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Abstract

When representing DNA molecules as words, it is necessary to take into account
the fact that a word u encodes basically the same information as its Watson-
Crick complement 6(u), where 6 denotes the Watson-Crick complementarity
function. Thus, an expression which involves only a word u and its complement
can be still considered as a repeating sequence. In this context, we define and
investigate the properties of a special class of primitive words, called pseudo-
primitive words relative to € or simply #-primitive words, which cannot be ex-
pressed as such repeating sequences. For instance, we prove the existence of a
unique #-primitive root of a given word, and we give some constraints forcing
two distinct words to share their #-primitive root. Also, we present an extension
of the well-known Fine and Wilf theorem, for which we give an optimal bound.
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1. Introduction

Encoding information as DNA strands as in, e.g., DNA Computing, brings
up for investigation new features based on the specific biochemical properties
of DNA molecules. Recall that single-stranded DNA molecules can be viewed
as words over the quaternary alphabet of bases {A,T,C,G}. Moreover, one
of the main properties of DNA molecules is the Watson-Crick complementar-
ity of the bases A and T and respectively G and C. Because of this property
two Watson-Crick complementary single DNA strands with opposite orientation
bind together to form a DNA double strand, in a process called base-pairing,.
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Recently, there were several approaches to generalize notions from classical com-
binatorics on words in order to incorporate this major characteristic of DNA
molecules, see, e.g., [1, 2, 3]. Along these lines, in this paper, we generalize the
concept of primitivity and define pseudo-primitive words.

The notion of periodicity plays an important role in various fields of theo-
retical computer science, such as algebraic coding theory, [4], and combinatorics
on words, [5, 6]. An integer p > 1 is a period of a word if any of two letters
on the word which are distant from each other by p letters are the same. The
well-known periodicity theorem by Fine and Wilf states that if a word has two
periods p,q and is of length at least p + ¢ — ged(p, q), then ged(p, q) is also a
period of the word, where ged(p, q) is the greatest common divisor of p and ¢ [7].
This theorem can be rephrased as: if a power of a word u and a power of a word
v share the same prefix of length |u|+ |v| — ged(|ul, [v]), then u and v are powers
of a same word ¢t. This description elucidates the relationship between the Fine
and Wilf theorem and the notion of primitivity. A word is called primitive if it
cannot be decomposed as a power of another word. Investigating the primitivity
of a word is often the first step when analyzing its properties. Moreover, how a
word can be decomposed and whether two words are powers of a common word
are two questions which were widely investigated in language theory, see, e.g.,
[5, 6, 8].

While, in classical combinatorics on words we look for repetitions of the form
u® for some word u and some i > 2, when dealing with DNA molecules (i.e., their
abstract representation as words) we have to take into account the fact that a
word u encodes the same information as its complement 6(u), where 6 denotes
the Watson-Crick complementarity function, or its mathematical formalization
as an arbitrary antimorphic involution. In other words, we can extend the
notion of power to pseudo-power relative to 6 or simply @-power. A f-power
of u is a word of the form wjus ---u, for some n > 1, where u; = u and for
any 2 < i < n, u; is either u or 6(u). In this context, we define 8-primitive
words as strings which cannot be a #-power of another word. Also, we define
the §-primitive root of a word w as the shortest word u such that w is a 8-power
of u. In classical combinatorics on words, there exist two equivalent definitions
for the primitive root of a word w as the shortest word u such that w is a
power of u, or the unique primitive word u such that w is a power of u. The
first main contribution of this paper is to propose such equivalent definitions
for the f-primitive root of a word, that is, we prove that the #-primitive root
of a word w is the unique #-primitive word u such that w is a 6-power of u. In
the process of obtaining this result, we also prove an extension of the Fine and
Wilf theorem. Until now, several extensions of this theorem were proved, see,
e.g., [9, 10, 11, 12, 13, 14]. In this paper, we look at the case when a §-power
of u and a @-power of v share a same prefix. If the prefix is longer than a given
bound, then we prove that u and v are §-powers of a same word, that is, they
share their §-primitive root. Our bound is twice the length of the longer word
(u or v) plus the length of the other word minus the greatest common divisor
of the lengths of u and v. Moreover, we show that this bound is optimal.

The paper is organized as follows. In Section 2, we fix our terminology and



recall some basic results. In Section 3 we investigate some basic properties of
f-primitive words. In particular, we give an extension of the Fine and Wilf
theorem which implies immediately that we can define the #-primitive root of
a word in the two equivalent ways. In Section 4, we present several constraints
forcing two words to share their #-primitive root. In Section 5, we investigate
some connections between the #-primitive words that we introduced here and
the @-palindrome words, which were proposed and investigated in [2, 3]. In
Section 6, we present the optimal bound for our extension of the Fine and Wilf
theorem.

2. Preliminaries

Let X be a finite alphabet. We denote by X* the set of all finite words over
the alphabet ¥, by € the empty word, and by Xt the set of all nonempty finite
words over ¥. The length of a word w, denoted by |w|, is the number of letters
occurrences, i.e., if w = a;...a, with a; € £, 1 < i < n, then |w| = n. For a
letter a € I, let |w|, denote the number of occurrences of a in w. Therefore,
lw| = >, cx |wla. We say that v is a prefix (resp. a suffir) of v, if v = ut
(resp. v = tu) for some t € X*. For any integer 0 < k < |v|, we use the notation
pref, (v) (suffi(v)) for the prefix (resp. suffix) of length k of a word v, and
Pref(v) (Suff(v)) for the set of all prefixes (resp. all suffixes) of v. In particular
prefy(v) = € for any word v € £*. An integer p > 1 is a period of a word
W=0y...0n, Witha; € ¥ forall1 <i<n,ifa; =ajpforalll <i<n—p.

A word w € X7 is called primitive if it cannot be written as a power of
another word; that is, w = u™ implies n = 1 and w = u. For a word w € X7,
the shortest u € 71 such that w = u™ for some n > 1 is called the primitive root
of the word w and is denoted by p(w). The following result gives an alternative,
equivalent way for defining the primitive root of a word.

Theorem 1. For each wordw € X*, there exists a unique primitive wordt € X+
such that p(w) =t, i.e., w =t" for somen > 1.

The next result illustrates another property of primitive words.

Proposition 2. Let u € X1 be a primitive word. Then u cannot be a factor of
u? in a nontrivial way, i.e., if u?> = zuy, then necessarily either x =€ ory = ¢.

We say that two words v and v commute if uv = vu. The following result
characterizes the commutation of two words in terms of primitive roots.

Theorem 3. For u,v € ¥*, the following conditions are equivalent: i) u and
v commute; i) u and v satisfy a non-trivial relation, i.e., an equation where
the two sides are not graphically identical; iii) u and v have the same primitive
root.

For two words u and v, we denote by u A v the mazimal common prefix
of u and v. The following result from [6] will be very useful in our future
considerations.



Theorem 4. Let X = {z,y} C ¥* such that zy # yx. Then, for each words
u,v € X* we have

uwe€zXT, veyX™, |ul,|lv]| > |zy Ayz|, = uAv=1zy Ay
The following result is an immediate consequence.

Corollary 5. Let X = {z,y} C ¥*, u € 2X*, and v € yX* such that |ul,|v| >
lzyl. If [u Av| > |zy|, then p(z) = p(y).

Two words v and v are said to be conjugate if there exist words x and y
such that v = zy and v = yz. In other words, v can be obtained via a cyclic
permutation of . The next result characterizes the conjugacy of two words.

Theorem 6. Let u,v € ¥t. Then the following conditions are equivalent: i) u
and v are conjugate; i) there exists a word z such that uz = zv; moreover, this
holds if and only if u = pq, v = qp, and z = (pq)’p, for some p,q € L* and
i > 0; ) the primitive roots of u and v are conjugate.

Note that conjugacy is an equivalence relation, the conjugacy class of a word
w consisting of all conjugates of w. The following is a well-known result.

Proposition 7. If w is a primitive word, then its conjugacy class contains |w|
distinct primitive words.

The following result, known as the Fine and Wilf theorem in its form for
words, see [6, 5], illustrates a fundamental periodicity property of words. As
usual, gcd(n,m) denotes the greatest common divisor of n and m.

Theorem 8. Letu,v € £*, n = |u[, m = |v|, and d = ged(n, m). If two powers
u* and v? of u and v have a common prefiz of length at least n +m — d, then u
and v are powers of a common word. Moreover, the bound n+m —d is optimal.

A mapping 0 : X* — X* is called a morphism (an antimorphism) if for
any words u,v € ¥*, 6(uv) = 6(u)f(v) (resp. 8(uv) = 6(v)f(u)). A mapping
0 : ¥* — ¥* is called an involution if, for all words u € ¥*, 8(6(u)) = u. Watson-
Crick complementarity is a typical example of antimorphic involutions; in fact,
it is defined as the antimorphic involution 6 satisfying 8(A) = T, 6(T) = A,
0(C) = G, and 0(G) = C, which is called the Watson-Crick involution.

For a mapping 6 : ¥* — ¥* a word w € X* is called 8-palindrome if
w = 6(w), see [2, 3]. We say that a word w € T is a pseudo-power of a
non-empty word t € X1 relative to 6, or simply 0-power of t, if w € t{t,0(t)}*.
Conversely, t is called a pseudo-period of w relative to 8, or simply 8-period of
w if w € t{t,0(t)}*. Hence t is a f-period of w if and only if w is a f-power of
t. We call a word w € T @-primitive if there exists no non-empty word t € X+
such that w is a 8-power of t and |w| > [t|. We define the 8-primitive root of w,
denoted by pg(w), as the shortest word ¢ such that w is a 8-power of ¢.



3. Properties of O-primitive words

In this section, we consider € : ¥* — ¥* to be either a morphic or an
antimorpic involution, other than the identity function. We start by looking at
some basic properties of @-primitive words.

Proposition 9. If a word w € X1 is O-primitive, then it is also primitive.
Moreover, the converse is not always true.

Proof. Suppose that w is a #-primitive word but not primitive. Then there
exists some t € X1 such that w = ™ with n > 2. By definition of #-power,
w is a @-power of t. However, this contradicts the @-primitivity of w because
|t| < |w|. For the converse, since 6 is not the identity function, there exists a
letter a such that 8(a) # a. Then, if we take w = af(a), it is obvious that w is
primitive, but not #-primitive. O

primitive words

f-primitive words

Figure 1: The sets of primitive and @-primitive words

Thus, the class of 8-primitive words is strictly included in the set of primitive
ones, as illustrated in Figure 1.

Proposition 10. The 8-primitive root of a word is -primitive.

Proof. Let w € 1 and t = py(w) be its f-primitive root, that is, w is a §-power
of t. Suppose, now that ¢ is not #-primitive. Then there exists a word s € ¥*
such that ¢ is a §-power of s and |s| < |t|- Note that 6(¢) is a 8-power of either
s or 0(s). Thus, w is a #-power of s. However, this contradicts that ¢ being the
f-primitive root of w because |s| < [¢|. O

We also obtain the following result as an immediate consequence.
Corollary 11. The §-primitive root of a word is primitive.

Contrary to the case of primitive words, a conjugate of a #-primitive word
need not be #-primitive, as shown by the following two examples.

Example 1. Let 0 : {4, T,C,G}* — {A,T,C,G}* be the Watson-Crick invo-
lution defined in Section 2. Then the word w = GCT A is 8-primitive, while its
conjugate w' = AGCT = AGO(AQ) is not.



Example 2. Let 6 : {a,b,c,d}* — {a,b,c,d}* be a morphic involution defined
by 6(a) = ¢, 6(c) = a, 8(b) = d, and 6(d) = b. Then the word w = abadcb is
f-primitive, while its conjugate w' = babadc = (ba)?6(ba) is not.

So, we can formulate the following result.

Proposition 12. The class of 8-primitive words is not necessarily closed under
circular permutations.

Fine and Wilf’s result on words (Theorem 8) constitutes one of the funda-
mental periodicity properties of words. Thus, a natural question is whether we
can obtain an extension of this result when for two words u, v, instead of taking
a power of u and a power of v, we look at a #-power of u and a #-power of v.
First, we analyze the case when 6 is a morphic involution; it turns out that in
this case we can obtain the same bound as in Theorem 8. However, since the
proof of this result is analogous to the one for Theorem 8, see for instance [5],
we will not include it here.

Theorem 13. Let § : ¥* — X* be a morphic involution, u,v € Xt with
n = ul, m = o], and d = ged(n, m), afu,(u)) € ufu,8(u)}*, and Alv,0(v)) €
v{v,0(v)}*. If the two 6-powers a(u,8(u)) and B(v,8(v)) have a common prefix
of length at least n + m — d, then there exists a word t € 1 such that u,v €
t{t,0(t)}*, i.e., po(u) = po(v). Moreover, the bound n +m — d is optimal.

However, as illustrated by the following example, if the mapping 6 is an
antimorphic involution, then the bound given by Theorem 13 is not enough
anymore.

Example 3. Let 6 : {a,b}* — {a, b}* be the mirror mapping defined as follows:
0(a) = a,8(b) = b, and O(w; ... w,) = wy...w;, where w; € {a,b} for all
1 < i < n. Obviously, € is an antimorphic involution on {a,b}*. Let now
u = (ab)¥*b and v = ab. Then, u? and v*§(v)¥*! have a common prefix of
length 2|u| —1 > |u| + |v] — ged(|ul, [v]). However u and v do not have the same
f-primitive root, that is, pg(u) # pe(v).

Before stating an analogous result also for the case of antimorphic invo-
lutions, we introduce the mapping ¢ : ¥* x ¥ — N defined as ¢(u,a) =
|u|a + |t](a), that is, the number of occurrences of the letters a and 6(a) in the
word u. Note that for any letter a and any word u, p(u,a) = ¢(u,0(a)) < |ul,
with equality only when u € {a,60(a)}*. We will call this mapping the charac-
teristic function on the alphabet . Moreover, lcm(n, m) denotes, as usual, the
least common multiple of n and m.

Theorem 14. Let 0 : ¥* — ¥* be an antimorphic involution, u,v € 1, and
a(u,f(u)) € u{u,0(u)}*, B(v,0(v)) € v{v,0(v)}* be two §-powers sharing a
common prefiz of length at least lem(|ul, |v|). Then, there exists a word t € L
such that u,v € t{t,0(t)}*, i.e., po(u) = pg(v). In particular, if a(u,B(u)) =
B(v,0(v)), then po(u) = po(v).



Proof. The proof of this result uses the techniques from [11]. First, we can
suppose, without loss of generality that ged(Ju|, |v|) = 1 and thus lem(|ul, |v]) =
|u||v|. Otherwise, i.e., ged(|ul, [v]) = d > 2, we consider a new alphabet ¥/ = ¢,
where the new letters are words of length d in the original alphabet, and we look
at the words u and v as elements of (X')T. In the larger alphabet ged(|ul, [v]) =
1, and if we can prove the theorem there it immediately gives the general proof.
Let now |u| = n and |v]| = m. If we denote by o'(u,0(u)) € u{u,8(u)}* and
B'(v,0(v)) € v{v,0(v)}* the prefixes of length lem(n,m) = nm of a(u,8(u))
and B(v,6(v)), respectively, then we actually have o/ (u,8(u)) = 5’ (v, 6(v)).

Since the mapping # is an involution, we can easily notice that for any word w
and any letter a, p(w,a) = p(8(w), a). Moreover, since o' (u,0(u)) = §'(v, 6(v)),
whenever, for a letter a, ¢(u,a) > 0, we also have that ¢(v,a) > 0.

Suppose now that there exist two letters a and b such that {a,f(a)} N
{b,0(b)} = 0, p(u,a) > 0, and ¢(u,b) > 0. Then, since n = |u| = Y 5 |ulc,
we have that ¢(u,a) < n. Let us look next at the number of occurrences of
a and 6(a) in the two sides of the equality o'(u,8(u)) = B'(v,6(v)). Since
|&/ (u,0(w))| = |B'(v,0(v))|] = nm, where |u| = n, and |v|] = m, we obtain
mp(u,a) = ne(v,a). However this contradicts the fact that ged(n,m) = 1
and p(u,a) < n. So, there exists a letter a € ¥ such that v € {a,0(a)}*.
Since o'(u,0(u)) = B'(v,0(v)), this implies that also v € {a,0(a)}*. Thus,
po(u) = p(v). O

Note that, in many cases there is a big gap between the bounds given in
Theorems 13 and 14. Moreover, Theorem 14 does not give the optimal bound
for the general case when 6 is an antimorphic involution. In Section 6, we
show that this optimal bound for the general case is 2|u| + |v| — ged(|ul, |v]),
where |u| > |v|, while for some particular cases we obtain bounds as low as
lu| + |v] — ged(|ul, |v]). As an immediate consequence of Theorems 13 and 14,
we obtain the following result.

Corollary 15. For any word w € X1 there erists a unique 0-primitive word
t € T such that w € t{t,0(t)}*, i.e., po(w) =t.

Let us note now that, maybe even more importantly, just as in the case of
primitive words, this result provides us with an alternative, equivalent way for
defining the §-primitive root of a word w, i.e., the §-primitive word t such that
w € t{t,6(¢)}*. This proves to be a very useful tool in our future considerations.

Moreover, we also obtain the following two results as immediate conse-
quences of Theorems 13 and 14.

Corollary 16. Let u,v € X1 be two words such that p(u) = p(v) =t. Then
po(u) = pa(v) = po(t).

Corollary 17. If we have two words u,v € ¥ such that u € v{v,0(v)}*, then
po(u) = po(v).



4. Relations imposing O-periodicity

It is well-known, due to Theorem 3, that any non-trivial equation over two
distinct words forces them to be powers of a common word, i.e., to share a com-
mon primitive root. Thus, a natural question is whether this would be the case
also when we want two distinct words to be #-powers of a common word, i.e., to
share a common §-primitive root. From [1], we already know that the equation
wv = B(v)u imposes pg(u) = pp(v) only when 6 is a morphic involution. In
this section, we give several examples of equations over {u,8(u),v,0(v)} forcing
pa(u) = pp(v) in the case when # : ¥* — ¥* is an antimorphic involution.

The first equation we look at is very similar to the commutation equation of
two words, but it involves also the mapping 6.

Theorem 18. Let 0 : ¥* — X* be an antimorphic involution over the alphabet
Y and u,v € . If uwvb(v) = v(v)u, then po(u) = py(v).

Proof. Since uwwf(v) = vh(v)u, we already know, due to Theorem 3, that there
exists a primitive word ¢ € ¥1 such that u = ! and vf(v) = t/, for some i, j > 0.
If j = 2k for some k > 0, then we obtain immediately that v = 8(v) = t*, i.e.,
p(u) = p(v) = t. Thus, pg(u) = ps(t) = pe(v). Otherwise, ie., j = 2k + 1,
we can write v = t¥¢; and 6(v) = taot*, where t = tit5 and |t1]| = |t2| > 0.
Hence, 0(v) = 6(t1)0(t)¥ = tot*, which implies t = 6(t;). In conclusion,
u,v € t1{t1,0(t1)}*, for some word t; € Tt i.e., po(u) = po(t1) = po(v). O

Example 4. Let 6 : {a,b}* — {a,b}* be defined as 6(a) = b and 6(b) = a, and
let u = ab and v = aba. Then uvf(v) = vh(v)u = (ab)* and py(u) = pg(v) = a.

Next, we modify the previous equation, such that on one side, instead of
v0(v), we take its conjugate 6(v)v.

Theorem 19. Let 0 : ¥* — X* be an antimorphic involution over the alphabet
Y and u,v € . If vO(v)u = ub(v)v, then po(u) = py(v).

Proof. If we concatenate the word 6(v) to the right on both sides of the equation
vf(v)u = ub(v)v, then we obtain (v0(v))(ub(v)) = (ub(v))(vh(v)). Due to
Theorem 3, this means that there exists a primitive word ¢ € X1 such that
v8(v) = t* and uf(v) = t/, for some i,j > 0, j > [i/2]. If i = 2k for some k > 0,
then §(v) = v = t* and thus also u = /7%, i.e., p(u) = p(v) = t. Henceforth,
po(u) = pg(t) = pg(v). Otherwise, i.e., j = 2k + 1, we can write v = tFt;

and 0(v) = tot*, where t = t;t, and [t1] = |t2| > 0. Hence, we achieve again
t2 = 6(t1), which implies that v € t;{t1,60(t1)}*. Moreover, since uf(v) = ¢, we
also obtain u = t9=F=1¢; € t;{t1,0(t1)}*. Thus, pg(u) = ps(t1) = pe(v). O

Example 5. Using ¥ defined in Example 4, let v = @ and v = aba. Then
v8(v)u = ub(v)v = abababa and pg(u) = ps(v) = a.

The next result gives an example of a more intricate equation which also
imposes #-periodicity.



Theorem 20. Let 0 : ¥* — ¥* be an antimorphic involution over the alphabet
Y and u,v € X*. If u?v = vub(u), then u = 0(u) and p(u) = p(v).

Proof. Since u?v = vuf(u), due to Theorem 6, there exist some words z,t € ¥*

and some integer k > 0 such that u? = zt, uf(u) = tz, and v = (zt)Fz.
This representation clarifies that u6(u) can be obtained by cyclically permuting
u?. Note that this operation preserves the property of the word being square.
Thus, uf(u) = w? for some w € £*, and in fact we have u = 6(u) because 6 is
length-preserving. As a result, the given equation becomes u?v = vu? so that

p(u) = p(v). O

Recall that the primitive root of a #-palindromic word is §-palindrome. As
such, Theorem 20 means that u?v = vuf(u) implies v = 6(v). Examples of u
and v satisfying u?v = vuf(u) are hence quite trivial like v = w® and v = w?
for some #-palindrome w and i,j > 0.

Next, we look at the case when both uv and vu are f-palindromic words,
which also proves to be enough to impose that u,v € {t,0(¢)}* for some t € &+.

Theorem 21. Let u,v € X* be two words such that both wv and vu are 6-
palindrome and let t = p(uv). Then, t = 0(t) and either p(u) = p(v) =t or
u= (t10(t1))'t1 and v = 0(t1)(t10(¢1))?, where t = t10(t1) and i,j > 0.

Proof. The equality wv = 6(uv) immediately implies that ¢ = 6(t). Moreover,
if u and v commute, then p(u) = p(v) = p(uv) = t. Assume now that v and
v do not commute. Since p(u) # p(v) and uv = t™ for some n > 1, we can
write u = t't; and v = t2t" "1 for some ¢ > 0 and t1,t2 € X1 such that
t = t1ty. Thus, vu = tot" "t = (tot1)™ and since vu = §(vu) we obtain that
also toty is f-palindrome, i.e., tat; = O(t2t1) = 6(t1)0(t2). Now, if [t1| = [t2],
then t2 = 6(t1) and thus t = t;0(t1), u = t't;, and v = 0(¢1)t"*~1. Otherwise,
either |t1| > |t2| or [t1] < |t2|. We consider next only the case |t1| > |t2|, the
other one being similar. Since 2t = 6(¢1)0(t2), we can write 6(¢1) = tax and
t1 = z6(t2) for some word x € B+ with 2 = 6(x). Then, since t = §(t) we
have that t = t1ta = z0(t2)t2 = 0(x6(t2)t2) = 0(t2)tex. Hence, x and 6(t2)ts
commute, which contradicts the primitivity of ¢. O

Example 6. With 0 defined in Example 4, let v = aba and v = babab. Then
both uv and vu are #-palindrome. For such u and v, t = p(uv) = ab = af(a).

As an immediate consequence we obtain the following result.
Corollary 22. For u,v € ¥*, if uv = 0(uv) and vu = 0(vu), then po(u) =
pe(0(v)). In particular, there exists some t € ¥ such that u,v € {t,0(t)}*.
5. On O-primitive and #-palindromic words

In this section, we investigate some word equations under which a @-primitive
word must be §-palindrome. Throughout this section we consider 8 : ¥* — ¥*
to be an antimorphic involution over the alphabet X.



Theorem 23. Let 0 : ¥* — ¥* be an antimorphic involution over the alphabet
Y and v € T be a O-primitive word. If O(v)vx = yvb(v) for some words
x,y € X* with |z|, |ly| < |v|, then v is 8-palindrome and x = y = e.

Proof. Assume there exist some words z,y € ¥* with |z|, |y| < |v|, such that
0(v)vz = yvf(v), as illustrated in Figure 2.

Figure 2: The equation 8(v)vz = yv(v)

Then, we can write v = v1vs = vavs, with vi,ve,v3 € £*, y = 0(v2) = z,
v = O(v1), v3 = O(v3). Since vivs = vavz, we can write v1 = pg, vs = ¢p,
va = (pq)'p, and v = (pq)*+'p for some words p,q € * and some i > 0. Thus,
pqg = 0(pq) and gp = 6(qp), which, due to Theorem 21, leads to one of the
following two cases. First, if p = t*¢; and ¢ = 6(t,)t?, where k,j > 0 and
t = t,6(t1) is the primitive root of pq, then we obtain that v = ¢t(k+i+D(i+1)+kg,
with (k+j+1)(i+ 1)+ k > 1, which contradicts the #-primitivity of v. Second,
if p(p) = p(q) = t, then also v € {t}* where t = 6(¢). Thus, v = 6(v), and the
initial identity becomes v?z = yv2. However, since v is §-primitive and thus also
primitive, we immediately obtain, due to Proposition 2, that z =y = e. O

In other words, the previous result states that if v is a f-primitive word, then
6(v)v cannot overlap with vf(v) in a nontrivial way. However, the following
example shows that this is not the case anymore if we look at the overlaps
between #(v)v and v2, or between vf(v) and v?, respectively, even if we consider
the larger class of primitive words.

Example 7. Let 6 : ¥* — X* be an antimorphic involution over the alphabet
%, p,q € T such that p(p) # p(q), p = 0(p), and ¢ = 6(q), and let v = p*¢*p
and u = pg?p?. It is easy to see that v and v are primitive words. In addition, if
we take ¥ = {a, b}, the mapping € to be the mirror image, p = a, and ¢ = b, then
u and v are actually -primitive words. Since 8(v) = pg®p? and 8(u) = p?¢’p,
we can write zv? = vf(v)y and yf(u)u = u?z where z = p2¢%, y = pg’p, and
z = ¢*p®. Thus, for primitive (resp. @-primitive) words u and v, v8(v) can
overlap with v? and #(u)u with u? in a nontrivial way.

Maybe even more surprisingly, the situation changes again if we try to fit v?
inside v8(v)v, as shown by the following result.
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Theorem 24. Let 0 : ¥* — ¥* be an antimorphic involution over the alphabet
Y and v € X1 be a primitive word. If v(v)v = zv?y for some words z,y € T*,
then v is 8-palindrome and either t = € and y =v or x = v and y = e.

Proof. Suppose that vf(v)v = zv?y for some words z,y € £*, as illustrated in
Figure 3.

Figure 3: The equation v8(v)v = zvy

If we look at this identity from left to right, then we can write v = zv1 = v1va,
with vi,v2 € £* such that |z| = |v2| and 6(v) = 0(v2)8(v1). Then, if we look
at the right sides of this identity, then we immediately obtain that z = vy and
vy = y. Thus, v = zy = yz, implying that z,y € {t}*, for some primitive word
t. However, since v is primitive, this means that either z = eandy =vorz =v
and y = e. Moreover, in both cases we also obtain v = 6(v). O

6. A shorter bound for the Fine and Wilf theorem (antimorphic case)

Throughout this section we take 8 : ¥* — ¥* to be an antimorphic involu-
tion, u,v € X7 with |u| > |v|, a(u,8(u)) be a 6-power of u, and B(v,0(v)) be a
f-power of v. Recall that a(u,8(u)) starts with u and B(v,8(v)) starts with v.
We start our analysis with the case when v is 8-palindrome.

Theorem 25. Let u and v be two words with |u| > |v| and v = §(v). If there
exist two 0-powers a(u,0(u)) € u{u,0(u)}* and B(v,8(v)) € v{v,8(v)}* having
a common prefiz of length at least |u| + |v| — ged(|ul, [v]), then pe(u) = pg(v).

Proof. First, we can suppose, without loss of generality that ged(|ul,|v]) = 1.
Otherwise, i.e., ged(|ul, |v|) = d > 2, we consider a new alphabet ¥/ = %4, where
the new letters are words of length d in the original alphabet, and we look at
the words u and v as elements of (¥')*. In the larger alphabet ged(|ul, [v]) = 1,
and if we can prove the theorem there it immediately gives the general proof.

Since v = 6(v), B(v,0(v)) = v™ for some n > 2. Moreover, if v € X, then
trivially u € v{v,0(v)}*, i.e., pa(u) = pa(v). So, suppose next that |v| > 2 and,
since ged(|ul, [v]) = 1, u = vivr, where i > 1 and v = vivs with vy, v € 7T,

If a(u, 8(u)) = u2a’(u,6(u)), then u? and v™ have a common prefix of length
at least |u| + |v] — ged(Jul, |v]), which, due to Theorem 8, implies that p(u) =
p(v) = t, for some primitive word ¢t € ¥, and thus pg(u) = pg(t) = pe(v).

11
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Figure 4: The common prefix of uf(u) and v™ of length |u| + |v| — 1

Otherwise, a(u,8(u)) = ub(u)a'(u,8(u)) for some o' (u,8(u)) € {u,0(u)}*.
Now, we have two cases depending on |v1| and |vz|. We present here only
the case when |v1| < |va|, see Figure 4, the other one being symmetric. Now,
since 6 is an antimorphism, 6(suff|,|_1(u)) = pref|,|_;(6(u)). So, we can write
vy = 6(v1)z for some z € ¥*, since |v1| < |v2| < |v| =1 = |v| —ged(Jul, |v]). Now,
to the left of the border-crossing v there is at least one occurrence of another
v, so we immediately obtain z = 6(z), as vo = 6(v1)z and 6(v2) = 6(z)v:.
Then, v = v16(v1)z = zv16(v1) = §(v) which implies, due to Theorem 18, that
po(v1) = po(z). So, since v = v10(v1)z and u = vivy = (v16(vy1)z)*v1, we obtain
po(u) = po(v)- O

Let us look next at the case when v is #-palindrome.

Theorem 26. Let u and v be two words with |u| > |v| and v = 8(u). If there
exist two 0-powers a(u,0(u)) € u{u,0(u)}* and B(v,8(v)) € v{v,8(v)}* having
a common prefiz of length at least |u| + |v| — ged(|ul, [v]), then po(u) = po(v).

Proof. As in the previous proof, we can suppose without loss of generality that
ged(|ul, |v]) = 1. Also, since u = 8(u), we actually have a(u,8(u)) = u™ for
some n > 2. Moreover, since u starts with v and u = 6(u), we also know that u
ends with §(v). Now, if v € X, then trivially u € v{v,8(v)}*, i.e., pg(u) = po(v).
So, we can suppose next that |v| > 2 and thus, since ged(|ul,|v]) = 1, we
have u = B'(v,0(v))v', where §8'(v,6(v)) is a prefix of B(v,8(v)) and v' € T,
v' € Pref(v) U Pref(6(v)).

Case 1: We begin our analysis with the case when the border between the
first two u’s falls inside a v, as illustrated in Figure 5. Then, we can write
v = v1vy = vaw3 where v1,v9,v3 € X1, implying that vy = xy, v3 = yx, and
v = (2y)?z for some j > 0 and x,y € ¥*. Moreover, since u ends with 6(v),
we also have vy = 8(v1), i.e., zy = 0(y)8(x). If x = ¢, then vy, v2,vs,v € {y}*,
which implies that also u € y{y,8(y)}*, i.e., pa(u) = po(v) = po(y); moreover,
since ged(|ul, [v]) = 1 we actually must have y € . Similarly, we also obtain
po(u) = pg(v) when y = e. So, from now on we can suppose that z,y € It.

Let us consider next the case when, before the border-crossing v we have
an occurrence of another v, as illustrated in Figure 5. Then, we have that
ve = O(v9), ie., (zy)iz = (8(x)0(y))?0(x). If j > 1, then this means that
z = 0(z) and y = 6(y). Then, the equality zy = 6(y)6(z) becomes zy = yz. So,
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Figure 5: The common prefix of u? and B(v, 8(v)) of length |u| + |v| — 1

there exists a word ¢ € 1 such that z,y € {¢}*, and thus also v € {t}* and
u € t{t,0(t)}*, i.e., po(u) = pg(v). Otherwise, j = 0 and we have xz = §(z). But
then, the equality xy = 0(y)0(x) becomes xy = 6(y)z, implying that x = p(gp)”
and y = (gp)™ for some m > 1, n > 0, and some words p and ¢ with p = 6(p)
and ¢ = 6(q), see [1]. Since u? and B(v,0(v)) share a common prefix of length
at least |u| + |v] — ged(|ul, [v]) = |u| + |v| — 1, v3 and some §'(v,6(v)) share a
prefix of length |vs| — 1. Furthermore, as vs = yz = (gp)™p(gp)™, v = v1v2 =
p(gp)™ 1 "p(gp)™, and 6(v) = (pq)"p(pg)™ "p, this means that independently of
what follows to the right the border-crossing v, either v or 8(v), we have two
expressions over p and ¢ sharing a common prefix of length at least |p| + |g|.
So, due to Corollary 5, p,q € {t}* for some t € £T, which implies that also
z,y,v € {t}T and u € {t,0(¢)}T, i.e., po(u) = pp(v).

Now, suppose that before the border-crossing v we have an occurrence of
0(v). If |u| < 2[v| + |v1], then, since B(v,8(v)) starts with v, we must have
v = 0(v), in which case we can use Theorem 25 to conclude that pg(u) = pp(v).
Otherwise, |u| > 2|v| + |v1| and since v = 8(u), u ends either with v8(v) or
with 6(v)f(v). In the first case, we obtain vz = 6(v3), i.e., yz = 0(yz), which
together with zy = 8(xy) imply, due to Corollary 22, that z,y € {¢,6(t)}*, for
some t € ¥t and thus, pg(u) = pg(v). In the second case, we obtain vy = v3,
i.e., zy = yz. So, z,y € {t}*, and thus also v € {t}T and u € t{t,0(t)}*, ie.,
pe(u) = po(v).

o] -1
| [t g] |
= —— === =~ W___________ e — - — - —— = o »
! O(v) | v !
[ o~ |
f T

Figure 6: The common prefix of u? and S(v, §(v)) of length |u| + |v| — 1
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Case 2: Let us consider now the case when the border between the first
two u’s falls inside 6(v), as illustrated in Figure 6. Then, we can write again
v = v1vs = vyv3 where v1,v2,v3 € X1, which implies that v; = zy, v3 = yz,
and vy = (zy)’x for some j > 0 and z,y € T*. Just as before, if z =€ or y = ¢,
we immediately obtain that pg(u) = pg(v). So, we can suppose that z,y € L+.
Moreover, v; = 6(v1), i.e., zy = O(xy). Now, if the border-crossing 6(v) is
preceded by an occurrence of v, then we also have v = 6(v3), i.e., yz = 6(yx).
Then, due to Corollary 22, there exists some ¢t € X* such that z,y € {t,6(¢)}*,
implying that pg(u) = pg(v), since v = (zy)i*'z and u = B'(v,0(v))0(v2). If,
on the other hand, the border-crossing 6(v) is preceded by another 6(v), then
we immediately obtain v; = vs, i.e., zy = yx. So, z,y € {t}*, for some t € &+,
and thus also v € {t}* and u € t{t,0(¢)}*, i.e., po(u) = po(v). O

Although the previous two results give a very short bound, i.e., |u| + |[v]| —
ged(|ul, |v]), this is not enough in the general case, as illustrated in Example 3.
Nevertheless, we can prove that, independently of how the §-power a(u,0(u))
starts, 2|u| + |v| — ged(Jul, [v]) is enough to impose pg(u) = pg(v). The first case
we consider is when a(u,8(u)) starts with u2.

Theorem 27. Given two words u,v € T with |u| > |v|, if there exist two 6-
powers a(u,8(u)) € u{u,0(u)}* and B(v,8(v)) € v{v,8(v)}* having a common
prefix of length at least 2|u| + |v| — ged(|ul, |v]) and, moreover, a(u,8(u)) =
u?a'(u,0(u)) for some o' (u,0(u)) € {u,0(u)}t, then po(u) = po(v).

Proof. Just as we did before, we can suppose, without loss of generality, that
ged(|ul, [v]) = 1. Now, if v € X, then trivially v € v{v,8(v)}*, i.e., pg(u) =
po(v). So, we can suppose next that |v| > 2 and thus, since ged(Jul, |[v]) = 1, we
have u = ' (v,8(v))v', where 8'(v,60(v)) is a prefix of B(v,8(v)) and v' € LT is
a prefix of either v or 6(v).

I
I
- [v]
) T T T T T T
ERCE :
I I I I
I I I I
I I I I
\ 1 R S B CEY A l
\_/ W \
= — ) |

Figure 7: The prefix of u2a’(u,8(u)) and B(v, 8(v)) of length 2|u| + |v| — 1

Case 1: Let us look first at the case when the border between the first
two u’s falls inside v, i.e., u = B'(v,0(v))v; for some v; € ¥ such that v =
vivy and B'(v,0(v)) € v{v,f(v)}* is a prefix of S(v,0(v)). Moreover, if this
border-crossing v is followed to the right by another v, then v? = vyvvs, since
pref M(u) = v. Thus, viv2 = vyv1, meaning that there exists a primitive word
t € X7 such that vi,vs € {t}* and thus v € {t}*. Moreover, since u =
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B'(v,0(v))v1, we also have u € t{t,0(¢t)}*, i.e., po(u) = pg(v). Otherwise, the
border-crossing v is followed to the right by 6(v), as illustrated in Figure 7.
Thus, we can write v = vjvy = vovg with vy, v3,v3 € T, |v1| = |vs|, and
vz = 6(v3). But then, Theorem 6 implies that there exist some ¢ > 0 and some
x,y € ¥* such that v; = zy, v3 = yz, v = (y)’z, and v = (zy) 'z, If z =,
then we have that v1,vs,v3,v € {y}*, which implies that also u € y{y, 6(y)}*,
ie., pa(u) = pg(v). Similarly, we also obtain pp(u) = pg(v) when y = €. So,
from now on we can suppose that z,y € .

Suppose first that ¢ > 1. If we take |3'(v,0(v))| = k|v| with k£ > 1, then the
length of the first w is |u| = klv| + |v1| = k(i + 1)|zy| + k|z| + |zy|. Since the
second u starts with vo = (zy)%z, using length arguments, we must have that its
right end will fall inside either v or 6(v), after exactly 2|zy| characters. If the
right end of the second w falls inside 8(v) = (yz)"™6(z), then suff|,,(u) = ya.
But, the first v ended with v; = zy. So, xy = yz, which implies that there
exists a primitive word ¢ € Xt such that z,y € {t}*, and thus also v € {t}*
and u € t{t,0(t)}*, ie., po(u) = po(t) = po(v). Otherwise, the right end
of the second u falls inside v, i.e., suffy,y(u) = zyry. Actually, depending
on what precedes to the left this second border-crossing v, either v or 6(v),
we have suff ;| a)0y|(u) € {Tzyzy,8(z)zy2y}. Next, we look at the suffix of
the first 4 and we have again two cases depending on what precedes the first
border-crossing v. If there is a v to the left of this border-crossing v, then
suff 4 42/y)(¥) = zyzv1, and thus we obtain immediately that 2y = yz. So,
in this case there exists a primitive word ¢ € ¥T, such that v € {t}* and
u € t{t,0(t)}*, i.e., po(u) = pg(v). Otherwise, there is a 8(v) to the left of
the border-crossing v, i.e., suff ;|4 2jzy(u) = y20(z)vi. Thus, in this case we
obtain that either yxf(z) = zxy or yzf(x) = 6(x)zy. However, in both cases,
due to Theorems 19 and 20, we obtain z,y € {t,0(t)}* for some ¢t € £+, which
immediately implies pg(v) = po(u).

Suppose next that ¢ = 0, i.e., v1 = zy, v3 = yx, v2 = z, v = zyzx, and
0(yx) = yz, as illustrated in Figure 8. Now, if we compute the length of the
first u, then we have |u| = k|v| + |zy| for some k > 1. Since the second v starts
with v9 = 2, we must have that its right end will fall inside either v or 6(v),
after exactly |y| characters. Now, we have two cases depending on what occurs
to the left of this second border-crossing point.

U U |
ol
| g ST
EVES ERAERUCOI I
\/’ \_/‘
v v 0(v) vor f(v) '

Figure 8: The prefix of u2a/(u,8(u)) and B(v, 8(v)) of length 2|u| + |v| — 1
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Firstly, if there is a v occurring before this border-crossing point, then
suffy .y (u) = zyzy. Next, we turn again to look at the suffix of the first
u. Depending on whether there is v or 6(v) to the left of the first border-
crossing v, we have suffy ., (u) € {yzzy,0(y)0(x)zy}. Thus, either yz = zy or
0(zy) = xzy. However, since also 8(yxz) = yz, we obtain that either z,y € {t}*
or z,y € {t,0(t)}* for some t € £+, and thus p(u) = pg(v).

Secondly, if 6(v) = 6(x)0(y)0(x) occurs to the left of the second border-
crossing point, since suff‘zy|(u) = v; = zy, then we obtain immediately that
x = 0(x). But, we already knew that yx = 0(yzx), i.e., yxr = z6(y), which
implies x = p(gp)’ and y = (pq)* for some j > 0, k > 1, and some words p and
g such that p = 6(p) and g = 6(q), see [1]. Now, since a(u,8(u)) and B(v,8(v))
have a common prefix of length 2|u| + |v| — ged(|ul, [v]) = 2|u| + |v| — 1, we can
also look at the prefix of length |v| — 1 of the third word from a(u, 8(u)), which
is either u or 8(u). However, in all cases, after we reduce the common prefix, we
have two distinct expressions over p and ¢ of length longer than |p| + |g|, which
implies, due to Corollary 5, that pg = ¢p. Thus, also in this case pg(u) = ps(v).

| R vy A

| | () 6(v) 0(vs) O(v) !

\/Y L W L \/Y |
v 0(v) O(v) vorf(v)

Figure 9: The prefix of u?a/(u,8(u)) and B(v,8(v)) of length 2|u| + |v| — 1

Case 2: Consider now the case when the border between the first two u’s falls
inside 6(v). If this border-crossing 6(v) is followed to the right by another 8(v),
as illustrated in Figure 9, then there exist some v1,v2 € Xt such that v = vy vs,
v1 = 0(v1), and va = O(vs). Thus, obviously v,0(v),u,0(u) € {vi,v2}T, ie.,
a(u,0(u)) and B(v,0(v)) are actually two expressions over {vi,vs2} having a
common prefix of length 2|u|+ |[v| — ged(|ul, |v|) = 2|u|+ |v| — 1. Moreover, since
|u| = k|v| + |v2| for some k > 1 and the second u begins with vy, its right end
cuts a v or 6(v) after exactly (2|vz]| mod |v|) # |vz| characters. Thus, the two
expressions over {1)1,112} have to differ at some point, and moreover, after we
eliminate the common prefix we remain with two distinct expressions over vy
and vy of length longer than |v1| + |v2|, which implies, due to Corollary 5, that
v1vy = vouy. Thus, also in this case pg(u) = pp(v).

Hence, the border-crossing 6(v) is followed to the right by v, as illustrated
in Figure 10. Then, we can write v = v1v3 = vav3 for some vy,vs,v3 € XT
with |v1| = |vs| and v; = 6(v1). Thus, due to Theorem 6, there exist some
words z,y € ¥* and some ¢ > 0 such that v; = zy, v3 = yz, v = (zy)'z, and
v = (zy)™'z. Again, if either 2 = € or y = €, then we obtain immediately that
po(u) = po(v). So, from now on, we can suppose that z,y € £+. Moreover,
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Figure 10: The prefix of u?a’(u,6(u)) and B(v, 8(v)) of length 2|u| + |v| — 1

since u ends with (vs), we also know that (u) starts with vy = (zy)z.

Suppose first that 4 > 1. Then, the length of the first u is |u| = k|v| + |v2| =
klv| + i|lzy| + |z| for some k > 1. Since the second u starts with 8(v1) = zy,
its right end will cut either v or 8(v) after exactly |z| + (i — 1)|zy| characters.
If this second border point falls inside v, since both u and 6(u) start with xy,
we obtain zy = yz. That is, there exists a primitive word ¢ € Xt such that
z,y,v € {t}T and u € t{t,0(t)}*, i.e., po(u) = po(v). Otherwise, this second
border point cuts 6(v) = 0(z)(xy)*! after exactly |z| + (i — 1)|zy| characters.
Then, since u ends with 8(ve) = 0(z)(zy)?, depending on whether to the left
of this second border-crossing 6(v) we have either v or 6(v), we obtain either
yrf(x) = 0(x)zy or zyb(x) = O(x)zy. In the first case, Theorem 19 implies
x,y € {t,0(t)}* for some ¢t € XT, while in the latter one we obtain z = §(x) and
p(z) = p(y). Since v = (zy)*'z and u = B'(v,0(v))0(v2), we conclude again
that pg(u) = pe(v).

Otherwise, we have i = 0, i.e., v1 = 2y, v3 = yx, v2 = x, v = zyYx, and
0(v) = 0(x)zy. Using again length arguments, we notice that the right end of
the second u cuts either v or §(v) after exactly 2|z| characters.

Let us look first at the case when this second border point falls inside 8(v).
Then z = 6(z), as u ends with 8(ve) = 0(z). Since a(u,8(u)) and B(v,8(v))
have a common prefix of length 2|u| + |v| — ged(|ul, [v]) = 2|u| + |v| — 1, we can
also look at the prefix of length |v| — 1 of the third word from a(u,8(u)), which
is either u or #(u). Since u ends with 6(vy) = 6(x), we know that both u and
0(u) start with . Furthermore, since 8(zy) = zy, we actually have two distinct
expressions over {z,y}t, one starting with = and the other with y, having a
common prefix longer than |z|+ |y|, implying, due to Corollary 5, that zy = y=z.
So, also in this case pg(u) = pg(v)-

Next, we turn to the case when the second border point falls inside v and
we analyze two cases depending on the length of u. Firstly, if |u| > 2|v|, then
the first u starts either with v? or with v8(v) and we look at the prefix of
the second u, see Figure 10. In the former case, we obtain immediately that
zy = yx, which implies that there exists a primitive word ¢ € ¥+ such that
z,y,v € {t}T and u € t{t,0(t)}*, ie., po(u) = po(v). In the latter case, we
obtain yz = 6(yx), which together with zy = 8(xy) implies, due to Corollary 22,
that z,y € {t,0(t)}* for some ¢t € £, and thus also pg(u) = pe(v).
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Figure 11: The prefixes of u2a/(u,8(u)) and (v, 8(v)) of length 2|u| + [v|

Secondly, if |u| < 2|v|, then we actually must have u = v8(vq) = zyzf(x), as
illustrated in Figure 11. Since a(u,8(u)) and B(v,0(v)) have a common prefix
of length 2|u| + |v| — 1, after eliminating the common prefix, we obtain one of
the following four equations, depending on whether the third block of a(u, §(u))
is u or 6(u), and the fourth block of (v, 8(v)) is v or 6(v).

- If we have 0(z)zy pref, _;(z) = yaz pref, _,(yz), then pref , (yz) =
6(z), and thus we obtain pref|, _,(z) = pref|,|_;(6(z)). Now, if we de-
note £ = 1 ...T, with z1,...,z, € ¥, then the equation pref|,|_,(z) =
pref|,|_(6(z)) becomes z1 ... Tn—1 = 0(zy) ...0(z2). Depending on whe-
ther |z| is even or odd, this equality implies x = z1 ... 2x8(z1 ... z) or T =
Z1 .- TpTrr10(z1 - .. 21) With zg1 = 0(zky1). However, on both cases,
we obtain z = 6(z). Then, from the initial equation 6(x)zy pref|,|_,(z) =
yxx pref|,_; (yz) we obtain 2°y = yx?, which implies p(x) = p(y). Hence,
also pg(u) = pe(v).

- If 9(z)zy = yxb(z), then, due to Theorem 19, we immediately obtain
z,y € {t,0(t)}* for some t € LT, and thus pg(u) = pg(v).

- If 0(x)z pref|,,_,(0(z)0(y)) = yzz pref, _, (yz), then we can write yz =
6(z)z for some word z € £t with |z| = |y|. If we substitute this equation
into the initial one, we obtain z6(z) pref, _;(z) = 2z pref,_,(0(z)),
which implies that z; ...z,—1 = 0(x,)...0(x2), where z = z; ...z, with
Z1,...,Zn € X. Just as before we can derive again x = 6(z). Since
zy = §(xy), we can write 2y = 6(y)x which implies that z = p(gp)’ and
y = (gp)*, for some j > 0, k > 1, and some words p and ¢ such that
p = 0(p) and q¢ = 6(q), see [1]. Then, using these relations, the initial
equation becomes a nontrivial identity over p and ¢ of length more than
[p| + |g|- Thus, due to Corollary 5, there exists a primitive word ¢ such

that p,q,z,y € {t}*. So, ps(u) = ps(v).

- If 0(z)z pref,,_,(0(z)0(y)) = yzb(z) pref|,_,(z), then we can write
again yz = 0(z)z for some word z € ¥+ with |2| = |y|. Thus, the ini-
tial equation becomes z6(z) = z0(z). If in the equation zy = 6(y)8(x)
we concatenate zf(zx) both to the left and to the right, then we de-
rive z0(x)zyxf(z) = x6(yz)8(z)z6(x). Substituting yz = 6(z)z and
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O(yx) = 0(2)z, we derive z0(x)x0(z)20(x) = z6(2)zb(x)20(x). Now, since
z0(2) = 2z0(x), this becomes (z6(z))?x0(z) = 26(z)(zf(x))?, which implies
that there exists a primitive word ¢t € X% such that z6(z), z6(z) € {t}*. If
z6(z) = t?7 for some j > 0, then z = §(z) =7, t = 0(t), z,y € {t}*, and
thus pg(u) = pg(v). If 20(x) = ¥+ for some j > 1, then we actually have
x = tity, O(x) = 0(t1)t7, and 0(z) = O(t,)t* where t = t;6(¢;) and k > 0.
Now, from the equation yz = (x)z we also obtain that y € {t1,6(¢1)}*.
So, also in this case we can conclude that pg(u) = pg(v).

O
Next, let us look at the case when a(u,8(u)) starts with uf(u)u.

Theorem 28. Given two words u,v € X with |u| > |v|, if there ezist two 6-
powers a(u,8(u)) € u{u,0(u)}* and B(v,0(v)) € v{v,8(v)}* having a common
prefiz of length at least 2|u| + |v| — ged(Jul, |v]) and, moreover, a(u,8(u)) =
ub(u)ua! (u,0(u)) with a'(u,8(u)) € {u,8(u)}*, then ps(u) = pg(v).

Proof. Let us suppose again, just as we did before, that ged(|ul,|v]) = 1. If
we denote u' = uf(u), then v'v' and S(v,6(v)) have a common prefix of length
|u'| + |v| — ged(|v'|, |v]) = |u'| + [v] — 1 and, moreover, v’ = 6(u'). Thus,
due to Theorem 26, pg(v) = pg(u'); let this @-primitive root be ¢. Then,
uf(u) = v(t,0(t)), for some §-power v(t,0(t)) € t{t,0(t)}*, which implies, due
to Theorem 14, that pg(u) =t = pe(v). O

The only case which remains to be considered now is when a(u, 6(u)) starts
with uf(u)8(u). Next, we give two intermediate results concerning 8-palindromic
words, which will be very helpful in the proof of Theorem 31.

Lemma 29. Let w € X1 and z,y, 2z be O-palindromes. If w = xy = yz, then
there exists a 6-palindromic primitive word p € ¥t such that w,z,y,z € {p}*.

Proof. Since w = zy with z = §(z) and y = 6(y), we know from [15], that there
exist two f-palindrome words p, ¢ and an integer n > 1 such that w = (pg)”,
where pg is a primitive word, p # €, £ = (pg)'p, y = q(pg)" "', y = (pg)’p,
and z = q(pg)"~/~! for some integers 0 < i,j < n. If n —i—1,j > 1, then
pq,qp € Pref(y), i.e., pg = gp. Since pq is primitive, this means that ¢ = e.
Therefore, p is a primitive word and w,z,y,2z € {p}*. Iff n—i—1 > 1 and
j =0, then g(pg)" %! = p, which implies that n —i — 1 = 1 and hence q = e,
and we reached the same conclusion as above. If n —i —1 =0 and j > 1, then
q = (pq)’p, which cannot hold for any j > 1 because p # €. If both n —i — 1
and j are 0, then p = ¢, which contradicts the primitivity of pgq. O

Lemma 30. Let w € ¥t and z,y, 2 be O-palindromes. If w = zy? = yz, then
there exists a 6-palindrome primitive word p € ¥% such that w,z,y,z € {p}*.

Proof. Since w = yz with y = 0(y) and z = 6(z), we know from [15], that there
exist two f-palindrome words p,q and an integer n > 1 such that w = (pq)

where pq is a primitive word, p # €, z = (pg)’p, ¥* = q(pa)" ', y = (pg)’p,

19



and z = q(pg)" 7! for some integers 0 < i,j < n. If n —i — 1,5 > 1, then,
just as in the proof of Lemma 29, pg = gp. Since pq is primitive, ¢ = €, and
hence p is primitive and z,y,z € {p}T. f n —i —1> 1 and j = 0, then y = p.
Since y? = q(pg)"~*~!, we have that p? = g(pg)" %!, which means, due to
Theorem 3, that p,q € {t}* for some primitive word ¢. Since pq is primitive,
this implies that ¢ = ¢, p=t, and z,y,2 € {p}*. fn—i—1=0and j > 1,
then y? = q and y = (pq)’p, which are clearly contradictory. If both n —i — 1
and j are 0, then y2 = ¢q and y = p, which contradicts the primitivity of pg. O

Now, we can state the following result which considers the last case of our
analysis.

Theorem 31. Let u,v € ¥ be two words with |u| > |v|. If there exist two
6-powers a(u,f(u)) € uf(u)?{u,8(u)}* and B(v,0(v)) € v{v,6(v)}* having a
common prefix of length at least 2|u| + |v| — ged(Jul, |v]), then pa(u) = po(v).

Proof. Once again, we can suppose that ged(|u|, |v]) = 1 without loss of general-
ity. If v € X, then trivially u € v{v,0(v)}*, i.e., pg(u) = pp(v). So, we can sup-
pose next that |v| > 2 and thus, since ged(|ul, |v|) = 1, the end of both of v and
uf(u) falls inside either v or 8(v). Let B(v, 0(v)) = v1v3 ... VpUnp1Un128 (v,0(v))
with v; = v, v; € {v,0(v)} for all 2 <i < n+2, and f'(v,6(v)) € {v,0(v)}*
such that the end of uf(u) falls inside v, 1. Let uf(u) = vy - - - v,v', where v’ €
Pref(vn41). Note that since uf(u) is -palindrome, uf(u) = 6(v')8(v,,) - - - 0(v1).
Moreover, the end of u falls inside v(,12)/2 if n is even and inside v(,41)/2 if 0
is odd. So, from now on we take j = "T+2 whenever 7 is even and j = ”TH oth-
erwise, i.e., j is chosen such that the border between v and 6(u) falls inside v;.

Let us consider first the case when n is even. Then z, a prefix of v;, overlaps
with a suffix of §(v;), see Figure 12, and the overlap implies z = 6(z). Note
that z is a nonempty and proper prefix of v;.

Figure 12: The case where n is even, v;_1 = v, v; = 6(v), and vj 1 = v.

Now we focus on v;_1, vj, and v;41. Even if j = n, we can consider v;j41 =
Vnt1 € {v,8(v)}. Suppose vj_1v; = v8(v). If vj41 = 6(v), then §(v)? = z6(v)z’
for some ' € X*. This means that z,0(v) € {¢t}* for some primitive word
t. Since uf(u) = vy ---vj_120(vj_1)---8(v1), we obtain that u,v € {t,0(t)}*.
But v € Pref(u), which implies pg(u) = pg(v). Otherwise, vj41 = v. Then
v8(v)w = wvb(v) holds for w € Pref(v) with |w| = |z|, which implies, due
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to Theorem 18, that pg(v) = ps(w) = t. Then z € {t,0(t)}", and hence
po(u) = pg(v). The case when v;_iv; = 6(v)v also leads to the same conclusion.

Thus, when n is even, only the cases where v;_;v; = vv or v;_1v; = 8(v)f(v)
remain unsolved yet. Moreover, using exactly the same technique, we can also
prove that when n is odd, all we have to consider are the cases when v;v;1 =
vu or v;vj+1 = 8(v)8(v). Although we shall discuss only the case when n is
even, a similar result can also be obtained for n odd. Assume that n is even,
vj_1v; = vv, and let v; = v = zy such that y € Pref(8(v;_1)), as illustrated in
Figure 13. Then we have z = §(z) and y = 6(y).

u 3 O(u)
e S
v =0 Vj—1 =0V V; =0 Uj41 = 0(1}) !

T T | [

B(vj-1) = 0(v)
Figure 13: The case n being even, v;_1 = v; = v, vj41 = 0(v), and 8(vj_2) =v

Next, we claim that once assuming v;_;v; = vv, we only need to consider
the case when vivs ... v, = v™, that is, in all the other cases, we obtain pg(u) =
po(v). If j = n, then we are done. Otherwise, i.e., j < n, since j = (n+2)/2 we
have n > 2, and hence also j > 2. Thus we can also consider v;_». Suppose first
that vj11 = 6(v). If 8(v;_2) = 6(v), then the nontrivial overlap between 6(v)?2
and 6(v) implies that p(y) = p(z) = p(8(v)), which, as shown earlier, leads to
po(u) = pa(v). Otherwise, let 6(v;_2) = v, as illustrated in Figure 13. Then,
let vj41 = O(v) = xy' for some y' € Pref(v), which implies that y' = 6(y').
Therefore, v = zy = y'x, which implies, due to Lemma 29, that v,z € {t}* for
some t € T and hence py(u) = pp(v).

Now suppose that vj11 = v, and we consider 6(v;_3). If j + 1 = n, then
j—2=1and thusv; o =v; =wv,i.e., v1v2...v, =v". Otherwise, ie., j+1 < n,
suppose 8(vj_a) = v. Moreover, since j +1 < n, we can also consider v;4o. But
then, independently of whether v;ys is v or 8(v) we obtain pg(u) = pa(v).
Repeating the whole process leaves only the case vjy1 = Vj42 = ... = v, = v
and O(v;_2) = 6(vj_3) = ... =6(v1) = 6(v) unsolved. That is, when we assume
vj—1v; = vv, all we have to consider is the case when vvs...v, = v™. On the
other hand, if we start with the assumption that v;_jv; = 6(v)?, then the only
case remaining to be proved is when v; = v and v2 = --- = v, = 6(v); in all the
other cases, using similar techniques as before, we obtain that pp(u) = pe(v).
However, also in this case, independently of whether v, is v or 8(v), we can
conclude that pg(u) = pe(v). Moreover, using similar arguments as above, if n is
odd, then the only case which remains to be solved is uf(u) = v™v'. Therefore,
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Figure 14: The case when n is even and v1 = -+ = v, = 0.

independently of the parity of n, the only case we have to consider is when
ub(u) = v™0'.

Let us look first at the case when n is even. If v = zy, as illustrated
in Figure 14, then uf(u) = v™' = v"/?20(v)"/? with |v'| = |z|. But, this
actually means that v' = x since 8(v) = yx. Moreover, z can be written as
x = 6(2)z for some z € ¥T. So, the prefix of 8(u) of length |v| is zyf(z). Let
V" Un 410" = prefy  q o -1 (B(v,0(v))) with 0" € Pref(vny2), and vni1 = 0(2)zw
for some w € ¥F.

Firstly, we consider the case v,11 = 8(v). Since 8(z) € Pref(v,41), 6(2) is a
prefix of both v and 8(v). Note that |v"| = 2|z| — 1 and hence 0(z) € Pref(v").
If |y| > |2|, then 8(z) € Pref(y), ie., z € Suff(y) because v,1 = y8(z)z and
0(z) € Pref(v,y1). In Figure 14, y and v" overlap with the overlapped part of
length |z| so z = 6(2). Then from the equation v,416(z) = 6(z)zzy = yd(z)20(2)
we derive 2%y = y2°. This means that p(y) = p(z), and thus ps(u) = ps(v).
Otherwise, i.e., |y| < |z|, we have zy = wf(z). Then, z = wt and 6(z) = ty for
some t € X7 which implies that w = y = 6(y). Hence 6(v) = y0(2)z = 6(z)zy,
which implies, due to Theorem 18 that pg(y) = pe(6(2)), and hence py(u) =
pe(v).

Next we consider the case when v,11 = v. If v,42 = v, then Theorem 8
immediately implies that 6(u) and a conjugate of v, that is, zy8(z) share the
primitive root t. Since 8(u) = (2y8(2))?~'2, z € {t}*, and hence t = §(t) and
y,0(z) € {t}*. Thus, u,v € {t}*, and hence pg(u) = ps(v). Otherwise let
Unta = 0(v) = yb(2)z. Now, we have two subcases, depending on the lengths of
y and z. Firstly, if |2| < |y|, then pref|, (v"') € Pref(y), and hence zy € Pref(y?).
Hence p(y) = p(z), implying that pg(u) = pg(v). Secondly, if |y| < |z|, then
since y € Pref(z) we also have y € Suff(6(z)). Thus, pref|,|_;(6(2)) € yPref(z),
as illustrated in Figure 15. Moreover, since zy? = 326(z), we actually have
two distinct expressions over {y, 2z}, one starting with y and the other with z,
having a common prefix of length at least |y| + |z|. Then, due to Corollary 5,
we obtain p(y) = p(z), which implies pg(u) = po(v).

Next we consider the case when n is odd and v;y = --- = v, = v, see
Figure 16. Let v = zy such that z = 6(x), y = 6(y), and y = 6(z)z for some
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Figure 16: The case when n is odd and v1 = --- = v, = v.

z,y,z € X7, Then uf(u) = v(*"D/220(2)zz0(v)("~V/2.

If vpy1 = 0(v), then z is a prefix of both v and 6(v) and thus v" =
pref, _;(z). Hence we have zzz2s = vp10" = 0(2)zzv" for some z, =
pref|,|_1(6(z)). Depending on the lengths of z and z, we have the following four
subcases. Let us consider the first subcase when |z| = |z|. Then immediately
we have £ = 6(z), and we are done, i.e., obviously ps(u) = pg(v). The second
subcase is when |z| > |z|. Then, zzzz; = 0(z)zzv" implies that z overlaps non-
trivially with zv”. Since v" € Pref(z) and z is #-palindrome, we can write z =
2122 = Toxy for some -palindromes 1,22, where, moreover x5 = 6(z). This
implies that 21,22,z € {t}T for some t € £*, and hence 6(2), 2,z € {t,0(t)}*.
Since u,v € {6(z),2,2}*, we have pg(u) = pg(v). The third subcase is when
|z] < |z| < 2|z|. Let 8(2) = 2, for some z,, € Pref(z), which implies 2z, = 6(zp).
Thus, z = zpx. Since zz € Pref(0(2)z), i.e., xzpx € Pref(zzp2zpx) and |z,| < ||,
we have z, € Pref(z). Now since 6(z)z € Pref(zzz), we have 0(2)z = zz,22p,
i.e., 2 = zz,. Therefore, z = 2z, = 2,2, which implies p(z) = p(z) and we
obtain again pg(u) = ps(v). The fourth subcase is when 2|z| < |z|. As in the
third subcase, 6(2) = zz, for some §-palindrome z,,. Since zzz € Pref(6(2)z)
holds in this case, let 8(z)z = zzxzz. for some z. € Pref(6(z)). By substituting
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= 2!z into this equation, we obtain z = z22.. Then 2/

v = 6(z!). Hence,
= z,x = x°2], which implies, due to Lemma 30, that p(z) = p(z) and hence
po(u) = po(v).

Finally we consider the case v,y1 = v = z0(z)z. Then, as illustrated in
Figure 16, z = 6(z) and thus v,41 = z2%. If v,12 = v, then as above, we can
employ Theorem 8 to conclude that pg(u) = ps(v). Otherwise, vy1o = 6(v) =
222. Now we have four subcases depending on the lengths of z and z. The first
subcase is when |z| < |z|. Note that 2% € Pref(2x6(z)). Hence z = xz5 for some
zs € Pref(6(z)), which implies that zs = 6(zs). Since z = 6(z2), z = xzs = zs2.
This means p(z) = p(z) and we obtain again ps(u) = pg(v). The second subcase
is when |z| < |z| < 2|z|. Since |v"| = |z| — 1 and v" is a prefix of v, 2 = 22w,
we have that z € Pref(v"). Then, 2® € Pref(zz6(z)), and we can conclude
p(z) = p(z) as done in the first subcase. Thus, ps(u) = pg(v). The third
subcase is when 2|z| < |z| < 3|z|. Then, we actually have z? € Pref(v"). Thus,
2* € Pref(zz6(2)) and again we have p(z) = p(z), and hence pg(u) = pp(v).
The last subcase is when 3|z| < |z|. Recall that v,12 = z°z. Since z = 0(z), we
can rewrite this as v,42 = 220(x). As [v"| = |z| — 1, this means that v" = 2%z,
for some x1 € Pref(6(x)) satisfying |z1| = |z| — 2|z| — 1, which is positive.
Since zz € Pref(z2v"), there exists zo € Pref(z;) such that zz = 2%z, ie.,
zo € Suff(z). However, since x5 € Pref(6(z)), we obtain zs = (z2). Thus,
x = z3zy = 792, which implies, due to Lemma 29, that p(z) = p(z), so we
conclude again that pg(u) = ps(v). O

N W

Example 8. Let 0 : {a,b}* — {a,b}* be the mirror involution, u = a*ba’b,
and v = a?ba. Then, ged(|ul, |v|) = 1, v® and v?6(v)?v have a common prefix
of length 2|u| + |v| — 2, but pg(u) # pe(v).

Example 9. Let 6 : {a,b}* — {a,b}* be the mirror involution, u = ba®baba,
and v = ba%ba. Then, gcd(|u|,|v|) = 1, uf(u)? and v* have a common prefix of
length 2|u| + |v] — 2, but pe(u) # pe(v).

Combining all results obtained in this section together, we have the extended
Fine and Wilf theorem for an antimorphic involution 6:

Corollary 32. Let u,v € I* be two words with |u| > |v|. If there exist two 6-
powers a(u,8(u)) € u{u,8(uw)}* and f(v,0(v)) € v{v,8(v)}* having a common
prefiz of length 2|u| + |v| — ged(|ul, |v]), then pg(u) = pg(v). Furthermore, this
bound is optimal.

7. Conclusion

In this paper, we extended the notion of primitive word, being motivated
by encoding information into DNA molecules. Then we investigated various
relations on words u, v (word equations, extended Fine and Wilf theorem) which
imply pg(u) = ps(v). A future research topic is to generalize the extended Fine
and Wilf theorem as being done for the original Fine and Wilf theorem (e.g.,
arbitrary number of periods, for partial words or bidimensional words). Another
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direction is to study relations on words which force some of the involved words
to share their #-primitive root (see [16]).
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