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ABSTRACT

The notions of power of word, periodicity and primitivity are intrinsically connected
to the operation of catenation, that dynamically generates word repetitions. When
considering generalizations of the power of a word, other operations will be the ones
that dynamically generate such pseudo-repetitions. In this paper we define and inves-
tigate the operation of θ-catenation that gives rise to the notions of θ-power (pseudo-
power) and θ-periodicity (pseudo-periodicity). We namely investigate the properties
of θ-catenation, its connection to the previously defined notion of θ-primitive word,
briefly explore closure properties of language families under θ-catenation and language
operations involving this operation, and propose Abelian catenation as the operation
that generates Abelian powers of words.
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1. Introduction

Periodicity and primitivity of words are fundamental properties in combinatorics on
words and formal language theory. Their wide-ranging applications include pattern-
matching algorithms (see e.g. [3], and [4]) and data-compression algorithms (see,
e.g., [27]). Sometimes motivated by their applications, these classical notions have
been modified or generalized in various ways. A representative example is the “weak
periodicity” of [5] whereby a word is called weakly periodic if it consists of repetitions
of words with the same Parikh vector. This type of period was also called Abelian
period in [2]. Carpi and de Luca extended the notion of periodic words to that of
periodic-like words, according to the extendability of factors of a word [1]. Czeizler,
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Kari, and Seki have proposed and investigated the notion of pseudo-primitivity (and
pseudo-periodicity) of words in [6, 20], motivated by the properties of information
encoded as DNA strands. In addition,

Indeed, one of the particularities of information encoded as DNA strands is that a
word u over the DNA alphabet {A,C,G, T} contains basically the same information
as its Watson-Crick complement, denoted here by θ(u). This led to natural as well
as theoretically interesting extensions of various notions in combinatorics on words
and formal language theory such as pseudo-palindrome [7], pseudo-commutativity
[18], as well as hairpin-free and bond-free languages (e.g., [17, 19, 25, 13, 16]). In
this context, Watson-Crick complementarity has been modeled mathematically by an
antimorphic involution θ over an alphabet Σ, i.e., a function that is an antimorphism,
θ(uv) = θ(v)θ(u), ∀u, v ∈ Σ∗, and an involution, θ(θ(x)) = x, ∀x ∈ Σ∗. In [6], a
word w is called θ-primitive, or pseudo-primitive, if we cannot find any word u that
is strictly shorter than w such that w can be written as repetitions of u and θ(u). A
word w is called a θ-power or pseudo-power if w ∈ {u, θ(u)}+ for some u ∈ Σ+, and
is called θ-periodic or pseudo-periodic if it can be written as two or more repetitions
of a word u and its image under θ.

The static notions of the power of word, period of a word, and primitive word
are intrinsically connected to the operation of catenation, that dynamically generates
word repetitions. In the case of generalizations of the notion of power of a word
(primitive word), other operations will be the ones that dynamically produce such
generalized powers, [26, 21, 10, 14, 22, 9].

In this paper we define and investigate the operation of θ-catenation that gives rise
to the notion of θ-power (pseudo-power) and θ-periodicity (pseudo-periodicity). We
namely investigate the properties of θ-catenation (Section 3), its connection to the
previously defined notion of θ-primitive word (Section 4), briefly explore closure prop-
erties of language families under θ-catenation and language operations involving this
operation (Section 5), and conclude by proposing Abelian catenation as the operation
that generates Abelian powers of words (Section 6).

2. Basic definitions and notations

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of all words
over Σ, including the empty word λ. Σ+ is the set of all non-empty words over Σ.
The length of a word u ∈ Σ∗ (i.e. number of symbols in the word) is denoted by |u|.
A word u ∈ L is said to be length-minimal if for all w ∈ L, |w| ≥ |u|. |u|a denotes
the number of occurrences of a letter a in u. The complement of a language L ⊆ Σ∗

is Lc = Σ∗\L.

An involution is a function θ : Σ∗ → Σ∗ with the property that θ2 is identity. θ is
called a morphism if for all words u, v ∈ Σ∗ we have that θ(uv) = θ(u)θ(v), and an
antimorphism if θ(uv) = θ(v)θ(u).

A word is called primitive if it cannot be expressed as a power of another word.
Similarly, [6], a word is called as θ-primitive if it cannot be expressed as a non-trivial
θ-power of another word. A θ-power of u is a word of the form u1u2 · · ·un for some
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n ≥ 1, where u1 = u and for any 2 ≤ i ≤ n, ui is either u or θ(u). Also, θ-primitive
root of w denoted by ρθ(w) is the shortest word t such that w is a θ-power of t.

The left quotient of a word u by a word v is defined by

v−1u = w iff u = vw,

and the right quotient of u by v,

uv−1 = w iff u = wv.

A language L ⊆ Σ+ is said to be a prefix code if L∩LΣ+ = ∅. For all other concepts
related to formal language theory and combinatorics on words, the reader is referred
to [11] and [23].

A binary word operation with right identity, [12, 26], (shortly bw-operation) is
defined as a mapping ◦ : Σ∗ × Σ∗ −→ 2Σ∗ with u ◦ λ = {u}. Furthermore,
L1 ◦ L2 =

⋃
u∈L1,v∈L2

(u ◦ v) and L1 ◦ ∅ = ∅ ◦ L2 = ∅ for any two languages L1

and L2. The iterated bw-operation ◦i for i ≥ 1 and languages L1 and L2 is defined as
L1 ◦0 L2 = L1 and L1 ◦i L2 = (L1 ◦i−1 L2) ◦ L2. The i-th ◦-power of a non-empty
language L is defined as L◦(0)= {λ}, and L◦(i) = L ◦i−1 L for i ≥ 1. If ◦ is the
operation of catenation, then L0 = {λ}, L1 = L and Ln = Ln−1L, corresponding to
the usual notions of power of a language.

A non-empty word w is called ◦-primitive if w ∈ u◦(i) for some word u ∈ Σ+ and
i ≥ 1 yields i = 1 and w = u.

The +-closure of a non-empty language L with respect to a bw-operation ◦, denoted
by L◦(+), is defined as L◦(+) = ∪k≥1L

◦(k). A language L is ◦-closed if u, v ∈ L imply
u ◦ v ⊆ L. A bw-operation is called plus-closed if for any non-empty language L,
L◦(+) is ◦-closed.

Given a non-empty language L, a word u is a right ◦-residual of L if w ◦ u ⊆ L
for all w ∈ L, i.e., L ◦ u ⊆ L. Let ρ◦(L) denote the set of all right o-residuals of L,
i.e., ρ◦(L) = {u ∈ Σ∗|∀w ∈ L, (w ◦ u) ⊆ L}. Note that ρ◦(∅) = ∅ and λ ∈ ρ◦(L) for
any non-empty language L.

The ◦-left-quotient, denoted by �◦, is defined as

L1 �◦ L2 = {w ∈ Σ∗|(L2 ◦ w) ∩ L1 6= ∅}.

3. θ-catenation

We introduce a new bw-operation (binary word operation with right identity) called
θ-catenation which generates pseudo-powers, that is, θ-powers where θ is a morphic or
antimorphic involution. In this section we will give a formal definition of θ-catenation
and discuss some of its properties. Note that, unless otherwise specified, θ is any
morphic or antimorphic involution.

Definition 1 Given a morphic or antimorphic involution θ on Σ∗ and any two words
u, v ∈ Σ∗, we define the binary operation θ-catenation as

u� v = {uv, uθ(v)}.
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For example, consider the DNA alphabet Σ = {A,G,C, T} and its associated
antimorphic involution defined by θ(A) = T, θ(T ) = A, θ(C) = G and θ(G) = C. If
u = ATC and v = GCTA then

u� v = {ATCGCTA,ATCTAGC}.

The operation of θ-catenation can be generalized to languages in the usual way.
Note that for any (anti)morphic involution θ, the operation of θ-catenation has a

right identity since u� λ = {u} for all u ∈ Σ∗.
A bw-operation ◦ is called length-increasing if for any u, v ∈ Σ+ and w ∈ u ◦ v,

|w| > max{|u|, |v|}. The operation of θ-catenation is length-increasing since, if w ∈
u� v = {uv, uθ(v)} then |w| = |u|+ |v| >max{|u|, |v|}.

A bw-operation ◦ is called propagating if for any u, v ∈ Σ∗, a ∈ Σ and w ∈ u ◦ v,
|w|a = |u|a+ |v|a. The operation of θ-catenation is clearly not propagating. However,
a similar property does hold. We will namely call a bw-operation ◦ θ-propagating if
for any u, v ∈ Σ∗, a ∈ Σ and w ∈ u ◦ v, |w|a,θ(a) = |u|a,θ(a)+|v|a,θ(a). (The mapping
which counts number of a’s and θ(a)’s together is the characteristic function on the
alphabet Σ defined in [6].)

Proposition 1 For a given (anti)morphic involution θ of Σ∗, the operation of θ-
catenation is θ-propagating.

Proof. Let u, v ∈ Σ∗ and let w ∈ u � v = {uv, uθ(v)}. If w = uv then the required
equality clearly holds.

If w = uθ(v), we have

|w|a,θ(a) = |u|a,θ(a) + |θ(v)|a,θ(a)

= |u|a,θ(a) + (|θ(v)|a + |θ(v)|θ(a))

= |u|a,θ(a) + (|v|θ(a) + |v|a)

= |u|a,θ(a) + |v|a,θ(a).

2

A bw-operation ◦ satisfies the left-identity condition if λ ◦ L = L for any language
L ⊆ Σ∗. Note that, in general, the operation of θ-catenation does not satisfy the left-
identity condition. However, there exists languages of Σ∗ which satisfy this condition,
such as the language of θ-palindromes Pθ = {u ∈ Σ∗|u = θ(u)} for which λ�Pθ = Pθ.

A bw-operation ◦ is called left-inclusive if for any three words u, v, w ∈ Σ∗ we have

(u ◦ v) ◦ w ⊇ u ◦ (v ◦ w)

and is called right-inclusive if

(u ◦ v) ◦ w ⊆ u ◦ (v ◦ w).

If θ is a morphic involution then the θ-catenation is trivially associative. How-
ever, if θ is an antimorphic involution then θ-catenation is not associative in general,
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and not even right- or left-inclusive . The following proposition provides necessary
and sufficient conditions for associativity to hold in the antimorphic case. To prove
Proposition (2), we will make use of the following Lemmas from [24].

Lemma 1 Let u, v ∈ Σ+. Then uv = vu implies that u and v are powers of a
common word.

Lemma 2 If um = vn and m,n ≥ 1, then u and v are powers of a common word.

Proposition 2 Let � denote the operation of θ-catenation associated with an anti-
morphic involution θ of Σ∗. Given words u, v, w ∈ Σ∗ we have (u�v)�w = u�(v�w)
if and only if v and w are powers of the same θ-palindromic word.

Proof. For the direct implication, let us assume that (u� v)�w = u� (v �w), i.e.,
{uvw, uθ(v)w, uvθ(w), uθ(v)θ(w)} = {uvw, uvθ(w), uθ(w)θ(v), uwθ(v)}, i.e.
{uθ(v)w, uθ(v)θ(w)} = {uθ(w)θ(v), uwθ(v)}.

Case 1 : uθ(v)θ(w) = uθ(w)θ(v) and uθ(v)w = uwθ(v) implies θ(wv) = θ(vw) and
θ(v)w = wθ(v) which further implies wv = vw and θ(v)w = wθ(v), respectively. So,
according to Lemma (1), v and w are powers of a common word, as well as w and
θ(v) are powers of a common word. This means, v, w and θ(v) are all powers of a
common word, say p. So, we have v = pi, w = pj and θ(v) = pk for some i, j, k ≥ 1.
It implies, θ(v) = θ(p)i = pk, which further implies i = k and p = θ(p). Hence v and
w are powers of the same θ-palindromic word p.

Case 2 : uθ(v)w = uθ(w)θ(v) and uθ(v)θ(w) = uwθ(v) implies

θ(v)w = θ(w)θ(v) (1)

and

θ(v)θ(w) = wθ(v). (2)

Let us catenate θ(v) to the right of Equation (2). It will give, θ(v)θ(w)θ(v) =
wθ(v)θ(v), which in turn along with Equation (1) implies

θ(v)θ(v)w = wθ(v)θ(v). (3)

According to Lemma (1) w and (θ(v))2 are powers of a common word, say p. So, we
will get w = pi and (θ(v))2 = pj for some i, j ≥ 1. Now, according to Lemma (2) θ(v)
and p are powers of a common word, say q. So, we get

p = ql, θ(v) = qm and w = qn for l,m, n ≥ 1. (4)

Substituting Equation (4) in the Equation (1) we get

qmqn = θ(qn)qm (5)

which implies that q = θ(q), i.e. q is a θ-palindromic word and v and w are powers of
q.

Conversely, suppose v and w are powers of the same θ-palindromic word, say p.
This implies, v = pi, w = pj for i, j ≥ 1 and p = θ(p), which further implies

θ(v) = (θ(p))i = pi and θ(w) = pj . (6)
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Now, we know that, (u � v) � w = {uvw, uθ(v)w, uvθ(w), uθ(v)θ(w)} and u � (v �
w) = {uvw, uvθ(w), uθ(w)θ(v), uwθ(v)}. If we compare these two expressions, we are
left to show that {uθ(v)w, uθ(v)θ(w)} = {uθ(w)θ(v), uwθ(v)}, which is clear from
Equation (6).

2

In the previous section, we have seen the definition of i-th ◦-power of a non-empty
language L. The following Lemma and its Corollary clarify this definition in the case
of any bw-operation.

Lemma 3 Given a bw-operation ◦, we have

L◦(0) = {λ},

L◦(1) = L,

L◦(n) = L◦(n−1) ◦ L, ∀n ≥ 2.

Proof. Fistly, L◦(0) = {λ} by definition. Secondly, L◦(1) = L ◦0 L = L. Thirdly, for
n ≥ 2 we have L◦(n) = L ◦n−1 L = (L ◦n−2 L) ◦ L = L◦(n−1) ◦ L.

2

Corollary 4 Given a bw-operation ◦, we have

u◦(0) = λ,

u◦(1) = u,

u◦(n) = u◦(n−1) ◦ u, ∀n ≥ 2.

The following lemma characterizes the form of the words in L�(n) when the oper-
ation that is applied iteratively is the θ-catenation.

Lemma 5 If � denotes the operation of θ-catenation associated to a morphic or
antimorphic involution θ of Σ∗ then for n ≥ 1,

L�(n) = {uv1v2 · · · vn−1|u ∈ L, vi ∈ L ∪ θ(L), 0 ≤ i ≤ n− 1}.

In particular, when n = 1 we have L�(1) = L.

Proof. We will prove this by induction on n.
For n = 1, L�(1) = L�0 L = L.
For n = 2, L�(2) = LL ∪ Lθ(L) = {uv|u ∈ L, v ∈ L ∪ θ(L)}.
Assume that the result is true for an arbitrary k ≥ 2, i.e.,

L�(k) = {uv1v2 · · · vk−1|u ∈ L, vi ∈ L ∪ θ(L), 1 ≤ i ≤ k − 1}.

For k + 1 ≥ 2 the last equation of Lemma (3) holds and, together with the induction
hypothesis we have L�(k+1) = L�(k) � L = {uv1v2 · · · vk−1|u ∈ L, vi ∈ L ∪ θ(L), 1 ≤
i ≤ k − 1} � L = {uv1v2 · · · vk|u ∈ L, vi ∈ L ∪ θ(L), 1 ≤ i ≤ k}.

2
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The following Corollary demonstrates that, in the same way the operation of cate-
nation dynamically generates regular powers of words, the operation of θ-catenation
is the one that generates the θ-powers of a word.

Corollary 6 If � denotes the operation of θ-catenation associated to a morphic or
antimorphic involution θ of Σ∗, then every word w ∈ u�(n), n ≥ 1, is of the form

w = uv1v2 · · · vn−1

where vi ∈ {u, θ(u)} for 0 ≤ i ≤ n− 1. In particular, for n = 1 we have w = u.

The following Proposition relates the number of occurrences of a letter a and θ(a)
in a word to the number of occurences of a and θ(a) of its ◦-power.

Proposition 3 If ◦ is θ-propagating bw-operation, then for any w ∈ u◦(n), |w|a,θ(a) =
n · |u|a,θ(a), for n ≥ 1.

Lemma 7 If ◦ is an associative bw-operation and L ⊆ Σ∗, L 6= ∅, we have

L◦(m) ◦ L◦(n) = L◦(m+n) for m,n ≥ 1.

Proof.

L◦(m+n) = L◦(m+(n−1)) ◦ L
= (L◦(m+(n−2)) ◦ L) ◦ L
= L◦(m+(n−2)) ◦ (L ◦ L)

= L◦(m+(n−2)) ◦ L◦(2)

= L◦(m+(n−3)) ◦ L◦(3) = ...

= L◦(m) ◦ L◦(n).

2

Lemma (7) does not hold in general for operations that are not associative. How-
ever, in the case of θ-catenation, when θ is an antimorphic involution, one of the in-
clusions in Lemma (7) holds, even though θ-catenation is not right- or left-inclusive.
As a consequence, as seen in Corollary (9), θ-catenation is plus-closed.

Lemma 8 If � is the operation of θ-catenation associated with any morphic or an-
timorphic involution θ of Σ∗ and L ⊆ Σ∗ is a nonempty language, then

L�(m) � L�(n) ⊆ L�(m+n), ∀m,n ≥ 1.

Proof. If θ is a morphic involution then the operation of θ-catenation is associative
and the inclusion holds by Lemma (7).
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If θ is an antimorphic involution then, by Lemma (5), for every n ≥ 1 we have

L�(n) = {uv1v2 · · · vn−1|u ∈ L, vi ∈ L ∪ θ(L), 0 ≤ i ≤ n− 1}.

Let x ∈ L�(m) and y ∈ L�(n) for some m,n ≥ 1. Then by Corollary (5) x =
uv1v2 · · · vm−1 and y = u′v′1v

′
2 · · · v′n−1 for some u, u′ ∈ L, vi, v

′
i ∈ L ∪ θ(L), 0 ≤ i ≤

m− 1 and 0 ≤ j ≤ n− 1. By the definition of θ-catenation,

x� y = {uv1v2 · · · vm−1u
′v′1v

′
2 · · · v′n−1, uv1v2 · · · vm−1θ(v

′
n−1) . . . θ(u′)},

which is a word in L�(m+n).
2

Corollary 9 The operation of θ-catenation is plus-closed for morphic as well as an-
timorphic involutions θ.

A non-empty language L ⊆ Σ∗ is called ◦-free if (L◦(+) ◦ L) ∩ L = ∅. In the case
of θ-catenation, for example, if L ⊆ Σ∗ and R = {uv1v2...vk|u ∈ L, vi ∈ L ∪ θ(L), k ≥
1, 1 ≤ i ≤ k} then, if L ∩ R = ∅, L is �-free. The following lemma provides more
examples of �-free languages.

Proposition 4 Given a morphic or antimorhic involution θ over Σ, and the operation
� (θ-catenation), any prefix code is �-free.

Proof. Let L ⊆ Σ∗ be a prefix code, and assume that L is not �-free. Then there exist
w ∈ L, u ∈ L�(+) and v ∈ L such that w ∈ u� v = {uv, uθ(v)}. By the definition of
θ-catenation and Lemma (5), w is of the form αβ1β2 . . . βn−1v or αβ1β2 . . . βn−1θ(v),
where α ∈ L and βi ∈ L ∪ θ(L), 1 ≤ i ≤ n− 1, n ≥ 2. This is a contradiction to the
fact that L is a prefix code.

2

The converse of the previous Proposition does not hold, as shown by the following
example.

Example Let Σ = {A,G,C, T}, θ(A) = T, θ(G) = C, L = {AG, TT,AGCA}. The
language L is �-free, but not a prefix code.

Another way of obtaining �-free languages is given by means of the left θ-quotient.
The left θ-quotient of two languages L1, L2 ⊆ Σ∗ is defined as

L1 �� L2 = {w ∈ Σ∗| (L2 � w) ∩ L1 6= ∅}.

Lemma 10 If θ is a morphic involution then the left θ-quotient is given by

u�� v = {v−1u, θ(v)−1θ(u)}

and if θ is an antimorphic involution then the left θ-quotient is given by

u�� v = {v−1u, θ(u)θ(v)−1}.
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Proof. Let θ be a morphic involution and let w ∈ (u��v). This implies (v�w)∩{u} 6=
∅, that is u ∈ {vw, vθ(w)}, which further implies w ∈ {v−1u, θ(v)−1θ(u)}.

Let θ be an antimorphic involution and let w ∈ (u��v). This implies (v�w)∩{u} 6=
∅, that is u ∈ {vw, vθ(w)}, which further implies w ∈ {v−1u, θ(u)θ(v)−1}.

2

Lemma 11 Let θ be a morphic or antimorphic involution over Σ and let L be a
language in Σ∗. If L closed under left θ-quotient then L is not �-free.

Proof. ��(L,L) = {w ∈ Σ∗|(L � w) ∩ L 6= ∅}. As L is ��-closed, ��(L,L) ⊆ L,
which implies that (L�L) ∩L 6= ∅ which, since L ⊆ L�(+), further implies that L is
not �-free.

2

4. θ-Primitive Words

In this section we show that if the operation under consideration is θ-catenation,
denoted by �, then the �- primitive words coincide with the θ-primitive words defined
in section (2). We study some properties of such θ-primitive words. Recall the
following result from [12].

Proposition 5 [12] Let ◦ be plus-closed and length-increasing. Then for every word
w ∈ Σ+ there exists a ◦-primitive word u and an integer n ≥ 1 such that w ∈ u◦(n).

The following results (Proposition 6, Lemma 13, and Proposition 7) are similar to
analogous results in [26], involving propagating bw-operations.

Proposition 6 Let ◦ be plus-closed and θ-propagating. Then for every word w ∈ Σ+

there exists a ◦-primitive word u and a unique integer n ≥ 1 such that w ∈ u◦(n).

Proof. Every θ-propagating bw-operation is length-increasing. Now, by Proposi-
tion (5), for every word w ∈ Σ+ there exists a ◦-primitive word u and an inte-
ger n ≥ 1 such that w ∈ u◦(n). Consider a ∈ Σ such that |u|a,θ(a) 6= 0. Since

◦ is θ-propagating, for any w1 ∈ u◦(m) with m 6= n, by Proposition (3), we get
|w1|a,θ(a) = m|u|a,θ(a) 6= n|u|a,θ(a) = |w|a,θ(a). Thus w /∈ u◦(m) for any m 6= n. Hence
n is such an unique integer.

2

A ◦-primitive word u ∈ Σ+ such that w ∈ u◦(n) for some n ≥ 1, is called a ◦-root
of w. In general, a word may not have a unique ◦-root. However, if ◦ is the operation
of θ-catenation, then every word w ∈ Σ+ has an unique �-root, also called θ-root,
denoted by ρθ(w). The uniqueness of the θ-root of a word was demonstrated by the
following theorem (corollary of Theorems 13 and 14 from [6]).

Theorem 12 If θ is a morphic or antimorphic involution on Σ∗ then for any word
w ∈ Σ+ there exists a unique θ-primitive word t ∈ Σ+ such that w ∈ t{t, θ(t)}∗, i.e.,
ρθ(w) = t.
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Lemma 13 Let Σ be an alphabet with |Σ| ≥ 2 and ◦ be plus-closed and θ-propagating
bw-operation. If a word w ∈ Σ+ is not ◦-primitive, then for any a 6= b, a, b ∈ Σ we
have that |w|a,θ(a) and |w|b,θ(b) have a common factor n > 1.

Proof. If w is not ◦-primitive, then according to Proposition (5), w ∈ u◦(n) for some
◦-primitive word u ∈ Σ+ and n > 1. Since ◦ is θ-propagating and Proposition (3)
holds, |w|a,θ(a) = n · |u|a,θ(a) for all a ∈ Σ. Similarly, |w|b,θ(b) = n · |u|b,θ(b). Hence,
for any a, b ∈ Σ, we have that |w|a,θ(a) and |w|b,θ(b) have the common factor n > 1.

2

Proposition 7 Let Σ be an alphabet with |Σ| ≥ 3 and ◦ be plus-closed and θ-
propagating bw-operation. If w ∈ Σ+, a ∈ Σ, w /∈ {a, θ(a)}+, then there is an integer
m ≥ 1 such that all the words v1 ∈ (w ◦ wm−1a), v2 ∈ (awm−1 ◦ w), v3 = wma and
v4 = awm are ◦-primitive.

Proof. For w ∈ Σ+, let m =
∏
b∈Σ,|w|b,θ(b) 6=0 |w|b,θ(b). For any a ∈ Σ, suppose

w /∈ {a, θ(a)}+. Such a word exists since |Σ| ≥ 3. Let v1 ∈ (w ◦ wm−1a), v2 ∈
(awm−1 ◦ w), v3 = wma and v4 = awm. If b /∈ {a, θ(a)} is a letter occurring in w,
|v1|a,θ(a) = |v2|a,θ(a) = |v3|a,θ(a) = |v4|a,θ(a) = m · |w|a,θ(a) + 1 whereas |v1|b,θ(b) =
|v2|b,θ(b) = |v3|b,θ(b) = |v4|b,θ(b) = m · |w|b,θ(b). As the number of occurrences of a
together with θ(a) respectively the number of occurrences of b together with θ(b)
in each vi, i = 1, 2, 3, 4, are relatively prime, by Lemma (13), v1, v2, v3 and v4 are
◦-primitive words.

2

In the remainder of the section we will investigate some properties of θ-primitive
words.

Definition 2 [12] A language L ⊆ Σ∗ is called right-◦-dense (resp. left-◦-dense) if
for each w ∈ Σ+, there exists u ∈ Σ∗ such that (w ◦u)∩L 6= ∅ (resp. (u◦w)∩L 6= ∅).

If ◦ is the catenation of words, then the right and left ◦-dense languages are called
right and left dense languages, respectively. Let Q◦(Σ) denote the set of all ◦-primitive
words over Σ.

Proposition 8 If Σ is an alphabet with |Σ| ≥ 3 and ◦ is plus-closed and θ-
propagating bw-operation, then Q◦(Σ) is right and left ◦-dense.

Proof. For each w ∈ Σ+, since |Σ| ≥ 3, there exists a ∈ Σ such that w /∈ {a, θ(a)}+.
As ◦ is plus-closed and θ-propagating, by Proposition (7), there exists m ≥ 1, such
that (w◦wm−1a) ∈ Q◦(Σ) and (awm−1 ◦w) ∈ Q◦(Σ). This proves that Q◦(Σ) is right
and left ◦-dense.

2

Next, we show that the set of θ-primitive words Q�(Σ) is right and left dense.
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Proposition 9 Let the operation of θ-catenation � associated to morphic or anti-
morphic involution θ be plus-closed θ-propagating and let |Σ| ≥ 3. Then Q�(Σ) is
right and left dense.

Proof. Let w ∈ Σ+. If w ∈ {a, θ(a)}+ and b ∈ Σ such that b /∈ {a, θ(a)}, then,
|wb|a,θ(a) = |bw|a,θ(a) = m ≥ 1. Also, |wb|b,θ(b) = |bw|b,θ(b) = 1, hence by Lemma (13)
wb ∈ Q�(Σ) and bw ∈ Q�(Σ). If w /∈ {a, θ(a)}+, then by Proposition (7), wma ∈
Q�(Σ) and awm ∈ Q�(Σ) for some m ≥ 1. This proves that Q�(Σ) is right and left
dense.

2

Proposition 10 Let ◦ be a plus-closed and θ-propagating bw-operation and L ⊆ Σ+

a non-empty ◦-closed language such that Lc is also ◦-closed. Let F (L) be the set of
length-minimal words of L and P◦(L) = L ∩Q◦(Σ). Then

1. If w ∈ L and if u is a ◦-root of w, then u ∈ L.

2. If L
′

is a ◦-closed language containing P◦(L), then L ⊆ L′ .
3. Every word w ∈ F (L) is ◦-primitive.

Proof. 1. Since u is a ◦-root of w, w ∈ u◦(n), for some n ≥ 1. If u ∈ Lc, then,
since Lc is ◦-closed, u◦(n) = (u ◦n−1 u) ⊆ Lc and therefore, w ∈ Lc, which is a
contradiction. Hence u ∈ L.

2. Let w ∈ L, then there are two possibilities, either w ∈ P◦(L) or w /∈ P◦(L). If
w ∈ P◦(L), then w ∈ L′ as P◦(L) ⊆ L′ . If w /∈ P◦(L) then w is not ◦-primitive.
That means there exists a ◦-primitive word u and n ∈ N such that w ∈ u◦(n).
But as u is ◦-primitive, u ∈ P◦(L) ⊆ L′ , so w ∈ L′ . So, we have showed that in
both cases L ⊆ L′ .

3. Assume that w ∈ F (L) is not ◦-primitive. Then by Proposition (5), w ∈ u◦(n),
for some ◦-primitive word u and n > 1. By (1), u ∈ L.
Case 1 : There is no a ∈ Σ such that θ(a) = a. Then, as Proposition (3) holds
true,

|w| = 1

2

∑
a∈Σ,a6=θ(a)

|w|a,θ(a) >
1

2

∑
a∈Σ,a6=θ(a)

|u|a,θ(a) = |u|

which contradicts the fact that w ∈ F (L).
Case 2 : There exists a ∈ Σ such that θ(a) = a. Then as Proposition (3) holds
true,

|w| =
∑

a∈Σ,a=θ(a)

|w|a,θ(a) +
1

2

∑
a∈Σ,a6=θ(a)

|w|a,θ(a)

>
∑

a∈Σ,a=θ(a)

|u|a,θ(a) +
1

2

∑
a∈Σ,a 6=θ(a)

|u|a,θ(a) = |u|

which contradicts the fact that w ∈ F (L).
2
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5. Closure Properties and Language Equations

In this section we will briefly discuss the closure properties of families of languages
under θ-catenation and explore language equations involving this operation.

Proposition 11 The families of regular, context-free and context-sensitive languages
are closed under the operation of θ-catenation.

Binary word operations can be extended naturally to binary language operations
by defining,

L1 � L2 =
⋃

u∈L1,v∈L2

(u � v).

Language equations of type L�Y = R and X �L = R, where � is an invertible binary
word operation and L and R are two given languages have been extensively studied,
e.g., in [15]. Finding the solutions to such equations involves the concept of “right
inverse” and “left inverse” of an operation.

Definition 3 [15] Let ◦ and � be two binary word operations. The operation � is
said to be the right-inverse of the operation ◦ if for all words u, v, w over the alphabet
Σ the following relation holds:

w ∈ (u ◦ v) iff v ∈ (u � w).

Definition 4 [15] Let ◦ and • be two binary word operations. The operation • is
said to be the left-inverse of the operation ◦ if for all words u, v, w over the alphabet
Σ, the following relation holds:

w ∈ (u ◦ v) iff u ∈ (w • v).

Proposition (12) and (13) find the right and left inverses of θ-catenation for θ
morphic as well as antimorphic. Given a bw-operation ◦, the reverse of this operation,
denoted by ◦′, is defined as

u ◦′ v = v ◦ u.

Proposition 12 If θ is a morphic or antimorphic involution then the right-inverse of
the operation of θ-catenation � is the reverse left θ-quotient.

Proof. Let θ be a morphic involution, and let w ∈ u � v. Then either w = uv or
w = uθ(v). By the definition of left quotient, w = uv implies that v = u−1w. Also,
w = uθ(v) which implies that θ(w) = θ(u)v and thus that v = θ(u)−1θ(w). This
shows that v ∈ {u−1w, θ(u)−1θ(w)} = u�′� w. The converse is similar.

Let θ be an antimorphic involution and let w ∈ u � v. Then either w = uv or
w = uθ(v). By the definition of left quotient, w = uv implies that v = u−1w. Also,
w = uθ(v) implies that θ(w) = vθ(u). Then, by the definition of right quotient, θ(w) =
vθ(u) which implies that v = θ(w)θ(u)−1. This shows that v ∈ {u−1w, θ(w)θ(u)−1} =
u�′� w. The converse is similar.

2
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Proposition 13 Let θ be a morphic or antimorphic involution, and let the binary
word operation • be defined as w • v = {wv−1, wθ(v)−1}. Then θ-catenation and •
are left inverses of each other.

Proof. Let w ∈ u � v. Then either w = uv or w = uθ(v). By definition of right
quotient, w = uv implies u = wv−1. Also, w = uθ(v) implies u = wθ(v)−1. This
shows that u ∈ {wv−1, wθ(v)−1} = w • v. The converse is similar.

2

The preceding results provide tools to solve language equations involving the op-
eration of θ-catenation. The following two propositions are consequences of more
general results from [15].

Proposition 14 Let L, R be languages over an alphabet Σ. If the equation L�Y = R
has a solution Y, then the language R

′
= (L�′�R

c)c is also a solution of the equation.

Moreover, R
′

includes all the other solutions of the equation (set inclusion).

Corollary 14 Let L be a language in Σ∗. If the equation L� Y = L has a solution,
then ρ�(L), the set of all right �-residuals of L is a solution, which moreover includes
all the other solutions to the equation.

Proof. By the previous proposition, if a solution to the equation L � Y = L exists,
then also R

′
= (L �′� L

c)c = (Lc �� L)c is a solution. By a result in [12], for any
language L ⊆ Σ∗ and bw-operation ◦, the set of all right ◦ residuals of L, denoted by
ρ◦(L), equals (�◦(L

c, L))c, which proves the statement of the corollary.

2

Proposition 15 Let L,R be languages over an alphabet Σ. If the equation X�L = R
has a solution X ⊆ Σ∗, then also the language R

′
= (Rc �′� L)c is a solution of the

equation. Moreover, R
′

includes all the other solutions of the equation (set inclusion).

6. Conclusions and future work

This paper proposes and investigates the operation of θ-catenation, that generates the
pseudo-powers (θ-powers) of a word. An avenue of further research is to determine
and investigate operations that generate other types of generalized powers. One such
type is the Abelian power, [8] defined as follows.

A word w is a k-th Abelian power if w = u1u2 · · ·uk for some u1, u2, · · ·uk, ui ∈ Σ+,
1 ≤ i ≤ k, such that for all 1 ≤ i, j ≤ k, π(ui) = π(uj), where π(u) denotes the set of
all words obtained by permuting the letters of u. A word w is Abelian primitive if w
fails to be a k-th Abelian power for every k ≥ 2. A word u is an Abelian root of w if
w = uu1u2 · · ·uk−1 for some u1 · · ·uk−1 ∈ Σ+ with π(u) = π(ui) for all 1 ≤ i ≤ k− 1.
Unlike words that are not primitive or not θ-primitive, a word that is not Abelian
primitive may have several Abelian roots.
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We can now define a bw-operation �, called Abelian-catenation, as u� v = uπ(v).
For example, if we consider the alphabet Σ = {a, b, c} and the words u = acba and
v = bcc, then

u� v = {acbabcc, acbacbc, acbaccb}.

The operation of Abelian-catenation is length-increasing as well as propagating,
but its neither left-inclusive nor right-inclusive and therefore is not plus-closed.

Note that the operation of Abelian-catenation generates Abelian-powers. Indeed,
if w ∈ u�(k), for k ≥ 1, then w = uv1v2 · · · vk−1, where vi ∈ {π(u)}, for 1 ≤ i ≤ k− 1.
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