
Block Insertion and Deletion on Trajectories

Bo Cui∗, Lila Kari∗, Shinnosuke Seki∗

Department of Computer Science, University of Western Ontario, London, Ontario,

Canada, N6A 5B7

Abstract

In this paper, we introduce block insertion and deletion on trajectories, which
provide us with a new framework to study properties of language operations.
With the parallel syntactical constraint provided by trajectories, these opera-
tions properly generalize several sequential as well as parallel binary language
operations such as catenation, sequential insertion, k-insertion, parallel inser-
tion, quotient, sequential deletion, k-deletion, etc.

We establish some relationships between the new operations and shuffle and
deletion on trajectories, and obtain several closure properties of the families
of regular and context-free languages under the new operations. Moreover, we
obtain several decidability results of three types of language equation problems
which involve the new operations. The first one is to answer, given languages
L1, L2, L3 and a trajectory set T , whether the result of an operation between L1

and L2 on the trajectory set T is equal to L3. The second one is to answer, for
three given languages L1, L2, L3, whether there exists a set of trajectories such
that the block insertion or deletion between L1 and L2 on this trajectory set is
equal to L3. The third problem is similar to the second one, but the language
L1 is unknown while languages L2, L3 as well as a trajectory set T are given.

Keywords: Block insertion on trajectories, Block deletion on trajectories,
Closure properties, Language equations, Decidability

1. Introduction

The study of language operations is a fundamental research area of the
theory of computation, and has played an essential role in understanding the
mechanisms of generating words and languages. Some basic operations, such as
catenation, shuffle, and quotients, have been extensively studied in the litera-
ture. As generalizations of these operations, several operations were introduced:
sequential and parallel insertion and deletion [1], k-insertion and k-deletion (in-
troduced in [2] under the name of k-catenation and k-quotient, respectively),

∗Corresponding author (Tel) +1 519-661-2111 (ext.84024) (Fax) +1 519-661-3515
Email addresses: bcui2@csd.uwo.ca (Bo Cui), lila@csd.uwo.ca (Lila Kari),

sseki@csd.uwo.ca (Shinnosuke Seki)

Preprint submitted to Theoretical Computer Science November 22, 2010

schema for parallel insertion and deletion [3], distributed catenation [4], mix op-
eration [5], and shuffle and deletion on trajectories [6, 7, 8]. The notion of shuffle
on trajectories was first introduced by Mateescu, Rozenberg, and Salomaa [7]
with an intuitive geometrical interpretation. It provides us with a sequential
syntactical control over the operation of insertion: a trajectory describes how to
insert the letters of a word into another word. As its left-inverse operation [9],
deletion on trajectories was independently introduced by Domaratzki [6], and
Kari and Sośık [8].

We introduce two operations here, block insertion on trajectories and its
left-language-inverse operation called block deletion on trajectories. Trajectories
over the binary alphabet {0, 1} enable us to specify selected positions where a
language can be inserted. A trajectory corresponds to the spaces at the begin-
ning, between two letters, and at the end of a word. If a digit in a trajectory
is 1, this signifies an insertion of the language at that location, and, if it is 0,
then no insertion is performed there. Block insertion on trajectories is a proper
generalization of several sequential and parallel binary language operations such
as catenation, sequential insertion, k-insertion, parallel insertion, etc. For in-
stance, parallel insertion of a language into a word inserts the language between
the letters of the word, as well as before the first letter, and after the last letter
of the word. Parallel-inserting a language L into a word abc results in LaLbLcL.
Thus, by using a trajectory consisting of only 1’s, parallel insertion of a language
into a word can be realized by the block insertion of the language into the word
on a trajectory in 1∗. Moreover, different choices of trajectories will provide us
with more flexible syntactical control over parallel insertion. Block deletion on
trajectories is defined as the left-language-inverse operation of block insertion on
trajectories such that if we can obtain a word w by block-inserting a language L
into a word u on a trajectory t, then u can be obtained by block-deleting L from
w on the same t possibly along with other words. This operation also properly
generalizes some operations, such as quotient, sequential deletion, k-deletion,
etc.

We notice that a major difference between shuffle on trajectories and block
insertion on trajectories is the way of using their trajectories. However, we prove
that block insertion on trajectories can be simulated in two steps by using shuffle
on trajectories and substitutions, respectively (Lemma 5). Similarly, although
deletion on trajectories and block deletion on trajectories use their trajectories
differently, we can simulate block deletion on trajectories by using deletion on
trajectories and substitutions (Lemma 6). These representation lemmas enable
us to make use of the known closure properties of language families under shuffle
and deletion on trajectories in order to prove closure properties of these families
under block insertion and deletion on trajectories. Some of these closure prop-
erties are generalizations of those under the operations which are special cases
of block insertion and deletion on trajectories, and among them are several of
interest. For instance, deleting an arbitrary language from a regular language
on a regular set of trajectories results in a regular language (Proposition 6); the
corresponding result regarding quotient is well-known [10].

Next, we consider decision problems about language equations of the form

2

L1 ←T L2 = L3 (block inserting L2 into L1 on T results in L3) and its block-
deletion variant. If all of the four involved languages are given, the problem
is the equality test. Once we replace some of these languages with variables
X,Y, . . ., the problem becomes finding a solution. In this paper, we consider
the equality test as well as finding a solution to L1 ←X L2 = L3, X ←T L2 =
L3, and their block-deletion variants. It is commonly expected that problems
are decidable only when the languages involved are all regular, and become
undecidable once any of the languages becomes context-free. Indeed, most of
the results obtained in this paper agree to this expectation. Exceptions occur
when the operation is block deletion with all the involved languages but L2

being assumed to be regular. Then for both the equality test and the existence
of trajectory set, the boundary between decidability and undecidability shifts to
between L2 being context-free and being context-sensitive (Propositions 10, 11
and Propositions 20, 21, respectively).

This paper is organized as follows: the next section contains basic notions
and notation used throughout this paper. In Section 3, we provide formal
definitions of block insertion and deletion on trajectories and give several of
their basic properties as well as the representation lemmas. Section 4 is devoted
to the closure properties under these operations. The equality test, existence of
trajectory and left operand are discussed in Sections 5, 6, and 7, respectively.

2. Preliminaries and definitions

An alphabet Σ = {a1, a2, . . . , an} is a nonempty, finite, and totally-ordered
set of n-letters. A word over Σ is a sequence of letters in Σ. The length of a word
w ∈ Σ∗, denoted by |w|, is the number of letters in this word. The empty word,
denoted by λ, is the word of length 0. The set of all words over Σ is denoted
by Σ∗, and Σ+ = Σ∗ \ {λ} is the set of all nonempty words. A language is a
subset of Σ∗. A language consisting of exactly one word is said to be singleton.
The complement of a language L, denoted by Lc, is defined as Σ∗ \L. The right
quotient of a language L by a word u is defined by Lu−1 = {w | wu ∈ L}.

For a letter a ∈ Σ, the number of occurrences of a in a word w is denoted
by |w|a. The Parikh image of a word w ∈ Σ∗, denoted by Ψ(w), is Ψ(w) =
{(|w|a1

, |w|a2
, . . . , |w|an

)}. We can extend this to a language L ⊆ Σ∗ as Ψ(L) =
⋃

w∈LΨ(w).
A (non-deterministic) finite automaton (NFA) is a tuple A = (Q,Σ, δ, s, F),

where Q is a finite set of states, s ∈ Q is the start state, and F ⊆ Q is the set
of final states. δ : Q × Σ → 2Q is called a transition function. If |δ(q, a)| ≤ 1|
for any q ∈ Q and a ∈ Σ, then this automaton is called a deterministic finite
automaton (DFA). We extend δ to Q × Σ∗ → 2Q in the usual way. Then this
automaton accepts a word w ∈ Σ∗ if δ(s, w) ∩ F 6= ∅. It is a well-known fact
that a language which is accepted by an NFA can be accepted by a DFA, and
such language is said to be regular.

The context-free languages (CFLs) are produced by context-free grammars.
If a language is produced by a linear context-free grammar, then it is called

3

a linear context-free language (LCFL). For more details about grammars, the
reader is referred to [11].

For each letter a of Σ, let s(a) be a language over an alphabet Σa. Fur-
thermore, define, s(λ) = λ, s(au) = s(a)s(u) for a ∈ Σ and u ∈ Σ∗. Such a
mapping s from Σ∗ into 2Σ

′∗

, where Σ′ is the union of the alphabets Σa, is called
a substitution. A substitution s is said to be regular (context-free) if each of the
languages s(a) is regular (resp. context-free). The family of regular (context-
free) languages is closed under regular (resp. context-free) substitution [12]. A
substitution h such that each h(a) consists of a single word is called a homo-
morphism. The inverse substitution s−1 of a substitution s is defined for each
w ∈ Σ∗ by s−1(w) = {u | w ∈ s(u)}. Furthermore, for a language L ⊆ Σ∗,
s−1(L) =

⋃

w∈L s−1(w) = {u | w ∈ s(u) for some w ∈ L}.
Now let us recall the definition of left-inverse operations from [9]. For two

binary word operations ⋆ and •, the operation • is said to be the left-inverse
of the operation ⋆ if for all words u, v, w over an alphabet, the equivalence
“w ∈ (u ⋆ v) ⇐⇒ u ∈ (w • v)” holds.

Lastly, we recall the definitions of shuffle and deletion on trajectories. A
trajectory is a binary word over an alphabet {0, 1}. For two words u, v ∈ Σ∗,
the shuffle of u with v on a trajectory t, denoted by u

∃
t v, is defined as follows:

u
∃
t v = {u1v1 · · ·ukvk | u = u1 · · ·uk, v = v1 · · · vk, t = 0i11j1 · · · 0ik1jk ,

where |um| = im and |vm| = jm for all m, 1 ≤ m ≤ k}.

As its left-inverse operation, one can define the deletion of v from a word w
on t, denoted by w t v, as follows:

w t v = { u1 · · ·uk | w = u1v1 · · ·ukvk, v = v1 · · · vk, t = 0i11j1 · · · 0ik1jk ,

where |um| = im and |vm| = jm for all m, 1 ≤ m ≤ k}.

Note that, in both of these definitions, it is possible to have i1 = 0 and jk = 0.
At any rate, by these definitions, u

∃
t v = w if and only if w t v = u.

If T is a set of trajectories, the shuffle of u with v on the set T of trajectories
and the deletion of v from w on T are:

u
∃
T v =

⋃

t∈T

u
∃
t v, w T v =

⋃

t∈T

w t v.

Furthermore, the operations
∃
T and T are extended to languages over Σ, if

L1, L2 ⊆ Σ∗, then:

L1
∃
T L2 =

⋃

u∈L1,v∈L2

u
∃
T v, L1 T L2 =

⋃

w∈L1,v∈L2

w T v.

3. Block insertion and deletion on trajectories

In this section, we first introduce the formal definitions of block insertion
and block deletion on trajectories. Then, we propose several basic properties of

4

these operations. Lastly, we compare these operations with shuffle and deletion
on trajectories and establish relationships between these four operations.

Let us describe block insertion on trajectories first. Given a word a1a2 · · · an
of length n (n ≥ 0), one can find n−1 spaces between two letters. The operation
“block-inserting a language L2 into the word a1 · · · an on a trajectory t” inserts
L2 into some of these spaces, as well as possibly in the space to the left of a1
or the space to the right of an. In order for the operation to be performed (to
result in a nonempty set), the trajectory t ∈ {0, 1}∗ has to be of length n + 1.
Each digit of the trajectory word corresponds to a space and specifies whether
L2 is inserted into the space (if the letter is 1) or not (otherwise). The operation
is defined formally as follows:

Definition 1. Let u = a1 · · ·an such that a1, . . . , an ∈ Σ, n ∈ N, L2 ⊆ Σ∗, and
t = t0t1 · · · tm be a trajectory for some m ≥ 0 and t0, t1, . . . , tm ∈ {0, 1}. The
block insertion of L2 into u on t is defined as:

u←t L2 =

{

∅ if m 6= n,

L′
0a1L

′
1 · · · anL

′
n if m = n,

where for 0 ≤ k ≤ n, L′
k = L2 if tk = 1 and L′

k = {λ} if tk = 0.

Example 1. ab ←110 {ab, b, bc} = {ab, b, bc}a{ab, b, bc}b (see the following fig-
ure), which is

{abaabb, ababb, ababcb, baabb, babb, babcb, bcaabb, bcabb, bcabcb}.

{ab, b, bc} {ab, b, bc}
↓ ↓ab←110 {ab, b, bc} = a b

t = 1 1 0

Next we define block deletion on trajectories.

Definition 2. Let w ∈ Σ∗, L2 ⊆ Σ∗, and t = t0t1 · · · tm be a trajectory for
some m ≥ 0 and t0, t1, . . . , tm ∈ {0, 1}. The block deletion of L2 from w on t is
defined as:

w →t L2 = {a1 · · ·am | w can be decomposed as w = v0a1 · · · amvm

with a1, . . . , am ∈ Σ, and for 0 ≤ j ≤ m,

vj ∈ L2 if tj = 1, and vj = λ if tj = 0}.

By definition, we can see that λ cannot be a trajectory for block insertion
or deletion on trajectories.

Recall the definition of left-inverseness. Since parallel operations are de-
fined as an operation from Σ∗ × 2Σ∗ to 2Σ

∗

and extended, more appropriate
“inverseness” should be defined as follows: for two operations ◦, ⋄ thus defined
and extended, w ∈ (u ◦ L) ⇐⇒ u ∈ (w ⋄ L) for any words u,w ∈ Σ∗ and
a language L ⊆ Σ∗. If ◦ and ⋄ satisfies this condition, we say that they are
left-l-inverse to each other. Block insertion and deletion on the same trajectory
set are left-l-inverse to each other. This is confirmed by the following stronger
result.

5

Proposition 1. For two words w, u ∈ Σ∗, a language L2 ⊆ Σ∗, and a trajectory
t, w ∈ u←t L2 if and only if u ∈ w →t L2.

Example 2. As seen in Example 1, bcabb ∈ ab ←110 {ab, b, bc}. We can check
that bcabb →110 {ab, b, bc} = {ab, cb} (depicted as follows). Note that bcabb ∈
cb←110 {ab, b, bc}.

bc b
↑ ↑bcabb→110 {ab, b, bc} = { a b

t = 1 1 0

,
,

b ab

t =

↑ c ↑ b }.
1 1 0

The new operations are extended so as to take languages as their first
operand and trajectories: for L1, L2 ⊆ Σ∗ and a set of trajectories T ,

L1 ←T L2 =
⋃

u∈L1,t∈T

u←t L2, L1 →T L2 =
⋃

u∈L1,t∈T

u→t L2.

Due to these extensions, the next result immediately holds as a corollary of
Proposition 1.

Corollary 1. For two words w, u ∈ Σ∗, a language L2 ⊆ Σ∗, and a trajectory
set T , w ∈ u←T L2 if and only if u ∈ w→T L2.

We now obtain several basic properties of the proposed operations. Let us
start with the distributivity with respect to the left operand or trajectory set.
Note that distributivity does not hold with respect to the right operand.

Lemma 1. For languages L1, L
′
1, L2 and trajectory sets T , we have

1. (L1 ∪ L′
1)←T L2 = (L1 ←T L2) ∪ (L′

1 ←T L2);

2. (L1 ∪ L′
1)→T L2 = (L1 →T L2) ∪ (L′

1 →T L2).

Lemma 2. For languages L1, L2 and trajectory sets T1, T2, we have

1. L1 ←(T1∪T2) L2 = (L1 ←T1
L2) ∪ (L1 ←T2

L2);

2. L1 →(T1∪T2) L2 = (L1 →T1
L2) ∪ (L1 →T2

L2).

The next property is about the 0-trajectory, i.e., a subset of 0+, which
actually does not do anything. Combining the next lemma with Lemma 2 leads
us to a corollary (Corollary 2), which shall turn out to be helpful to prove some
undecidability results of language equations with block insertion or deletion on
trajectories in the later sections.

Lemma 3. For languages L1 and L2, L1 ←0+ L2 = L1 and L1 →0+ L2 = L1.

Corollary 2. Let L1 be a language and T be a set of trajectories such that
0+ ⊆ T . Then L1 ←T L2 ⊇ L1 and L1 →T L2 ⊇ L1.

As another property of block insertion and deletion, we can see that if L2 = ∅,
then any trajectory which contains 1 cannot produce any word.

6

Lemma 4. Let L1 be a language and T be a set of trajectories. Then L1 ←T

∅ = L1 ←(T∩0+) ∅ and L1 →T ∅ = L1 →(T∩0+) ∅.

As remarked in [6, 7], various operations from formal languages are particular
cases of the operations of shuffle on and deletion along trajectories. In a similar
manner, the block insertion and deletion enable us to simulate some of the
operations.

Remark 1. Here we show that some operations are specific cases of block in-
sertion on trajectories.

1. For T = 0∗1, ←T is the language catenation.

2. For T = 0∗10∗,←T=← is the sequential insertion [1], which is defined, for
two languages L1, L2 over the alphabet Σ, as L1 ← L2 = ∪u∈L1,v∈L2

(u←
v), where u← v = {u1vu2 | u = u1u2}.

3. For T = {0∗10n | 0 ≤ n ≤ k}, ←T=←k is the k-catenation [2], which is
defined, for two languages L1 and L2 over the alphabet Σ, as L1 ←k L2 =
∪u∈L1,v∈L2

(u←k v) where u←k v = {u1vu2 | u = u1u2, |u2| ≤ k}.
4. For T = 1+, ←T=⇐ is the parallel insertion [1], which is defined, for two

languages L1 and L2 over the alphabet Σ, as L1 ⇐ L2 = ∪u∈L1
(u⇐ L2),

where u ⇐ L2 = {v0a1v1 · · · akvk | k ≥ 0, aj ∈ Σ, 1 ≤ j ≤ k, vi ∈ L2, 0 ≤
i ≤ k and u = a1a2 · · · ak}.

Unlike shuffle on trajectories, block insertion on trajectories makes it possible
to simulate parallel insertion naturally.

Remark 2. Some operations are specific cases of block deletion on trajectories.

1. For T = 0∗1, →T is the right quotient.
2. For T = 0∗10∗, →T=→ is the sequential deletion [1], which is defined, for

two languages L1, L2 over the alphabet Σ, as L1 → L2 = ∪u∈L1,v∈L2
(u→

v), where u→ v = {w ∈ Σ∗ | u = w1vw2, w = w1w2}.
3. For T = {0∗10n | 0 ≤ n ≤ k}, →T=→k is the k-deletion [2], which is

defined, for two languages L1 and L2 over the alphabet Σ, as L1 →k L2 =
∪u∈L1,v∈L2

(u→k v) where u→k v = {u1u2 | u = u1vu2, |u2| ≤ k}.

In contrast to the case of block insertion on trajectories, parallel deletion [1] is
not a particular case of block deletion on trajectories. This is because, unlike
parallel deletion, block deletion cannot delete two adjacent words.

Having proposed block insertion and deletion on trajectories, we will es-
tablish relationships between these new operations and shuffle and deletion on
trajectories. We namely show how to simulate block insertion (deletion) on
trajectories by shuffle (resp. deletion) with the help of a homomorphism and a
substitution (resp. a homomorphism and an inverse substitution). For a given
language L2, the substitution sL2

: Σ ∪ # → Σ∗ is defined as sL2
(a) = a for

any a ∈ Σ and sL2
(#) = L2. When L2 is clear from the context, the subscript

of sL2
is omitted. Note that if L2 is regular, then s is a regular substitution.

The homomorphism required is φ : {0, 1}∗ → {0, 1}∗ defined as φ(0) = 0 and
φ(1) = 10.

7

Lemma 5. Let L1, L2 be languages on Σ and T ⊆ {0, 1}∗ be a set of trajectories.
Then

L1 ←T L2 = sL2
(L1

∃
φ(T)0−1 #∗)

Example 3. Let us recall the example of block insertion considered in Exam-
ple 1: ab ←110 {ab, b, bc}. The morphism φ maps 110 into 10100: φ(110) =
φ(1)φ(1)φ(0) = 10100. Then ab

∃
φ(110)0−1 #∗ = {ab

∃
1010 #2} = {#a#b}.

Substituting {ab, b, bc} into #’s completes the simulation of ab←110 {ab, b, bc}.

Block deletion on trajectories is the left-l-inverse operation of block insertion
on trajectories, and deletion on trajectories is the left-inverse operation of shuffle
on trajectories. Thus, it is likely that we can describe the language of the form
u →t L2 by deletion on trajectories. Actually, we can simulate u →t L2 using
deletion on trajectories, the homomorphism φ, and the inverse substitution s−1.
Note that for a language L ⊆ Σ∗, s−1(L) =

⋃

w∈L s−1(w).

Lemma 6. Let L1, L2 ⊆ Σ∗ be languages and T ⊆ {0, 1}∗ be a set of trajecto-
ries. Then

L1 →T L2 = (s−1
L2

(L1) φ(T)0−1 #∗) ∩ Σ∗.

For a word w ∈ L1, the inverse substitution s−1 guesses which of its infixes
in L2 should be deleted by replacing them with #’s. When the guess was wrong,
deleting #∗ along φ(T)0−1 leaves some of the #’s unerased and hence the guess
is rejected by taking intersection with Σ∗.

Example 4. In Example 2, we saw that bcabb →110 {ab, b, bc} = {ab, cb}.
Keeping in mind that the length of φ(110)0−1 is 4, if we choose from s−1(bcabb)
only the words of length 4, then we obtain the set

{#abb, bc#b,#c#b,#a#b,#ab#, bc##,#c##,#a##}.

Deleting #∗ along φ(110)0−1 = 1010 generates the set {cb, ab, c#, a#}. By
taking intersection of this set with Σ∗, we finally obtain {ab, cb}.

In the next section, we will prove closure properties of language families with
respect to block insertion and deletion on trajectories, and these representation
lemmas play a significant role there. Closure properties with respect to mor-
phism, substitution, right quotient, or intersection, are known. So we conclude
this section with one closure property with respect to the specific homomor-
phism φ.

Lemma 7. A trajectory set T is regular (context-free) if and only if φ(T)0−1

is regular (resp. context-free).

Proof. The direct implication follows from the fact that the families of regular
languages and context-free languages are closed under homomorphism and the
right quotient [13].

In order to prove the converse implication, we first note that φ(T) = φ(T)0−10
holds. This is because every word in φ(T) ends with 0 due to the definition of φ.

8

Hence, φ(T)0−1 being regular (context-free) implies that φ(T) is regular (resp.
context-free). Since φ is a mapping that encodes T into φ(T) with a prefix code
{0, 10}, φ(T) is uniquely decodable. Thus, φ−1(φ(T)) = T . Since the family
of regular languages (context-free languages) is closed under inverse homomor-
phism [14, 10], we can conclude that T is regular (resp. context-free).

4. Closure properties

In this section, we obtain several closure properties of the families of reg-
ular languages and context-free languages under block insertion and deletion
on regular and context-free trajectory sets, mainly based on the representation
lemmas and known closure properties with respect to shuffle and deletion on
trajectories.

4.1. Closure properties with respect to block insertion

First of all, we consider the case when all of L1, L2, T are regular. The
following proposition shows that L1 ←T L2 is regular in such a case.

Proposition 2. Let L1, L2 be regular languages over Σ, and T be a regular set
of trajectories. Then L1 ←T L2 is regular.

Proof. Since T is regular, φ(T)0−1 is regular by Lemma 7. Hence, L1
∃
φ(T)0−1

#∗ is regular due to Theorem 5.1 in [7], which states that, if a trajectory set
T is regular, then for any regular languages L1, L2, L1

∃
T L2 is regular. Note

that s is a regular substitution because L2 is regular. The family of regular
languages is closed under regular substitution [10] so that s(L1

∃
φ(T)0−1 #∗) is

regular. Lemma 5 concludes that L1 ←T L2 is regular.

The next proposition proves that if one of L1, L2, T is a context-free language
and the other two are regular languages, then L1 ←T L2 is context-free.

Proposition 3. Let L1, L2 be languages over Σ, and T be a set of trajectories.
If one of L1, L2, T is context-free and the other two are regular, then L1 ←T L2

is context-free.

Proof. We first consider the case when T is context-free and L1, L2 are regular.
Then, φ(T)0−1 is context-free by Lemma 7. Hence, L1

∃
φ(T)0−1 #∗ is context-

free due to Theorem 5.2 in [7], which states that, if a trajectory set T is context-
free, then for any regular languages L1, L2, L1

∃
T L2 is context-free. Since the

family of context-free languages is closed under context-free substitution, and s
is a regular substitution, s(L1

∃
φ(T)0−1 #∗) is context-free. Lemma 5 concludes

that L1 ←T L2 is context-free.
Similarly, we can prove that L1 ←T L2 is context-free in the other two cases

due to Theorem 5.3 in [7] which states that, if a trajectory set T is regular, then
for any languages L1, L2, one of them is regular and the other is context-free,
L1

∃
T L2 is context-free.

9

Until now, the difference between L1 and L2 in their roles in block insertion
and deletion has not shown up. Once we expand the investigation onto the case
when two of L1, L2, T are context-free, the difference becomes apparent in terms
of closure properties as shown in the next two propositions.

Proposition 4. Among L1, L2, T , if either L1 or T is regular and the other
two are context-free, then L1 ←T L2 is context-free.

Proof. In both cases, L1
∃
φ(T)0−1 #∗ is context-free. The context-free substi-

tution preserves context-freeness so that s(L1
∃
φ(T)0−1 #∗) = L1 ←T L2 is

context-free using Lemma 5.

On the other hand, if L1 and T are context-free, then even if L2 is singleton,
L1 ←T L2 is not always context-free.

Proposition 5. There exist context-free languages L1 and T ⊆ {0, 1}∗, and a
regular language L2 such that L1 ←T L2 is not a context-free language.

Proof. Consider L1 = {v ∈ {a, b}∗ | |v|a = |v|b}, T = {t ∈ {0, 1}∗ | |t|0 =
|t|1 + 1}, and L2 = {c}. It is clear that

L1 ←T L2 = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c}.

Hence, L1 ←T L2 is not a context-free language.

4.2. Closure properties with respect to block deletion

We now proceed to the investigation on the closure properties of the families
of regular and context-free languages under block deletion on trajectories. As
for block insertion on trajectories, we mainly rely on the representation lemma
(Lemma 6) and closure properties with respect to deletion on trajectories [6].
Let us recall some of them here:

1. If L1, T , L2 are regular, then L1 T L2 is also regular. The author
introduced an effective method for constructing NFA accepting L1 T L2

based on DFAs for L1, T , and L2.

2. If one of L1, T , and L2 is context-free and the other two are regular, then
L1 T L2 is context-free, which can be non-regular.

3. If two languages involved in L1 T L2 are context-free, and the other one
is regular, then L1 T L2 is not necessarily context-free.

Combining the first and second results together, we can see that the regular-
ity of L1 T L2, when L1 and T are regular, depends on the regularity of L2.
In contrast, for block deletion on trajectories, L1 →T L2 is regular regardless of
what L2 is. The proof of this result requires the following technical lemma.

Lemma 8. Let L2 ⊆ Σ∗ be a language and s be the substitution defined as
s(a) = a for any a ∈ Σ and s(#) = L2. For a regular language L1, s

−1(L1) is
a regular language over Σ∪{#}, and if further L2 is context-free, then s−1(L1)
is effectively constructible.

10

Proof. Let A = (Q,Σ, δ, i, F) be a deterministic finite automaton for L1. For
two states p, q ∈ Q, let us define Lp,q = {w ∈ Σ∗ | δ(p, w) = q}. Then we build
up a finite automaton A′ = (Q,Σ ∪ {#}, δ′, i, F), where

δ′ = δ ∪ {(p,#, q) | Lp,q ∩ L2 6= ∅}. (1)

One can easily verify that L(A′) = s−1(L1) and hence s−1(L1) is regular.
Furthermore, if L2 is context-free, Lp,q ∩ L2 is context-free and hence the

emptiness check in (1) can be done efficiently. This means that we can effectively
construct the finite automaton A′.

Proposition 6. Let L1, L2 be languages over Σ, and T be a set of trajecto-
ries. If L1 is regular and T is regular (context-free), then L1 →T L2 is regular
(resp. context-free).

Proof. Since L1 is regular, Lemma 8 implies that s−1(L1) is regular. The
previously-mentioned closure properties with respect to deletion along trajecto-
ries implies that s−1(L1) φ(T)0−1 #∗ is regular (context-free) because φ(T)0−1

is regular (resp. context-free). Lemma 6 concludes that L1 →T L2 is regular
(resp. context-free).

Note that the results of Lemma 8 and Proposition 6 are closely related to the
classical result that regular languages are closed under quotient with arbitrary
languages [10].

In the case of T being regular in this proof, if a finite automaton for s−1(L1)
is given, the result in [6] mentioned previously implies that we can effectively
construct an NFA for L1 →T L2 for a context-free language L2. As a result,
the next proposition follows.

Proposition 7. For a regular language L1, a regular set T of trajectories,
and a context-free language L2, L1 →T L2 is not only regular but effectively
constructible.

As expected, analogous results do not hold in the case when either L1 or T
is arbitrary, or even context-free. The case when T is context-free is shown in
the following example.

Example 5. Consider L1 = a∗b∗, T = {0n10n | n ≥ 0}, and L2 = {ab}. Then
L1 →T L2 = {anbn | n ≥ 0}.

Proposition 6 and this example leave the case where L1 is context-free and
T , L2 are regular. We will show that in this case L1 →T L2 is context-free.
The proof requires one technical lemma about a closure property of the family
of context-free languages under inverse regular substitution.

Lemma 9. The family of context-free languages is closed under inverse regular
substitution.

11

This lemma holds because we can verify that a regular substitution s can
be specified by a finite transduction, and its inverse s−1 is defined in the same
way as the inverse of a finite transduction was defined in Theorem 2.16 [10],
which states that the inverse of a finite transduction is a finite transduction.
Thus, s−1 is also a finite transduction. Furthermore, we know that the family
of context-free languages is closed under finite transduction [14]. It might be
worth pointing out that the inverse substitution s−1 is defined differently in [14]
as follows: for a language L, s−1(L) = {w | s(w) ⊆ L}. Under this definition,
the family of context-free languages is not closed under inverse substitution.
Examples were provided there.

Proposition 8. Let T be a set of trajectories, and L1, L2 be languages over Σ.
If L1 is context-free and T, L2 are regular, then L1 →T L2 is context-free.

Proof. Lemma 6 states that L1 →T L2 = (s−1(L1) φ(T)0−1 #∗) ∩ Σ∗. Lem-
mas 7 and 9 imply that φ(T)0−1 is regular and s−1(L1) is context-free. Due to
the closure properties under deletion on trajectories, s−1(L1) φ(T)0−1 #∗ is
context-free, and hence, L1 →T L2 is context-free.

Moreover, in the following example, we can see that there exist a context-free
language L1 and regular languages L2, T such that L1 →T L2 is a non-regular
context-free language.

Example 6. By swapping the roles of L1 and T in Example 5 as L1 = {anbn |
n ≥ 1} and T = 0∗10∗, we have L1 →T {ab} = {anbn | n ≥ 0}.

Finally we consider the three cases when two of L1, L2, T are context-free.
Note that Proposition 6 has already addressed the case when T and L2 are
context-free. The following proposition gives answers to the other two cases.

Proposition 9. There exist languages L1, L2, and a set of trajectories T sat-
isfying each of the following:

1. L1 and L2 are context-free, and T is regular, but L1 →T L2 is not context-
free;

2. L1 and T are context-free, and L2 is regular, but L1 →T L2 is not context-
free.

Proof. 1. Due to Theorem 3.4 in [15], CFLs are not closed under right quotient.
When T = 0∗1, →T is the right quotient. Thus, the result is immediate.

2. Consider L1 = {anbncdm | n,m ≥ 0}, T = {02n10n | n ≥ 0}, and
L2 = cd∗. We can verify that

L1 →T L2 = {anbncn | n ≥ 0},

which is well-known not to be context-free.

Among the closure properties obtained in this section, the results which
guarantee the regularity of the resulting language are of special interest. They
enable us to obtain decidability results of language equation problems involving
block insertion and deletion, some of which will be considered in the following
sections.

12

5. Decision problems of language equations

Now that we have established closure properties with respect to block inser-
tion and deletion on trajectories, let us shift our attention to decision problems
which involve these operations.

We begin our investigation with a simple but essential problem: can we test
the equality of a language obtained by block insertion (deletion) on trajectories
with another language? These problems are formally described as follows: For
given languages L1, L2, L3, and a set T of trajectories,

Q0,i : is L1 ←T L2 = L3 ?

Q0,d : is L1 →T L2 = L3 ?

First of all, we observe positive decidability results for both problems. They
are due to the fact that the equality between regular languages is decidable as
well as to the closure properties of the family of regular languages established
in Section 4. It is noteworthy that the decidability of Q0,d does not require L2

to be regular as long as L1 and T are regular. In fact, Proposition 7 implies
that, for a context-free language L2, Q0,d remains decidable.

Proposition 10. Let T be a set of trajectories, and L1, L2, L3 be languages
over Σ. The following statements hold true:

1. If all of L1, L2, L3, T are regular, the problem Q0,i is decidable.

2. If L1, L3, T are regular and L2 is context-free, the problem Q0,d is decid-
able.

Here the question arises of whether Q0,d becomes undecidable if we weaken
the assumption on L2 from being context-free to being context-sensitive. The
next proposition answers this question affirmatively.

Proposition 11. Let L1, L3 be regular languages and T be a regular set of
trajectories. If L2 is context-sensitive, then the problem Q0,d is undecidable.

Proof. We first recall that, for a given context-sensitive language L over Σ, it
is undecidable whether L 6= ∅ [16], and context-sensitive languages are closed
under catenation with singleton languages [16]. Note that L 6= ∅ if and only if
Lb ∩ Σ+ 6= ∅, where b is a letter in Σ.

Now, we prove the proposition, and reduce the problem of whether Lb∩Σ+ 6=
∅ into Q0,d with L1 = Σ+, T = {1}, L2 = Lb, and L3 = {λ}. We claim that

Σ+ →1 Lb = {λ} ⇐⇒ Lb ∩ Σ+ 6= ∅.

If Lb ∩ Σ+ 6= ∅, then there exists a word w ∈ Lb ∩ Σ+. Since w →1 w = {λ},
the left hand side holds. Conversely, if Lb ∩ Σ+ = ∅, then Lb has to be ∅. In
such a case, Σ+ →1 Lb = ∅.

13

One can reasonably expect that once some of the involved languages become
context-free (except the case just considered now), the problems Q0,i and Q0,d

turn into undecidable. They actually do, except when L1, L2, L3 are over a
unary alphabet. Due to Parikh’s theorem [17], context-free languages over a
unary alphabet are regular so that assuming L1, L2, or L3 context-free makes
no sense. Let us assume that L1, L2, L3 are regular and T is context-free. Then
the assumption of L1, L2, L3 being unary implies the existence of a regular
trajectory set which is “equivalent” to T in the following sense.

Lemma 10. Let L1, L2 be two languages over a unary alphabet. For any
context-free trajectory set T , there exists a regular trajectory set T ′ such that
L1 ←T L2 = L1 ←T ′ L2 (L1 →T L2 = L1 →T ′ L2).

Proof. Due to Parikh’s theorem, there exists a regular set of trajectories T ′ such
that Ψ(T) = Ψ(T ′), where Ψ is the Parikh mapping.

We show that L1 ←T L2 = L1 ←T ′ L2. For that, it suffices to show
L1 ←T L2 ⊆ L1 ←T ′ L2, since the reverse inclusion will hold by symmetry.
Suppose that L1 ←T L2 6⊆ L1 ←T ′ L2. Then, there exist a word u = an ∈ L1

for some n ≥ 0, a trajectory t = t0 · · · tn ∈ T where ti ∈ {0, 1} for 0 ≤ i ≤ n,
and some words in L2, such that v0av1 · · · avn 6∈ L1 ←T ′ L2, where, if ti = 0
vi = λ, otherwise, vi ∈ L2. Thus, a

n+
∑

0≤i≤n
|vi| is not in L1 ←T ′ L2. However,

this is a contradiction, since there exists t′ ∈ T ′ such that Ψ(t′) = Ψ(t), and it

is clear that an+
∑

0≤i≤n
|vi| ∈ an ←t′ L2.

Similarly, we can prove the equality L1 →T L2 = L1 →T ′ L2 holds.

This lemma implies that, when T is context-free and the operand languages
are restricted to be unary languages, we just need to consider a regular set of
trajectories T ′ that is letter equivalent to T . Thus, the problems turn out to be
equal to the problems solved in Proposition 10.

Corollary 3. Let T be a context-free trajectory set, and L1, L2, L3 be reg-
ular languages over a unary alphabet. Then both problems Q0,i and Q0,d are
decidable.

In the rest of this section and Sections 6 and 7, we assume that L1, L2, L3 are
over a non-unary alphabet. To clarify this assumption, we describe problems
by using phrases such as “Q0,i over a binary (ternary) alphabet” if a binary
(resp. ternary) alphabet is used for the proof. Note that we will present the
proofs of Propositions 27, 29, and 30 using ternary alphabets for the sake of
readability. The constructions could be straightforwardly encoded over binary
alphabets. In the following, we will prove several undecidability results.

Proposition 12. Let L1, L2, L3 be languages over a binary alphabet Σ, and T
be a set of trajectories. The following statements hold true:

1. The problem Q0,i over a binary alphabet is undecidable if one of L1, L2,
L3, and T is context-free, and the other three are regular.

2. The problem Q0,d over a binary alphabet is undecidable if either L1 or L3

is context-free, and the other and T are regular.

14

Proof. For Q0,i, we consider four cases depending on which of the involved
languages is context-free.

Firstly we consider Q0,i with T being context-free. Let L be an arbitrary
context-free language over Σ = {a, b} and let h : {a, b}∗ → {0, 1}∗ be a ho-
momorphism which maps a to 0 and b to 1. Let Tc = h(L)0. Recall that the
morphism φ maps 1 to 10 and 0 to 0. Note that for a trajectory t ∈ {0, 1}∗,
0∗
∃
t 1

∗ = {t} holds. Hence, the representation lemma (Lemma 5) shows that
0∗ ←Tc

{1} = s{1}(0
∗ ∃

φ(h(L)0)0−1 #∗) = 0∗
∃
φ(h(L)) 1∗ = φ(h(L)). Now if

we could decide Q0,i in this setting, for a regular language L3, we can decide
whether φ(h(L)) = φ(h(L3)), which is equivalent to L = L3 because φ(h(·))
is a prefix-coding. However, the equality test between regular and context-free
languages is undecidable [13].

For the cases when either L1 or L3 is context-free, by letting T = 0+, the
problem of whether L1 is equal to L3 is reduced to the problem “is L1 ←T L2

equal to L3?”. Due to the reason mentioned above, in these cases Q0,i has to
be undecidable. For the case when L2 is context-free, “is L2 equal to Σ∗” is
reduced to Q0,i by choosing L1 = {λ}, T = {1}, and L3 = Σ∗.

Now it is clear that the usage of T = 0+ leads us to the undecidability of Q0,d

under the given conditions because then L1 →T L2 = L3 ⇐⇒ L1 = L3.

Let us try to fill the only one remaining gap about Q0,d: when T is context-
free. The next proposition shows that Q0,d is undecidable also in this case.

Proposition 13. The problem Q0,d over a binary alphabet is undecidable if L1

and L3 are regular, L2 is singleton, and T is context-free.

Proof. Let L be an arbitrary context-free language over {a, b}, h map a to 01
and b to 10, and f map a to a#a and b to #bb. Choose T = h(L)0, L1 = {a, b}∗,
L2 = {#}, and L3 = {aa, bb}∗. We first observe that, for a word w ∈ {a, b}∗ and
t ∈ T , f(w) →t L2 ∈ {a, b}∗ if and only if t = h(w)0. Moreover, if t = h(w)0,
then f(w)→t L2 is the word obtained from w by replacing a with aa and b with
bb. Thus, we can conclude that f(L1) →T L2 = L3 if and only if L = {a, b}∗.
This means that if Q0,d were decidable with L1, L3 being regular, L2 being
singleton, and T begin context-free, we could decide whether L = {a, b}∗.

We conclude this section with a variant of Q0,i and Q0,d when the left-
operand is context-free. For a set of trajectories T ⊆ {0, 1}∗, the Parikh image
of T restricted to 0 is

Ψ0(T) = {|t|0 | t ∈ T }.

From the definition of φ, the following lemma is clear.

Lemma 11. For a trajectory set T ∈ {0, 1}∗, T is finite if and only if Ψ0(φ(T)0
−1)

is finite.

Considering an alphabet Σ, denote R0(T) =
⋃

d∈Ψ0(T) Σ
d.

Proposition 14. The problem Q0,i is decidable for a context-free language L1,
regular languages L2, L3, and a regular trajectory set T if and only if T is finite.

15

Problem L1 L2 L3 T Result Proof
Q0,i Reg Reg Reg Reg D Proposition 10

CFL Reg Reg FIN D Proposition 14
CFL ANY Reg INF U Proposition 12
SIN CFL Reg SIN U
Reg ANY CFL Reg U
Reg SIN Reg CFL U

Q0,d Reg CFL Reg Reg D Proposition 10
Reg CSL Reg Reg U Proposition 11
CFL Reg Reg FIN D Proposition 15
CFL ANY Reg INF U Proposition 12
Reg ANY CFL Reg U
Reg SIN Reg CFL U Proposition 13

Table 1: Decidability results of the problems Q0,i and Q0,d, where L1, L2, L3 are over a
non-unary alphabet. SIN, FIN, INF, and CSL stand for a singleton, a finite, an infinite, and
a context-sensitive language, respectively. ANY means that not depending on what L2 is, we
can prove the undecidability results.

Proof. We prove here only the direct implication because the other direction is
trivial. Assume that T is infinite, i.e., Ψ0(φ(T)0

−1) is infinite due to Lemma 11.
Let L be an arbitrary context-free language. Consider the regular language
R = {0, 1}∗

∃
φ(T)0−1 #∗ = R0(φ(T)0

−1)
∃
φ(T)0−1 #∗. Intuitively, this equality

implies that a word in {a, b}∗ is useful for the operation
∃
φ(T)0−1 only if its length

is equal to the number of digit 0 of a trajectory in φ(T)0−1. It was proved in
Theorem 6.3 in [18] that L

∃
φ(T)0−1 #∗ = R if and only if R0(φ(T)0

−1) ⊆ L.
Using the representation lemma (Lemma 4), we have L←T # = L

∃
φ(T)0−1 #∗.

Thus, L ←T # = R if and only if R0(φ(T)0
−1) ⊆ L. The latter problem is

known to be undecidable [18] so that Q0,i is also undecidable if T is infinite.

Using the representation lemma (Lemma 6) and the proof of Theorem 6.4
in [18], we can prove an analogous result for block deletion as follows.

Proposition 15. The problem Q0,d is decidable for a context-free language L1,
regular languages L2, L3, and a regular trajectory set T if and only if T is finite.

The results proved in this section are summarized in Table 1.

6. Existence of trajectories

We now continue our investigation on language equations involving block
insertion and deletion on trajectories. Here language equations with one variable
are of interest. In particular, the topic of this section is an equation of the form
L1 ←X L2 = L3 or its block deletion variant, where L1, L2, L3 are given and
X is a variable. The questions arise in the following form: For given languages
L1, L2, and L3,

Q1,i: does there exist a trajectory set T such that L1 ←T L2 = L3?

16

Q1,d: does there exist a trajectory set T such that L1 →T L2 = L3?

Before investigating these problems under various conditions on L1, L2, L3,
we note that when the answer to Q1,i or Q1,d is positive, there also exists a
maximum solution Tmax, which is the union of all the solutions to L1 ←X L2 =
L3 respectively L1 →X L2 = L3 (this is due to Lemma 2). Therefore, in order
to decide the existence of a solution to L1 ←X L2 = L3 or L1 →X L2 = L3, we
can employ a technique proposed in [1, 9] that firstly constructs the maximal
solution Tmax under the assumption that the equation has a solution, and then
checks whether Tmax is actually its solution.

For Q1,i, this candidate is

T0 = {t ∈ {0, 1}
∗ | L1 ←t L2 ⊆ L3}.

Lemma 12. Let L1, L2, L3 be languages. If L1 ←X L2 = L3 has a solution,
then T0 is its maximum solution.

Proof. Since the equation is assumed to have a solution, we can let T be its
solution, that is, L1 ←T L2 = L3. We can also assume the existence of its
maximum solution Tmax defined as the sum of all the solutions. By the definition
of T0, the two solutions T and Tmax are subsets of T0. Then using Lemma 2,
we can easily check that

L1 ←T0
L2 = (L1 ←T L2) ∪ (L1 ←T0\T L2)

= L3.

Thus, T0 ⊆ Tmax. In conclusion, T0 = Tmax.

Furthermore, we can prove that in the case when L1, L2, L3 are regular, T0

becomes regular.

Lemma 13. Let L1, L2, L3 ⊆ Σ∗ be regular languages. Then T0 is regular and
effectively constructible.

Proof. Here we prove that T c
0 is regular and effectively constructible. Note that

t ∈ T c
0 if and only if (L1 ←t L2) ∩ Lc

3 6= ∅.
For a trajectory t, the representation lemma (Lemma 5) enables us to de-

scribe L1 ←t L2 as s(L1
∃
φ(t)0−1 #∗), where s is the substitution that substi-

tutes L2 for #. By the definition of inverse substitution, we can easily check
that

s(L1
∃
φ(t)0−1 #∗) ∩ Lc

3 6= ∅ ⇐⇒ (L1
∃
φ(t)0−1 #∗) ∩ s−1(Lc

3) 6= ∅.

Thus, t ∈ T c
0 is equivalent to that (L1

∃
φ(t)0−1 #∗) ∩ s−1(Lc

3) is non-empty.
In [19], Domaratzki and Salomaa prove that this nonemptiness can be effec-
tively checked by constructing a finite automaton. Therefore, T c

0 is regular and
effectively constructible.

Combining these lemmas provides us with a decidability result about Q1,i.

17

Proposition 16. The problem Q1,i is decidable when L1, L2, L3 are regular.

Proof. Due to Lemma 12, it suffices to decide whether T0 is its solution or
not. Lemma 13 implies that T0 is regular, and the closure property shown in
Section 4 proves that L1 ←T0

L2 is regular. In order to test whether T0 is a
solution of L1 ←X L2 = L3, we simply compare this regular language with the
regular language L3.

Now we turn our attention to the case when one of L1, L2, L3 is context-free,
and the other two are regular. Only languages over non-unary alphabets will
be considered for the reason mentioned previously.

Firstly, we consider Q1,i under the assumption that L1 is context-free and
L2, L3 are regular.

Proposition 17. The problem Q1,i over a binary alphabet is undecidable if L1

is context-free and L2, L3 are regular.

Proof. We prove this result by reducing the undecidable problem of whether
L1 = Σ∗ to one instance of our problem with L2 = {λ} and L3 = Σ∗. We claim
that

∃T ⊆ {0, 1}∗ such that L1 ←T {λ} = Σ∗ ⇐⇒ L1 = Σ∗.

Indeed, if L1 = Σ∗, then T = 0∗ satisfies the equation. Conversely, assume
that there exists T such that L1 ←T {λ} = Σ∗. Then for all x ∈ Σ∗, there exist
y ∈ L1 and t ∈ T such that x ∈ y ←t {λ}. Note that this happens only if x = y
and |t| = |y|+ 1. Therefore, x ∈ L1 and L1 = Σ∗.

Due to the asymmetry of the operands of block insertion on trajectories, we
next consider Q1,i for a context-free language L2 and regular languages L1, L3.
We show that, even if L2 does not contain the empty word, this question is
undecidable. Thus, it is undecidable in general.

Proposition 18. The problem Q1,i over a binary alphabet is undecidable if L2

is context-free and L1, L3 are regular.

Proof. We reduce the problem of whether L2 = Σ+ to one instance of our
problem with L1 = {λ} and L3 = Σ+. Then

∃T ⊆ {0, 1}∗ such that {λ} ←T L2 = Σ+ ⇐⇒ L2 = Σ+.

The rest of this proof is similar to that of Proposition 17; hence, omitted.

The last case for Q1,i is when the resulting language L3 is context-free. In
order to address this problem, we recall one undecidable result proved in [19].
Let us denote the set of non-negative integers by N, and, for a set I ⊆ N, let
ΣI = {w ∈ Σ∗ | |x| ∈ I}. Then, for a given LCFL L, it is undecidable whether
there exists I ⊆ N such that L = ΣI .

Proposition 19. The problem Q1,i over a binary alphabet is undecidable if L3

is linear context-free and L1, L2 are regular.

18

Proof. We reduce the problem of whether there exists I ⊆ N such that L3 = ΣI

to an instance of our problem with L1 = Σ∗ and L2 = {λ}. We claim that

∃T ⊆ {0, 1}∗ such that L3 = Σ∗ ←T {λ} ⇐⇒ ∃ I ⊆ N such that L3 = ΣI .

If there exists I ⊆ N such that L3 = ΣI , then let T = {0i+1 | i ∈ I}. We can
verify that L3 = Σ∗ ←T {λ}. Conversely, if there exists T ⊆ {0, 1}∗ such that
L3 = Σ∗ ←T {λ}, then let I = {|t| − 1 | t ∈ T and |t| ≥ 1}. Then L3 = ΣI .

Having considered Q1,i, let us investigate the problem Q1,d. Firstly, we prove
a decidability result for the case when L1 and L3 are regular by taking the same
strategy to construct the candidate of maximum solution and check its validity.
Let

Td = {t ∈ {0, 1}∗ | L1 →t L2 ⊆ L3}.

The next lemma is the block deletion variant of Lemma 12, which can be proved
in the exactly same way so that we omit its proof.

Lemma 14. Let L1, L2, L3 be languages. If L1 →X L2 = L3 has a solution,
then Td is its maximum solution.

Lemma 13 has also a block deletion variant as shown below. One significant
difference is that this variant does not require L2 to be regular, but exhibits an
algorithmically-good behavior when L2 is at most context-free.

Lemma 15. Let L1, L3 ⊆ Σ∗ be regular languages and L2 be an arbitrary
language. Then Td is regular. Furthermore, if L2 is context-free, then Td is
effectively constructible.

Proof. Recall that L1 →t L2 = (s−1(L1) φ(t)0−1 #∗) ∩ Σ∗ (Lemma 6). Due
to Lemma 8, s−1(L1) is regular because L1 is regular, and moreover becomes
effectively constructible when L2 is context-free. As done in Lemma 13, t ∈ Td if
and only if (s−1(L1) φ(t)0−1 #∗)∩Lc

3 6= ∅. We note that for regular languages
R1, R2, R3, Domaratzki and Salomaa demonstrated an effective construction of
a finite automaton which accepts a trajectory t satisfying (R1 t R2)∩Rc

3 6= ∅
[19]. Now it is clear that Td is regular. Moreover, if L2 is context-free, applying
their method on the finite automata for s−1(L1), #

∗, and Lc
3 makes it possible

to effectively construct a finite automaton for Td.

Lemmas 14 and 15 lead us to a decidable result for Q1,d.

Proposition 20. The problem Q1,d is decidable if L2 is context-free and L1, L3

are regular.

It is natural to consider here whether the problem Q1,d remains decidable
or not once we change L2 from being context-free to being context-sensitive in
Proposition 20.

Proposition 21. The problem Q1,d is undecidable if L2 is context-sensitive and
L1, L3 are regular.

19

Proof. The basic idea used here has been already proposed in the proof of
Proposition 11. We claim that Σ+ →X Lb = {λ} has a solution if and only if
Lb∩Σ+ 6= ∅. From the proof of that proposition, we know that, if Lb∩Σ+ 6= ∅,
then X = {1} is a solution to the equation on the left hand side. Conversely, if
Lb ∩ Σ+ = ∅, then Lb has to be the empty set. Note that, in such a case, the
only trajectory sets T such that Σ+ →T Lb 6= ∅ are subsets of 0∗. However,
these sets cannot satisfy Σ+ →T Lb = {λ}.

Next we consider the problem Q1,d under the conditions that one of L1 and
L3 is context-free, and the other and L2 are regular. In these cases Q1,d becomes
undecidable. Actually, it is enough for the context-free language to be linear to
obtain the undecidability results.

Proposition 22. The problem Q1,d is undecidable over a binary alphabet if L1

is linear context-free and L2, L3 are regular.

Proof. We prove the proposition by reducing the problem of whether L1 = Σ∗

to one instance of our problem with L2 = {λ} and L3 = Σ∗. We claim that

∃T ⊆ {0, 1}∗ such that L1 →T {λ} = Σ∗ ⇐⇒ L1 = Σ∗.

If L1 = Σ∗, T = 0∗ satisfies the equation. Conversely, assume that there
exists T such that L1 →T {λ} = Σ∗. Then for all x ∈ Σ∗, there exist y ∈ L1

and t ∈ T such that x ∈ y →t {λ}. Note that this happens only if x = y and
|t| = |y|+ 1. Therefore, x ∈ L1 and L1 = Σ∗.

Proposition 23. The problem Q1,d is undecidable over a binary alphabet if L3

is linear context-free and L1, L2 are regular.

Proof. We prove the proposition by reducing the problem of whether there exists
I ⊆ N such that L3 = ΣI to one instance of our problem with L1 = Σ∗ and
L2 = {λ}. We claim that

∃T ⊆ {0, 1}∗ such that L3 = Σ∗ →T {λ} ⇐⇒ ∃ I ⊆ N such that L3 = ΣI .

If there exists I ⊆ N such that L3 = ΣI , then let T = {0i+1 | i ∈ I}. We
can verify that L3 = Σ∗ →T {λ}. Conversely, if there exists T ⊆ {0, 1}∗ such
that L3 = Σ∗ →T {λ}, then let I = {|t| − 1 | t ∈ T and |t| ≥ 1}. Note that we
do not consider →λ, because it is not defined for any language. We can verify
that L3 = ΣI .

We summarize the results on Q1,i and Q1,d proved in this section in Table 2
as follows.

7. Existence of left operands

We consider here two other language equations with one variable of the forms
X ←T L2 = L3 and X →T L2 = L3. The questions are formulated as: for given
languages L2, L3 and a given trajectory set T ,

20

Problem L1 L2 L3 Result Proof
Q1,i Reg Reg Reg D Proposition 16

CFL Reg Reg U Proposition 17
Reg CFL Reg U Proposition 18
Reg Reg CFL U Proposition 19

Q1,d Reg CFL Reg D Proposition 20
Reg CSL Reg U Proposition 21
CFL Reg Reg U Proposition 22
Reg Reg CFL U Proposition 23

Table 2: Decidability results of the problems Q1,i and Q1,d, where L1, L2, L3 are over a
non-unary alphabet, and CSL stands for the family of context-sensitive languages.

Q2,i: does there exist a solution to X ←T L2 = L3?

Q2,d: does there exist a solution to X →T L2 = L3?

By limiting a solution of the language equations considered in Q2,i and Q2,d

to a singleton, we can obtain word-variants of these questions as follows: for
languages L2, L3 and a trajectory set T ,

Qw
2,i: does there exist a word x satisfying x←T L2 = L3?

Qw
2,d: does there exist a word x satisfying x→T L2 = L3?

7.1. Positive decidability results

We first consider questionsQ2,i and Q2,d. As in the problems to find a trajec-
tory, when the answer to these questions is positive, there exists the maximum
solution Xmax due to Lemma 1. Therefore, we employ the same technique,
which constructs Xmax and checks whether this is actually a solution.

Here we propose a theorem of how to construct the Xmax candidate for Q2,i

and Q2,d in a more general setting where←T and→T are replaced by two binary
operations ◦, ⋄ : 2Σ

∗

× 2Σ
∗

→ 2Σ
∗

which are left-l-inverse to each other. This
is a generalization of Theorem 4.6 in [9]. We omit its proof because it can be
obtained by replacing left-inverse in the proof of their result with left-l-inverse.

Theorem 1. Let L2, L3 ⊆ Σ∗ be languages and ◦, ⋄ : 2Σ
∗

× 2Σ
∗

→ 2Σ
∗

be
operations which are left-l-inverse to each other. If an equation X ◦ L2 = L3

has a solution, then the language (Lc
3 ⋄ L2)

c is its maximum solution.

As done in Section 6, in order to solveQ2,i (Q2,d), it suffices to check whether
the candidate of maximum solution (Lc

3 →T L2)
c (resp. (Lc

3 ←T L2)
c) given in

Theorem 1 is actually a solution to X ←T L2 = L3 (resp. X →T L2 = L3).
When all of L2, T, L3 are regular, this check can be done efficiently. Thus, we
have the following decidability results.

Proposition 24. Both the problems Q2,i and Q2,d are decidable when L2, L3, T
are regular.

21

Recall that block insertion on trajectories becomes parallel insertion intro-
duced in [1] when T = 1∗. Thus, the following is a corollary of Proposition 24
and answers one decidability question that was left open in [1].

Corollary 4. Let ⋄ be the parallel insertion, and R2, R3 be regular languages.
The problem of whether there exists a solution to X ⋄R2 = R3 is decidable.

Now we turn our attention to questions Qw
2,i and Qw

2,d. Let us consider a
decidability result about the problem Qw

2,i first. By definition, we can easily
observe that a word x which satisfies x ←T L2 = L3 is of length at most the
length, say ℓ, of a shortest word in L3, unless L3 is empty. Thus, Qw

2,i can
be solved if we check for all the words of length at most ℓ whether the word
becomes a solution to x←T L2 = L3. This check can be done if L2 and L3 are
regular, the length of shortest words in L3 is computable, and we can give a list
consisting of all elements of length at most ℓ+ 1 of T .

Proposition 25. The problem Qw
2,i is decidable if L2 and L3 are regular, and

one can enumerate a trajectory set T .

Corollary 5. The problem Qw
2,i is decidable if L2 and L3 are regular and T is

recursive.

In contrast, a solution to x →T L2 = L3 can be arbitrarily long, but finite.
Thus, if L3 is infinite, clearly there exists no word w such that w →T L2 =
L3. Although the brute-force attack does not work for Qw

2,d, we can prove a
decidability result for this problem under an interesting condition.

Proposition 26. The problem Qw
2,d is decidable if

1. L2 is regular,

2. one can decide whether L3 is finite or not, and

3. one can enumerate a trajectory set T .

Proof. Note that the emptiness test can be achieved efficiently for regular lan-
guages. With the reason just mentioned, it suffices to consider the case when L3

is finite. Let ℓ′ be the length of longest words in L3. Then any trajectory in T
of length at least ℓ′+2 is “useless”. Since elements of T can be enumerated, we
can effectively construct T ′ = {t ∈ T | |t| ≤ ℓ′ + 1}. Due to closure properties
of the family of regular languages, the following regular language is effectively
constructible:

W = (Lc
3 ←T ′ L2)

c −
⋃

S⊂L3

(Sc ←T ′ L2)
c,

where ⊂ represents proper inclusion. We claim that, for all w ∈ Σ∗, w ∈ W if
and only if w →T ′ L2 = L3.

Due to Theorem 1, given the equation X →T ′ L2 = L3, the regular set
R′ = (Lc

3 ←T ′ L2)
c is the maximal set with the property X →T ′ L2 ⊆ L3.

Therefore, w is a solution of w →T ′ L2 = L3 if and only if

1. w ∈ R′, i.e., w →T ′ L2 ⊆ L3, and

22

2. w →T ′ L2 is not a proper subset of L3, i.e., w→T ′ L2 6⊂ L3.

Note that Condition 2 is equivalent to the following one: for all S ⊂ L3, w →T ′

L2 6⊆ S, and hence w /∈ (Sc ←T ′ L2)
c. Thus, we can conclude that all the

solutions to the equation w →T ′ L2 = L3 are in W .
To decide whether there exists a word w such that w →T ′ L2 = L3, we

construct W and test the emptiness of W .

Corollary 6. The problem Qw
2,d is decidable if L2 is regular, L3 is context-free,

and T is recursive.

7.2. Undecidability results

Next, we obtain undecidability results about Q2,i, Q2,d, and their word-
variants. We exclude the case when L2 and L3 are over a unary alphabet.

In the following, we will prove that if one of L2, L3, T becomes context-
free and the others remain regular, then Q2,i becomes undecidable. This is
not always the case for Qw

2,i (cf. Proposition 25), but the unsettled cases are
considered, that is when either L2 or L3 becomes context-free, and the other
one as well as T are regular, then Qw

2,i becomes undecidable.

Remark 3. The problems Q2,i and Qw
2,i are undecidable when L2 is context-

free and L3, T are regular. This is because these problems with some specific
T , say T = 0∗1 (catenation), T = 0∗10∗ (insertion), or T =

⋃

0≤n≤k 0
∗10n

(k-insertion), are known to be undecidable ([1, 2]).

More generally, we can prove that for any non-empty trajectory set T ⊆
0∗10∗, these problems are undecidable, though we omit its proof here.

The next case is when L3 is context-free. The following proposition addresses
the undecidability of Q2,i and Qw

2,i at the same time. To that end, we employ
a technique to reduce an undecidable problem into a language equation X ←T

L2 = L3 which can have only a singleton solution.

Proposition 27. The problems Q2,i and Qw
2,i over a ternary alphabet Σ are

undecidable if L2, T are regular and L3 is context-free.

Proof. For a given non-empty context-free language L ⊆ Σ∗, let L3 = #L,
where # is a special symbol not included in Σ. Also let L2 = Σ∗ and T = {01}.
Due to the definition of T , if X is a solution, then {x ∈ X | |x| = 1} is also a
solution. We claim that L = Σ∗ if and only if X ←01 Σ∗ = #L has a solution
which consists only of a word of length 1. In fact, the only possible solution is
X = {#} so that the direct implication is trivial with X = {#}. Assume that
L 6= Σ∗, i.e., there exists a word w 6∈ L. Since #w 6∈ #L, this equation cannot
have the solution X = {#}. Consequently, L = Σ∗ if and only if the equation
X ←01 Σ∗ = #L has a solution. It is undecidable whether a given non-empty
context-free language is equal to Σ∗ so that our problem is also undecidable.

The remaining case is when T is context-free. In this case, Qw
2,i remains

decidable as mentioned previously.

23

Proposition 28. The problem Q2,i over a binary alphabet is undecidable if L2

is finite, L3 is regular, and T is context-free.

Proof. Let L be an arbitrary CFL over {a, b}. Let h map a to 01 and b to 10,
and choose T = h(L)0. Note that T = {01, 10}∗0 if and only if L = {a, b}∗.

We claim that X ←T {c} = {#c#, c##}∗ has a solution if and only if
T = {01, 10}∗0. In order to verify this claim, we firstly observe that for any
t ∈ T , w ←t {c} ∈ {#c#, c##}∗ if and only if w = #|t|−1 and w ←t {c} =
f(φ(t)0−1), where f substitutes # for 0 and c for 1. Let m ≥ 0 such that t ∈
{01, 10}m0. Assume that w←t {c} is in {#c#, c##}∗. Note that |φ(t)0−1|1 =
m and φ(t)0−1 ∈ {010, 100}m. Due to the representation lemma, w ←t {c} =

w
∃
φ(t)0−1 c|φ(t)0

−1|1 = w
∃
φ(t)0−1 cm, and the above assumption implies

that w
∃
φ(t)0−1 cm ∈ {#c#, c##}m. By comparing the number of #’s, we

can see that w = #2m. Then w ←t {c} = f(φ(t)0−1). Thus, X ←T {c} =
{#c#, c##}∗ has a solution if and only if φ(T)0−1 = {010, 100}∗ if and only if
T = {01, 10}∗0.

Now we change our focus onto Q2,d and its word-variant.

Remark 4. It is known that the problems Q2,d and Qw
2,d with T = 0∗1 (right

quotient) are undecidable when L2 is context-free and L3 is regular [1]. Thus in
general the problems Q2,d and Qw

2,d are undecidable for context-free L2, regular
L3, and regular T .

Proposition 29. The problem Q2,d over a ternary alphabet is undecidable if
L2 and T are regular, and L3 is context-free.

Proof. Note that the inclusion is undecidable for the class of context-free lan-
guages which contains neither λ nor a word of length 1. Let # be a special
symbol not included in Σ. Let L4, L5 ⊆ Σ∗ be given context-free languages
such that L4 ∩ (Σ ∪ {λ}) = L5 ∩ (Σ ∪ {λ}) = ∅. Note that #(L4 ∪L5) ∪L4# is
context-free. Here we claim that L5 ⊆ L4 if and only if the following equation
has a solution:

X →10∗∪0∗1 ({#} ∪Σ) = #(L4 ∪ L5) ∪ L4#.

If the inclusion holds, then the right-hand side of the equation becomes
#L4 ∪L4# so that the equation has a solution #L4#. Next suppose that even
when L5 6⊆ L4, the equation found a solution. Then L5 contains a word w
which is not in L4. Since #w is in #(L4 ∪ L5), X has to contain either #w#,
#2w, #wa, or b#w for some a, b ∈ Σ. Let w = w′cd for some w′ ∈ Σ∗ and
c, d ∈ Σ; note that w is of length at least 2 due to the assumption on L5. From
these four words, this deletion would also generate w#, #2w′c, wa, and b#w′c,
respectively. However, none of them can be a member of #(L4 ∪ L5) ∪ L4#.
Thus, this claim holds.

Proposition 30. The problem Q2,d over a ternary alphabet is undecidable if
L2 is finite, L3 is regular, and T is context-free.

24

Problem L2 L3 T Result Proof
Q2,i Reg Reg Reg D Proposition 24

CFL Reg Reg U [1, 2], Remark 3
Reg CFL Reg U Proposition 27
FIN Reg CFL U Proposition 28

Q2,d Reg Reg Reg D Proposition 24
CFL Reg Reg U [1], Remark 4
Reg CFL Reg U Proposition 29
FIN Reg CFL U Proposition 30

Table 3: Decidability results of the problems Q2,i and Q2,d, where L2 and L3 are over a
non-unary alphabet.

Problem L2 L3 T Result Proof
Qw

2,i Reg Reg REC D Corollary 5
CFL Reg Reg U [1, 2], Remark 3
Reg CFL Reg U Proposition 27

Qw
2,d Reg CFL REC D Corollary 6

CFL Reg Reg U [1], Remark 4

Table 4: Decidability results of the problems Qw
2,i and Qw

2,d
, where L2 and L3 are over a

non-unary alphabet. CSL and REC stand for the families of context-sensitive languages and
of recursive languages, respectively.

Proof. Let L be an arbitrary CFL over {a, b}, and h be a homomorphism defined
as h(a) = 01 and h(b) = 10. Then we define a trajectory set T = 0h(L)∪0∗∪01+,
and for F2 = {a, b} and R3 = {#a,#b}+ ∪ (#ab)∗, we claim the following:

h(L) = {01, 10}∗ if and only if X →T F2 = R3 has a solution.

First of all, we note that (#ab)∗ →01+ F2 = ∅. This is because deleting F2

from a word according to 01+ means deleting 2n-th (n ≥ 1) letter of the word,
but only when all of them are in F2, and this condition cannot be satisfied as
exemplifed that the 4-th letter of #ab#ab is #.

If h(L) = {01, 10}∗, then we can easily check that X = (#ab)∗ is a solution.
Conversely, if the equation has a solution X , then X must be a subset of R3

because T contains 0∗. If X contains a word in {#a,#b}+, then by deleting
F2 from the word according to 01+, we would obtain a word in #+, but this
is not in R3; hence, X ⊆ (#ab)∗. And, this inclusion actually must be equal
since we cannot obtain a word in (#ab)∗ by deleting F2 from another word
in the set according to T . Let us define a mapping g as g(01) = #b and
g(10) = #a. If h(L) does not contain t, then g(t) 6∈ X →T F2. Thus, h(L) must
be {01, 10}∗.

The results proved in this section are summarized in Tables 3 and 4.

25

8. Conclusion

In this paper, we introduced the notion of block insertion and deletion on
trajectories for the study of properties of language operations under some par-
allel constraints. These operations are in fact proper generalizations of several
known sequential and parallel binary operations in formal language theory such
as catenation, sequential insertion, k-insertion, parallel insertion, quotient, se-
quential deletion, k-deletion, etc.

Mainly based on the representation lemmas, which relate these new opera-
tions to shuffle and deletion on trajectories, we examined the closure properties
of the families of regular and context-free languages under these operations, and
considered three types of language equation problems involving the operations.

In Section 7, the decidability of a solution to the language equation X ←T

L2 = L3 and its deletion variant was investigated, but the analogous problem
on L1 ←T X = L3 and L1 →T X = L3 remains open.

Acknowledgements

We wish to express our gratitude to the anonymous referees for their valuable
constructive comments on the earlier version of this paper. This research was
supported by The Natural Sciences and Engineering Research Council of Canada
Discovery Grant R2824A01 and Canada Research Chair Award to L.K.

[1] L. Kari, On Insertion and Deletion in Formal Languages, Ph.D. thesis, Uni-
versity of Turku, Department of Mathematics, SF-20500 Turku, Finland,
1991.

[2] L. Kari, G. Thierrin, K-catenation and applications: k-prefix codes, Jour-
nal of Information and Optimization Sciences 16 (1995) 263–276.

[3] L. Kari, S. Seki, Schema for parallel insertion and deletion, in: Y. Gao,
H. Lu, S. Seki, S. Yu (Eds.), Developments in Language Theory, volume
6224 of LNCS, pp. 267–278.

[4] M. Kudlek, A. Mateescu, On distributed catenation, Theor. Comput. Sci.
180 (1997) 341–352.

[5] M. Kudlek, A. Mateescu, On mix operation, in: G. Păun, A. Salomaa
(Eds.), New Trends in Formal Languages, volume 1218 of LNCS, pp. 430–
439.

[6] M. Domaratzki, Deletion along trajectories, Theor. Comput. Sci. 320
(2004) 293–313.

[7] A. Mateescu, G. Rozenberg, A. Salomaa, Shuffle on trajectories: Syntactic
constraints, Theor. Comput. Sci. 197 (1998) 1–56.

[8] L. Kari, P. Sośık, Language Deletion on Trajectories, Technical Report 606,
University of Western Ontario, 2003.

26

[9] L. Kari, On language equations with invertible operations, Theor. Com-
put. Sci. 132 (1994) 129–150.

[10] S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook
of Formal Languages, volume 1, Springer-Verlag, 1997, pp. 41–110.

[11] J.-M. Autebert, J. Berstel, L. Boasson, Context-free languages and push-
down automata, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal
Languages, volume 1, Springer-Verlag, 1997, pp. 111–174.

[12] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

[13] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, 1979.

[14] S. Ginsburg, The Mathematical Theory of Context-Free Languages,
McGraw-Hill, New York, 1966.

[15] S. Ginsburg, E. H. Spanier, Quotients of context-free languages, Journal
of the ACM 10 (1963) 487–492.

[16] A. Mateescu, A. Salomaa, Aspects of classical language theory, in:
G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol-
ume 1, Springer-Verlag, 1997, pp. 175–252.

[17] R. J. Parikh, On context-free languages, J. ACM 13 (1966) 570–581.

[18] L. Kari, P. Sośık, Aspects of shuffle and deletion on trajectories,
Theor. Comput. Sci. 331 (2005) 47–61.

[19] M. Domaratzki, K. Salomaa, Decidability of trajectory-based equations,
Theor. Comput. Sci. 345 (2005) 304–330.

27

