B— B, B" — B’ are used
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in P, excepting the last moment when one of B—ac, B— bd, B' - ac, B' — bd is used.
In this way, the number of symbols a, & (hence also ¢, d) equals the number of occurrences
of e, hence we have the mentioned language L,(T, 2).

Erase now by a morphism the symbol e. If L,(T", 2) € ETOL = CD(t), then the obtained
language, {'.1_'f(w)|w efa b}’ dwl=2"n= 0} would be in E70L; according to the above
quoted Theorem V.2.10 (ii) it follows that {w e {a, b} " | |w| =2"n =0} € EDTOL (the
mapping f is a bijection from L;={we {a, b} |lw]l=2"n =0} to La={{we
e,d}lwl=2"n= 0}), which contradicts Corollary IV.3.4 in Rozenberg and Salomaa
(1980). In conclusion, L,(I", 2) ¢ ETOL. ]

Summarizing the previous theorems and the result in Csuhaj-Varju and Piun (1993), we
have

ETOL=CD()=TCD\(t)CTCDy(t)=TCD(1),s=2.

Note that the system I' in the preceding proof is J-free.

Theorem 4: If I' is a i-free CD grammar system and s = I, then L(T", s) can be generated
by a J-free matrix grammar with appearance checking.

Proof: Take I' =(N, T, Py, ..., P,, w), denote dom(P;) = (A lA>xe P}, 1=i=n, and
construct the matrix grammar

G=WN,TU{c},S. M, F),
where
N =[S X Z})U{A A'|A eNYU{lin, ..., i]ll =i=nl=sj=s),

and M contains the following matrices:

I, (S>> wX).
(We start by introducing the axiom w and the control symbol X.)

2. (X_>[ll! ey ’.s])1 [’lla R il\_] e N
(The symbol X introduces an s-tuple [iy, . . ., i;] which will determine the derivation
in the team {P;, ..., P }.)

Ih .. k=i KL AT =L L Ao aD),
for [iy, ..., ;]eN' Aj—x;e P, and xj is obtained by replacing all nonterminals
B e N appearing in x; by primed B', | =j=s.
(A" >A), AeN
(The derivation in the s-team {P;, ..., P; } is simulated in this way.)

4. ([0, .., (]2 X, A2 Z,AIDZ, ... ,A,DZ, A} S Z),
for [i,...,iile N {A, ... A )= U;i-, dom(P;)).
(The derivation in a team {P;, ..., P; } is correctly ended when no symbol can be

rewritten by a rule of some P;}, l=j=n)
5. (X—0c).
The set F, consisting of rules used in the appearance checking manner, contains all rules

of the form A —Z, A’ = Z in group 4 of the rules (Z is a trap-symbol which blocks the
derivation if introduced).
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From the explanation above it is easy to see that L(G) = LI, s){c}. As the family of
languages generated by A-free matrix grammars with appearance checking is closed under
restricted morphisms (see Dassow and Paun 1989) the proof is complete. O

5. Closure properties

Generative capacity in itself does not imply strong closure properties. We have already
observed the generative power of team CD grammar systems. Therefore, the following
result is particularly pleasing.

Theorem 5: The family TCD(t) is a full AFL.

Proof: Union. Given L,L' e TCD(t), in view of Theorem 2 we may assume
L, L' e TCD,(t) for a given s. Then take two systems, I, T', with
L, )=L LI, =L, T=NT,P,....,P,w), T'= (N, T,Pl,...,Pu,w"). As-
sume NN N' =@ and construct the system

l—w=(NUN'U[X],...,X_‘},T,Pl,...,Pn,Pi,...,P:”, Ta---,P,’c’;Xl---X.s);
where P;, P} are the components of I', I'" and

Pi={Xi»>w X —-w'l}
Pi={Xi—>Ai),2=i=s.
As the components of I cannot be in the same team with the components of I'" or with
P/, 1 =i=<s,andby using P{ (in ateam with P, . . ., P{) we obtain either w or w’, we have
LI, sy=L(T, s)U LT, 5).
Concatenation. Start again from I', I as above and construct
M=(NUNU{X,.... X}, T,Py,....PPl,...,PL P, P WXIXG LX),
with
Pl={Xi»w U {X>X|2=j=s)U{X>X|XeN},
Pl={Xi> A U{X>Xl1=j=s}U
U{X>X|XeN),2<iss.

The components PY, . .., Py can be used only together, after obtaining a string of the form
xX,...X,,xe T, hence the derivations in I', I'" are separated by a step using the team
(PY,...,P!}. This ensures the equality L(I™", s) = LI, s)L(I"", s).

Morphisms. Obvious (replace each symbol a by /(a) in all rules and in the axiom).

Kleene +. Take T'=(N,T, P, ..., P, w) and construct
['=WNU{Xs.... % Yoo YL T P PPl P
v P wX X LX),
where

Pl=PU{YoYlI=j=s} 1<i=n,
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Pi={X,»wY,...Y . X5 i) U[X>X|XeN)U
UX—-Xl1=j=s),

Pl={X\—» i} U(X>X|XxeN}U
UiX—Xxli=sj=s), 1=iss,

Pr={Y=»X)U{Y-Yli=sj=ssju
U{XoX|XeN), 1=siss.

No component P;" can be used in the same team with a component P; due to the appearance
of rules X, — X,, | =r =y, in P{ for all j. We start from a string with s symbols X|, . . ., Xy
if we use less than s components PY, ..., P;, then the derivation cannot be ended, as all
rules X;— Xj, | =j =y, are present. Therefore we pass to a string zwY, ... Y, z € L(T, s).
Now the only possible team to use is (P, ..., P}, hence we obtain zwX, . . . X, and the
process is iterated. When using the rule X, — 4 in P}, the derivation is finished. In
conclusion, L,(I'', s) =L(I", s) *.

Intersection  with  regular  sets. For T =(N,T,Py,...,P.w),w=wAw
coowiAwie L, wieT, 1 =i=k+1,A,eN, 1=<i<k and p=(0,T, qo, F,0) a finite
automaton, consider all strings of the form

wilg, A, qi)walga, Az, @3) . wilqr, Ak, i)W,

where g1 = 3(qo, w1), g = 0(gi-1, W), 2=i=k, 6(gh, we+1) € F, for all possible
qi> - gi € Q.

For each such string, consider a CD grammar system having this string as the axiom,
T as the terminal alphabet, the nonterminal alphabet Q X N X Q, and the components
Pi, ..., P,constructed as follows: eachrule A 5 x| A\x3 . . . v A x4, e T, 1 <i=r+ 1,
AieN,1=i=r,r=1,in P;is replaced by the set of rules

(g. A, q") = xi(qi, Ay, gDxqe, A q2) o X (G A @)X+ 1,

where g1 =d(q, x1), i =6(g/- 1, X)), 2=i=r, d(q/, X,+1) =¢q', for all possible 4,9, q1,
. in Q. 7
Moreover, each rule A —x, x e T, is replaced by all rules

(4, A,q9")=x,q' =0d(q.x),q,.¢" € Q.

One can see that a derivation in such a new system corresponds to a derivation in I,
observing also the restriction imposed by p (because & is defined for all pairs (g, a) e Q X T,
all rules (g, A, ¢')— 2" are present, for all g, ¢' € O, hence a derivation in the new system
cannot be correctly finished if the corresponding derivation in I is not correctly finished).
As the family TCD(t ) is closed under union, we obtain that L,(I", s) N L(p), which is equal
to the union of all languages L,(I'’, s) with ["" denoting the new systems, is in TCD(r).

Inverse morphisms. The closure under inverse morphisms follows from the closure
under intersection with regular sets, substitution by (A-free) regular sets and (restricted)
morphisms; therefore it is enough to prove the closure under substitution with regular sets.

Take =N, T, Py, ..., P,w)and o:7 =27 with a(a) = L, regular, L, = L(G,,), for
Ga=(No, T, Py, S4), a € T, regular grammars. We assume N, "N, =@ forall @ # b in T and
construct the system I'" with the terminal alphabet 7, the nonterminal alphabet
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Nula'laenviu U NUX, L XG YL Y YL Y,

aeT

the axiom string wX, . .. X, and the following components:
Pl=P,U(Y,=Y, Y >Y|l<sj=ss}, 1<i=n,
Pl={Xi> Y IU{X>X|XeN}U
U{X—Xl1=j=s),1=iss,
PL=P,U{A—AA>A |AeN,}U
U{X,-—-)X,~|15r'£5],a eT,
Pi={A'5A A 5AlAeNJUXio Xl 1=i=shaeT,
Pr={YinY, oV lUX—X|lsjsshl=i=<s,
Pr= (Y >Y, Y oY UX-X|1=sj=<5), 1=<i<s,
Pr={r,— Ui{X>Xlxe UNJU
U(y,—%, y_;%y;nsj'éi-},] =i=s,
Pi= (Y U{Xx>XIxe UJNIU
UY—=Y, Y Y l1=/<5), 1=i=s.

The components P] cannot be used in the presence of symbols ¥;, ¥}, none of the other
components can be used in the presence of symbols X;, hence each derivation has two
phases, an initial one when we pass from wX, ... X; to some zX,... X, ze L(I', 5), and
another one when z is replaced by some string in ¢(z) in the presence of Y1, ..., ¥, The

"

components P{ can be used only together, The components P, PP, by passing from Y; to
Y} and conversely, are used in order to complete s-teams together with components P, and
P.. Thus all derivations in G, can be simulated in "' too. Finally, the symbols ¥;, ¥; are
removed at the same time, by a team composed of components P}, P{". In conclusion,
g (LT, s))= LI, s), which completes the proof. O
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