
March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

State Complexity of Two Combined Operations: Catenation-Star and

Catenation-Reversal∗

Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu

Department of Computer Science, The University of Western Ontario, London, Ontario,

Canada, N6A 5B7, {bcui2, ygao72, lila, syu} @csd.uwo.ca

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

This paper is a continuation of our research work on state complexity of combined op-
erations. Motivated by applications, we study the state complexities of two particular

combined operations: catenation combined with star and catenation combined with re-

versal. We show that the state complexities of both of these combined operations are
considerably less than the compositions of the state complexities of their individual par-

ticipating operations.

Keywords: Automata; regular language; state complexity; combined operation.

1. Introduction

It is worth mentioning that in the past 15 years, a large number of papers have

been published on state complexities of individual operations, for example, the state

complexities of basic operations such as union, intersection, catenation, star, etc.

[6, 9, 10, 14, 16, 17, 18], and the state complexities of several other operations such

as shuffle, orthogonal catenation, proportional removal, and cyclic shift [2, 4, 5, 11].

However, in practice, it is common that several operations, rather than only a single

operation, are applied in a certain order on a number of finite automata. The state

complexity of combined operations is certainly an important research direction in

state complexity research. The state complexities of a number of combined opera-

tions have been studied in the past two years. It has been shown that the state com-

plexity of a combination of several operations are usually not equal to the compo-

sition of the state complexities of individual participating operations [7, 12, 13, 15].

In this paper, we study the state complexities of catenation combined with star,

i.e., L1L
∗
2, and reversal, i.e., L1L

R
2 , respectively, where L1 and L2 are regular lan-

∗This work is supported by Natural Science and Engineering Council of Canada Discovery

Grant R2824A01, Canada Research Chair Award, and Natural Science and Engineering Coun-
cil of Canada Discovery Grant 41630. All correspondence should be directed to Bo Cui at

bcui2@csd.uwo.ca.

1

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

2 Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu

guages. These two combined operations are useful in practice. For example, the

regular expressions that match URLs can be summarized as L1L
∗
2. Also, the state

complexity of L1L
R
2 is equal to that of catenation combined with antimorphic in-

volution (L1θ(L2)) in biology. An involution function θ is such that θ2 equals the

identity function. An antimorphic involution is the natural formalization of the

notion of Watson-Crick complementarity in biology. Moreover, the combination of

catenation and antimorphic involution can naturally formalize a basic biological

operation, primer extension. Indeed, the process of creating the Watson-Crick com-

plement of a DNA single strand w1w2 uses the enzyme DNA polymerase to extend

a known short primer p = θ(w2) that is partially complementary to it, to obtain

θ(w2)θ(w1) = θ(w1w2). This can be viewed as the catenation between the primer p

and θ(w1). The reader is referred to [1] for more details about biological definitions

and operations.

It has been shown in [18] that (1) the state complexity of the catenation of an

m-state DFA language (a language accepted by an m-state minimal complete DFA)

and an n-state DFA language is m2n − 2n−1, (2) the state complexity of the star

of a k-state DFA language, where the DFA contains at least one final state that is

not the initial state, is 2k−1 + 2k−2, and (3) the state complexity of the reversal of

an l-state DFA language is 2l. In this paper, we show that the state complexities of

L1L
∗
2 and L1L

R
2 are considerably less than the compositions of their individual state

complexities. Let L1 and L2 be two regular languages accepted by two complete

DFAs of sizes p and q, respectively. We will show that, if the q-state DFA has

only one final state which is also its initial state, the state complexity of L1L
∗
2 is

p2q − 2q−1; in the other cases, that is when the q-state DFA contains some final

states that are not the initial state, the state complexity of L1L
∗
2 is (3p−1)2q−2. This

is in contrast to the composition of state complexities of catenation and star that

equals (2p − 1)22
q−1+2q−2−1. We will also show that the state complexity of L1L

R
2

is p2q − 2q−1 − p+ 1 instead of p22
q − 22

q−1, the composition of state complexities

of catenation and reversal. In fact, it is clear that these direct compositions are

too high to be reached, because, by using the standard NFA constructions, we can

obtain two upper bounds, 2p+q+1 and 2p+q, for the state complexities of L1L
∗
2 and

L1L
R
2 , respectively. However, they are still significantly higher than the actual state

complexities obtained in this paper.

The paper is organized as follows. We introduce the basic notations and defini-

tions used in this paper in the following section. Then we study the state complexi-

ties of catenation combined with star and reversal in Sections 3 and 4, respectively.

We conclude the paper in Section 5.

2. Preliminaries

An alphabet Σ is a finite set of letters. A word w ∈ Σ∗ is a sequence of letters in

Σ, and the empty word, denoted by λ, is the word of 0 length.

An involution θ : Σ → Σ is a function such that θ2 = I where I is the identity

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

State Complexity of Two Combined Operations: Catenation-Star and Catenation-Reversal 3

function and can be extended to an antimorphic involution if, for all u, v ∈ Σ∗,

θ(uv) = θ(v)θ(u). For example, let Σ = {a, b, c} and define θ by θ(a) = b, θ(b) =

a, θ(c) = c, then θ(aabc) = cabb. Note that the well-known DNA Watson-Crick

complementarity is a particular antimorphic involution defined over the four-letter

DNA alphabet, ∆ = {A,C,G, T}.
A non-deterministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, s, F),

where Q is a finite set of states, s ∈ Q is the start state, and F ⊆ Q is the set of

final states, δ : Q×Σ→ 2Q is the transition function. If |δ(q, a)| ≤ 1 for any q ∈ Q
and a ∈ Σ, then the automaton is called a deterministic finite automaton (DFA). A

DFA is said to be complete if δ(q, a) is defined for all q ∈ Q and a ∈ Σ. All the DFAs

we mention in this paper are assumed to be complete. We extend δ to Q×Σ∗ → Q

in the usual way. Then the automaton accepts a word w ∈ Σ∗ if δ(s, w) ∩ F 6= ∅.
Two states p, q ∈ Q are equivalent if the following condition holds: δ(p, w) ∈ F

if and only if δ(q, w) ∈ F for all words w ∈ Σ∗. It is well-known that a language

which is accepted by an NFA can be accepted by a DFA, and such a language is

said to be regular. The language accepted by a finite automaton A is denoted by

L(A). The reader is referred to [8] for more details about regular languages and

finite automata.

The state complexity of a regular language L, denoted by sc(L), is the number of

states of the minimal complete DFA that accepts L. The state complexity of a class

S of regular languages, denoted by sc(S), is the supremum among all sc(L), L ∈ S.

The state complexity of an operation on regular languages is the state complexity

of the resulting language from the operation as a function of the state complexities

of the operand languages. For example, we say that the state complexity of the

intersection of an m-state DFA language and an n-state DFA language is exactly

mn. This implies that the largest number of states of all the minimal complete

DFAs that accept the intersection of two languages accepted by two DFAs of sizes

m and n, respectively, is mn, and such languages exist. Thus, in a certain sense,

the state complexity of an operation is a worst-case complexity.

3. Catenation combined with star

In this section, we consider the state complexity of catenation combined with star.

Let L1 and L2 be two languages accepted by two DFAs of sizesm and n, respectively.

We notice that, if the n-state DFA has only one final state which is also its initial

state, this DFA also accepts L∗2. Thus, in such a case, an upper bound for the number

of states of any DFA that accepts L1L
∗
2 = L1L2 is given by the state complexity

of catenation as m2n − 2n−1. We first show that this upper bound is reachable by

some DFAs of this form (Lemma 1). Then we consider the state complexity of L1L
∗
2

in the other cases, that is when the n-state DFA contains some final states that are

not the initial state. We show that, in such cases, the upper bound (Theorem 3)

coincides with the lower bound (Theorem 4).

Lemma 1. For any m ≥ 2 and n ≥ 2, there exists a DFA A of m states and a

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

4 Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu

DFA B of n states, where B has only one final state that is also the initial state,

such that any DFA accepting the language L(A)L(B), which is equal to L(A)L(B)∗,

needs at least m2n − 2n−1 states.

The DFAs that prove Theorem 1 in [10] can be used to prove this lemma with

a slight modification of the second DFA. We change its original final state into a

non-final state. We also change its initial state so that it is not only the initial state

but also the only final state. As a result, the proof for Lemma 1 is very similar to

that of Theorem 1 in [10], and hence is omitted.

Note that, if n = 1, due to Theorem 3 in [18], for any DFA A of size m ≥ 1, the

state complexity of a DFA accepting L(A)L(B) (L(A)L(B)∗) is m.

In the rest of this section, we only consider the cases when the DFA for L2

contains at least one final state that is not the initial state. Thus, the DFA for L2

is of size at least 2.

When considering the size of the DFA for L1, we notice that, when the size of

this DFA is 1, the state complexity of L1L
∗
2 is 1.

Lemma 2. Let A be a 1-state DFA and B be a DFA of n ≥ 1 states over the same

alphabet Σ. Then the necessary and sufficient number of states for a DFA to accept

L(A)L(B)∗ is 1.

Proof. Since A is complete, L(A) is either ∅ or Σ∗. We need to consider only the

case L(A) = Σ∗. Then we have Σ∗ ⊆ L(A)L(B)∗ ⊆ Σ∗. Thus, L(A)L(B)∗ = Σ∗,

and it is accepted by a DFA of 1 state.

Now, we focus on the cases when m > 1 and n > 1, and give an upper bound

for the state complexity of L1L
∗
2.

Theorem 3. Let A = (Q1,Σ, δ1, s1, F1) be a DFA such that |Q1| = m > 1 and

|F1| = k1, and B = (Q2,Σ, δ2, s2, F2) be a DFA such that |Q2| = n > 1 and |F2 −
{s2}| = k2 ≥ 1. Then there exists a DFA of at most m(2n−1+2n−k2−1)−k12n−k2−1

states that accepts L(A)L(B)∗.

Proof. We denote F2 − {s2} by F0. Then, |F0| = k2 ≥ 1.

We construct a DFA C = {Q,Σ, δ, s, F} for the language L1L
∗
2, where L1 and

L2 are the languages accepted by DFAs A and B, respectively. Intuitively, C is

constructed by first constructing a DFA B′ for accepting L∗2, then catenating A to

this new DFA. Note that, in the construction for B′, we need to add an additional

initial and final state s′2. By careful examination, we can check that the states of

B′ are state s′2 and the elements in P − {∅}, where P is defined in the following.

As the state set we choose Q = {r ∪ p | r ∈ R and p ∈ P}, where

R = {{qi} | qi ∈ Q1 and qi 6∈ F1} ∪ {{qi, s′2} | qi ∈ Q1 and qi ∈ F1}, and

P = {S | S ⊆ (Q2 − F0)} ∪ {T | T ⊆ Q2, s2 ∈ T, and T ∩ F0 6= ∅}.

If s1 6∈ F1, the initial state s is s = {s1} ∪ {∅}, otherwise, s = {s1, s′2} ∪ {∅}.

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

State Complexity of Two Combined Operations: Catenation-Star and Catenation-Reversal 5

The set of final states F is chosen to be F = {S ∈ Q | S ∩ (F2 ∪ {s′2}) 6= ∅}.
We denote a state in Q as {qi} ∪ G1 ∪ G2, where qi ∈ Q1, G1 ⊆ {s′2}, and

G2 ⊆ Q2. Then the transition relation δ is defined as follows:

δ({qi} ∪G1 ∪G2, a) = D0 ∪D1 ∪D2, for any a ∈ Σ, where

D0: If δ1(qi, a) = q′i ∈ F1, D0 = {q′i, s′2}, otherwise, D0 = {q′i}.
D1: If G1 = ∅, D1 = ∅, otherwise,

D1 = δ2(s2, a), if δ2(s2, a) ∩ F0 = ∅;D1 = δ2(s2, a) ∪ {s2}, otherwise.

D2: If G2 = ∅, D2 = ∅, otherwise,

D2 = δ2(G2, a), if δ2(G2, a) ∩ F0 = ∅;D2 = δ2(G2, a) ∪ {s2}, otherwise.

We can verify that the DFA C indeed accepts L1L
∗
2. The computation of C

always starts with the initial state of A, and, after reaching a final state of A, it

also reaches s′2 by the λ-transition of the catenation operation. Up to this point,

the states of Q we have visited contain only one state q of A, and s′2 if q is a final

state. After reaching some states of B′, the computation simulates the transition

rules of both A and B′. It is clear that each state in Q should consist of exactly one

state in Q1 and the states in one element of P . Moreover, if a state of Q contains

a final state of A, then this state also contains the state s′2.

To get an upper bound for the state complexity of catenation combined with

star, we should count the number of states of Q. However, as we will show in the

following, some states in Q are equivalent.

Note that, in a standard construction for B′, states s′2 and s2 should reach the

same state on any letter in Σ. Also note that a state of Q contains s′2 only when

it contains a final state of A. Moreover, there exist pairs of states, denoted by

{qf , s′2, s2}∪T and {qf , s′2}∪T , such that qf is a final state of A and T ⊆ Q2 \{s2}.
Then we show that the two states in each of such pairs are equivalent as follows.

For a letter a ∈ Σ and a word w ∈ Σ∗,

δ({qf , s′2, s2} ∪ T, aw) = δ({qf , s′2} ∪ T, aw) = δ(δ({qf , s′2} ∪ T, a), w).

Note that the equivalent states are only in the set F1×{s′2}×{S | S ⊆ (Q2−F0)},
and we can furthermore partition this set into two sets as

F1 × {s′2} × {s2} × {S′ | S′ ⊆ (Q2 − F0 − {s2})} ∪
F1 × {s′2} × {S′ | S′ ⊆ (Q2 − F0 − {s2})}.

It is easy to see that, for each state in the former set, there exists one and only one

equivalent state in the latter set, and vice versa. Thus, the number of equivalent

pairs is k12n−k2−1.

Finally, we calculate the number of inequivalent states of Q. Notice that there are

m elements inR, 2n−k2 elements in the first term of P , and (2k2−1)2n−k2−1 elements

in the second term of P . Therefore, the size of Q is |Q| = m(2n−1 +2n−k2−1). Then,

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

6 Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu

after removing one state from each equivalent pair, we obtain the following upper

bound

m(2n−1 + 2n−k2−1)− k12n−k2−1.

Next, we give examples to show that this upper bound can be reached.

Theorem 4. For any integers m ≥ 2 and n ≥ 2, there exists a DFA A of m states

and a DFA B of n states such that any DFA accepting L(A)L(B)∗ needs at least

m
3

4
2n − 2n−2 states.

Proof. We first give witness DFAs A and B of sizes m ≥ 2 and n = 2, respectively.

We use a three-letter alphabet Σ = {a, b, c}.
Let A = (Q1,Σ, δ1, q0, {qm−1}), where Q1 = {q0, q1, . . . , qm−1} and the transi-

tions are given as:

• δ1(qi, a) = qi+1, i ∈ {0, . . . ,m− 2}, δ1(qm−1, a) = q0,

• δ1(qi, b) = qi+1, i ∈ {0, . . . ,m− 3}, δ1(qm−2, b) = q0, δ1(qm−1, b) = qm−2,

• δ1(qi, c) = qi+1, i ∈ {0, . . . ,m− 3}, δ1(qm−2, c) = q0, δ1(qm−1, c) = qm−1.

Let B = (Q2,Σ, δ2, 0, {1}), where Q2 = {0, 1} and the transitions are given as:

δ2(0, a) = 1, δ2(0, b) = 0, δ2(0, c) = 0, δ2(1, a) = 0, δ2(1, b) = 1, δ2(1, c) = 0.

Following the construction described in the proof of Theorem 3, we construct a

DFA C = (Q3,Σ, δ3, s3, F3) that accepts L(A)L(B)∗. Note that set P only contains

three elements P = {∅, {0}, {0, 1}}. Thus, the proof for this case is straightforward,

and hence is omitted. This omitted proof can be found in [3].

In the rest of the proof, we consider more general cases when the first DFA is of

size m ≥ 2 and the second DFA is of size n ≥ 3. We still use the same DFA A, and

give an example of DFA D such that the number of states of a DFA that accepts

L(A)L(D)∗ reaches the upper bound. We use the same alphabet Σ = {a, b, c}.
Define D = (Q4,Σ, δ4, 0, {n− 1}), where Q4 = {0, 1, . . . , n− 1}, and the transi-

tions are given as

• δ4(i, a) = i+ 1, i ∈ {0, . . . , n− 2}, δ4(n− 1, a) = 0,

• δ4(0, b) = 0, δ4(i, b) = i+ 1, i ∈ {1, . . . , n− 2}, δ4(n− 1, b) = 1,

• δ4(i, c) = i, i ∈ {0, . . . , n− 2}, δ4(n− 1, c) = 1.

Let E = (Q5,Σ, δ5, s5, F5) be the DFA for accepting the language L(A)L(D)∗

constructed from A and D exactly as described in the proof of the previous theorem.

Then we are going to show that (1) all the states in Q5 are reachable from the

initial state, and (2), after merging the states that are shown to be equivalent in

the previous theorem, all the remaining states are pairwise inequivalent.

We first consider (1). Recall that every state in Q5 consists of exactly one state of

Q1 and the states of an element in P defined from the states of D as in the previous

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

State Complexity of Two Combined Operations: Catenation-Star and Catenation-Reversal 7

theorem. Moreover, if a state of Q5 contains a final state of A, then this state also

contains 0′. Thus, we denote each state in Q5 as Q′i ∪ S, where Q′i = {qi} for

i ∈ {0, . . . ,m−2}, Q′m−1 = {qm−1, 0′}, and S ∈ P . States Q′1∪{∅}, . . . , Q′m−1∪{∅}
are reachable since Q′i ∪ {∅} = δ5(Q′0 ∪ {∅}, ai), for i ∈ {1, 2, . . . ,m − 1}. Then we

prove that the rest of the states are reachable by induction on the size of S.

Basis: We show that, for any i ∈ {0, . . . ,m − 1}, state Q′i ∪ S such that S

contains only one state of B is reachable. We first consider two special cases where

S = {0} and S = {1}.
For the case S = {0}, since Q′m−1 ∪ {∅} is reachable, we have Q′m−1 ∪ {0} =

δ5(Q′m−1∪{∅}, c). Then, from state Q′m−1∪{0}, by reading a letter b, we can reach

state Q′m−2 ∪ {0}. Furthermore, we can reach the other states where S = {0} as:

Q′i ∪ {0} = δ5(Q′m−2 ∪ {0}, ci+1), for i ∈ {0, . . . ,m− 3}.

For the case S = {1}, we can reach state Q′i ∪ {1} for i ∈ {1, . . . ,m − 2} from

states Q′i−1 ∪ {0} by reading a letter a. Moreover, state Q′0 ∪ {1} can be reached

from state Q′m−1 ∪ {0} by a letter a. Note that state Q′m−1 ∪ {1} has not been

considered, but we will consider it later.

Then we consider state Q′i ∪ {j} where j ≥ 2, for i ∈ {0, . . . ,m − 2}. We can

easily verify that they can be reached as follows:

Q′i ∪ {j} = δ5(Q′l ∪ {1}, bj−1),

where, if i < (j− 1) mod (m− 1), l = i− [(j− 1) mod (m− 1)] +m− 1, otherwise,

l = i− [(j − 1) mod (m− 1)].

The only states that have not been considered are states Q′m−1 ∪ {j}, j ≥ 1. It

is clear that they can be reached from Q′m−2 ∪ {j − 1} by reading a letter a.

Induction step: For i ∈ {0, . . . ,m − 1}, assume that all states Q′i ∪ S such

that |S| < k are reachable. Then we consider states Q′i ∪ S where |S| = k. Let

S = {j1, j2, . . . , jk} such that 0 ≤ j1 < j2 < . . . < jk < n−1 if n−1 6∈ S, j1 = n−1

and 0 = j2 < . . . < jk < n− 1 otherwise. There are four cases:

1. j1 = n− 1 and j2 = 0. Then, for i ∈ {1, . . . ,m− 1},

Q′i ∪ S = δ5(Q′i−1 ∪ S′, a)

where S′ = {n− 2, j3 − 1, . . . , jk − 1}, which contains k − 1 states.

For the reachability of state Q′0 ∪S, we consider the following two subcases. (1)

if j3 = 1, Q′0∪S can be reached from Q′m−1∪{n−2, 0, j4−1, . . . , jk−1} by reading

a letter a, (2) otherwise, it can be reach from Q′m−2 ∪ {n− 2, j3 − 1, . . . , jk − 1} by

reading a letter b. Note that, in both of the two subcases, state Q′0 ∪ S is reached

from a state where the size of S is k − 1 as well.

2. j1 = 0 and j2 = 1. Then, Q′0∪S = δ5(Q′m−1∪S′, a), and, for i ∈ {1, . . . ,m−1},
Q′i ∪ S = δ5(Q′i−1 ∪ S′, a), where S′ = {n − 1, 0, j3 − 1, . . . , jk − 1}. State Q′i ∪ S′,
i ∈ {0, . . . ,m− 1}, is considered in Case 1.

3. j1 = 0 and j2 = 1 + t, t > 0. Then, for i ∈ {0, . . . ,m− 2},

Q′i ∪ S = δ5(Q′l ∪ S′, bt)

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

8 Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu

where, if i < t mod (m − 1), l = i − [t mod (m − 1)] + m − 1, otherwise, l =

i− [t mod (m−1)], and S′ = {0, 1, j3− t, . . . , jk− t}, which is considered in Case 2.

For state Q′m−1 ∪ S, we can verify that it is reachable from state Q′m−1 ∪ S′ by

reading a letter c, where S′ = {j2, j3, . . . , jk} and it is of size k − 1.

4. j1 = t > 0. We first consider the case when t = 1. It is clear that state Q′0 ∪S
and state Q′i ∪ S, i ∈ {1, . . . ,m − 1}, can be reached from states Q′m−1 ∪ S′ and

Q′i−1 ∪ S′, respectively, by reading a letter a, where S′ = {0, j2 − 1, . . . , jk − 1},
which is considered in either Case 2 or Case 3.

Then we consider the cases when t > 1. If i ∈ {0, . . . ,m − 2}, state Q′i ∪ S is

reachable as follows:

Q′i ∪ S = δ5(Q′l ∪ {1, j2 − t+ 1, . . . , jk − t+ 1}, bt−1),

where, if i < (t − 1) mod (m − 1), then l = i − [(t − 1) mod (m − 1)] + m − 1,

otherwise, l = i− [(t− 1) mod (m− 1)].

For the remaining states, state Q′m−1 ∪ S can be reached from state Q′m−2 ∪
{j1 − 1, j2 − 1, . . . , jk − 1} by reading a letter a.

Now, we show that, after merging the states that are proven to be equivalent,

the rest of the states are pairwise inequivalent. Let {qi} ∪ G and {qj} ∪H be two

different states in Q5, where qi, qj ∈ Q1, with 0 ≤ i ≤ j ≤ m− 1. Then we consider

the following three cases:

1. i < j. Then the string am−1−ic is accepted by DFA E starting from state

{qi} ∪G, but it is not accepted starting from state {qj} ∪H. Note that, on a letter

c, E remains in the same state for any non-final state, and goes to state 1 from

state n− 1.

2. i = j 6= m−1. Without loss of generality, there exists a state k of D such that

k ∈ G and k 6∈ H. We first consider a special case when H ⊂ G and G−H = {0}.
That is, the only difference between G and H is that G contains one more state 0

than H. In such a case, we can verify that the string abn−2 is accepted by DFA E

starting from state {qi} ∪G, but it is not accepted starting from state {qj} ∪H. In

other cases, we can assume that k > 0. Then the string bn−1−k is accepted by DFA

E starting from state {qi} ∪G, but it is not accepted starting from state {qj} ∪H.

3. i = j = m− 1. Recall from the proof of Theorem 3 that we can partition the

subset {qm−1} × {0′} × {S | S ⊆ (Q4 − F0)} of Q5 into

{qm−1} × {0′} × {0} × {S′ | S′ ⊆ (Q4 − F0 − {0})} ∪
{qm−1} × {0′} × {S′ | S′ ⊆ (Q4 − F0 − {0})}.

Moreover, for each state in the former set, there exists one and only one equivalent

state in the latter set, and vice versa. Thus, we remove all the states in the former

set from Q5. Then, without loss of generality, there exists a state k of D such that

k 6= 0′, k 6= 0, k ∈ G, and k 6∈ H. We can verify that the string b2n−2−k is accepted

starting from state {qi} ∪G, but it is not accepted starting from state {qj} ∪H.

From (1) and (2), we know that DFA E has m
3

4
2n− 2n−1 reachable states, and

any two of them are not equivalent. Since we have considered all the pairs of DFAs

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

State Complexity of Two Combined Operations: Catenation-Star and Catenation-Reversal 9

of sizes larger than 1, the proof is completed.

4. Catenation combined with reversal

In this section, we first show that the state complexity of catenation combined with

an antimorphic involution θ (L1θ(L2)) is equal to that of catenation combined with

reversal. That is, we show, for two regular languages L1 and L2, that sc(L1θ(L2)) =

sc(L1L
R
2) (Corollary 7). Then we obtain the state complexity of L1L

R
2 by proving

that its upper bound (Theorem 8) coincides with its lower bound (Theorem 9,

Theorem 10, and Lemma 11).

We note that an antimorphic involution θ can be simulated by the composition

of two simpler operations: reversal and a mapping φ, which is defined as φ(a) = θ(a)

for any letter a ∈ Σ, and φ(uv) = φ(u)φ(v) where u, v ∈ Σ+. Thus, for a language L,

we have θ(L) = φ(LR) and θ(L) = (φ(L))R. It is clear that φ is a homomorphism.

Thus, the language resulting from applying such a mapping to a regular language

remains to be regular. Moreover, we can obtain a relationship between the sizes of

the two DFAs that accept L and φ(L), respectively.

Lemma 5. Let L ⊆ Σ∗ be a language that is accepted by a minimal DFA of size n,

n ≥ 1. Then the necessary and sufficient number of states of a DFA to accept φ(L)

is n.

Proof. Note that, for a minimal DFA A, the minimal DFA A′ that accepts φ(L(A))

has the same states as those of A, but the labels of the transitions are changed.

Thus, we just need to show that 1) all the states in A′ are reachable, and 2) any

two states in A′ are not equivalent. For 1), if a state of A can be reached from the

initial state by reading a word u, then the same state can be reached from the initial

state of A′ by reading the word φ(u). For 2), for any two states p, q in A, since they

are inequivalent, then there exists a word v such that it leads p to a final state but

leads q to a non-final state. It is clear that the word φ(v) can distinguish p from q

in A′ by leading them to a final and a non-final states, respectively.

In order to show that the state complexity of L1θ(L2) is equal to that of L1L
R
2 ,

we first show that the state complexity of catenation combined with φ is equal

to that of catenation, i.e., for two regular languages L1 and L2, sc(L1φ(L2)) =

sc(L1L2). Due to the above lemma, if L2 is accepted by a DFA of size n, φ(L2) is

accepted by another DFA of size n as well. Thus, the upper bound for the number of

states of any DFA that accepts L1φ(L2) is clearly less than or equal to m2n−2n−1.

The next lemma shows that this upper bound can be reached by some languages.

Lemma 6. For integers m ≥ 1 and n ≥ 2, there exist languages L1 and L2 accepted

by two DFAs of sizes m and n, respectively, such that any DFA accepting L1φ(L2)

needs at least m2n − 2n−1 states.

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

10 Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu

Proof. We know that there exist languages L1 and L′2 accepted by two DFAs

of sizes m and n, respectively, such that any DFA accepting L1L
′
2 needs at least

m2n − 2n−1 states. We let L2 = φ(L′2). Thus, L1φ(L2) = L1φ(φ(L′2)) = L1L
′
2.

Therefore, the lemma holds.

As a consequence, we obtain that the state complexity of catenation combined

with φ is equal to that of catenation.

Corollary 7. For two regular languages L1 and L2, sc(L1φ(L2)) = sc(L1L2).

Then we can easily see that the state complexity of catenation combined with

θ is equal to that of catenation combined with reversal as follows.

sc(L1θ(L2)) = sc(L1φ(LR
2)) = sc(L1L

R
2).

In the following, we study the state complexity of L1L
R
2 for regular languages

L1 and L2. We will first look into an upper bound of this state complexity.

Theorem 8. For two integers m,n ≥ 1, let L1 and L2 be two regular languages

accepted by an m-state DFA with k1 final states and an n-state DFA with k2 final

states, respectively. Then there exists a DFA of at most m2n−k12n−k2(2k2−1)−m+1

states that accepts L1L
R
2 .

Proof. Let M = (QM ,Σ, δM , sM , FM) be a DFA of m states, k1 final states and

L1 = L(M). Let N = (QN ,Σ, δN , sN , FN) be another DFA of n states, k2 final

states and L2 = L(N). Let N ′ = (QN ,Σ, δN ′ , FN , {sN}) be an NFA with k2 initial

states. δN ′(p, a) = q if δN (q, a) = p where a ∈ Σ and p, q ∈ QN . Clearly,

L(N ′) = L(N)R = LR
2 .

After performing the subset construction on N ′, we can get an equivalent, 2n-

state DFA A = (QA,Σ, δA, sA, FA) such that L(A) = LR
2 . Please note that A

may not be minimal and since A has 2n states, one of its final state must be QN .

Now we construct a DFA B = (QB ,Σ, δB , sB , FB) accepting the language L1L
R
2 ,

where QB = {〈i, j〉 | i ∈ QM , j ∈ QA}, if sM 6∈ FM , sB = 〈sM , ∅〉, otherwise,

sB = 〈sM , FN 〉, FB = {〈i, j〉 ∈ QB | j ∈ FA}, and

δB(〈i, j〉, a) = 〈i′, j′〉, if δM (i, a) = i′, δA(j, a) = j′, a ∈ Σ, i′ /∈ FM ;

= 〈i′, j′ ∪ FN 〉, if δM (i, a) = i′, δA(j, a) = j′, a ∈ Σ, i′ ∈ FM .

It is easy to see that δB(〈i, QN 〉, w) ∈ FB for any i ∈ QM and w ∈ Σ∗. This means

all the states (two-tuples) ending with QN are equivalent. There are m such states.

On the other hand, since NFA N ′ has k2 initial states, the states in B starting

with i ∈ FM must end with j such that FN ⊆ j. There are in total k12n−k2(2k2 −1)

states which don’t meet this.

Thus, the number of states of the minimal DFA accepting L1L
R
2 is no more than

m2n − k12n−k2(2k2 − 1)−m+ 1.

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

State Complexity of Two Combined Operations: Catenation-Star and Catenation-Reversal 11

This result gives an upper bound for the state complexity of L1L
R
2 . Next we

show that this bound is reachable.

Theorem 9. Given two integers m ≥ 2, n ≥ 2, there exists a DFA M of m states

and a DFA N of n states such that any DFA accepting L(M)L(N)R needs at least

m2n − 2n−1 −m+ 1 states.

Proof. Let M = (QM ,Σ, δM , 0, {m−1}) be a DFA, where QM = {0, 1, . . . ,m−1},
Σ = {a, b, c}, and the transitions are given as:

• δM (i, x) = i, i = 0, . . . ,m− 1, x ∈ {a, b},
• δM (i, c) = i+ 1 mod m, i = 0, . . . ,m− 1.

Let N = (QN ,Σ, δN , 0, {0}) be a DFA, where QN = {0, 1, . . . , n − 1}, Σ =

{a, b, c}, and the transitions are given as:

• δN (0, a) = n− 1, δN (i, a) = i− 1, i = 1, . . . , n− 1,

• δN (0, b) = 1, δN (i, b) = i, i = 1, . . . , n− 1,

• δN (0, c) = 1, δN (1, c) = 0, δN (j, c) = j, j = 2, . . . , n− 1, if n ≥ 3.

Now we design a DFA A = (QA,Σ, δA, {0}, FA), where QA = {q | q ⊆ QN},
Σ = {a, b, c}, FA = {q | 0 ∈ q, q ∈ QA}, and the transitions are defined as:

δA(p, e) = {j | δN (j, e) = i, i ∈ p}, p ∈ QA, e ∈ Σ.

It has been shown in [18] that A is a minimal DFA that accepts L(N)R. Let

B = (QB ,Σ = {a, b, c}, δB , sB = 〈0, ∅〉, FA) be another DFA, where

QB = {〈p, q〉 | p ∈ QM − {m− 1}, q ∈ QA − {QN}} ∪ {〈0, QN 〉}
∪ {〈m− 1, q〉 | q ∈ QA − {QN}, 0 ∈ q},

FB = {〈p, q〉 | q ∈ FA, 〈p, q〉 ∈ QB},

and for each state 〈p, q〉 ∈ QB and each letter e ∈ Σ,

δB(〈p, q〉, e) =


〈p′, q′〉 if δM (p, e) = p′ 6= m− 1, δA(q, e) = q′ 6= QN ,

〈p′, q′〉 if δM (p, e) = p′ = m− 1,

δA(q, e) = r′, q′ = r′ ∪ {0}, q′ 6= QN ,

〈0, QN 〉 if δM (p, e) = m− 1, δA(q, e) = r′, r′ ∪ {0} = QN ,

〈0, QN 〉 if δM (p, e) 6= m− 1, δA(q, e) = QN .

As we mentioned in the proof of Theorem 8, all the states (two-tuples) ending with

QN are equivalent. So here, we replace them with one state: 〈0, QN 〉. And all the

states starting with m− 1 must end with j ∈ QA such that 0 ∈ j. It is easy to see

that B accepts the language L(M)L(N)R. It has m2n − 2n−1 −m+ 1 states. Now

we show that B is a minimal DFA.

(I) We first show that every state 〈i, j〉 ∈ QB is reachable by induction on the

size of j. Let k = |j| and k ≤ n− 1. Note that state 〈0, QN 〉 is reachable from state

〈0, ∅〉 over string cmb(ab)n−2.

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

12 Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu

When k = 0, i should be less than m− 1 according to the definition of B. Then

there always exists a string w = ci such that δB(〈0, ∅〉, w) = 〈i, ∅〉.
Basis (k = 1): State 〈m − 1, {0}〉 can be reached from state 〈m − 2, ∅〉 on a

letter c. State 〈0, {0}〉 can be reached from state 〈m−1, {0}〉 on string can−1. Then,

for i ∈ {1, . . . ,m − 2}, state 〈i, {0}〉 is reachable from state 〈i − 1, {0}〉 on string

can−1. Moreover, for i ∈ {0, . . . ,m− 2}, state 〈i, j〉 is reachable from state 〈i, {0}〉
on string aj .

Induction step: Assume that all states 〈i, j〉 such that |j| < k are reachable.

Then we consider the states 〈i, j〉 where |j| = k. Let j = {j1, j2, . . . , jk} such that

0 ≤ j1 < j2 < . . . < jk ≤ n− 1. We consider the following four cases:

1. j1 = 0 and j2 = 1. State 〈m − 1, {0, 1, j3, . . . , jk}〉 is reachable from state

〈m− 2, {0, j3, . . . , jk}〉 on a letter c. Then, for i ∈ {0, . . . ,m− 2}, state 〈i, j〉 can be

reached from state 〈m− 1, {0, 1, j3, . . . , jk}〉 on string ci+1.

2. i = 0, j1 = 0, and j2 > 1. State 〈0, j〉 can be reached as follows:

〈0, {j1, j2, . . . , jk}〉 = δB(〈m− 2, {j3 − j2 + 1, . . . , jk − j2 + 1, n− j2 + 1}〉, c2aj2−1).

3. i = 0 and j1 > 0. State 〈0, j〉 is reachable from state 〈0, {0, j2−j1, . . . , jk−j1}〉
over string aj1 .

4. We consider the remaining states. For i ∈ {1, . . . ,m − 1}, state 〈i, j〉 such

that j1 = 0 and j2 > 1 can be reached from state 〈i− 1, {1, j2, . . . , jk}〉 on a letter

c, and, for i ∈ {1, . . . ,m − 2}, state 〈i, j〉 such that j1 > 0 is reachable from state

〈i, {0, j2 − j1, . . . , jk − j1}〉 over string aj1 . Recall that we do not have states 〈i, j〉
such that i = m− 1 and j1 > 0.

(II) We then show that any two different states 〈i1, j1〉 and 〈i2, j2〉 in QB are

distinguishable. Let us consider the following three cases:

1. j1 6= j2. Without loss of generality, we may assume that |j1| ≥ |j2|. Let

x ∈ j1− j2. We do not need to consider the case when x = 0, because, if 0 ∈ j1− j2,

then the two states are clearly in different equivalent classes. For 0 < x ≤ n − 1,

there exists a string t such that δB(〈i1, j1〉, t) ∈ FB and δB(〈i2, j2〉, t) /∈ FB , where

t =


an−x if i2 6= m− 1, j1 6= j2,

an−x−1ca if i2 = m− 1, j1 6= j2, n > 2,

c if i2 = m− 1, j1 6= j2, n = 2.

Note that, under the second condition, after reading the prefix an−x−1 of t, state

n− 1 cannot be in the second component of the resulting state since x 6∈ j2.

Also note that when n = 2, j1, j2 ∈ {∅, {0}, {1}, {0, 1}}. Moreover, when

i2 = m − 1, 〈i2, j2〉 can only be 〈m − 1, {0}〉. Due to the definition of B, we

have that, for s ≥ 1, 〈s,QN 〉 /∈ QB . Thus, it is easy to see that 〈i1, j1〉 is ei-

ther 〈i1, {1}〉 or 〈0, {0, 1}〉. When 〈i1, j1〉 = 〈i1, {1}〉, we have either j2 = {0} or

j2 = ∅. It is clear that in either case the two states are distinguishable. When

〈i1, j1〉 = 〈0, {0, 1}〉, a string c can distinguish them because δB(〈0, {0, 1}〉, c) ∈ FB

and δB(〈m− 1, {0}〉, c) /∈ FB .

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

State Complexity of Two Combined Operations: Catenation-Star and Catenation-Reversal 13

2. j1 = j2 6= QN , i1 6= i2. Without loss of generality, we may assume that

i1 > i2. In this case, i2 6= m − 1. Let x ∈ QN − j1. There always exists a string

u = an−x+1bcm−1−i1 such that δB(〈i1, j1〉, u) ∈ FB and δB(〈i2, j2〉, u) /∈ FB .

Let 〈i1, j′1〉 and 〈i2, j′1〉 be two states reached from states 〈i1, j1〉 and 〈i2, j2〉 on

the prefix an−x+1 of u, respectively. We notice that state 1 of N cannot be in j′1.

Then, after reading another letter b, we reach states 〈i1, j′′1 〉 and 〈i2, j′′1 〉, respectively.

It is easy to see that states 0 and 1 of N are not in j′′1 . Lastly, after reading the

remaining string cm−1−i1 from state 〈i1, j′′1 〉, the first component of the resulting

state is the final state of DFA M and therefore its second component contains state

0 of DFA N . In contrast, the second component of the resulting state reached from

state 〈i2, j′′1 〉 on the same string cannot contain state 0, and hence it is not a final

state of B. Note that this includes the case that j1 = j2 = ∅, i1 6= i2.

3. We don’t need to consider the case j1 = j2 = QN , because there is only one

state in QB which ends with QN . It is 〈0, QN 〉.
Since all the states in B are reachable and pairwise distinguishable, DFA B is

minimal. Thus, any DFA accepting L(M)L(N)R needs at least m2n−2n−1−m+ 1

states.

This result gives a lower bound for the state complexity of L(M)L(N)R when

m,n ≥ 2. It coincides with the upper bound when k1 = 1 and k2 = 1. In the rest

of this section, we consider the remaining cases when either m = 1 or n = 1. We

first consider the case when m = 1 and n ≥ 3. We have L1 = ∅ or L1 = Σ∗. When

L1 = ∅, for any L2, a 1-state DFA always accepts L1L
R
2 , since L1L

R
2 = ∅. The

following theorem provides a lower bound for the latter case.

Theorem 10. Given an integer n ≥ 3, there exists a DFA M of 1 state and a DFA

N of n states such that any DFA accepting L(M)L(N)R needs at least 2n−1 states.

Proof. Let M = (QM ,Σ, δM , 0, {0}) be a DFA, where QM = {0}, Σ = {a, b}, and

δM (0, e) = 0 for any e ∈ Σ. Clearly, L(M) = Σ∗.

Let N = (QN ,Σ, δN , 0, {n − 1}) be a DFA, where QN = {0, 1, . . . , n − 1},
Σ = {a, b}, and the transitions are given as:

• δN (0, a) = n− 2, δN (i, a) = i− 1, i = 1, . . . , n− 2, δN (n− 1, a) = n− 1

• δN (0, b) = n− 1, δN (j, b) = j, j = 1, . . . , n− 1.

Now we design a 2n-state DFA A = (QA,Σ, δA, {n − 1}, FA), where QA = {q |
q ⊆ QN}, Σ = {a, b}, FA = {q | 0 ∈ q, q ∈ QA}, and the transitions are defined as:

δA(p, e) = {j | δN (j, e) = i, i ∈ p}, p ∈ QA, e ∈ Σ.

It is easy to see that A is a DFA that accepts L(N)R. Let B =

(QB ,Σ, δB , sB , FA} be another DFA, where Σ = {a, b}, QB = {〈0, q〉 | q ∈
QA, n − 1 ∈ q}, sB = 〈0, {n − 1}〉, FB = {〈0, q〉 | q ∈ FA, 〈0, q〉 ∈ QB}, and

for each state 〈0, q〉 ∈ QB and each letter e ∈ Σ,

δB(〈0, q〉, e) = 〈0, q′〉 if δA(q, e) = q′′ and q′ = q′′ ∪ {n− 1}.

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

14 Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu

Clearly, DFA B accepts L(M)L(N)R. Since n− 1 ∈ j for any state 〈0, j〉 ∈ QB , B

has 2n−1 states in total. Now we show that B is a minimal DFA.

(I) We first show that every state 〈0, j〉 ∈ QB is reachable. We omit the case

that |j| = 1 because the only state in QB satisfying this condition is the initial

state 〈0, {n − 1}〉. When |j| > 1, assume that j = {n − 1, j1, j2, . . . , jk} where

0 ≤ j1 < j2 < . . . < jk ≤ n− 2, 1 ≤ k ≤ n− 1. There always exists a string

w = bajk−jk−1bajk−1−jk−2 · · · baj2−j1baj1

such that δB(〈0, {n− 1}〉, w) = 〈0, j〉.
(II) We then show that any two different states 〈0, j1〉 and 〈0, j2〉 in QB are

distinguishable. Without loss of generality, we may assume that |j1| ≥ |j2|. Then

let x ∈ j1 − j2. Note that x 6= n − 1 because n − 1 has to be in both j1 and

j2. We can always find a string u = an−1−x such that δB(〈0, j1〉, u ∈ FB , and

δB(〈0, j2〉, u) /∈ FB .

Since all the states in B are reachable and pairwise distinguishable, B is a

minimal DFA. Thus, any DFA accepting L(M)L(N)R needs at least 2n−1 states.

Now, we consider the case when m = 1 and n = 2. We can easily verify the

following lemma by using DFA M defined in Theorem 10, and DFA N defined as

N = (QN , {a, b}, δN , 0, {1}), where QN = {0, 1} and the transitions are given as:

δN (0, a) = 0, δN (1, a) = 1, δN (0, b) = 1, δN (1, b) = 1.

Lemma 11. There exists a 1-state DFA M and a 2-state DFA N such that any

DFA accepting L(M)L(N)R needs at least 2 states.

Finally, we consider the case when m ≥ 1 and n = 1. When L2 = ∅, for any

L1, a 1-state DFA always accepts L1L
R
2 = ∅. When L2 = Σ∗, L1L

R
2 = L1Σ∗, since

(Σ∗)R = Σ∗. Due to Theorem 3 in [18], which states that, for any DFA A of size

m ≥ 1, the state complexity of L(A)Σ∗ is m, the following is immediate.

Corollary 12. Given an integer m ≥ 1, there exists an m-state DFA M and a

1-state DFA N such that any DFA accepting L(M)L(N)R needs at least m states.

After summarizing Theorems 8, 9, and 10, Lemma 11 and Corollary 12, we

obtain the state complexity of the combined operation L1L
R
2 .

Theorem 13. For any integer m ≥ 1, n ≥ 1, m2n − 2n−1 −m+ 1 states are both

necessary and sufficient in the worst case for a DFA to accept L(M)L(N)R, where

M is an m-state DFA and N is an n-state DFA.

5. Conclusion

Motivated by their applications, we have studied the state complexities of two par-

ticular combinations of operations: catenation combined with star and catenation

March 15, 2011 23:27 WSPC/INSTRUCTION FILE cat-sr-IJFCS

State Complexity of Two Combined Operations: Catenation-Star and Catenation-Reversal 15

combined with reversal. We proved that they are significantly lower than the com-

positions of the state complexities of their individual participating operations. Thus,

this paper shows further that the state complexity of a combination of operations

has to be studied individually.

Acknowledgements

We wish to express our gratitude to the anonymous referees for their valuable

comments on the earlier version of this paper.

References

[1] M. Amos: Theoretical and Experimental DNA Computation (Natural Computing Se-
ries), Springer, 2005

[2] C. Campeanu, K. Salomaa, S. Yu: Tight lower bound for the state complexity of shuffle
of regular languages, J. Automata, Languages and Combinatorics 7 (3) (2002) 303-310

[3] B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of catenation combined with star and
reversal, in: Proc. of DCFS 2010, Saskatoon, SK, Canada, August 8-10, 2010, 58-67

[4] M. Daley, M. Domaratzki, K. Salomaa: State complexity of orthogonal catenation, in:
Proc. of DCFS 2008, Charlottetown, PE, Canada, July 16-18, 2008, 134-144

[5] M. Domaratzki: State complexity and proportional removals, J. Automata, Languages
and Combinatorics 7 (2002) 455-468

[6] M. Domaratzki, A. Okhotin: State complexity of power, Theor. Comput. Sci. 410(24-
25) (2009) 2377-2392

[7] Y. Gao, K. Salomaa, S. Yu: The state complexity of two combined operations: star of
catenation and star of Reversal, Fundam. Inform. 83 (1-2) (2008) 75-89

[8] J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata Theory, Lan-
guages, and Computation (2nd Edition), Addison Wesley, 2001

[9] J. Jirásek, G. Jirásková, A. Szabari: State complexity of concatenation and comple-
mentation of regular languages, Int. J. Found. Comput. Sci. 16 (2005) 511-529

[10] G. Jirásková: State complexity of some operations on binary regular languages, Theor.
Comput. Sci. 330 (2005) 287-298

[11] G. Jirásková, A. Okhotin: State complexity of cyclic shift, in: Proc. of DCFS 2005,
Como, Italy, June 30-July 2, 2005, 182-193

[12] G. Jirásková, A. Okhotin: On the state complexity of star of union and star of inter-
section, Turku Center for Computer Science TUCS Tech. Report No. 825, 2007

[13] G. Liu, C. Martin-Vide, A. Salomaa, S. Yu: State complexity of basic language op-
erations combined with reversal, Inform. and Comput. 206 (2008) 1178-1186

[14] G. Pighizzini, J. O. Shallit: Unary language operations, state complexity and Jacob-
sthal’s function, Int. J. Found. Comput. Sci. 13 (2002) 145-159

[15] A. Salomaa, K. Salomaa, S. Yu: State complexity of combined operations, Theor.
Comput. Sci. 383 (2007) 140-152

[16] A. Salomaa, D. Wood, S. Yu: On the state complexity of reversals of regular languages,
Theor. Comput. Sci. 320 (2004) 293-313

[17] S. Yu: State complexity of regular languages, J. Automata, Languages and Combina-
torics 6 (2) (2001) 221-234

[18] S. Yu, Q. Zhuang, K. Salomaa: The state complexity of some basic operations on
regular languages, Theor. Comput. Sci. 125 (1994) 315-328

