String Operations Suggested by DNA Biochemistry:
The Balanced Cut Operation!

Lila KARIL, Andrei PAUN

Department of Computer Science
University of Western Ontario

London, Ontario, Canada N6A 5B7
Gheorghe PAUN

Institute of Mathematics of the Romanian Academy

PO Box 1 - 764, 70700 Bucuresti, Romania

Abstract. We introduce and investigate an operation with strings sug-
gested by DNA processing (by means of exonucleases): the operation
of cutting strings of equal length from the beginning and the end of a
string. A related operation is that of cutting a square of a string from
the prefix of a string. The closure properties of families in the Chomsky
hierarchy are investigated (and, with one exception, for the case of linear
languages, settled).

Keywords: DNA computing, language operations, closure properties.

1 Introduction

This paper deals with DNA computing in info: inspired from what happens in vivo
and what can be accomplished in vitro, we define certain operations with strings and
languages and we study them as formal operations. More precisely, we consider the
action of certain exonucleases on DNA molecules, resulting in cutting off nucleotides
from the two ends of a (linear) DNA molecule. An example is given in Figure 1. In
a known elementary time unit, Bal31 cuts one pair of complementary nucleotides
from the beginning of a DNA molecule and a pair from the end. Thus, in a given
interval of time, (approximately) the same number of nucleotide pairs is removed
from each end of the molecule.

!Research supported by the Natural Sciences and Engineering Research Council of Canada,

Grant R2824A01.

This is a rather interesting operation with strings. We extend it to languages in
the natural way and investigate the closure properties of families of languages under
this new operation.

5’ 3
NNN o NNN
NNN NNN

3 5’

Bal3l
5’ 3
NN o NN
NN NN
3/ \\ 5/
5’ 3
Ny
3 5’
5’ H 3
/
3 5’

Figure 1: Balanced cut by an exonuclease

2 Language Theory Prerequisites

We mainly introduce here the notations which we shall use in the sequel; for further
details of formal language theory we refer to [6].

For an alphabet V' we denote by V* the free monoid generated by V under
the operation of concatenation; the empty string is denoted by A and V* — {A} is
denoted by V*. The length of € V* is denoted by |z|. If # = z x93, then we say
that xq 1s a prefix, x5 is a substring, and x5 is a suffix of z. The sets of substrings,
prefixes, and suffixes of a string @ € V* are denoted by Sub(x), Pref(x), Suf(x),
respectively.

The circular permutation of a string @ € V* is defined by ¢p(x) = {vu | = uo,
for u,v € V*}.

The left quotient of a language L; C V* by a language Ly C V*is Ly\Ly = {z €
V* | wx € Ly for some w € Ly}; the right quotient of Ly by Ly is Ly1/Ly = {a € V*|
zw € Ly for some w € Ly}. The left derivative of a language L C V™ with respect
to a string € V* is defined by 9.(L) = {w € V* | 2w € L}; the right derivative of
L with respect to x is defined by 9.(L) = {w € V* | wx € L}.

A finite automaton is given in the form A = (K, V. sq, F, P), where K is the set
of states, V' is the alphabet, s¢ is the initial state, F' is the set of final states, and
P is the set of transitions, presented as rewriting rules of the form sa — s’ (in the
state s, the automaton reads the symbol ¢ and changes its state to s).

A gsm (= generalized sequential machine) is a finite automaton with output:
g = (K, V1, Va, 80, F, P), where K is the set of states, V1,V are the input and the
output alphabets, sqg is the initial state, F' is the set of final states, and P is the set
of transitions of the form sa — xs', for 5,8’ € K,a € Vi, € VJ° (in state s, the
machine reads the symbol a, changes its state to s’ and produces the output string
x). If in all rules sa — a8’ we have x # A, then ¢ is said to be A-free.

A Chomsky grammar is denoted by G = (N, T, S, P), where N is the nonterminal
alphabet, T' is the terminal alphabet, S € N is the axiom, and P is the finite set of
rewriting rules, given in the form « — y, with «,y € (N UT)* and x containing at
least a nonterminal.

Finally, by REG, LIN, CF, CS, RFE we denote the families of regular, linear,
context-free, context-sensitive, recursively enumerable languages, respectively. It is
worth noting that all these families are closed under union, intersection with regular
languages, restricted morphisms, left and right derivatives, and inverse morphisms;
REG, CF, CS, RFE are also closed under concatenation, Kleene closure, and circular
permutation, but LIN is not closed under these three operations. All families above
but C'S are closed under arbitrary gsm mappings and under left and right quotients
by regular languages; C'S is closed under A-free gsm mappings only.

3 The Balanced Cut Operation

The basic operation we deal with in this paper, a model of the exonuclease action
as shown in Figure 1, is defined as follows: for x € V*, we consider the set of strings

be(x) = {ay | @ = xyaqws, for aq, 29,23 € V™ with |xq| = |2s]}.

We extend this operation — called balanced cut — to languages in the natural way:

for L C V™,
be(L) = U be(x).

zel

This operation is related to the double prefiz cut operation: for x € V*, we define
dpe(x) = {xs | ¥ = x12122, for some xq, 25 € V3.

The relation between the two operations is specified in the following lemma:

Lemma 1. If Fis a family of languages closed under double prefix cut, circular
permutation, and A-free gsm mappings, then F is also closed under balanced cut.

Proof. Let us first note that the closure under A-free gsm mappings also ensures
the closure under intersection with regular languages.

Consider a language .. C V* and two new symbols, a,b. Consider the gsm ¢
which maps any string z € V*, nondeterministically, into a string of the form a'bya’b,
for some ¢, 7 > 0 such that all transitions of ¢ are of the form sa — 3s’, where s, s
are states and a € V, 3 € V U {a, b} (that is, g is M\-free and if a'bya’b € g(x), then
o] = |yl + i+ +2).

We obtain the equality:

be(L) = (dpe(ep(g(L)) N a™ba™bV™)) N V™.

Indeed, ¢ transforms a prefix z; and a suffix x5 of a string zyx9x3 € L into
a'b, a’b, respectively, with |z,| = i+1, |x3] = j41,7,7 > 0; by a circular permutation
followed by the intersection with the regular language a*ba*bV* we obtain strings
of the form a'ba’bx,; because no prefix zz of such a string can strictly contain the
string a'ba’b, the double cut operation followed by the intersection with V* means
cutting the prefix a‘ba’b; the only possibility is to have ¢ = j, that is |z,| = |as],
which is equivalent to x5 € be(x). O

We now investigate the closure properties of families in the Chomsky hierarchy
under the operations bc and dpc.

The family of regular languages is closed under both these operations, as a
consequence of the following result (a proof of it can be found in [7]):

Lemma 2. The family of reqular languages is closed under left and right quo-
tients with arbitrary languages.

Because we have

dpe(L) = {xx | 2 € VL,

we obtain the closure of REG under double prefix cut; Lemma 1 ensures that we
also have the closure of REG under balanced cut.

The proof of Lemma 2 is not constructive, hence it makes sense to give a direct,
effective proof of the closure of REG under our operations.

Lemma 3. REG is effectively closed under the operation dpe.

Proof. Let A = (K, V, so, F, P) be a finite automaton. For s € K, let s be a new
state and let K = {5|s € K}.
We construct the gsm

g = ([(/7‘/7 V7 307F7P/)7

where B
K':KUKU(KXK x K),

and P’ contains the following transitions:

4

1. sa — &', for each sa — s’ € P,

2. sa — (s1,81,80), for each sa — s € P,

3. (81,89, 83)a — (81,8,,5%), for all 1 € K, s9a — s, € P,ssa — s5 € P,
4. (81, 82,83)a — 84, for s9a — s4 € P, ssa — s1 € P,

5. 81a — a8y, for each sja — s, € P.

We have the equality g(L(A)) = dpe(L(A))’. Indeed, transitions of type 1 (fol-
lowed by a transition of type 2) remove a prefix « of the scanned string such that
So =" s1 in the automaton A, for some s; € K; one introduces the state (s1, s1, $o)
and one continues by using transitions of type 3 (followed by one transition of type
4); the state s; is memorized and one scans a string z such that s;z =* s4 and
89z =" s1; therefore, also sgzz =™ s, is a correct sequence of transitions with
respect to the automaton A; the use of transitions of type 5 follows a path in A
which scans a string w. To summarize, zzw € L(A) and the output of ¢ under input
zzw is w. Therefore, w € dpe(L(A)). O

Of course, also the family RE is closed under the operations dpe, be. In contrast,
no other family in the Chomsky hierarchy is closed under these operations — with
the note that it is an open problem whether or not LIN is closed under the balanced
cut operation.

Lemma 4. The family CF is not closed under the be operation.

Proof. Let us consider the context-free language
L={ad"b"cb™a™ | n,m > 1}.
Obviously, we have
be(L)NatbTebtat = {a"Fb"cb™a™ " | n,m > 1,k > 0,k <n,k <m}.

This is not a context-free language.

Indeed, suppose that L = L(G) for a context-free grammar G =
(N,{a,b,c}, S, P). All strings of the form a"~*b"cb™a™=*, for all possible n,m, k,
are in L. That is, substrings 0", 5", "%, a™ % can be arbitrarily large, and also the
difference [b*| — |a"*| = k = |[b™| — |a™*| can be arbitrarily large. In order to
generate such strings, we need derivations in GG of the form

S =" w1 XuaYus =" ua' X0 uab"Y a®us =" uyzqusaaus = a *b"cb™a™ ",

with wuq,uz, uz € {a,b,¢}*, 1 <i < jand 1 < s <r: by recurrent derivations of the
form Z => a?Zb" with g > h intercalated with non-recurrent derivations (whose
number is bounded, because N is a finite set), we can produce only prefixes a"~*b"

of strings in L with a bounded value for k; similarly for suffixes 6™ a”*.

Thus, any derivation of the form

S =* uy XuyYuz ="~
—* ud" XV "y Yus =" uia e b g qus
= Rtk epm ek
is possible for each h > 1 (we have iterated the first subderivation and not the
second one). Because 1 < j, we have (n + jh) — (n —k+th) = (j —0)h + k # k,
that is the obtained string is not in the language L. This contradicts the equality
L = L(G), hence L cannot be context-free. 0.

Corollary 1. The family CF is not closed under the operation dpc.

An upper bound for the family of languages of the form be(L), for L € CF is
provided by the family of matrix context-free languages.

A matrix grammar is a construct GG = (N, T, 5, M), where N,T,S are as in a
context-free grammar and M is a finite set of matrices, that is sequences (A; — x4,
... ,A, — x,) of context-free rules. Using such a matrix means to apply the rules
Ay — 2q,..., A, — x, one by one, in this order. The family of languages generated
by such grammars is denoted by M AT"; when only M-free rules are allowed, the
superscript is removed. It is known that CF C MAT C CS,CF C MAT* C
RE,CS — MAT* # 0 (see [2] for details), and that each one-letter language in
MAT? is regular (see [4]).

Lemma 5. If L is a context-free language, then be(L) € MAT?.

Proof. Let L. C V* be a context-free language. Consider the gsm ¢ which
transforms strings ¥, zy23 € V* into strings of the form c'ayd’, with 1 = |zy|, 7 = |23];
¢, d are new symbols. The language g(L) is context-free. Let G = (N, VU{¢,d}, S, P)
be a context-free grammar for ¢g(L). Denote by h the morphism which leaves all

symbols in N UV unchanged and maps the symbols ¢, d into C, D, respectively.
We construct the matrix grammar G' = (N U{C, D},V, S, M), where

M= {(X = b)) | X =2 e P)
U{(C —=X\D— N}

The use of a matrix of the form (C — A\, D — \) erases one occurrence of C' and

one occurrence of D. Therefore, a string C'y D’ with y € V* (hence a from h(g(L)))
is transformed into y only when ¢ = j. Consequently, L(G") = be(L). O

By an easy modification of the proof above, we get:
Corollary 2. The family MAT” is closed under the operation be.

The above statement is not true if the operation be is replaced by dpc. In fact, a
much stronger result is true, also proving the non-closure of LI N under the operation
dpc:

Lemma 6. There are linear languages L such that dpc(L) ¢ MAT™.

Proof. Let us consider the following language:

L = {a"ba®b. .. ba"*1ca*>1b. .. ba**ba*2c*a*" |

k>1,i;>1, forall 1 <j <2k —1}.

Clearly, this is a linear language.
Consider also the gsm ¢ which works as follows when scanning a string in L:

~ we scan the prefix we,w € {a,b}*, and we leave it unchanged,

— when scanning the substring czc?, z € {a, b}*, we replace one occurrence of b
by bab (that is, a substring ab is inserted in an arbitrary place in z); all other
symbols are left unchanged;

— we leave the suffix ¢** unchanged.

The language ¢g(L) is linear.

Let us note that the strings in L have two “halves”, separated by the central
occurrence of ¢; the blocks of symbols a in the right half are of double length as
compared to the corresponding blocks in the left half; the substring ¢? separates
the last blocks of @ occurrences in the right half. When generating ¢(1), one more
block of @ occurrences is introduced, consisting of one symbol only. In this way,
the substring delimited by the occurrences of ¢ have the same number of blocks of
symbols a as the string placed at the left of the central occurrence of c.

We have the equality

dpc(g(L)) N ca® = {ca |n>1}. (%)

Let us examine the way of producing a string in ca™ by a double prefix cut
operation, starting from a string in ¢(L).
The strings in g(L) are of the form

w = a"bab ... ba"*1ca®*=1b. . ba* baba* 1 ... ba*?c*a*",

for some k> 1,2, > 1,1 <3 <2k —1,and 3 <r <2k — 1. In order to get the
string ca®, we have to cut a prefix zcze of w, that is

x = a"bab...ba"?* = a®2*1b .. ba*"baba* 1 . .. ba*?.

With a string w € ¢(L) with this property, we associate an undirected graph
['(w) as follows:

— associate the nodes aq, ..., asp_1 with the blocks a', ..., a1 and the nodes
Bi, ..., PBa with the blocks a®2x-1, .. . a?r a,a* =1, ..., a*2, a*1;

draw an arc (a4, 3;) for each ¢ = 1,2,...,2k — 1; call these arcs lower arcs;
they express the equality of the substrmgs a’® of w as imposed by the fact that
w = :z:c:zjccazil;

draw an arc (as, 3;) for each pair (s,1),1 < s <2k — 1,1 <t < 2k, such that
J; = 24, and a’t, @' are blocks which correspond to each other in the definition
of L; call these arcs upper arcs; they express the relation between substrings
a' of w placed to the left and to the right of the “central” occurrence of ¢, as
imposed by the definition of L.

Figure 2 presents the graph for the case of k¥ = 3; the upper and the lower arcs

are drawn in the corresponding positions.

ff//m\ \\W

Qs

[N Jjjjj

Figure 2: The graph I'(w) for £ =3

Let us denote by val(e;),val(3;) the length of the substring a® of w asssociated
as mentioned above with «;, 3;, respectively.
Several facts about the graph I'(w) are useful for the subsequent reasoning:

The node fy;, has the degree 1 (one upper arc and no lower arc reaches it).

The node 3, having va;(3,) = 1 (that is, corresponding to the substring
inserted by the gsm ¢ in the strings of L) cannot be reached by an upper arc:
otherwise, val(3,) has to be an even number, the double of val(ay) for some ¢,
which is not the case. Because all nodes (31, ..., B2p_1 are reached by a lower
arc, it follows that 3 is reached by a lower arc only, it has the degree 1.

If o, B; are linked by an upper arc, then val(3;) = 2-val(«,); if they are linked
by a lower arc, then val(«;) = val([;).

All nodes different from 3y, and 3, mentioned above have the degree 2: all
nodes «;,1 <1 <2k — 1, are reached both by upper and lower arcs; all nodes
different from f3, are reached by an upper arc, all nodes different from 3;, are
reached by a lower arc.

— There is no cycle in I'(w). Indeed, this is a bi-partite graph, always nodes «;
are linked by nodes ;. Assume that there is a cycle. It must contain the same
number of nodes of type «; as nodes of type 3;. Let ay,,...,an., B, .-, 5.
be these nodes. Because of the links by lower arcs, we must have the equality
{val(ag,),...,val(ax,)} = {val(py),...,val(pi.)}. Let ¢ be the maximum of
val(ag,),1 <t < s. Because of the upper arcs, 2¢ should be an element of the
set {val(/,) | 1 <t < s}. However, 2¢ ¢ {val(ag,) | 1 <t < s}, therefore
{val(ag,), ..., val(ax,)} # {val(py), ..., val($.)}, a contradiction.

Because I'(w) contains no cycle and all nodes have the degree one or two, it
follows that it is a connected graph. According to Euler theorem (a connected graph
with nodes of even degree with the exception of two nodes contains an Eulerian
path, starting in one of the two nodes of odd degree and ending in the other node
of odd degree), I'(w) contains a path starting in f3,, ending in [y and using all
arcs (an Fulerian path). As we have seen above, val(,) = 1,val(f2) = 2¢1. On
this path, all the 2k — 1 upper arcs are used. They relate nodes «;, 3; such that
val(f;) = 2 - val(a;). Consequently, the values are doubled 2k — 1 times. We start
from val(B3,) = 1, hence val(faor) = 22¥71 - val(B,) = 221

This concludes the proof of the equality ().

The language {ca®"™ | n > 1} is not in the family MAT* (the family M AT
is closed under arbitrary morphisms and {a®*""" | n > 1} is a one-letter non-regular
language). The family M AT? is also closed under intersection with regular lan-

guages. Consequently, dpe(g(L)) ¢ M AT O

Corollary 3. The families LIN and M AT" are not closed under the operation
dpe.

As we have mentioned above, the closure of LIN under the balanced cut oper-
ation remains to be clarified. Note that, because LIN is not closed under circular
permutation, the non-closure of LIN under the operation bc does not imply — via
Lemma 1 — the non-closure under the operation dpc.

The case of the family C'S is easy to be settled. The following more general
result is true:

Lemma 7. If a family F is closed under concatenation with reqular sets, right
derivative, and the operation be, then it is closed under the operation Suf, of taking

suffixzes.
Proof. For L CV* and ¢,d ¢ V', we can write

Suf(L) = 9;(be(Ldc")).

The equality can be easily checked: by a balanced cut operation, any prefix x of a
string w € L can be cut, as a prefix of wdc'; only when ¢ = |z| the derivative by d
is defined. Thus, all and exactly the suffixes of strings in I can be obtained. a

Corollary 3. The family CS is not closed under the operations dpc and be.

9

For the sake of readability, we collect the results in the previous lemmas in a
theorem:

Theorem 1. The closure properties in Table 1 hold.

Table 1: Closure properties under operations be and dpe

REG LIN CF CsS MATA RE
be YES ? NO NO YES YES
dpe YES NO NO NO NO YES

Note the interesting case of the family M AT, which is closed under the operation
be but not under the operation dpe.

4 Related Operations

Several operations related to the previous ones can be imagined.

For instance, instead of cutting a prefix and a suffix of the same length, we can cut
a prefix and a suffix which are one the mirror image of the other (mirror balanced cut,
mbc), or even identical strings (double balanced cut, dbe). All the closure properties
proved in the previous section, with the exception of those referring to the family
LIN, remain true for these new operations with similar proofs. (For instance, in
the proof of Lemma 7 we can take V* instead of ¢* and we obtain the same result
for each of mbc and dbe.) For the family of linear languages we need new proofs.

Lemma 8. The family LIN is not closed under the operation mbe.
Proof. Consider the linear language
L ={a"bab...ba"*ba**b. . ba*?ba*ba | k> 1,i; > 1,1 <j <k}
We obtain
mbe(L) Nbath = {ba®" b | n > 1}.
Indeed, a string in bath is obtained by cutting from a string
w=a"ba?b. .. ba"*ba**b ... ba*?ba* ba

a prefix and a suffix which are one the mirror image of the other only when
atba?b...ba* = mi(a?*-1b...ba*2ba? ba). Thisimpliesthat i; = 1,7; = 21, 1,2 <
j < k, which means that i, = 271 Because mbc(w) N bath = ba**, we get
mbe(w) N bath = ba*". O

Lemma 9. The family LIN is not closed under the operation dbe.
Proof. Consider the linear language
L = {a"bab... ba"*~1ba*>*=1b. .. ba**ba*2b*a*" |

k>1,i>1, forall 1 <j <2k —1}.

10

We proceed as in the proof of Lemma 6. Let again be ¢ the gsm which inserts a
new substring a'b in the “right half” of strings in L, namely with : = 1.
We obtain

2277,—1

dbe(g(L)) N ba™tb = {ba b|n>1}.

This can be seen as in the proof of Lemma 6. For instance, the graph describing the
links between the blocks a' of the strings in g(L) which lead by a double balanced
cut to a string in bath looks like that in Figure 3, where we have considered the
case k = 3. Ths substring to be obtained after the double balanced cut and the
intersection with ba™b is the central one, corresponding to /3; in the graph. a

(f//m\\ \W
[N Jjjjj

Figure 3: The graph for the proof of Lemma 9

Another possibility is not to cut but to grow the strings at the two ends. Thus,
we define the balanced growth of x € V* by

bg(x) = {xraay | 21,20 € V7, |21| = |22}

It is very easy to prove that REG' is not closed under this operation, but all other
families considered above are closed. For instance, if G = (N, T, S, P) is a context-
free grammar, the grammar with the rules P U {S" — aS'b | a,b € T} U {5 — S},
with S as the new axiom, generates the language bg(L(G')). This also shows that
bg(L) € LIN for each regular language L.

Finally, instead of deleting or adding strings at the ends of a string, we can
only mark a prefix and a suffix of the same length. More formally, we consider the
operation of balanced marking, defined by

bm(x) = {z1cagcas | @ = xrxqus, |v1] = |2s]}.

(For € V*, ¢ is a symbol not in V.)
Again, it is clear that REG is not closed under this operation, but C'S and RFE
are closed. Neither LIN and C'F' are closed: for the linear language

L=1{d"b"|n>1}

11

we have
b (L) Natebtebt = {a"cb™cb™ | n > 1},

which is a non-context-free language.
However, bm(L) € LIN for I. € REG: consider a finite automaton A =
(K, V,so, F, P) and construct the linear grammar G = (N, T, S, P'), where

K ={S}U{(s,s),[s,s]|s,s € K},

and P’ contains the following rules:

1. S — [sq,s¢], for all s; € F,

2. [s1,82] — a[ss, s4]b, for all sya — s3 € P, s4b — s5 € P,

3. [s1,82) — ¢(s1,82)¢, for all 51,82 € K,

4. S — 9sg, s¢)c, for all sy € F,

5. (81,82) — a(ss, s2), for all s54 — s5 € P and s; € K,

6. (s1,82) — a, for sya — s9 € P,

7. [s1,82] — ce, for s1 = sg,

8. 5 — ce if A€ L(A).

The equality L(G) = bm(L(A)) is obvious.

We conclude this paper by emphasizing the fact that the biochemistry of DNA
suggests many new and interesting problems from the formal language theory point
of view. In particular, many new operations with strings and languages can be found
in this area. Such operations have already been studied for example in [5], [1], but
the investigation is by no means complete, [3].

References

[1] J. Dassow, V. Mitrana, On some operations suggested by genome evolu-
tion, Proc. Second Pacific Symposium on Biocomputing (R. B. Altman, A. K.
Dunker, L. Hunter, T. Klein, eds.), World Scientific, Singapore, 1997, 97 — 108.

[2] J. Dassow, Gh. Paun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989.

[3] J. Dassow, Gh. Paun, Remarks on operations suggested by mutations in
genomes, Fundamenta Informaticae, 2-3 (1998), 183-200.

[4] D. Hauschild, M. Jantzen, Petri nets algorithms in the theory of matrix gram-
mars, Acta Informatica, 31 (1994), 719 — 728.

12

[5] Gh. Paun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Berlin, 1998.

[6] G. Rozenberg, A. Salomaa, Handbook of Formal Languages, Springer-Verlag,
Berlin, 1997, vols. 1-3.

[7] S. Yu, Regular languages, chapter vol.1 of [6], 41-111.

13

